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Abstract
Deformable image registration (DIR) of fractional high-dose-rate (HDR) CT 
images is challenging due to the presence of applicators in the brachytherapy 
image. Point-to-point correspondence fails because of the undesired 
deformation vector fields (DVF) propagated from the applicator region (AR) 
to the surrounding tissues, which can potentially introduce significant DIR 
errors in dose mapping. This paper proposes a novel segmentation and point-
matching enhanced efficient DIR (named SPEED) scheme to facilitate dose 
accumulation among HDR treatment fractions. In SPEED, a semi-automatic 
seed point generation approach is developed to obtain the incremented 
fore/background point sets to feed the random walks algorithm, which 
is used to segment and remove the AR, leaving empty AR cavities in the 
HDR CT images. A feature-based ‘thin-plate-spline robust point matching’ 
algorithm is then employed for AR cavity surface points matching. With the 
resulting mapping, a DVF defining on each voxel is estimated by B-spline 
approximation, which serves as the initial DVF for the subsequent Demons-
based DIR between the AR-free HDR CT images. The calculated DVF via 
Demons combined with the initial one serve as the final DVF to map doses 
between HDR fractions. The segmentation and registration accuracy are 
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quantitatively assessed by nine clinical HDR cases from three gynecological 
cancer patients. The quantitative analysis and visual inspection of the DIR 
results indicate that SPEED can suppress the impact of applicator on DIR, and 
accurately register HDR CT images as well as deform and add interfractional 
HDR doses.

Keywords: deformable registration, brachytherapy, gynecological cancer, 
medical physics

(Some figures may appear in colour only in the online journal)

1. Introduction 

Radiation therapy is an effective treatment modality for gynecological cancer. The curative 
potential of radiation therapy in the management of gynecological cancer is greatly enhanced 
by the use of high-dose-rate (HDR) brachytherapy, which often serves as a boost for external 
beam radiotherapy (EBRT) (Trimble et al 2008, Pearce et al 2009, Han et al 2013). Clinical 
outcomes are related to the planning target volume (PTV) and organ dose over multi-fractional 
treatment (Christensen et al 2001, Vasquez Osorio et al 2011, Sabater et al 2013). Due to 
inter-fractional patient geometry variation, accurate organ dose reporting is a non-trivial task.

Deformable image registration (DIR) provides means for accumulating physical or bio-
logical dose at tissue voxel level, which theoretically can predict accurate dose absorption 
and patient’s response to a course of treatment. Since clinical use of brachytherapy always 
involves the placement of an intracavitary applicator, the DIR between HDR fractional CT 
images therefore becomes a challenging problem. Firstly, the insertion of an applicator will 
change the geometry of surrounding tissues dramatically, producing secondary deformation 
that further heightens the inter-fractional anatomic changes (Christensen et al 2001, Sabater 
et al 2013). For this reason, the DIR is required to be capable of accommodating large tissue 
deformations. Secondly, the sharp dose gradient of 5 ~ 12% per mm characteristic of intracavi-
tary brachytherapy (Anderson et al 2013) calls for accurate deformation vector field (DVF) 
for reducing dose accumulation uncertainty (Salguero et al 2011, Murphy et al 2012). Thirdly,  
as an external object, the applicator moves independently and inconsistently relative to the 
surrounding tissues, which potentially violates the smoothness constraint of the DVF enforced 
by most DIR algorithms (Crum et al 2004, Holden 2008). In addition, it was found that the 
applicator position within the patient body varies dramatically between different HDR inser-
tions, and the average applicator shift can be up to 1.0 ~ 1.5 cm posteriorly and inferiorly from 
one insertion to the next (Grigsby et al 1993), which cannot be ignored. As a consequence, the 
relatively large DVF calculated inside the applicator region (AR) is likely to be propagated 
to its surrounding tissues by the DVF smoothing operation in DIR, affecting tissues’ registra-
tion and dose summation accuracy. Furthermore, if different types of applicators are used for 
a same patient, DIR between two HDR CT images with different applicators will violate the 
fundamental assumption of most DIR algorithms that there should be one-to-one correspond-
ence for every voxel in the two images to be registered (Crum et al 2004, Holden 2008, Zhen 
et al 2013).

