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The Role of Conceptual Structure in Mathematical Explanation 
 

Nathan Couch (ngcouch@u.northwestern.edu) 
Department of Psychology, Swift Hall 102, 2029 Sheridan Road 

Evanston, IL 60208 USA 
 

Abstract 
People’s reasoning about physical and social explanations is 
well understood (Keil, 2008). However, less is known about 
how people reason about mathematical explanations (Johnson 
et. al., 2017). Experiment 1 replicates the central result of 
Johnson et. al (2017), that people impose order on simple 
arithmetic explanations, as well as sets the limits of that 
preference. Experiment 2 extends the results of a second factor, 
the character of the relationship between the operations related 
by the explanation. 

Keywords: explanations, mathematical reasoning 

Introduction 
Take a calculator and form a six-digit ‘calculator number’ 

by taking the three digits on any row, column, or main 
diagonal forward and then back (e.g., 789987, formed by 
moving across the top row from left to right and back). It is 
simple to check that every calculator number is divisible by 
37. We might be led to ask why every calculator number is 
divisible by 37, and in doing so we are requesting an 
explanation for a mathematical fact. Typically, this is done 
via proof, though a proof is not necessarily explanatory: We 
can show that all calculator numbers are divisible by 37 by 
exhaustively checking all cases, but such a proof could hardly 
be regarded as explanatory (see Lange, 2014 for a full 
discussion of this example). 

In contrast to physical explanations, which seek to explain 
one event by reference to how it is caused by another, 
mathematical explanations seek to demonstrate that one 
mathematical fact is implied by another via proof (Mancosu, 
2001; Steiner, 1978). However, physical and mathematical 
explanations may share an important common feature: both 
may depend on an asymmetry between what is being 
explained and what is doing the explaining.  

A commonly noted feature of physical explanations is that 
they are asymmetric: though the length of a building’s 
shadow and the height of the sun on the horizon are related in 
regular and lawful ways, such that either one can be deduced 
from the other, explanations that relate the two abide by the 
fact that it is the height of the sun that explains the length of 
the shadow, and not the other way around (Bromberger, 
1966). Plausibly, this is due to two asymmetrical relations 
that frequently appear in physical explanations: causal and 
reductive. 

Ordering in Physical Explanations 
Causes proceed their effects. Thus, it is not a surprise that 

when seeking to explain a particular event (e.g., why Matt is 
thirsty), people look for temporally prior information that 
would help identify potential causal mechanisms (e.g., that it 
is exceptionally hot today; Ahn, Kalish, Medin, & Gelman, 

1995). In this way, the temporal order of cause and effect 
provides one basis for asymmetric explanations in science. 

A second source of asymmetry appears in reductive 
explanations: accounting for a phenomena in terms of more 
basic components. Indeed, finding reductive explanations is 
often a major goal of modern science. The reductive relations 
between different levels of a system impose ordering 
constraints on possible explanations: It would be 
inappropriate, for instance, to explain the chemical properties 
of dopamine by reference to its effects on neurons, but 
explanations that run the other way (explaining how neurons 
communicate via dopamine) would be acceptable. 

Ordering in Mathematical Explanations 
Whereas in causal domains inverting the order of an 
explanation typically results in a falsehood, many 
mathematical explanations may be inverted and still be true 
(e.g., “1 + 2 = 3	𝑏𝑒𝑐𝑎𝑢𝑠𝑒	3 − 2 = 1”, and “3 − 2 =
1	𝑏𝑒𝑐𝑎𝑢𝑠𝑒	1 + 2 = 3”). Despite this, we might expect to 
find order imposed on explanations in mathematics. People 
preferentially write equations in a particular order to reflect 
the structure of the system being represented (Mochon & 
Sloman, 2004), sometimes leading them to generate false or 
uninterpretable equations (Landy, Brookes, & Smout, 2014). 
Indeed, two critical features of modern mathematical 
practice, axiomatic treatment of domains and the reduction of 
mathematical structures to set or category theory, may reflect 
the imposition of order on explanations in mathematics. 

First, many advanced mathematical texts begin by stating 
the axioms of the theory under discussion, and then showing 
how the major theorems of the theory are implied by the 
axioms. Second, mathematical objects are frequently reduced 
to more basic components, analogous to reduction in science. 
Reduction is often seen as a major accomplishment, even if it 
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Figure 1 — Adapted from Johnson et al. (2017). Arrows 
between boxes indicate the direction of grounding 
relations. Diagonal relations are inverses; vertical 
relations involve repeated operations. 
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doesn’t directly lead to new theorems. For instance, Nicolas 
Bourbaki, the pseudonym of a group of early 20th century 
French mathematicians, sought to ground all of mathematics 
in the theory of sets (Bourbaki, 1968). The goal of this project 
was not necessarily to obtain new results, but to provide a 
characterization of known results in more basic or simpler 
terms (though new results may be obtained). 

Deductive relations in math and causal relations in science 
may be thought of as analogous. Ordering stems from the 
manner that one set of propositions or events is deemed prior 
to the other: conceptually for mathematical propositions, and 
temporally for events. Similarly, reductive relations in 
mathematics and physical science are analogous in the sense 
that the truth of the reducing proposition (or the existence of 
the reducing phenomena) guarantees the truth of the reduced 
proposition (or the existence of the reduced phenomena). 
Here, ordering stems from how one domain is considered 
more basic or simpler than the other. 

While deductive and reductive relations are most evident 
in advanced mathematics, they might also be found in more 
elementary mathematics. For instance, operations in integer 
arithmetic can be conceptualized as having ordered 
relationships among themselves: addition is more basic than 
subtraction and multiplication, and multiplication is more 
basic than division and exponentiation. In this way, relations 
among mathematical operations may come to be structured 
as they are in Figure 1.  

This structure corresponds to the standard way that 
arithmetic is taught in American schools: addition is 
introduced as aggregating groups of objects before 
subtraction is taught as the taking away of objects from a 
group. Later, multiplication is taught as aggregating many 
groups of even size, and division as dividing a whole into 
equal parts. Explanations that ground facts concerning one 
operation (subtraction) in a more basic operation (addition) 
can be thought of as following this conceptual order, while 
explanations that do the opposite (e.g., explaining addition in 
terms of subtraction) violate this order.  

Johnson, Johnson, Koven, and Keil (2017) presented 
participants with a variety of simple arithmetic explanations 
and asked them to rate the quality of the explanations on a 
ten-point scale. Johnson et al. found that participants rated 
explanations that followed the conceptual structure of 
mathematics in Figure 1 as better than those that proceeded 
in the opposite direction. Johnson et al. interpreted this as 
indicating that participants have an ordered conceptual 
structure of arithmetic, and use these ordered features to 
structure their explanations.  

While Johnson et al. (2017) investigated the role that 
conceptual order plays in mathematical explanations, order is 
not the only structural factor that may be relevant when 
evaluating mathematical explanations. In particular, the 
manner in which one operator explains another may be 
important. Subtraction is the inverse of addition, in the sense 
that subtracting X from Y ‘undoes’ the effect of adding X to 
Y (similarly with multiplication and division). In contrast, the 
effect of multiplying Y by X is the same as repeatedly adding 

Y to itself X times (similarly with multiplication and 
exponentiation). We can think of addition and subtraction as 
different sides of the same processes, a conceptualization that 
is borne out by their treatment in the standard axioms for the 
real numbers (Rudin, 1976). In contrast, addition and 
multiplication enjoy no such relationship in real analysis, and 
instead are treated as fundamentally distinct operations by 
those axioms. Multiplying 187.3 by π can’t be explained as 
adding 187.3 copies of π. It is possible that students who are 
familiar with the real number system are sensitive to the 
different kinds of relationships being captured by these 
explanations. If so, they may treat the diagonal relations in 
Figure 1 as more explanatory than the vertical ones. 

The present research has two goals: first, to replicate the 
main results of Johnson et al. (2017) in a novel paradigm, thus 
strengthening the original result and validating the new 
paradigm. While Johnson et al. asked participants to 
numerically evaluate explanations, the present paradigm asks 
participants to compare pairs of explanations and select the 
better one. The second objective is to use the new paradigm 
to explore the influence of a particular factor, the character of 
the relationship between the operators expressed by an 
explanation, on participants’ judgments of that explanation’s 
value. Do people believe the diagonal relations in Figure 1 
(e.g., the relation of addition to subtraction) are more 
explanatory than the vertical ones (e.g., the relation of 
addition to multiplication)? 

Experiment 1 

Method 
Procedure Participants were shown pairs of explanations 
and asked to indicate which explanation they preferred, and 
whether they preferred that explanation Strongly, 
Moderately, or Weakly. Each trial asked participants to 
compare a pair of explanations that used the same operations, 
one of which was forward, and the other backward (e.g., 
“3 × 3 × 3 = 27	𝑏𝑒𝑐𝑎𝑢𝑠𝑒	30 = 27” vs. “21 =
16	𝑏𝑒𝑐𝑎𝑢𝑠𝑒	2 × 2 × 2 × 2 = 16). The explanations in the 
pairs contained different numbers, and presentation order was 
randomized across participants. 

Participants were told, “Please note that for many of the 
questions, both explanations are true, and you must decide 
which explanation you prefer based on other criteria.” 
Participants allowed to use a calculator to check any of the 
math. On average, participants took approximately 4 minutes 
to complete the task. 
 
Materials Four lists containing 16 test questions and 4 check 
questions were created. Lists differed only in the specific 
numbers used in the various explanations. All questions 
consisted of two explanations presented simultaneously. All 
explanations were of the form “X because Y,” where X and 
Y were arithmetic identities that could be transformed into 
each other by a simple manipulation, (e.g. “7 − 2	 =
	5	𝑏𝑒𝑐𝑎𝑢𝑠𝑒	7	 = 	5 + 2”). Explanations were generated 
using four pairs of operators: addition and subtraction, 
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addition and multiplication, multiplication and division, and 
multiplication and exponentiation.  

For each test item, the forward explanation used a more 
basic operator to explain a more advanced one (e.g., using 
addition to explain subtraction, as in the previous example), 
and the backward explanation used a more advanced operator 
to explain a more basic one (e.g., using exponentiation to 
explain multiplication, as in “3 × 3 × 3 = 27	𝑏𝑒𝑐𝑎𝑢𝑠𝑒	30 =
27”). 

In addition, explanations varied in terms of the relationship 
between the operations in the explanation. Inverse 
explanations explained an operation in terms of its inverse 
(e.g., addition and subtraction), while repeated explanations 
explained an operation in terms of the repeated application of 
another operation, (e.g., addition and multiplication), or the 
opposite.  

Check questions were of the same form as test questions, 
except one of the explanation pairs either contained an 
arithmetic error (e.g., “13 − 4 = 8	𝑏𝑒𝑐𝑎𝑢𝑠𝑒 …”) or 
explained an arithmetic fact using an irrelevant arithmetic 
fact (e.g., “13 − 6 = 7	𝑏𝑒𝑐𝑎𝑢𝑠𝑒	2 × 2 × 5 = 20”).  
 
Participants 29 undergraduate students were recruited from 
the Northwestern Introduction to Psychology pool. 
Participants were granted course credit for their participation. 
7 participants were excluded because they failed the check 
questions. 

Results  
Participant responses were coded so that preference for 
forward explanations were positive and preference for 
backwards explanations were negative. Strong preferences 
were coded as ±2.5, moderate preferences as ±1.5, and weak 
preferences as ±.5.  

Mean preference roughly corresponded to a Weak 
Preference for forward explanations (M=0.44, SD=.92). 
Coded responses from each participant were averaged and 
entered into a one sample t-test. As expected from Johnson et 
al., participants’ average preference was significantly higher 
than zero, t(21) = 3.92, p < .001, indicating that they preferred 
explanations that conformed to the standard conceptual order 
of arithmetic. Participants preferred the forward explanation 
60% of the time, not significantly higher than chance (One-
sample binomial, p=.076, two-sided). 

To examine whether the strength of this preference varied 
across operator pairs, a two-way (2x2) repeated measures 
ANOVA with operator used in the explanation base (addition 
vs. multiplication) and relation between the explanation base 
and explanation target (inverse vs. repeated) as within subject 
factors was performed. The analysis found no effect of 
explanation base, relation type, or their interaction (Fs < 1, ps 
> .7). As shown in Figure 2, preference for the forward 
direction was consistent across operator pairs. 

 
 
 
 

Figure 2 — The top axis labels indicate the operator used in 
the explanatory base, while the bottom axis labels indicate the 
relationship expressed by the explanation. Box edges indicate 
1st and 3rd quartile of the distribution, while whiskers indicate 
1.5 times the interquartile range.  

Discussion 
The hypothesis guiding Experiment 1 was that, as in Johnson 
et al., participants would favor explanations that followed the 
conceptual order of arithmetic over those that did not. The 
results from Experiment 1 corroborate those from Johnson et 
al., strengthening the hypothesis that participants prefer 
explanations that proceed in a particular direction, even in 
domains without temporal or causal ordering. However, 
participants did not distinguish between the inverse and 
repeated relations of Figure 1. 

Experiment 2 
Experiment 2 was designed to retest the hypothesis that 
participants take into consideration the kind of relationship 
between the arithmetic facts in math explanations. 
Experiment 2 also contains a conceptual reproduction of 
Experiment 1, with the modification that participants were 
permitted to indicate that they don’t have a preference. This 
provided a better sense of explanatory direction’s importance 
is when participants evaluate arithmetic explanations. In 
addition, by having the same participants compare forward to 
backward explanations, and inverse to repeated explanations, 
we can compare the relative strength of the any preferences 
found. 

Method 
 
Procedure The procedure was identical to that used in 
Experiment 1, with the modification that the response scale 
included a middle item. This middle item allowed 
participants to indicate that they had No Preference between 
the explanations being compared. Participants took 
approximately ten minutes to complete the study. 
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Materials Materials for Experiment 2 were similar to those 
for Experiment 1, but new explanations were generated to test 
the primary hypothesis at question. 

Inverse versus repeated. Inverse explanations explained an 
operator in terms of its inverse (e.g., addition and subtraction, 
as in “9 − 3 = 6	𝑏𝑒𝑐𝑎𝑢𝑠𝑒	3 + 6 = 9”), while repeated 
explanations explained an operator in terms of the repeated 
application of another operator (e.g., addition and 
multiplication, as in “3 × 3 = 9	𝑏𝑒𝑐𝑎𝑢𝑠𝑒	3 + 3 + 3 = 9”). 

As table 1 shows, test items for the main portion of the 
experiment compared inverse and repeated explanations. To 
construct test items, operator pairs were crossed as best 
possible: Test items compared inverse addition to repeated 
addition and repeated multiplication, inverse multiplication 
to repeated addition and repeated multiplication, and inverse 
exponentiation to repeated addition and repeated 
multiplication. Example explanation pairs are show in Table 
1.  Thus, there were 6 trials in this portion of the experiment. 
Because the standard course of mathematical education does 
not include treatment of operations that can be 
conceptualized as the outcome of repeated exponentiations, 
there are no repeated exponentiation explanations (though 
such explanations would be possible, see Goodstein 1947). 
All explanations for this portion of the study were forward.  

 
Forward versus backward. Test items for the reproduction 

of Experiment 1 paired forward and backward explanations 
using the same operator pairs, as in Experiment 1. In addition 
to the four pairs of operators used in Experiment 1, an 
additional pair of operators, exponentiation and root taking, 
were used in the generation of the explanations to test the 
generality and strength of any preferences found. Thus, there 
were 5 trials in this portion of the experiment. Test items in 
the reproduction of Experiment 1 used a different set of 
numbers than those used in the first part of the experiment. 

Equations relating operators via repeated application could 
be very long (e.g., "3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 = 24"). 
Furthermore, the large number of terms in the equation could 
obscure the relationship being illustrated (i.e., that there are 
eight 3’s). To get around this, equations expressing repeated 
operations were displayed so that (a) the number of terms 
being repeated was indicated by an overhand bracket, and (b) 
equations with many terms were abbreviated so that only the 
first and last elements of the expression were shown, with the 
middle terms replaced with ellipsis. The instructions made 
clear how the participants were to interpret this notation. 

Check questions. As in Experiment 1, Experiment 2 
included 4 check questions. All check questions in 
Experiment 2 contrasted a correct explanation with an 
explanation containing a simple arithmetic error. 

 
Participants Thirty-seven participants were recruited from 
Amazon Mechanical Turk. Those that completed the survey 
were compensated $1. Average time to complete the survey 
was approximately 15 minutes, resulting in an effective 
hourly rate of $4. Seventeen participants were excluded 
because they failed the check questions. 

Results 
Strong preferences were coded as ±3, moderate preferences 
as ±2, weak preferences as ±1, and no preference as 0.  
 

 

 Inverse Base Inverse Explanation Repeated Base Repeated Explanation 

1 Addition 9 − 3 = 6	𝑏𝑒𝑐𝑎𝑢𝑠𝑒	3 + 6 = 9 Addition 3 × 3 = 9	𝑏𝑒𝑐𝑎𝑢𝑠𝑒	 3 + 3 + 3:;;<;;=
0

= 9 

2 Addition 9 − 3 = 6	𝑏𝑒𝑐𝑎𝑢𝑠𝑒	3 + 6 = 9 Multiplication 30 = 27	𝑏𝑒𝑐𝑎𝑢𝑠𝑒	 3 × 3 × 3:;;<;;=
0

= 27 

3 Multiplication 
9
3 = 3	𝑏𝑒𝑐𝑎𝑢𝑠𝑒	3 × 3 = 9 Addition 3 × 3 = 9	𝑏𝑒𝑐𝑎𝑢𝑠𝑒	 3 + 3 + 3:;;<;;=

0

= 9 

4 Multiplication 
9
3 = 3	𝑏𝑒𝑐𝑎𝑢𝑠𝑒	3 × 3 = 9 Multiplication 30 = 27	𝑏𝑒𝑐𝑎𝑢𝑠𝑒	 3 × 3 × 3:;;<;;=

0

= 27 

5 Exponentiation √9? = 3	𝑏𝑒𝑐𝑎𝑢𝑠𝑒	3@ = 9 Addition 3 × 3 = 9	𝑏𝑒𝑐𝑎𝑢𝑠𝑒	 3 + 3 + 3:;;<;;=
0

= 9 

6 Exponentiation √9? = 3	𝑏𝑒𝑐𝑎𝑢𝑠𝑒	3@ = 9 Multiplication 30 = 27	𝑏𝑒𝑐𝑎𝑢𝑠𝑒	 3 × 3 × 3:;;<;;=
0

= 27 

Table 1 — Six example trials from Experiment 2. Inverse explanations on the left were compared to repeated 
explanations on the right.  
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Figure 3  — Top axis labels indicate the base operator used 
in the Inverse explanation, while bottom axis labels indicate 
the base operator used in the repeated explanation. Box edges 
indicate 1st and 3rd quartile of the distribution, while 
whiskers indicate 1.5 interquartile range.  
 

Responses were entered into a 3x2 repeated measures 
ANOVA, with the base used in the inverse explanation 
(addition, multiplication, or exponentiation) and the base 
used in the repeated explanation (addition or multiplication) 
as within-subject factors. This test revealed a significant 
effect of the base used in the inverse explanation, F(2, 38) = 
20.18, p <.0001, but no effect of the base used in the repeated 
explanation, nor of their interaction (Fs <2.5). A post-hoc 
paired t-test found that the preference for the inverse 
explanation was weaker when the inverse explanation used 
exponentiation as a base, t(19)=-5.6, p<.001. A second post-
hoc paired t-test found no differences on trials where the 
inverse explanation used addition compared to those that 
used multiplication, t <1.5.  

In light of these results, a second round of post-hoc 
analyses was carried out, this time omitting trials where the 
inverse explanation used exponentiation. Preference on these 
trials fell roughly between No and Weak Preference for 
Inverse explanations (M=0.76, SD=1.25). Participants 
selected No Preference on these trials only ~7% of the time. 
On the ~93% of the trials where the participant expressed a 
preference, 73% of the time that preference was for the 
inverse explanation, significantly different from chance 
(p<.0001, two-sided). Preference for inverse explanations 
was reliably above chance, t(19)=2.73, p=.013.  
 
Replication of Experiment 1 The second main question of 
Experiment 2 was whether preference for forward 
explanations would generalize when participants are given 
the option of expressing No Preference. In contrast to 
Experiment 1, participants did not reliably favor forward 
explanations over backward explanations, as revealed by a 
one sample t-test of participant means against 0, t(19)=1.4, p 
= .174. Indeed, the modal response was No Preference (40%). 
However, of the 60% of trials where participants expressed a 
preference, participants favored forward explanations at a 
similar rate as in Experiment 1 (61%), though this did not rise 

above chance (p=.08, two-sided). A 2x2 repeated measures 
ANOVA with base (addition vs multiplication) and relation 
type (inverse vs repeated) as within-subject factors failed to 
find an effect of explanatory base, relation type, or their 
interaction (Fs <1.0).  
 
Comparison of Preferences. Embedding the reproduction of 
Experiment 1 in Experiment 2 allows us to compare the 
relative strength of preferences in the two comparisons. A 
paired t-test comparing participants’ preference for forward 
over backward explanations to their preference for inverse 
over repeated explanations, omitting inverse exponentiation 
explanations, found that preference was stronger for the 
latter, t(19)=-4.6, p<.001. 

Discussion 
While on the whole participants did not take into account 
whether the explanation expressed an inverse or repeated 
relation, participants gave lower ratings to inverse 
explanations that related exponentiation to root taking, 
decreasing the average preference for inverse explanations. 
After omitting those trials, participants reliably selected the 
inverse explanation. In conjunction with Experiment 1, these 
data suggest that participants take into account the conceptual 
relation expressed by an explanation, but that other factors, 
perhaps their familiarity with the concepts involved (as 
suggested by the dis-preference for explanations that use 
roots) can outweigh this preference.  

The specific nature of this preference — inverse 
explanations over repeated explanations — suggests that 
something like conceptual fit between the operators being 
related is taken into account. Because addition and 
subtraction are inter-defined operations (as are multiplication 
and division), using one to explain the other is better than 
using conceptually distinct operations, such as addition and 
multiplication.  

An alternative interpretation, suggested by Johnson et al., 
is that when evaluating explanations, participants construct a 
mental proof which derives the explanatory target from the 
explanatory base. Evaluation of explanation-proofs penalize 
proofs that require many steps. Inverse explanations have 
short proofs: simply move one term to the other side of the 
equation. In contrast, repeated application proofs require 
grouping many terms and then relating the grouped operation 
to another operation. While this account has merits, the 
consensus among mathematicians and philosophers is that 
proof is distinct from explanation, and the latter does not 
cleanly map onto formal features of the former: for instance, 
proofs by induction or enumeration are generally thought to 
be non-explanatory, despite being rigorous (Lange, 2009). 

A secondary goal of Experiment 2 was to test whether the 
results of Experiment 1, that participants favored forward 
explanations over backwards explanations, would generalize 
when participants were given the option of indicating that 
they have no preference. In contrast to the results of Johnson 
et al. and Experiments 1, the results of Experiment 2 indicate 
that participants are on the whole ambivalent to the 
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distinction between forward and backwards explanations: the 
most common response was “No Preference.” 

This should not be considered a failure to reproduce the 
results of (Johnson et al., 2017), however: the preference for 
forward explanations was weak in both Johnson et al. (2017) 
and Experiment 1, and the lower powered design of 
Experiment 2 plausibly rendered the effect too small to detect 
with small samples. In addition, when participants did 
express a preference, it was generally for forward 
explanations. However, this result does place limits on how 
important conceptual direction is when evaluating arithmetic 
explanations. Other factors, such as familiarity with the 
operations involved, may be more important. 

General Discussion  
Across two experiments, participants took structural factors 
into account when evaluating explanations in arithmetic. 
They favored explanations that proceeded from conceptually 
basic operations to advanced ones over those that did the 
opposite, and preferred explanations that linked conceptually 
similar operations over those that linked dissimilar 
operations.  

The dis-preference for backward explanations was found 
to be weaker than other factors, such as a dis-preference for 
explanations that use unfamiliar operations. Indeed, when 
given the choice to indicate that ordering didn’t matter, 
participants often did so. These results provide evidence 
against theories of explanation that require explanations to be 
asymmetric and are more consistent with theories of 
explanation in which order emerges out of other factors. 

Plausibly, the symmetry of arithmetic explanations is a 
consequence of a lack of an objective ordering in arithmetic. 
Both “3 − 1	 = 	2	𝑏𝑒𝑐𝑎𝑢𝑠𝑒	1 + 2	 = 	3” and “1 + 2	 =
	3	𝑏𝑒𝑐𝑎𝑢𝑠𝑒	3 − 1	 = 	2” are valid, in the sense that both 
summarize valid proofs, and participants’ indication of “No 
Preference” may indicate that they are sensitive to this feature 
of arithmetic explanations. Thus, it may be that validity of the 
explanation, rather than the explanation’s ordering per se, is 
the primary criteria by which explanations are evaluated. This 
is substantiated by participants’ response to the check 
questions in Experiments 1. Participants equally dis-
preferred explanations containing an error and those that 
explained a mathematical fact via an unrelated fact, 
indicating that the possibility of constructing a deductively 
valid proof linking the explanatory base and target is an 
important criterion. 

More generally, these results are consistent with a view of 
explanations that holds that their formal properties are 
inherited from the domain in which they are applied. Causal 
explanations are asymmetric because they are generated by a 
domain that is best described using asymmetric causal 
relations, not because explanations are inherently 
asymmetric. In contrast, arithmetic is best described by 
symmetric derivation relations, and as such the ordering 
constraint is weaker. This would not explain the preference 
for forward explanations when forced to choose, however. 
Further experiments may be needed to tease out the 

respective roles of ordering and validity in causal and acausal 
domains. 
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