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On the Threshold Resummation in Forward pA Collisions

Bo-Wen Xiao1, 2 and Feng Yuan3

1Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics,
Central China Normal University, Wuhan 430079, China

2Centre de Physique Théorique, École Polytechnique, CNRS,
Université Paris-Saclay, Route de Saclay, 91128 Palaiseau, France.

3Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

In this paper, using the Higgs production in forward rapidity region in proton-nucleus collisions as
an example, we demonstrate that we can construct a systematic formalism for the threshold resum-
mation for forward rapidity particle productions in the saturation formalism. The forward threshold
jet function, which satisfies the corresponding renormalization group equation, is introduced into
the new factorization formula. This calculation can be easily generalized to other processes, such as
single forward hadron productions at forward rapidity region, and have important phenomenological
implications.

PACS numbers: 24.85.+p, 12.38.Bx, 12.39.St, 12.38.Cy

I. INTRODUCTION

Single inclusive particle productions in the forward rapidity region in proton-nucleus collisions, p + A→ H(y, p⊥) +
X, is of particular importance in the search for the onset of the gluon saturation phenomenon, which occurs in high
gluon density heavy nucleus target at very small x region. In this process, we measure the transverse momentum dis-
tribution of particles produced in the forward rapidity region y > 0 in the proton beam direction. It is straightforward
to find that the active partons with longitudinal momentum fraction xp ∼ m⊥√

s
ey in the proton projectile lie in the large

x region, while the active partons (mostly gluons) with longitudinal momentum fraction xA ∼ m⊥√
s
e−y in the nucleus

target are from deeply small-x region when the rapidity y is sufficiently large. Here m⊥ =
√
m2 + p2

⊥ is defined as
the transverse mass of produced particle while s is the center of mass energy. Physically, partons inside the proton
projectile, which act as dilute probes, can pick up sizeable amount of transverse momentum, which is of the order of
the saturation momentum, after traversing the dense gluonic medium in the heavy nucleus target. Therefore, it is of
great interest to study the transverse momentum distribution of particles especially in the low transverse momentum
region in order to study the gluon saturation phenomenon. Normally, the so-called dilute-dense factorization, which
uses collinear parton distribution functions (PDFs) for partons from the proton side and small-x gluon distributions
for the low-x gluon originated from the target nucleus side, is widely adopted to formulate particle productions in the
forward region. In this approach, by measuring produced particles in the forward rapidity region, one can take advan-
tage of the extremely asymmetric kinematics (namely, xp → 1 and xA � 1) to maximize the gluon saturation effects.
On the other hand, xp → 1 means that this process is close to the kinematical boundary of the phase space, where
the soft gluon radiations become important. The resummation of soft gluon radiations near the kinematical threshold
is known as the threshold resummation. The objective of this paper is to understand the threshold resummation in
the forward region in the dilute-dense factorization framework.

There have been great efforts of theoretical and phenomenological studies [1–20] on forward hadron productions
in pA collisions using the dilute-dense factorization. In particular, the next-to-leading order (NLO) single hadron
production cross section in pA collisions in forward rapidity becomes negative in the large transverse momentum
region[11]. There has been some speculation[21] that the threshold resummation could in principle help to mitigate the
negativity problem by systematically include higher loop contributions. Furthermore, authors in Ref. [17] specifically
demonstrated that one important source of the negative cross section comes from a term which is proportional to
αs ln(1−xp) with xp → 1. Analytically, one can trace the origin of the αs ln(1−xp) term and find that it is due to the
so-called plus distribution in the NLO correction. Sometime, threshold resummation is viewed as a resummation of

the ‘plus’ distributions, for example,
∫ 1

τ
dξ

(1−ξ)+ ∼ ln(1−τ) in the limit τ → 1, although constant terms associated with

soft gluon emissions are also resummed. This implies that the so-called threshold logarithm can start to appear and
become important in the dilute-dense factorization approach. In addition, the ultra-forward rapidity hadron spectrum
has been measured recently by LHCf[22], which is sensitive to the very large x region of the projectile hadron and
extremely small x region of the target nucleus[23]. In this case, we believe that the threshold resummation becomes
indispensable. However, the theoretical framework which can systematically resum such type of threshold logarithms
in the dilute-dense factorization approach is not yet available. In the following, we will investigate the the threshold
resummation in forward rapidity productions of particles in pA collisions and build such a theoretical framework.
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In general, threshold resummation, which was originally formulated by Sterman[24], and by Catani and Trentadue[25]
for the Drell-Yan process, has been a very important topic in high energy QCD studies for the last thirty years. The
resummation technique developed in these two papers has been generalized and applied to many other QCD processes,
and has been proved to be very useful in QCD phenomenology. For example, de Florian and Vogelsang[26] applied
the threshold resummation to high p⊥ π0 productions in pp collisions with rapidity integrated, and found that the
resummed results significantly improve the agreement between theoretical predictions and data. Similar technique
was also applied to high p⊥ Higgs productions[27]. In the context of Higgs boson production, the threshold logarithms
have also been included in the low transverse momentum resummation, see, for example, Refs. [28, 29]. Furthermore,
with the advent of the soft-collinear effective theory (SCET)[30], simple derivation of the factorization formula for
the DIS structure function in the threshold limit xBj → 1 can be achieved as shown in Ref. [31–34]. In addition, there
have been interesting studies on the joint resummation[35–37] of transverse momentum logarithms and threshold
logarithms, which resemble some similar physical idea as the joint resummation that we are presenting below. The
major difference is that we are working in the dilute-dense factorization approach with fixed forward rapidity.

Let us take the example of the Higgs boson production in gluon-gluon fusion process with an effective La-
grangian [38–40] to demonstrate the formulation and factorization. As the main result of this paper, in the limit
which the Higgs mass M is much greater than the measured transverse momentum k⊥, the factorization formula for
forward rapidity Higgs production in pA collisions can be written as

1

σ0

dσ

dyd2k⊥
=

∫ 1

τ

dx

x
τg(x, µ)

∫
d2x⊥d

2x′⊥
(2π)2

e−ik⊥·b⊥SWW
xA (x⊥, x

′
⊥)SSud(M2, µ2

b) ∆(µ2, µ2
b , ln

x

τ
)C(αs), (1)

where σ0 =
g2φ

4g2(N2
c−1) , µ2

b ≡
c20
b2⊥

with c0 = 2e−γE and b⊥ ≡ x⊥−x′⊥. Eq. (1) is a very interesting and elegant formula,

which encodes collinear resummation in g(x, µ), small-x evolution as well as multiple interactions in SWW
xA (x⊥, x

′
⊥)[41],

transverse momentum resummation in the conventional Sudakov factor SSud(M2, µ2
b)[42–45] and the threshold re-

summation in the new factor, namely the forward threshold jet function ∆(µ2, µ2
b , ln

x
τ ).1 C(αs) represents the hard

coefficient expanded in terms of αs without any large logarithms. Essentially, Eq. (1) also resums the threshold
logarithms of type αs ln(1−τ) with τ ≡ M√

s
ey → 1 in the forward rapidity (y) Higgs production. Interestingly, we find

that the new forward theshold jet function ∆ satisfies a renormalization group equation (RGE) similar to the RGE
first derived by Becher and Neubert[33, 46] for jet functions in SCET, which can also be derived from the analytical
solution of the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equation at the end point[34].

When the anomalous dimension γµ,b⊥ ≡ Nc
∫ µ2

b

µ2
dµ′2

µ′2
αs(µ

′2)
π > 0, one obtains ∆(µ2, µ2

b , ln
x
τ ) = e

(β0−γE)γµ,b⊥
Γ[γµ,b⊥ ] zγµ,b⊥−1

at the leading logarithmic level with z = ln x
τ . Eq. (1) is insensitive to the choice of factorization scale (also the same

as renormalization by choice) µ. If µ2 is set to be µ2
b , it is straightforward to show that ∆ becomes δ(ln x

τ ), which

reduces Eq. (1) to previous results obtained in Ref. [43]. By setting µ2 = µ2
b in the collinear gluon distribution g(x, µ),

we implicitly encode the threshold logarithms in the collinear gluon distribution by changing its scale with b⊥. This
requires the information of collinear PDF g(x, µ) over a large range of µ at given x. Since PDFs have large uncertainties
in the large x and large µ2 region, it is better to choose µ2 to be a constant, and perform the threshold resummation
explicitly as in Eq. (1), which is presumably more stable and accurate in the threshold limit. Furthermore, when b⊥
gets large, µb can become smaller than the lowest scale that collinear PDFs are defined. Without a cutoff prescription
in the large b⊥ region, this can also be a problem. In addition, in the NLO single hadron production, normally the
factorization scale is chosen to be a constant in practice in Ref. [14, 16] in order to avoid some technical difficulties in
the numerical calculation. In addition, more close connections to the SCET formalism can be established in forward
hadron(jet) productions. This will be presented in a separate work with numerical results.

The threshold resummation with respect to the double differential (rapidity and transverse momentum) cross section
considered here, as shown in the LHS of Eq. (1), has been studied previously[47–49] in different physical framework
and kinematical region. As pointed out in Ref. [49], the threshold correction becomes quite large in forward rapidity
region y ∼ 4 due to small-x contributions. In our approach, Eq. (1) resums both small-x and threshold logarithms,
which is in principle more suitable framework to describe forward rapidity particle productions. It would also be very
interesting to see the arise of small-x logarithms and corresponding resummations in the forward rapidity production
of jets following the framework developed in Ref. [49].

In the following section, we will derive ∆(µ2, µ2
b , ln

x
τ ) in Eq. (1) and comment on the application of the threshold

resummation in other processes in Sec.II. Before we conclude in Sec. IV, several comments regarding the forward
threshold resummations are made in Sec. III.

1 We name the function ∆(µ2, µ2b , ln
x
τ

) as the forward threshold jet function, because it resums threshold logarithms in the forward
rapidity region in the dilute-dense factorization formalism, and its analytical form looks very similar to the jet function in SCET.
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II. FORWARD THRESHOLD RESUMMATION IN HIGGS PRODUCTION IN PA COLLISIONS

For the sake of simplicity, let us use the forward Higgs production as an instructive example to demonstrate the
threshold resummation in saturation formalism. This process is the simplest one since there is no final state gluon
radiation. In addition, one can see that the leading power contribution comes from a few diagrams, while the rest of
graphs are suppressed by factors of k⊥

M � 1. We follow closely the calculation shown in Ref. [43], which shows that
the LO contribution reads

dσLO
dτd2k⊥

= σ0g(τ, µ)

∫
d2x⊥d

2x′⊥
(2π)2

e−ik⊥·b⊥SWW
xA (x⊥, x

′
⊥), (2)

where SWW
xA ≡ −

〈
Tr
[
∂iUx⊥

]
U†x′⊥

[
∂iUx′⊥

]
U†x⊥

〉
xA

resums the multiple gluon exchanges between the active gluon

and the target nucleus. At LO, the transverse momentum k⊥ of the produced Higgs solely comes from the small-x
Weizsäcker-Williams (WW) gluon distribution represented by the Fourier transform of SWW

xA [7]. At one-loop order,

working in the leading power k⊥
M � 1 limit, we find the following corrections2

dσ1−loop

dτd2k⊥
= σ0

∫
d2x⊥d

2x′⊥
(2π)2

e−ik⊥·b⊥SWW
xA (x⊥, x

′
⊥)
αsNc
π

g(τ, µ)

[
−1

2
ln2 M

2

µ2
b

+ β0 ln
M2

µ2
b

+
π2

2

]
+σ0

∫
d2x⊥d

2x′⊥
(2π)2

e−ik⊥·b⊥SWW
xA (x⊥, x

′
⊥)
αsNc
π

ln
µ2
b

µ2

∫ 1

τ

dξ

ξ
Pgg(ξ)g

(
τ

ξ
, µ

)
, (3)

where the terms in the first line of the above equation are conventional Sudakov type logarithms (O(αs lni M
2

µ2
b

)(i=1,2))

associated with the transverse momentum resummation[42], while the terms in the second line can give rise to the
threshold logarithms in the τ → 1 limit. It is also interesting to note that the latter contribution depends on the
splitting function Pgg(ξ), since it is related to the renormalization of the collinear singularity in the gluon PDF.
Despite the fact that the Sudakov resummation and the threshold resummation are both resummations with respect
to soft gluon contribution, we will distinguish them in our work, since they have different physical interpretation.

Here we have defined β0 = 11
12 −

Nf
6Nc

and

Pgg(ξ) =
ξ

(1− ξ)+
+

1− ξ
ξ

+ ξ(1− ξ) + β0δ(1− ξ). (4)

Due to the presence of the plus-function and δ function in the gluon splitting function Pgg(ξ), the end point contri-
butions in the above one-loop corrections, in particular the threshold logarithms, become important when τ → 1.

The factorization in the threshold resummation can be illustrated and achieved in the Mellin space. Let us define
the Mellin transform and inverse Mellin transform as follows

fN =

∫ 1

0

dxxN−1f(x) , f(x) =
1

2πi

∫
C
dNx−NfN , (5)

where C represents the properly chosen contour which puts all the integrable poles to its left side. For sufficiently
large N , the Mellin transform integral is dominated by the end point where x ∼ 1− 1

N . In the Mellin space, the LO
cross-section reads

dσNLO
d2k⊥

=

∫ 1

0

dττN−1 dσLO
dτd2k⊥

= σ0gN

∫
d2x⊥d

2x′⊥
(2π)2

e−ik⊥·b⊥SWW
xA (x⊥, x

′
⊥), (6)

where gN ≡
∫ 1

0
dττN−1g(τ). The first line of the 1-loop result in Eq. (3) can be transformed similarly. The second

line can be transformed as follows∫ 1

0

dττN−1

∫ 1

τ

dξ

ξ
Pgg(ξ)g

(
τ

ξ
, µ

)
=

∫ 1

0

dττN−1

∫ 1

0

dξ

∫ 1

0

dxδ(τ − xξ)Pgg(ξ)g (x, µ) = Pgg(N)gN , (7)

2 Here we assume that the strong coupling is fixed at the moment to illustrate the double and single logarithms. It is straightforward to
extend the results to the running couple case for the final results. It is also clear that the Landau pole problem does not appear in this
formalism, since the running coupling is determined by the scales between µ and µb. In numerical calculations, µb is always kept larger
than ΛQCD.
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where one can find

Pgg(N) =

∫ 1

0

dξξN−1Pgg(ξ) = −γE − ψ(N) + β0 +
2

N(N2 − 1)
− 1

N + 2
, (8)

where ψ(N) is the digamma function. In the large N limit, ψ(N) has the following asymptotic expansion

ψ(N) = lnN − 1

2N
−
∞∑
n=1

B2n

2nN2n
, (9)

where B2n is the 2n-th Bernoulli number. To proceed, we write Pgg(N) ' − lnN − γE + β0 where higher order
terms O

(
1
N

)
have been neglected. Because the resummation of threshold logarithms and Sudakov logarithms are

with respect to soft gluons radiations which always factorize, it is expected that Pgg(N) exponentiates when arbitrary
number of soft gluon emissions is resummed[50, 51]. In the Appendix A, an alternative derivation of our results
following the RGE idea in Ref. [34] is also provided. Therefore, we can arrive at the following resummed formula in
the Mellin space

dσNRes
d2k⊥

= σ0

∫
d2x⊥d

2x′⊥
(2π)2

e−ik⊥·b⊥SWW
xA (x⊥, x

′
⊥) exp

[
αsNc
π

(
−1

2
ln2 M

2

µ2
b

+ β0 ln
M2

µ2
b

)]
×gN (µ) exp

[
−αsNc

π
ln
µ2
b

µ2
(lnN + γE − β0)

] [
1 +

αs
π

π2

2
Nc

]
. (10)

Similar results have been obtained previously in the context of collinear calculations where both transverse momentum
and threshold resummations are considered [28, 29]. In the following, we provide a derivation in terms of the inverse
Mellin transform for the logarithms associated with the threshold resummation in the above equation. For example,
by performing the inverse Mellin transform, the final resummation formula can be cast into

dσRes
dτd2k⊥

= σ0

∫
d2x⊥d

2x′⊥
(2π)2

e−ik⊥·b⊥SWW
xA (x⊥, x

′
⊥) exp

[
αsNc
π

(
−1

2
ln2 M

2

µ2
b

+ β0 ln
M2

µ2
b

)]
×
∫
C

dN

2πi
τ−NgN (µ) exp

[
−γµ,b⊥ ln

NeγE

eβ0

] [
1 +

αs
π

π2

2
Nc

]
. (11)

It is interesting to note that the inverse Mellin transform in Eq. (11) can be performed analytically by applying the
following identity [52] ,∫

C

dN

2πi

(x
τ

)N
exp [−γ lnN ] =

∫
C

dN

2πi

(x
τ

)N
N−γ =

θ(x− τ)

Γ(γ)
[lnx− ln τ ]

γ−1
, Re[γ] > 0 , (12)

which is derived by integrating above and below its branch cut. Analogous to the analytical continuation of the
gamma function, the above identity can be extended to the full complex plane. With this identity, the resummation
result can be written as

dσRes
dτd2k⊥

= σ0

∫
d2x⊥d

2x′⊥
(2π)2

e−ik⊥·b⊥SWW
xA (x⊥, x

′
⊥)

× exp

[
αsNc
π

(
−1

2
ln2 M

2

µ2
b

+ β0 ln
M2

µ2
b

)][
1 +

αs
π

π2

2
Nc

]
×e

(β0−γE)γµ,b⊥

Γ[γµ,b⊥ ]

∫ 1

τ

dx

x
g(x, µ) [lnx− ln τ ]

γµ,b⊥−1
, γµ,b⊥ > 0. (13)

The resummation result as in Eq. (13) becomes singular when γµ,b⊥ ≤ 0 at x = τ . Nevertheless, we can use the
following trick in terms of the analytical continuation to extend to the region −1 < γµ,b⊥ ≤ 0∫ 1

0

dx

x
g(x, µ)

∫
C

dN

2πi

(x
τ

)N
exp [−γµ,b⊥ lnN ]

=

∫ 1

0

dx

x
[g(x, µ)− g(τ, µ) + g(τ, µ)]

∫
C

dN

2πi

(x
τ

)N
exp [−γµ,b⊥ lnN ]

=

∫ 1

τ

dx

x
[g(x, µ)− g(τ, µ)]

[lnx− ln τ ]
γµ,b⊥−1

Γ[γµ,b⊥ ]
+ g(τ, µ)

[
ln
(

1
τ

)]γµ,b⊥
Γ[γµ,b⊥ + 1]

. (14)
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In addition, occasionally, it is also useful to evolve PDFs backwards which means µ2 � µ2
b . Then we need to further

analytically continue to the region where γµ,b⊥ > −2 as follows∫ 1

0

dx

x
g(x, µ)

∫
C

dN

2πi

(x
τ

)N
exp [−γµ,b⊥ lnN ]

=

∫ 1

τ

dx

x

[
g(x)− g(τ)− τg′(τ) ln

x

τ

] [lnx− ln τ ]
γµ,b⊥−1

Γ[γµ,b⊥ ]
+

[
ln
(

1
τ

)]γµ,b⊥
Γ[γµ,b⊥ ]

[
g(τ)

γµ,b⊥
+

ln
(

1
τ

)
γµ,b⊥ + 1

τg′(τ)

]
. (15)

In fact, by utilizing the same subtraction method, we can extend of the region of validity for γµ,b⊥ to any negative
value, and even to −∞. At last, in the case of running coupling, the final resummed result can be written as

dσRes
dτd2k⊥

= σ0

∫
d2x⊥d

2x′⊥
(2π)2

e−ik⊥·b⊥SWW
xA (x⊥, x

′
⊥) exp

[
−Nc

∫ M2

µ2
b

dµ′2

µ′2
αs(µ

′2)

π
ln
M2

µ′2
+ β0Nc

∫ M2

µ2
b

dµ′2

µ′2
αs(µ

′2)

π

]

×e(β0−γE)γµ,b⊥

∫ 1

τ

dx

x
g(x, µ)

[lnx− ln τ ]
γµ,b⊥−1
∗

Γ[γµ,b⊥ ]
× C(αs), (16)

where [lnx− ln τ ]
γµ,b⊥−1
∗ is defined in the spirit similar to the so-called star-distribution[34, 53]. The star-distribution

should be understood as the last line of Eq. (14) in the region of −1 < γµ,b⊥ ≤ 0 and as in Eq. (15) in the region
γµ,b⊥ > −2, which is normally sufficient for the purpose of numerical evaluations.3 The final resummation result can
be written into a compact form by introducing the threshold resummed gluon distribution gt(τ, µb) at the scale µb

gt(τ, µb) =

∫ 1

τ

dx

x
g(x, µ)∆(µ2, µ2

b , ln
x

τ
) =

e(β0−γE)γµ,b⊥

Γ[γµ,b⊥ ]

∫ 1

τ

dx

x
g(x, µ)

[
ln
x

τ

]γµ,b⊥−1

∗
, (17)

where the forward threshold jet function ∆(µ2, µ2
b , ln

x
τ ) is introduced for the purpose of threshold resummation.

Plugging above expression into Eq. (16), we obtain the final result for Higgs boson production in forward pA collisions

as described in Eq. (1) with C(αs) =
[
1 + αs

π
π2

2 Nc +O (αs(1− τ))
]
. Since the large N approximation is used in

reaching above results, there are corrections of order αs(1 − τ) which are neglected. The terms which are neglected
are explicitly shown in Appendix. B.

We would like to emphasize that gt(τ, µb) is independent of the renormalization scale µ when τ is sufficiently close to
1. For quark distributions, similar resummation can be achieved once we replace Nc and β0 by CF and 3

4 , respectively.
The off-diagonal channels are suppressed, simply because there are no plus-function or δ-function in the off-diagonal
splitting functions. The consequence of the above formula is that it resums important contributions and restores
predictive power in the threshold limit. It is not coincidence that the µ dependence in the collinear PDF g(x, µ)
is offset by that in ∆(µ2, µ2

b , ln
x
τ ). In fact, the convolution in Eq. (17) is determined by the end point limit of the

DGLAP evolution equation[34]. Eq. (17) is a useful formula since it can provide us PDFs at any scale in the threshold
limit. Detailed discussion regarding this issue and comparison with previous results are provided in the Appendix A.
As to the threshold logarithms associated with fragmentation functions, an equivalent corresponding equation can be
written with respect to fragmentation functions as well. In fact, as far as we know, a simplified version of this formula
for valence quarks first appeared in a review paper[55] in the beginning of QCD.

III. COMMENTS ON THE FORWARD THRESHOLD JET FUNCTION

Before we conclude, several comments with respect to the forward threshold jet function ∆(µ2, µ2
b , z = ln x

τ ) and
Eq. (16), which is our main result, are in order.

• With the identity regarding the digamma function ψ(γ) = −γE +
∫ 1

0
du 1−uγ−1

1−u , it is straightforward to check
that the forward threshold jet function introduced above

∆(µ2, µ2
b , z = ln

x

τ
) ≡ e(β0−γE)γµ,b⊥

Γ[γµ,b⊥ ]

[
ln
x

τ

]γµ,b⊥−1

, when γµ,b⊥ > 0, (18)

3 Analogous to the plus distribution, the star distribution is defined as follows∫ Q2

0
dp2

[
1

p2

(
p2

µ2

)η]
∗
f(p2) ≡

∫ Q2

0
dp2

f(p2) − f(0)

p2

(
p2

µ2

)η
+
f(0)

η

(
Q2

µ2

)η
,

which can be easily shown to be equivalent to the expression used in this paper for the region −1 < η ≤ 0∫ 1

τ

dx

x
g(x)

[lnx− ln τ ]η−1
∗

Γ[η]
≡
∫ 1

τ

dx

x
[g(x) − g(τ)]

[lnx− ln τ ]η−1

Γ[η]
+ g(τ)

[
ln
(
1
τ

)]η
Γ[η + 1]

,

if one simply sets p2 = µ2 ln x
τ

and Q2 = µ2 ln 1
τ

. Here f(p2) and g(x) can be any smooth test functions.



6

is the solution to the following non-local RGE

d∆(µ2, µ2
b , z)

d lnµ
= −2αsNc

π
[ln z + β0] ∆(µ2, µ2

b , z) +
2αsNc
π

∫ z

0

dz′
∆(µ2, µ2

b , z)−∆(µ2, µ2
b , z
′)

z − z′
. (19)

It is very interesting to note that the above integro-differential equation almost coincides with the RGE[33, 46]
developed for jet functions in SCET, once we remove the Sudakov type logarithmic terms there and identify
Γcusp = αsNc

π for gluons at one-loop level. To make the connection more manifest, the scale hierarchy Q ∼M �
µi ∼ µ � ΛQCD vital to the usual threshold resummation also appears in our calculation once we identify the
intermediate scale µi as µb, which always shows up in a coordinate space formulation. The form of the RGE
in Eq. (19) is specifically related to the one-loop correction of this particular process. The solution of RGE
automatically contains the corresponding resummation. This interesting link with SCET can be useful for us
to perform threshold resummations for other processes and go beyond leading logarithmic level with the help
of the RGE technique, since Γcusp and β functions have been calculated as high as four[56] and five loops[57],
respectively.

• Again when γi ≡ Nc
∫ µ2

i+1

µ2
i

dµ′2

µ′2
αs(µ

′2)
π > 0, motivated by the discussion in Ref. [55], we can easily prove that

∆(µ2, µ2
b , ln

x
τ ) has the following interesting propagation property∫ 1

τ

dx

x
∆(µ2

1, µ
2
2, ln

1

x
)∆(µ2

2, µ
2
3, ln

x

τ
) = ∆(µ2

1, µ
2
3, ln

1

τ
). (20)

This can be interpreted as that the evolution from 1 to τ represented by ∆(µ2
1, µ

2
3, ln

1
τ ) can be written as the

convolution of two step evolutions after summing over intermediate states.

• Let us also explicitly demonstrate that Eq. (16) resums the threshold logarithms αs ln(1 − τ) by assuming
g(x, µ) = c(µ)(ln 1

x )b(µ) in the x→ 1 limit4 and γµ,b⊥ > 0 for the sake of simplicity. This allows us to find

e(β0−γE)γµ,b⊥

Γ[γµ,b⊥ ]

∫ 1

τ

dx

x
g(x, µ) [lnx− ln τ ]

γµ,b⊥−1
∗ =

e(β0−γE)γµ,b⊥Γ[b(µ) + 1]

Γ[γµ,b⊥ + b(µ) + 1]
g(τ, µ)

(
ln

1

τ

)γµ,b⊥
. (21)

Since ln 1
τ = (1 − τ) +O[(1 − τ)2] in the τ → 1 limit, we can see that the above expression essentially resums

threshold type logarithms schematically. The threshold logarithms can be written as γµ,b⊥ ln(1−τ) ∼ αs ln(1−τ).

• As a matter of fact, through mathematical induction, one can prove that the formula involving the inverse
Mellin transform is valid and well-defined for any value of γµ,b⊥ in the complex plane

∫ 1

0

dx

x
g(x, µ)

∫
C

dN

2πi

(x
τ

)N
exp [−γµ,b⊥ lnN ] =

∞∑
k=0

[
ln
(

1
τ

)]γµ,b⊥+k

Γ[γµ,b⊥ ](γµ,b⊥ + k)
g(k)(τ), (22)

with g(k)(τ) ≡ 1
k!

∂k

∂uk
g(τeu, µ)

∣∣∣
u=0

. When γµ,b⊥ is small, the above series converges quite fast so that the sum

of the first two terms is already close to the exact result. However, when |γµ,b⊥ | becomes large, the complete
summation should be taken into account. As expected, for γµ,b⊥ > 0, the above summation over k can be easily
performed which gives

∞∑
k=0

[
ln
(

1
τ

)]γµ,b⊥+k

Γ[γµ,b⊥ ]
g(k)(τ)

∫ 1

0

duuγµ,b⊥+k−1 =
1

Γ[γµ,b⊥ ]

∫ 1

τ

dx

x
g(x, µ) [lnx− ln τ ]

γµ,b⊥−1
. (23)

However, when γµ,b⊥ becomes negative, we can no longer resum all the terms in Eq. (22). Instead, the summation
over k starts from the first integer value with k > −γµ,b⊥ . This naturally explains the subtraction method

4 This is equivalent to the parametrization of g(x, µ) = c(µ)(1 − x)b(µ) at the first order of (1 − x) expansion
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25
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(τ
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NLO τ = 0.85 , µ2 = 25GeV2

NLO+0.5, τ = 0.7 , µ2 = 1.5GeV2

NLO+0.5, τ = 0.7 , µ2 = 25GeV2

NLO+1, τ = 0.5 , µ2 = 1.5GeV2

NLO+1, τ = 0.5 , µ2 = 25GeV2

FIG. 1. The ratio gt(τ,µb)
g(τ,µb)

plotted as functions of µ2
b for different values of τ and µ2 calculated at NLO. All the ratios are rather

close to unity. In order to separate the curves for τ = 0.5 and τ = 0.7 from the τ = 0.85 curves, we add 1 and 0.5 to the ratio
for τ = 0.5 and τ = 0.7 curves, respectively.

employed above and the origin of the star-distributions. For example, from Eq. (22), it is now straightforward
to find that the following formula gives the star distribution in the region γµ,b⊥ > −3∫ 1

0

dx

x
g(x, µ)

∫
C

dN

2πi

(x
τ

)N
exp [−γµ,b⊥ lnN ]

=

∫ 1

τ

dx

x
∆g(3)(x, τ, µ)

[lnx− ln τ ]
γµ,b⊥−1

Γ[γµ,b⊥ ]
+

[
ln
(

1
τ

)]γµ,b⊥
Γ[γµ,b⊥ ]

[
g(τ)

γµ,b⊥
+

ln
(

1
τ

)
γµ,b⊥ + 1

g(1)(τ) +

[
ln
(

1
τ

)]2
γµ,b⊥ + 2

g(2)(τ)

]
,(24)

where ∆g(3)(x, τ, µ) = g(x)− g(τ)− g(1)(τ) ln x
τ − g

(2)(τ) ln2 x
τ .

Finally, we close this section by showing some numeric results for the threshold jet functions at various value of
x (τ). In Fig. 1, we plot the ratio between gt(τ, µb) computed from Eq. (17) and g(τ, µb) at the same scale µb for
τ = 0.5, 0.7, 0.85, respectively. We use the MSTW gluon PDF[58] g(x, µ) in Eq. (17) as an input to obtain gt(τ, µb),
and then we use again the MSTW gluon PDF g(τ, µb) as the denominator. The ratio is expected to be flat and
close to unity when τ → 1, since g(τ, µb) is the solution to the exact DGLAP equation and gt(τ, µb) is derived from
the endpoint limit of the DGLAP equation. Here, in order to get better numerical agreement, the NLO threshold
resummed curves are computed with NLO running coupling and NLO DGLAP equation as given in the end of the
Appendix A. Indeed, we observe that, in the range from µ2

b = 1GeV2 to 1000GeV2, gt(τ, µb) yields agreement with the

MSTW gluon PDF at the same scale with roughly less than 10% deviations. Also, we vary the scale µ2 from 1GeV2

to 25GeV2, and find that gt(τ, µb) is insensitive to µ2 choices as expected. (It seems that the scale dependence gets
stronger when τ gets large. This is due to the fact that the scale evolution gets much more rapid when τ approaches
1. Nevertheless, we do see that the curves get more and more flat when τ → 1.) More interestingly, as shown in the
curves with µ2 = 25GeV2, we obtain excellent agreement with the PDF in the region µ2

b < µ2 as well, where γµ,b⊥
becomes negative and Eq. (15) has to be employed. This proves that the analytical continuation technique works as
expected for the so-called backward evolution. Since the MSTW PDFs is provided above 1GeV2, we decide to make
a cut at 1GeV2, although we believe Eq. (17) can be used to evolve g(x, µ) from µ down to the scale µb, which can
be less than 1GeV2.

We would like to emphasize that the above comparisons help to establish the validity of the threshold jet function,
which can be applied to other forward scattering processes. In particular, in forward hadron production in pA
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collisions, the differential cross section can be written in terms of the parton distribution at the scale of µb, i.e.,
f (a)(x, µb) where a represents a quark or gluon from the incoming nucleon [9]. The threshold resummation can be

carried out, by applying the similar technique of this paper. Again, the final result can be cast into f
(a)
t (x, µb)

multiplied by the resummation result for the hard coefficients, which will be different from the current case. In the
current case, the hard part, which only depends on a term proportional to the splitting function and an αs correction
with no threshold logarithms, is quite simple. However, in forward hadron production case, there exist other large
threshold logarithms in the hard part, whose resummation will be also important for a precision calculation. We will
leave that for a separate publication.

IV. CONCLUSION AND OUTLOOK

In this paper, we have demonstrated the resummation of threshold logarithms in the dilute dense factorization
which is widely used studying small-x effects in high energy collisions by using complex analysis and RGE methods.
The framework discussed above resembles a lot of similarities to the threshold resummation in SCET and traditional
resummation in the Mellin space. The advantage of this approach is that final results can be expressed in momentum
space analytically with decent numerical accuracy. To obtain more precise results, we believe that we need to adopt the
approach derived in Ref. [28] which resums the full DGLAP splitting functions including the off-diagonal channels in
the Mellin space and performs the inverse Mellin transform numerically. This also pave the way for future applications
of this resummation technique in pA collisions can make phenomenological calculations in dilute dense factorizations
more reliable and systematic in forward rapidity particle productions.
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Appendix A: An alternative derivation of the threshold resummation

We have derived the threshold resummation in an intuitive way in the context of dilute-dense factorization. In fact,
following the same idea (Eq. (3.29)) in Ref. [34], we can argue that the resummed distribution gt(τ, µf ) at the scale
µf should satisfy the simplified DGLAP evolution equation in the limit ξ → 1 in order to let the cancellation of µ
dependence occur in the threshold limit

dg(τ, µf )

d lnµf
=

2αsNc
π

∫ 1

τ

dξ

ξ
Pξ→1
gg (ξ)g (τ/ξ, µf ) , (A1)

where Pξ→1
gg (ξ) ≡ 1

(1−ξ)+ + β0δ(1− ξ) which is equivalent to τ → 1 and N � 1 limits. In the Mellin space, the above

equation becomes

dgN (µf )

d lnµf
=

2αsNc
π

[−ψ(N)− γE + β0] gN (µf ). (A2)

The exact solution can be written as

g(τ, µf ) = e(β0−γE)γµ,µf

∫ 1

0

dx

x
g(x, µ)

∫ λ+i∞

λ−i∞

dN

2πi

(x
τ

)N
e−ψ(N)γµ,µf , (A3)

where γµ,µf ≡ Nc
∫ µ2

f

µ2
dµ′2

µ′2
αs(µ

′2)
π . Although we have not been able to find an analytical form for the inverse Mellin

transform in Eq. (A3), we can evaluate it numerically with any positive λ when γµ,µf > 0. Furthermore, if one
approximates ψ(N) as lnN in the large N limit by using Eq. (9), one can find Eq. (A3) becomes the results in
Eq. (17). It is also important to note that the same level of approximation has been made along the way when use
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the DGLAP equation at the end point. In addition, it is interesting to note that the exact solution in Eq. (A3) has
the following bound∫ 1

τ

dx

x
g(x, µ)∆(µ2, µ2

b , ln
x

τ
) < g(τ, µf ) <

∫ 1

τ

dx

x
g(x, µ)

(x
τ

)1/2

∆(µ2, µ2
b , ln

x

τ
), (A4)

which has been checked numerically for sufficiently large τ when γµ,µf > 0. When γµ,µf ≤ 0, analytical continuation
has to be applied again. In the threshold limit, the exact solution is tightly bound by Eq. (A4). We have also
numerically checked that the above bound (especially the upper bound) usually gives excellent numerical estimate of
the exact solution. Again, similar result can be obtained for quark distributions once we change to the quark splitting
function accordingly.

Let us compare our result in Eq. (17) to Eq. (3.31) in Ref. [34], which can be rewritten as (converted into gluon
channel in our notation)

fg(τ, µf ) =
e(β0−γE)γµ,µf

Γ[γµ,µf ]

∫ 1

τ

dx
fg(x, µ)

(x− τ)1−γµ,µf
. (A5)

First of all, our numerical evaluation of Eq. (A3) indicates a finite difference from Eq. (A5) for τ < 1. Second, we
find that the above equation is equivalent to Eq. (17) in the limit τ → 1 with corrections of order (1− τ). Therefore,
our result, which provides a slightly different analytical formulation, is complimentary to Eq. (3.31) in Ref. [34].

It is straightforward to generalize the above calculation up to NLO with the NLO DGLAP splitting function. In
the ξ → 1 limit, the gg channel NLO DGLAP splitting function reads[59, 60]

Pξ→1
gg (ξ) =

1

(1− ξ)+

{
1 +

αs
2π

[
Nc

(
67

18
− π2

6

)
− 5

9
nf

]}
+δ(1− ξ)

{
β0 +

αs
4π

[
Nc

(
8

3
+ 3ζ(3)

)
− CFnf

2Nc
− 2

3
nf

]}
. (A6)

The NLO results for Eq. (17) can be written as

gt(τ, µb) =
eγβ−γEγµ,b⊥

Γ[γµ,b⊥ ]

∫ 1

τ

dx

x
g(x, µ)

[
ln
x

τ

]γµ,b⊥−1

∗
,

with γµ,b⊥ =
Nc
π

∫ µ2
f

µ2

dµ′2αs(µ
′2)

µ′2

{
1 +

αs(µ
′2)

2π

[
Nc

(
67

18
− π2

6

)
− 5

9
nf

]}
,

γβ =
Nc
π

∫ µ2
f

µ2

dµ′2αs(µ
′2)

µ′2

{
β0 +

αs(µ
′2)

4π

[
Nc

(
8

3
+ 3ζ(3)

)
− CFnf

2Nc
− 2

3
nf

]}
. (A7)

Appendix B: Discussion on corrections at one-loop order

Since only the dominant part of the one-loop contributions are resummed in this calculation, the difference between
the exact one-loop contribution the resummed part, which vanishes in the limit τ → 1, can be computed as follows.

For the forward Higgs production in the pA collisions, the leading power one-loop contribution is proportional to

IE
1-loop = γµ,µb

∫ 1

τ

dξ

ξ
Pgg(ξ)g

(
τ

ξ
, µ

)
= γµ,µb

∫ 1

τ

dξ

ξ

[
1

(1− ξ)+
− 1 +

1− ξ
ξ

+ ξ(1− ξ) + β0δ(1− ξ)
]
g

(
τ

ξ
, µ

)
, (B1)

where the term αs
π
π2

2 Nc is excluded, since it is always kept in C(αs). For the threshold resummation formula in
Eq. (17), the corresponding one-loop contribution can be obtain easily by expanding it up to first order in αs (namely,

γµ,µb). Alternatively, it is instructive to start from Eq. (11) after expanding exp
[
−γµ,b⊥ ln NeγE

eβ0

]
' 1−γµ,b⊥ ln NeγE

eβ0
.

Therefore, the one-loop contribution which is resummed in Eq. (11) can be explicitly computed as follows

IT1
1-loop = −γµ,b⊥

∫
C

dN

2πi
τ−NgN (µ) ln

NeγE

eβ0
. (B2)

Using the identity lnN = limε→0

∫∞
0
duuε−1

(
e−u − e−uN

)
, one can find

IT1
1-loop = −γµ,b⊥ lim

ε→0

∫ 1

0

dx

x
g(x, µ)

{
[γE − β0 + Γ(ε)] δ(lnx− ln τ)− θ [lnx− ln τ ]

(
ln
x

τ

)ε−1
}
. (B3)
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Analogous to the identity for plus functions (1 − w)ε−1 = 1
ε δ(1 − w) + 1

(1−w)+
, one can show the following identity,

which is applied in the context of Eq. (B3)(
ln
x

τ

)ε−1

=
1

ε
δ(lnx− ln τ) +

1

[lnx− ln τ ]∗
. (B4)

The above identity can be derived in terms of ε expansion for any test function f(x)∫ 1

τ

dx

x
f(x)

(
ln
x

τ

)ε−1

=

∫ 1

τ

dx

x
[f(x)− f(τ) + f(τ)]

(
ln
x

τ

)ε−1

,

=
f(τ)

ε
+

∫ 1

τ

dx

x

f(x)

[lnx− ln τ ]∗
, (B5)

with

∫ 1

τ

dx

x

f(x)

[lnx− ln τ ]∗
≡
∫ 1

τ

dx

x

f(x)− f(τ)

[lnx− ln τ ]
+ f(τ) ln ln

1

τ
. (B6)

Therefore, it is straightforward to find that the final result is finite and it reads

IT1
1-loop = γµ,b⊥

∫ 1

τ

dx

x
g(x, µ)

[
1

[lnx− ln τ ]∗
+ β0δ(lnx− ln τ)

]
. (B7)

Then, the contributions which are not resummed in this approach can be cast into

IE
1-loop − IT1

1-loop = γµ,b⊥

∫ 1

τ

dx

x
g(x, µ)

[
1

(1− ξ)+
− 1

[ln 1/ξ]∗
− 1 +

1− ξ
ξ

+ ξ(1− ξ)
]
ξ= τ

x

. (B8)

Due to the cancellation between the plus-function and the star-distribution at the end point where ξ = 1 or x = τ , we
can find that the difference is no longer singular and the corresponding remaining contribution vanishes in the limit
τ → 1 for fixed γµ,b⊥ . As a comparison, let us consider the resummation formula in Eq. (A5) derived in Ref. [34].
Similarly, one can find that the corresponding one-loop contribution and finite differences read

IT2
1-loop = γµ,b⊥

∫ 1

τ

dx
g(x, µ)− g(τ, µ)

x− τ
+ γµ,b⊥g(τ, µ) ln(1− τ) + γµ,b⊥β0g(τ, µ), (B9)

IE
1-loop − IT2

1-loop = γµ,b⊥

∫ 1

τ

dx

x
g(x, µ)

[
δ(1− ξ) ln

1

τ
− 1 +

1− ξ
ξ

+ ξ(1− ξ)
]
ξ= τ

x

. (B10)

The above difference also vanishes when τ → 1. In addition, one also needs to note that there is off-diagonal
contribution from quark to gluon splittings, which is again of order αs(1− τ).
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