To avoid the influence of applicator on DIR, Christensen et al (2001) proposed a DIR 
scheme to match several manual contoured organ boundaries instead of the gray-scale image 
by modeling the tissue deformation as a viscous-fluid. Vasquez Osorio et al (2011) devel-
oped a method for adding dose distributions of EBRT and brachytherapy for oropharyngeal 
patients. This method also involves a manual delineation of a couple of the structures’ surface 

X Zhen et alPhys. Med. Biol. 60 (2015) 2981



2983

in both CT scans, then a thin-plate spline based non-rigid DIR algorithm is used to register the 
two structure sets to generate a smooth spatial mapping for dose accumulation. The limitation 
of these approaches is that only organs’ boundaries, rather than all the intensity information of 
the organs, are extracted for registration, thus, tissue deformation inside the contoured organs 
is not necessarily accurately estimated, even though the organs’ boundaries are well matched. 
Furthermore, manual placement of landmarks and segmentation are time consuming steps, 
which may potentially introduce another source of error.

In this work, we propose and validate a novel segmentation and point-matching enhanced 
efficient DIR algorithm (named SPEED) for accurate DIR facilitating dose accumulation 
among HDR treatment fractions in gynecological brachytherapy. Nine clinical HDR cases 
from three gynecological cancer patients are used for performance evaluation. It is found that 
SPEED can suppress the influence of the applicator and yield accurate registration results 
between fractional HDR CT images.

2. Methods and materials

Figure 1 illustrates the workflow of SPEED. A seed-points generation step is developed to 
auto-generate foreground and background points for the random walks algorithm (Grady 
2006), which is used to accurately segment and remove the applicator region (AR), leaving 
empty cavities in the HDR CT images. A feature-based ‘thin-plate-spline robust point match-
ing’ (TPS-RPM) algorithm (Chui and Rangarajan 2003, Yang 2011) is then utilized for cavity 
surface point matching. The DVF defined on each voxel that is characteristic of the deforma-
tion between the cavity surfaces is generated by B-spline approximation, and adopted as the 
initial DVF for the subsequent Demons DIR between the applicator-free HDR CT images. 
Key steps of the SPEED algorithm will be detailed in section 2.1–2.5.

2.1. Review of the random walks algorithm

Segmentation of the AR in HDR CT images is accomplished by random walks algorithm 
(Grady 2006), which solves the segmentation problem by calculating the probability that a 
random walker starting at each unlabeled voxel will first reach one of the given user-defined 
labels. Let us denote the static and moving HDR fraction CT images as Is and Im (with size 
X × Y × Z), respectively. For simplicity, I is used to represent Is and Im. In this approach,  
a graph G = (V, E), with a fixed number of vertices V and edges E, is first created based on 
image I. The connectivity of two adjacent vertices vi and vj ( ∈v V) on an edge eij ( ∈e E) is 

weighted by ω β= − −g gexp( ( ) ),ij i j
2  where gi indicates the image intensity at voxel i and β is 

a free parameter to adjust weight. The desired random walker probabilities can be obtained by 
solving the following combinatorial Dirichlet function:

∑ ω= = −
∈

D x x Lx x x[ ]
1

2

1

2
( )T

e E

ij i j
2

ij

 (1)

Figure 1. Workflow of SPEED.
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where L is a sparse Laplacian matrix that can be partitioned into four sub-matrices:

⎡
⎣⎢

⎤
⎦⎥

L B

B L
,

M
T

U
 (2)

where the subscripts M and U stand for labeled and unlabeled voxels. The probabilities for 
those unlabeled voxels can be easily calculated by solving a sparse, positive-definite linear 
equation by differentiating equation (1):

= −L x B x .U U
T

M (3)

where xM and xU correspond to the probilities of the labeled and unlabeled voxels respectively. 
Denoting the probability assumed at vertex vi, for each label s, by x ,i

s  the final segmentation is 
obtained by assigning each vertex vi the label corresponding to maximum probability xmax ( ).s i

s

2.2. Seed points auto generation

The 2D scenario, only a few numbers of the seed points are required to be labeled manually 
to yield a satisfactory segmentation result, while r the AR segmentation in this study, it would 
be tedious and sometimes impractical to specify all the seed points on each slice of the 3D CT 
volume. Furthermore, employment of applicator type ties closely to specific clinical applica-
tions in HDR (figure 2), and the AR (including the applicator and all the packing materials 
inside the vagina) is not homogenous but contains highly diversified materials such as metal, 
plastic, air or fluid, etc, which makes the segmentation an extremely challenging task. In this 
sense, it is meaningful to find a method to minimize user-interaction for seed-points genera-
tion for random walks.

Based on a few seed points labeled inside the AR (named foreground seed points, or 
FPs) and outside the AR (named background seed points, or BPs) on one slice of the image 
I, in this study, we propose to generate the incremental foreground point set (or iFPs) and 
incremental background point set (or iBPs) for random walks by estimating a probability 
map. Specifically, let us denote ∈g s( {1, 2})s  the label representing the foreground (inside 
of AR) or the background (outside of AR). The intensities of the user-labeled points on a 
selected slice are denoted as = …T t t t{ , , , }c1 2  and their corresponding labels are denoted as 

= …R r r r{ , , , }c1 2 , where c is the total number of the user-labeled points. Then, the probability 
that voxel i in image I belongs to label gs is estimated by

∑= σ

=

− −
p

N

1
e ,

I

i
s

s
q r g

t

,

( )

q
s

i q
2

 (4)

Figure 2. Cylinder (left), cylinder and tandem (middle) and tandem and ovoids (right) 
applicator used in HDR.
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where σ is a tuning parameter reflecting the rigor level of the similarity criteria, Ii is the inten-
sity of voxel i, and Ns is a normalizing constant for label gs equal to

∑ ∑= σ

= =

− −
N e ,s

p

m

q r g

p t

0 ,

( )

q
s

q
2

 (5)

with = − ∀I Im i jmax( ), , .i j  Thus, the probability of including a new point i to the chain of 
the FPs can be simply calculated as = +p p p p/( )i i i i

1 1 2  with 1 representing highest probability.
Then the 3D region growing algorithm is performed on the probability map pi with the ini-

tial user-labeled FPs … ={ }t t t r g, , , ;q q1 2
1  as the seed points and pi > pT as the growth condition 

to obtain the iFPs (denoted as F). pT is the threshold to filter those points with high similarity 
to the user-labeled FPs.

The computation of the iBPs is easy and straightforward when the iFPs are available. 
Considering the cylindrical shape of most applicators, we construct a region that resembles a 
tube to encircle the applicator. Thus, points on the circles centering at the centroid of the iFPs 
on each slice are regarded as the iBPs (denoted as B). The radii of these circles on each slice 
are empirically given by 1.5 times the maximum distance of the iFPs to the circle center on 
that slice.

Finally, the random walks algorithm is performed on I using F and B as the FPs and BPs 
for AR segmentation. The AR is then filled with the CT number of air to yield the image I′ 
(i.e. ′Is and ′Im) with an empty cavity.

2.3. TPS-RPM for cavity surface point matching

To accommodate large fractional AR deformation, we propose to perform the AR cavity surface 
point matching using the TPS-RPM algorithm (Chui and Rangarajan 2003, Yang 2011) before 
DIR in order to minimize registration error. Specifically, given two AR cavity surface point sets 

= ⎯→ = = …{ }X x x x x i L( , , ) 1, 2, ,i i
x

i
y

i
z  from ′Im and = ⎯→ = = …{ }yY y y y j N( , , ) 1, 2, ,j j

x
j
y

j
z  

from ′Is in ℜ3, the TPS-RPM detects the correspondence between X and Y and match them 
according to a smooth non-rigid transformation f, which is obtained by minimizing the fol-
lowing objective function:

=̂̂P Pf E f[ , ] argmin ( , ),
P f,

 (6)

∑∑ ∑∑ ∑∑λ ζ= ⎯→ − ⎯→ + + −
= = = = = =

P y xE f p f Rf T p p p( , ) ( ) log ,
j

N

i

L

ij j i

j

N

i

L

ij ij

j

N

i

L

ij

1 1

2 2

1 1 1 1

 (7)

where λ and ζ are weighting parameters balancing the energy terms in equation (7). R is a 
smoothness regularization operator, and thin-plate splines (TPS) are applied here. P is a fuzzy 
correspondence matrix with entries pij to characterize the correspondence between X and Y. 

T is a temperature parameter for the entropy term ∑∑
= =

T p plog
j

N

i

L

ij ij

1 1

 that is decreased gradu-

ally during optimization to enable the fuzzy correspondence matrix to improve gradually and 
continuously in the space of binary permutation matrices and outliers.
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The objective function (6) and (7) are solved in a fashion similar to the expectation-max-
imization (EM) algorithm involving a dual update process embedded within an annealing 
scheme: 1) update the correspondence matrix P by fixing the transformation f; and 2) fix P 
and update the transformation f by minimizing the standard TPS bending energy function. The 
readers are referred to (Chui and Rangarajan 2003, Yang 2011) for more details regarding the 
TPS-RPM algorithm. After cavity surface point matching, the transformation f and the cor-
responding deformed moving cavity surface point set ⎯→xf ( )i  are estimated.

2.4. B-spline approximation for initial DVF

Given the original and deformed cavity surface point sets ⎯→xi and ⎯→xf ( )i  on ′I ,m  we would like 

to approximate a DVF Δ Δ Δ Δ Δ=
⎯→

= ≤ ≤ ≤ ≤ ≤ ≤{ }Xx y Y z Z( , , ) 0 , 0 , 0x y z  (or trans-

formation ψ) defined on each voxel of the image as an initial DVF for the DIR afterwards. 
This can be accomplished by estimating a nx × ny × nz B-spline control lattice Φ overlaid on 
the image domain Ω = ≤ ≤ ≤ ≤ ≤ ≤Xx y z x y Y z Z( , , ) 0 , 0 , 0  with control points ϕi,j,k of 
uniform spacing dx, dy and dz, in that the transformation ψ can be written as the product of 1D 
cubic B-spline in terms of the control points (Rueckert et al 1999):

∑∑∑Δ ψ ν ϕ
⎯→

≡ =
= = =

+ + +x y z B u B B w( , , ) ( ) ( ) ( ) ,
l m n

l m n i l j m k n

0

3

0

3

0

3

, , (8)

where

⎢⎣ ⎥⎦
⎢⎣ ⎥⎦

= ⌊ ⌋ − = −   = ⌊ ⌋ −

= − ⌊ ⌋   = −   = − ⌊ ⌋

i x n j y n k z n

u x x v y y w z z

/ 1, / 1, / 1,

/d /d , /d /d , /d /d ,

x y z

x x y y z z
 (9)

Bl, Bm and Bn are the uniform cubic B-spline basis functions:

= −
= − +
= − − + +
=

B u u

B u u u

B u u u u

B u u

( ) (1 ) /6,

( ) (3 6 4)/6,

( ) ( 3 3 3 1)/6,

( ) /6.

0
3

1
3 2

2
3 2

3
3

 (10)

Let us denote δ δ δ δ δ=
⎯→

= = …{ }i L( , , ) 1, 2, ,i i
x

i
y

i
z  the residual differences between ⎯→xi and 

ψ ⎯→xf( ( )),i  it is our objective to approximate a control lattice Φ that minimizes δ. Consider a sub-
set δ′ of δ such that each data of δ′ lies in the 4  ×  4 × 4 neighborhood of the control point ϕi, j, k.

⎪ ⎪

⎪ ⎪
⎧
⎨
⎩ ⎢⎣ ⎥⎦

⎫
⎬
⎭

δ δδ δ δ δ=
⎯→

= ∈  
− ≤ ⌊ ⌋ − < + −

≤ − < + − ≤ ⌊ ⌋ − < +
′ ′

i x n i j

y n j k z n k
( , , )

2 / 1 2, 2

/ 1 2, 2 / 1 2
.x y z c x

c y c z

c c c (11)

Assuming that only these neighboring points in δ′ influence the value of ϕi, j, k, a least-squared 
solution to ϕi, j, k which minimizes the approximation error δ can be simply given by (Hsu  
et al 1992, Lee et al 1997):

∑
∑

ϕ
ϕ

=
w

w
,i j k

c
c c

c
c

, ,
2

 (12)
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where

⎢⎣ ⎥⎦
⎢⎣ ⎥⎦

∑ ∑ ∑
ϕ δ=

⎯→

= =
= + − ⌊ ⌋   = + − = + − ⌊ ⌋

= − ⌊ ⌋   = −   = − ⌊ ⌋

′

= = =

w

w

w w B v B u B w

l i x n m j y n n k z n

u x x v y y w z z

,

( ) ( ) ( ),

1 / , 1 / , 1 / ,

/d /d , /d /d , /d /d ,

c
c

a b c
abc

c lmn l m n

c x c y c z

c x c x c y c y c z c z

0

3

0

3

0

3

 (13)

Note that when δ′ is empty, ϕi, j, k is assigned zero without affecting the approximation error. 
In practice, ϕi, j, k is estimated in an iterative fashion, so that the transformation ψ is computed 
using the updated ϕi, j, k to wrap ⎯→xf ( )i  into ψ ⎯→xf( ( ))i  in each iterative step, where the residual 
difference between ⎯→xi and ψ ⎯→xf( ( ))i  is calculated, and the algorithm terminates when the stop-
ping criterion δ ε≤2 1 (in this work, ε1 = 1.0   ×   10−3 is empirically adopted to balance 
accuracy and efficiency) is met. The above B-spline approximation method is summarized 
in algorithm A1:

2.5. DIR

The moving image ′Im is first deformed with the initial DVF Δ and yield the initial deformed 
image ″ Δ= °′I I ,m m  then double force Demons (Wang et al 2005, Rogelj and Kovacic 2006, Gu 
et al 2010) is used for the DIR between ″Im and ′Is where the DVF increment du = (dx, dy,dz) 
is given by

″
″

″ ″
″ ″

= − ∇
− + ∇

+ − ∇
− + ∇

′ ′

′ ′

′

′
+ I I I

I I I

I I I

I I I
ud

( )

( )

( )

( )
,k m

k
s s

m
k

s s

m
k

s m
k

m
k

s m
k

( 1)
( )

( ) 2 2

( ) ( )

( ) 2 ( ) 2 (14)

where the superscript k indexes the iteration step. The resulting incremental DVF du is 
smoothed by convolving it with a Gaussian kernel and then added to the global DVF u to 
update the moving image. This process is iteratively performed until convergence. The final 
DVF and deformed moving image is thus obtained by Δ + u and Δ° +′I u( ),m  respectively.

2.6. Implementation

In this section, we will present a few practical issues pertaining to the algorithm implementation.

Algorithm A1:

Initialization
Initialize an uniform B-spline control lattice ϕinit ;

Initialize δ = ⎯→ − ⎯→x xf ( ) ;i i

Do
1. Estimate the control lattice ϕ′ using δ (equations (12) and (13));
2. Update the control lattice ϕ = ϕinit + ϕ′;

3. Compute ψ (equations (8)) and wrap ⎯→xf ( )i  into ψ ⎯→xf( ( ));i

4. Update δ ψ= ⎯→ − ⎯→x xf( ( )) ;i i

Until δ ε≤2 1

Obtain Δ using ϕ (equations(8))

X Zhen et alPhys. Med. Biol. 60 (2015) 2981



2988

As described in section 2.1, the Laplacian matrix L is a highly sparse matrix, to facilitate 
solving the sparse linear system, we adopt the CUSP (Dalton and Bell 2012), a CUDA-based 
library for sparse linear algebra and graph computations, to solve the sparse linear equa-
tion (3). The sparse matrices are stored using the coordinate (COO) format, and the conjugate 
gradient (CG) method is used as the iterative solver with relative tolerance of 10−6 and maxi-
mum iteration 1000 as the stopping criteria. The parameter β = 90 is empirically chosen.

For seed-points auto-generation, we set the tuning parameter σ = 0.2 m, where 
= − ∀  I Im i jmax( ), ,i j  (equations (4) and (5)) to keep the choice of σ relevant to images of 

different intensity and contrast levels. A relatively rigorous threshold pT = 0.9 is used as the 
growing condition of the FPs in this study. Hence, only those points with high similarity to the 
user-labeled FPs will be grown and included into the chain of the FPs.

A multi-scale strategy is also adopted in Demons to reduce the magnitude of the displace-
ment vectors with respect to the voxel size and hence avoid the local minima problem in 
registration to a certain extent (Gu et al 2010). The iteration starts with the lowest resolution 
images, and at the end of each level, the moving vectors are up-sampled to serve as the initial 
solution at the finer level. In this work, we consider two different resolution levels. Further 
down-sampling was found to be unnecessary to improve registration accuracy or efficiency. 
For the stopping criteria regarding whether the moving image has been correctly deformed, 
we use a convergence criterion based on the difference between successive deformation fields. 

We define a relative norm ∑ ∑= +l u ud / ,k k k( ) ( 1) ( )  and use ε− ≤−l l ,k k( 10) ( )
2  where ε2 = 

1.0  ×  10−4, as our stopping criterion. This measure is found to have a close correspondence with 
accuracy, as DIR is stopped when there is no ‘force’ to push voxels any more (Gu et al 2010).

In this work, the initial seed point labelling and seed-points auto-generation are imple-
mented in Matlab (Mathworks, Inc.) with a graphical user interface (GUI) to facilitate user 
interaction, while the random walks segmentation, the TPS-RPM point matching, the B-spline 
DVF approximation and the Demons-based DIR in SPEED are implemented under the com-
pute unified device architecture (CUDA) programming environment and GPU hardware 
platform to yield a satisfactory efficiency. Main data parallel GPU kernels coded in SPEED 
include: kernels in the random walks segmentation: 1) an edge kernel to build a graph with 
vertices and edges, 2) a weighting kernel to compute and normalize ωij, and 3) a Laplacian 
kernel to create the Laplacian sparse matrix; kernels in the TPS-RPM point matching: 1) an 
update kernel for calculation of the correspondence matrix P, 2) an update kernel for the TPS 
transformation parameters estimation, and 3) a transformation kernel to deform the moving 
points; kernels in the B-spline DVF approximation: 1) a grid fitting kernel to approximate 
and update the B-spline control lattice, and 2) a transformation kernel to wrap points by the 
B-spline control lattice; kernels in the Demons DIR: 1) a Gaussian filter kernel to smooth 
images and moving vectors; 2) a gradient kernel to calculate the gradient of images; 3) a 
moving vector kernel to calculate and update moving vectors; 4) an interpolation kernel to 
deform images with moving vectors; 5) a comparison kernel to stop the program based on the 
stopping criteria.

Considering all the components mentioned above, we summarize the SPEED algorithm in 
algorithm A2.

2.7. Quantification of segmentation and DIR

The effectiveness of SPEED is quantitatively evaluated by measuring both the performance 
of the segmentation and the DIR. The segmentation accuracy is assessed by Dice ratio and 
percent error. Given the ground truth region A and the segmented region B, the Dice ratio is 
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defined as ∩× +A B A B2 /( ), and it ranges from 0 ~ 1, corresponding to the worst and the 
best agreement of the two regions. Generally, 0.7 is considered as satisfactory segmentation 
(Zijdenbos et al 1994, Shi et al 2009). The percent error is defined as ∪ ∩−A B A B A( )/  with 
0 representing the best segmentation. The ground truth segmentations are contoured by an 
experienced physician.

DIR performance is measured by three similarity metrics. The first metric is the structural 
similarity (SSIM) index (Zhou et al 2004), which tries to measure similarity between two 
images based on extracted structural information. The second metric is the normalized mutual 
information (NMI). Both SSIM and NMI range in [0, 1] with 1 representing the most image 
similarity. The third metric is the root mean squared error (RMSE) between two edge images:

∑= −I Ii i NRMSE ( ( ) ( )) / ,
i

N

edge 1
edge

2
edge 2 (15)

where I i( )1
edge  and I i( )2

edge  are the binary Canny edge images of image I1 and I2, respectively 
(Canny 1986), N is the number of voxels in images I1 or I2. When two images are perfectly 
registered, RMSEedge should be zero. These three similarity metrics serve as quantitative eval-
uation tools in addition to the visual inspection of the registration results, namely comparing 
the deformed CT image and the static CT image in two different HDR fractions.

2.8. Synthetic data

To validate our algorithm, we have simulated a test dataset with realistic fractional deforma-
tion based on a HDR CT image (denoted as CTf

sim
1 ) from a gynecologic cancer patient. Firstly, 

a known rigid transformation (denoted as DVFsim
rigid) is applied on CTf

sim
1  to yield a rigidly trans-

formed HDR CT image (denoted as CTSim
rigid). Then, a deformable B-spline transformation 

Algorithm A2:

A. AR removal
1.  Initial seed point labelling and probability map estimations (equations (4) 

and (5)) on Is and Im, respectively;
2.  Obtain iFPs on Is and Im by region growing on the corresponding probability 

maps, and yield iBPs by encircling iFPs;
3.  Solve the random walks equation (equations (3)) to obtain the AR-free  

images ′Is and ′I .m

B. Cavity surface point matching 

1.  Extract the two AR cavity surface point sets ⎯→xj and ⎯→yj from the corresponding  

AR segmentations on ′Im and ′I ;s

2.  Obtain ⎯→xf ( )i  by performing the TPS-RPM point matching between ⎯→xj and ⎯→yj 
(equations (6)–(7)).

C. