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Structural bioinformatics
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Abstract

Motivation: Cryo-Electron Tomography (cryo-ET) is a 3D bioimaging tool that visualizes the structural and spatial or-
ganization of macromolecules at a near-native state in single cells, which has broad applications in life science.
However, the systematic structural recognition and recovery of macromolecules captured by cryo-ET are difficult
due to high structural complexity and imaging limits. Deep learning-based subtomogram classification has played
critical roles for such tasks. As supervised approaches, however, their performance relies on sufficient and laborious
annotation on a large training dataset.

Results: To alleviate this major labeling burden, we proposed a Hybrid Active Learning (HAL) framework for query-
ing subtomograms for labeling from a large unlabeled subtomogram pool. Firstly, HAL adopts uncertainty sampling
to select the subtomograms that have the most uncertain predictions. This strategy enforces the model to be aware
of the inductive bias during classification and subtomogram selection, which satisfies the discriminativeness prin-
ciple in AL literature. Moreover, to mitigate the sampling bias caused by such strategy, a discriminator is introduced
to judge if a certain subtomogram is labeled or unlabeled and subsequently the model queries the subtomogram
that have higher probabilities to be unlabeled. Such query strategy encourages to match the data distribution be-
tween the labeled and unlabeled subtomogram samples, which essentially encodes the representativeness criterion
into the subtomogram selection process. Additionally, HAL introduces a subset sampling strategy to improve the di-
versity of the query set, so that the information overlap is decreased between the queried batches and the algorith-
mic efficiency is improved. Our experiments on subtomogram classification tasks using both simulated and real
data demonstrate that we can achieve comparable testing performance (on average only 3% accuracy drop) by
using less than 30% of the labeled subtomograms, which shows a very promising result for subtomogram classifica-
tion task with limited labeling resources.

Availability and implementation: https://github.com/xulabs/aitom.

Contact: mxu1@cs.cmu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Cellular processes are generally governed by macromolecules. To ac-
curately understand these processes, Cryo-Electron Tomography
(cryo-ET) has been developed recently to enable a systematic 3D

visualization of subcellular structures in single cells at sub-molecular
resolution and in native state. However, due to the structural con-
tent complexity of the captured tomograms and imaging limitations,
it is difficult to classify macromolecules in subtomograms (A subto-
mogram is a subvolume of a tomogram that is likely to contain a
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single macromolecule) for structural recovery via manual inspec-
tions. Given that subtomogram classification is essentially a 3D
image classification problem, supervised deep learning has recently
become a major approach thanks to its ability to extract complex
image composition rules from big image data. However, even
though different approaches have been developed on either 2D or
3D cryo-ET data (Che et al., 2018; Du et al., 2019; Liu et al., 2019;
Xu et al., 2017), few of them emphasize the labeling burden, which
is very time-consuming and requires structural biology expertise.
This situation impedes the off-the-shelf deployment of these algo-
rithms. For instance, even for just 1000 real subtomograms were
used in (Liu et al., 2018), it already introduced a time-consuming
labeling work for domain experts.

Under such circumstances, we resort active learning, which
selects a subset of subtomogram samples, if labeled and used for
training, will best improve the model’s performance under the same
labeling budget (Gissin and Shalev-Shwartz, 2019; Sener and
Savarese, 2018) (Fig. 1).Two main principles for such unlabeled
sample selection are proposed (Dasgupta, 2011) and they both have
limitations: discriminativeness and representativeness. The discrimi-
nativeness principle aims to find the most discriminative samples for
the current classifier, which will shrink the space of candidate classi-
fiers as rapidly as possible (Wang and Ye, 2013). The popular pro-
posed criteria are uncertainty rule (Wang et al., 2018; Yang and
Loog, 2018), expected error reduction (Huang et al., 2016) and
query by committee (Gilad-Bachrach et al., 2005; Seung et al.,
1992). In this case, the samples are selected based on specific criter-
ion instead of being i.i.d. sampled. Such sampling bias prevents ac-
tive learning from finding a classifier with good generalization
performance and query efficiency (Wang and Ye, 2013), which
becomes even severe for high-dimensional and complex 3D medical
images. The representativeness principle aims to address this prob-
lem by querying the samples which can represent the overall patterns
or statistics of the unlabeled data, such as by clustering (Nguyen and
Smeulders, 2004) and generative models (Kim et al., 2020; Lee and
Kim, 2019; Sinha et al., 2019; Tran et al., 2019; Zhu and Bento,

2017). Such methods perform better when fewer initial labeled data
is provided. However, they will become inefficient with the increase
of queried classes, as they solely rely on data distributions and do
not fully use the label information (Wang and Ye, 2013).

Since using either type of principle alone is not enough to guar-
antee the optimal result, in this paper, we approach this task by inte-
grating the discriminativeness and representativeness in one
optimization formulation, namely the Hybrid Active Learning
(HAL) framework. To satisfy the principle of data representative-
ness, we start with a small labeled set and a large unlabeled set and
train a supervised Convolutional Neural Network (CNN) on the
labeled set. We then extract the feature representations of both the
labeled and unlabeled set. Inspired by the distribution alignment
techniques (Ganin and Lempitsky, 2015), in each iteration, we train
a discriminator on these representations and predict how likely each
subtomogram sample is labeled or unlabeled. Then, we select and
label those subtomogram samples in the unlabeled dataset which is
predicted to have higher probabilities of coming from unlabeled
dataset. This alternative optimization scheme effectively improves
the representativeness of the labeled training set. Moreover, since
the subtomograms captured by cryo-ET are highly heterogeneous, a
large selected batch is likely to contain redundant subtomogram
samples, which leads to a significant information overlap and
thus an inefficient querying process. Therefore, we apply a sub-
sampling strategy to enlarge the query batch without losing di-
versity. For the discriminativeness principle, We additionally
introduce the label information by using the entropy of predic-
tions as selection criterion. Such heuristic is a strong active
learning baseline, namely uncertainty sampling (Yang and Loog,
2018). In each sampling iteration, we use both principles to
score the current unlabeled subtomogram samples and then en-
semble the two scores for final ranking and selection. We then
add all queried subtomogram samples into the labeled dataset
and repeat until the labeling budget is reached. The overall
learning and querying steps are summarized in Figure 2. Note
that the hybrid querying heuristics are also proposed in litera-
ture (Ash et al., 2020; Yin et al., 2017) and we defer the dis-
cussion in the Supplementary Section S3. The contributions of
this paper is summarized as follows: (i) We propose a 3D
HAL framework to query unlabeled subtomogram samples and
expand the training dataset, such that deep models can be
trained with significantly lower labeling cost while incurring
minimal prediction accuracy drop. We provide a theoretical
analysis of the expected classification risk of our framework
(Equation 2). (ii) HAL is the first active learning work to ad-
dress the issue of labeling cost in cryo-ET analysis tasks, which
integrates two principled query heuristics in one optimization
framework to make the queried subtomograms both representative
and discriminative. (iii) In HAL, we adopt several effective strat-
egies to improve the performance, such as proposing a convolu-
tional discriminator to learn the comparative metric of
representations from shallower layers, introducing sub-sampling to
improve the diversity of every query batch. (iv) The empirical
results for subtomogram classification using both simulated and
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real data demonstrate that we are able to achieve comparable test-
ing performance (on average only <3% prediction accuracy drop)
while significantly reducing the labeling burden by over 70%.

2 Proposed approach

Our Hybrid Active Learning method integrates two principles. For
the representativeness principle, we develop an alternative optimiza-
tion scheme for training the multi-class subtomogram classification
model and a discriminator. Specifically, given a small initial set of
labeled subtomograms, the classification model is firstly trained in a
supervised way. Then, the hidden representations of both the labeled
and unlabeled subtomogram samples are extracted to train a binary
classification model (i.e. the discriminator). Thus, the probability
scores of the unlabeled subtomogram samples are obtained from the
predictions of the discriminator. Meanwhile, the uncertainty score
(i.e. the entropy of the predictions from the multi-class classification
model) is further fused with the discriminator score to produce the
final query metric for ranking the unlabeled subtomograms.
Afterwards, the top subtomograms are selected and labeled for itera-
tive training until the budget is reached.

2.1 Representativeness principle
In this part, the multi-class subtomogram classification model starts
with a sparsely labeled dataset D. Within the dataset, we denote the
labeled subtomograms at iteration t as ‘DðtÞ and the unlabeled sub-
tomograms as UDðtÞ. Then we have ‘DðtÞ [ UDðtÞ ¼ D and
‘DðtÞ \ UDðtÞ ¼1. From the domain adaptation point of view, we
treat ‘DðtÞ and UDðtÞ as two separate domains, namely the source
domain ‘ and target domain U respectively. Mð�Þ is defined as the
feature extractor and Dð�Þ is the introduced discriminator which
aims to distinguish these two domains.

At each iteration t, the to enhance the sample representativeness,
we first train the main classifier using the softmax cross entropy
loss. Then we extract the representations from the intermediate
layers on both ‘DðtÞ and UDðtÞ and regard them as inputs to the dis-
criminator. Next, we train this discriminator by a binary classifica-
tion task so that it can discriminate the labeled and unlabeled
subtomograms well. If we assume the output of the discriminator
Dð�Þ to be 0 for labeled class and 1 for unlabeled class, then we se-
lect and label a batch of subtomogram samples B(t) which satisfy:

BðtÞ ¼ arg max
x2UDðtÞ

PrðDðMðxÞÞ ¼ 1jMðxÞÞ; (1)

where B(t) is the queried unlabeled batch at iteration t.
Why a discriminator? The reason behind is if we can determine

with high probability that an unlabeled subtomogram is from UD,
then it should be different from ‘D, which is helpful for improving
the information encoded in the labeled dataset and thus better for
the model to generalize on the remaining unlabeled subtomogram
examples after we label it. Otherwise, if the subtomogram examples
from UD are indistinguishable from ‘D, then we successfully repre-
sent the distribution with ‘D. This motivates us to design a discrim-
inator D for such probability estimation and alignment. Moreover,
the introduced discriminator is expected to provide more flexibility

during classification and the subtomogram sample selection since it
has a learnable metric for separating the labeled and unlabeled sub-
tomogram examples, which is better than hand-crafted metric
designs (Shui et al., 2020; Tang and Huang, 2019).

2.1.1 Task-specific designs

In this section, we proposed two task-specific designs to further re-
fine the capacity of the representativeness principle, namely the con-
volutional discriminator and the subset sampling strategy.

Commonly, the discriminator for unsupervised domain adapta-
tion (Ganin and Lempitsky, 2015) often regards the outputs from
the fully connected layers as the input. They claim such design will
focus on more fine-grained information for feature adaptation since
these layers of the network extract and propagate more specific fea-
tures. However, these fine-grained features are more suitable for
multi-class classification which is usually biased for the discrimin-
ator, especially for highly heterogeneous 3D cryo-ET data. Instead,
we propose to use the output of the last max-pooling layer as the in-
put for the discriminator and enhance the discriminator with the
more flexible convolutional operations. Specifically, the convolu-
tional discriminator consists of two convolutional layers followed
by two fully connected layers (Fig. 3). These convolution operations
enable our model to learn a flexible representation space and a task-
specific comparison metric for binary classification, which is helpful
for querying valuable subtomograms more effectively.

In addition, recall that querying unlabeled subtomogram samples
requires iteratively training the multi-class classification model and
expert annotation in a loop. Therefore, the querying efficiency is im-
portant. One simple solution is to query subtomograms in larger
batches instead of one subtomogram at a time, which reduces the
waiting time until the classifier finishes training (Azimi et al., 2012).
However, since we select the data in a large batch which are all pre-
dicted by the discriminator with a high probability to be unlabeled,
they tend to have a similar distribution, especially for the subtomo-
grams captured with a higher noise level. This scenario causes sig-
nificant information overlap. To mitigate this, we emphasize on the
diversity of the sampled subtomograms in a batch by assuming con-
secutive mini-queries will be less likely to contain similar instances.
We split the original queried batch B(t) into m sub-batches. Suppose
we desire to select K subtomograms at iteration t, we first train the
discriminator on the representations until convergence and label
the top K

m subtomograms. Then we repeat the process by interleaving
the discriminator training and subtomogram selection until K subto-
mogram samples are queried. During this process, we only train the
main classifier once but train the discriminator for m times which is
more efficient. The detailed architecture of our model is demon-
strated in Figure 3.

2.1.2 Theoretical analysis

The motivation of the representativeness principle is to label the
most appropriate data from the unlabeled subset UD that can repre-
sent the distribution of the training (or the entire) dataset as well as
possible. In this case, a classifier trained on ‘D should perform simi-
larly compared to that trained with the entire dataset D labeled.
Naturally, we are interested in how to measure the distribution
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difference between two observations x � ‘ and x � U and see if the
design of a discriminator can achieve less classification error on U.
Without loss of generality, we use HDH divergence (Kifer et al.,
2004) dHDHð‘;UÞ for distribution difference estimation, which meas-
ures the maximum difference of the probabilities for inconsistent
prediction.

Denote �d, �U and �L to be the classification error of the discrim-
inator and the multi-class classification model on the unlabeled and
labeled subtomogram samples, respectively, we argue �U is bounded
by a term related to �L and �d by Theorem 1.

Theorem 1.Assume the complexity of the discriminator is more

than a XOR function, given f ð�Þ a multi-class candidate classifier,

the classification error on the unlabeled dataset is bounded by:

�Uðf Þ � �Lðf Þ þ �d þ C. C is an uncorrelated constant.

Proof Sketch. Following the proof and assumptions made in (Ben-David

et al., 2010) and substituting the source and target domain as ‘ and U,

we get

�Uðf Þ � �Lðf Þ þ
1

2
dHDHð‘;UÞ þC: (2)

Then following the derivation in (Ganin and Lempitsky, 2015),
we replace dHDHð‘;UÞ by its upper bound

2 sup
g2Hd

jPr‘½z : gðzÞ ¼ 1� þ PrU ½z : gðzÞ ¼ 0� � 1j; (3)

which can be seen as 2�d. Here Hd is the function space for the
discriminator. And after substitution, the theorem is proven.
Here the assumption is easily satisfied since the discriminator is
implemented by a neural network which is complex enough
according the Universal Approximation Theorem (Barron, 1993;
Funahashi, 1989).

Given such a guarantee, if �Lðf Þ and �d is minimized, the classifi-
cation error on the unlabeled dataset is bounded.

2.2 Discriminativeness principle
In addition to the introduced discriminator for improving the sam-
ple representativeness, we argue that the useful label information
(i.e. inductive bias) is missing in the current query strategy, which is
shown to be effective in literature (Beluch et al., 2018; Gal et al.,
2017; Wang et al., 2017). Thus, we propose a hybrid query method
by selecting discriminative subtomogram samples with uncertainty
sampling (Yang and Loog, 2018).

The intuition is as follows: the representativeness principle
assumes the unlabeled pool is large enough to represent the true dis-
tribution. However, the data from the sparse regions of distribution
will be sampled because the unlabeled set gradually becomes not
representative due to its decreasing size. Conversely, uncertainty
sampling can keep a balance between labeled and unlabeled subto-
mograms on the representation space by selecting subtomograms
corresponding to data density such that the classification will not
easily be biased by the sparse region of the manifold (Yang and
Loog, 2018).

On the other hand, uncertainty sampling is designed to sample
the most uncertain instance which is closest to the decision bound-
ary. Since the number of subtomograms in the initial stage is limited,
the estimated decision boundary is far from the actual one.
Therefore, it may select noisy instances and stuck at sub-optimal sol-
utions due to a lack of exploration. In contrast, the semi-supervised
setting in the discriminator-based query strategy can avoid this
drawback by observing the entire dataset. Therefore, during train-
ing, the representativeness principle by the discriminator-based
query and the discriminativeness principle by uncertainty sampling
assist each other and further enhance the stability of query and clas-
sification performance.

Specifically, we use the entropy of the predictions to measure the
uncertainty, which is formulated as:

EðtÞ ¼ argmaxx2UDðtÞ½�
X

y2C

PðyjxÞ log PðyjxÞ�; (4)

where C denotes the class space. PðyjxÞ denotes the conditional
probability of y given x in the multi-class classifier. We evaluate the
quality of the model prediction PðyjxÞ by comparing the class with
the highest probability against the ground truth labels given by do-
main experts. We implement this evaluation in the neural networks
by using the softmax loss function, which is the common practice in
image classification.

2.3 Hybrid active learning
In order to tradeoff between the two principles, at each iteration, we
design a ranking score for final selection criteria:

SðtÞ ¼ PrðDðMðxÞÞ ¼ 1jMðxÞÞ þ kEðtÞ; (5)

where k is the weighting hyperparamter for balancing different
scores. The other notations have the same meaning as Eqn. 1 and 4.
While there remain other score fusion methods, we argue our imple-
mentation is simple and effective enough to achieve sufficient appli-
cation purposes.

3 Experiments and results

3.1 Dataset and preparation
We evaluate our method on two simulated and three real cryo-ET
datasets. For simulation datasets, we utilize the PDB2VOL program
(Wriggers et al., 1999) to generate 23 classes of subtomograms
which have the same class space as (Xu et al., 2017) at two Signal-
to-Noise Ratio (SNR) levels, including 0.03 (S1) and 0.05 (S2).
These datasets are realistically simulated by approximating the true
cryo-ET image reconstruction process through a tilt-angle of 660,
including the Contrast Transfer Function and Modulation Transfer
Function. Each class contains 1, 000 subtomograms with size of 403

voxels. These simulated datasets are used in our 23-class classifica-
tion tasks.

For real datasets, we use a set of rat neuron tomograms from
(Guo et al., 2018) (R1). For one tomogram, we manually select
1800 subtomogram samples which contain particles of 283 voxels
from 5424 subtomograms extracted by Difference of Gaussian
(DoG) (Long et al., 2016) (R1a). We evaluate the particle picking
task for determining whether or not a sample contains a particle.
This is formulated as a binary classification task for the multi-class
classification model. We also extract 2394 subtomograms with size
of 403 in the same tomogram set. The 2394 subtomograms contain
6 classes detected and classified by template matching (R1b) (Guo
et al., 2018). We evaluate the 6-class classification task on it. In add-
ition, we process a 7-class dataset (Noble et al., 2017) (R2) from
EMPIAR (Iudin et al., 2016). Each class contains 400 subtomo-
grams with size of 283. Following common practice in the active
learning literature, no data augmentation techniques are used during
training. The effect of data augmentation remains to be further
explored.

A 7-class classification task is evaluated on R2. The 2D x—z cen-
ter slice of the 3D images and the iso-surface of the simulated data-
sets are demonstrated in Figure 4.

3.2 Results and comparisons
In this section, we report the subtomogram classification result for
both the simulated and real data. We start with 3% of the entire
dataset as the labeled subtomogram samples for the simulated data-
sets S1; S2 and 3%; 4%; 4% for real datasets R1a;R1b and R2, re-
spectively. The effect of the number of the initially labeled
subtomogram samples is shown in the next section. The query batch
size is empirically fixed to 800 for the simulated datasets and 32 for
the real datasets, which follows the common active learning setting
(Tran et al., 2019). In terms of the subset sampling for the simulated
datasets, we report the model performance with the number of sub-
set to be 20 while the number is 4, 8, 4 for the real datasets
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R1a;R1b and R2, respectively. The effect of the number of the sub-
set and subset size is deferred for discussion in the next section. We
report the classification results after 7,5,6,5 and 8 query iterations
in dataset S1, S2, R1a, R1b and R2, respectively since we empirical-
ly found more iterations will not bring significant improvement on
HAL. We run all the baselines under the same setting and report all
metrics using an average of 10 runs with random seed from 1 to 10.

In Table 1, we firstly compare with supervised training with the
entire dataset labeled. In dataset S2, we use 16.91% labeled training
data to achieve 93.86% test accuracy compared to 95.36% in fully
supervised training. In dataset R1a, we use 11.89% of training data

to achieve 85.48% test accuracy compared to 87.24% in fully super-
vised training. Moreover, we compared with 8 representative active
learning baselines, including methods using a single query principle,
namely, Random Query (Woo and Park, 2012), Uncertainty Query
(Joshi et al., 2009), CoreSet Query (Sener and Savarese, 2018),
Bayesian Query (Gal et al., 2017), Bayesian Generative Active
Learning (Tran et al., 2019) (BGAL) and hybrid query heuristics,
exploration-exploitation BMAL (Yin et al., 2017) (EE-BMAL),
VAAL (Sinha et al., 2019) and BADGE (Ash et al., 2020). As shown
in Table 1, our method achieves a superior performance on all 5 dif-
ferent datasets under the same labeling budget. For single query
principle, BGAL performs the best compared to others, especially on
dataset R1a, which achieves a 82.18% final accuracy. Surprisingly,
even with a theoretical guarantee, the core-set sampling performs
the worst among baselines, which is possibly caused by the complex
data distribution that makes it harder to cover the entire dataset
with the constructed core-sets. Moreover, the baselines that adopt a
hybrid query strategy usually performs better because of the mutual
benefits of different criteria. However, they still underperforms our
HAL which explicitly trade-offs the representativeness and the dis-
criminativeness principle.

3.3 Ablation study
To validate the effect of our task-specific designs and the hybrid
query strategy, we did a controlled experiment that removes the con-
volutional layers in the discriminator (Variant 1), the subset sam-
pling (Variant 2) and the uncertainty sampling strategy (Variant 3),
which is shown in Table 2. Note that we did not remove the repre-
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Table 1. Comparison of HAL and the baseline AL methods on five different datasets (results are the classification accuracy in %)

Method/Dataset S1 S2 R1a R1b R2

Supervised Training 83:6860:24 95:3660:11 87:2460:09 81:5360:37 99:0060:02

HAL 80:2361:47 93:9660:42 85:4860:56 74:8060:33 95:0060:94

Random Query (Woo

and Park, 2012)

74:7762:34 77:6660:98 67:0061:13 67:3060:22 85:8561:53

Uncertainty Query

(Joshi et al., 2009)

77:3261:00 90:7861:21 66:2960:80 70:0060:75 73:0060:28

Bayesian Query (Gal

et al., 2017)

73:2362:64 85:2961:99 77:0060:89 70:7060:74 78:0060:55

CoreSet Query (Sener

and Savarese, 2018)

63:5962:62 63:4861:88 78:1760:42 62:6060:59 42:0060:92

BGAL (Tran

et al., 2019)

78:2360:65 85:3261:01 82:1860:99 71:2261:33 88:3460:93

VAAL (Sinha

et al., 2019)

75:6760:91 86:5161:23 83:3361:08 69:7260:86 85:2260:85

EE-BMAL (Yin

et al., 2017)

79:3260:77 89:1161:35 84:3461:00 71:6262:01 90:6761:05

BADGE (Ash

et al., 2020)

79:4660:41 91:0060:73 82:6360:81 73:0160:54 93:2161:11

Labeled Percentage 23.87% 16.91% 11.89% 9.35% 12.00%

Note: The same labeling budget is used among different methods. The standard deviation is reported at the top right corner.

Table 2. Ablation study results (in %) on the convolutional discrim-

inator, subset sampling and the uncertainty sampling

Model/Dataset S1 S2 R1a R1b R2

Variant 1 (V1) 78.45 91.87 83.65 72.27 94.28

Variant 2 (V2) 75.77 91.92 80.25 63.50 90.86

Variant 3 (V3) 75.32 88.63 79.99 70.40 91.38

HAL 80.23 93.96 85.48 74.80 95.00
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sentativeness principle because that degenerates the model to the
baseline method of Uncertainty Query. The training setting is the
same as the previous section. According to Table 2, removing any
of the three parts will lead to performance drop. For example,
removing the subset sampling will destabilize the training which
decreases the accuracy from 74.80% to 63.50% on R1b.

3.4 The effect of initially labeled subtomograms
To observe the effect of the number of initially labeled subtomogram
samples, we test our HAL under different ratios from 1% to 5%
with the interval of 1% on five datasets while keeping the other
training configuration unchanged. The comparative result is shown
in Table 3.

As shown in Table 3, the number of the initially labeled subto-
mogram samples have considerable effects on the final classification
accuracy. The model is trained toward a sub-optimal direction if

this ratio is too small, leading to much lower accuracy even though
more subtomogram samples are labeled in the later stages.
However, the initially labeled subtomogram samples are practically
expensive to obtain. Thus, observing that the final accuracy does
not increase too much if we keep increasing the number of initially
labeled subtomogram samples, we empirically fix the ratio to be 3%
for dataset R1a; S1; S2 and 4% for dataset R1b;R2.

3.5 The effect of subset configuration
During subset sampling, it is important to determine the optimal
combination of the number of subsets m and the subset size K

m in
order to balance the training time and the diversity of the subset.
Specifically, we test 6 different subset size for five datasets whose
results are summarized in Table 4. As can be observed, a balanced
configuration of subset size and numbers can help achieve better
performance. Meanwhile, the time complexity increases dramatical-
ly if the subset size is smaller since much more iterations are trained
on the discriminator. Therefore, to balance time and accuracy, a
moderate subset size is preferable.

3.6 Query visualization
For a comprehensive discussion, we plot the comparative query
process in Figure 5. Here we demonstrate the accuracy versus the
number of labeled subtomogram samples during training. We can
see the stability and the final classification accuracy of HAL is better
without accuracy decrease or stagnation along the sampling
procedure.

Table 3. Comparative results (in %) on the number of initially

labeled subtomograms for five datasets

Ratio/Dataset S1 S2 R1a R1b R2

0.01 77.24 89.99 72.13 43.61 88.32

0.02 80.01 93.36 81.62 47.77 93.29

0.03 80.23 93.96 85.48 73.95 94.37

0.04 80.96 94.01 84.93 74.80 95.00

0.05 81.11 93.99 86.05 74.95 95.23

Table 4. Comparative Results of different subset configurations on HAL (in %)

S1 S2 R1a R1b R2

Config Acc T Config Acc T Config Acc T Config Acc T Config Acc T

400/2 75.96 1.9 h 400/2 83.62 1.6 h 32/1 80.25 0.2 h 32/1 63.50 0.2 h 32/1 90.86 0.4 h

80/10 77.96 3.8 h 80/10 85.20 2.7 h 16/2 81.23 0.4 h 16/2 71.74 0.4 h 16/2 90.69 0.4 h

40/20 80.23 5.4 h 40/20 93.96 4.6 h 8/4 85.48 0.5 h 8/4 70.08 0.4 h 8/4 95.00 0.5 h

20/40 78.82 8.0 h 20/40 86.65 6.6 h 4/8 83.34 0.6 h 4/8 74.80 0.5 h 4/8 94.11 0.6 h

10/80 78.56 9.1 h 10/80 89.73 8.4 h 2/16 84.62 0.9 h 2/16 74.09 0.7 h 2/16 93.28 0.7 h

2/400 79.49 14.7 h 2/400 91.08 10.6 h 1/32 80.19 1.0 h 1/32 73.21 0.8 h 1/32 88.62 0.7 h

Note: T refers to the overall training time. Config is in the form of Subset Size/Number of Subset. h denotes hours.

Fig. 5. Comparative querying process with baselines (a) and ablations (b). The shaded area means the standard deviation. For simplicity, three of five datasets are shown
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Additional ablation study on the effect of k in Eqn. 5 and
implementation details can be found in Supplementary Sections S1
and S2.

4 Conclusion

Computational analysis, deep learning approaches in particular, has
played an increasingly important role for obtaining molecular ma-
chinery insights from cryo-ET data. However, the heavy labeling
work behind data-driven methods presents obstacles for biologists
to use them as assistant approaches. In this paper, we present a
novel active learning tool in the cryo-ET domain with concerns for
limited labeling resources, which approaches the active learning ob-
jective by querying both representative and discriminative subtomo-
gram samples. Our experimental results on both simulated and real
data demonstrate it produces significantly improved test perform-
ance compared to baselines under the same labeling budget. Our
method represents an important step toward fully utilizing deep
learning for in situ recognition of macromolecules inside single cells
captured by cryo-ET. It can potentially also be very useful for other
biomedical research with limited labeling resources.
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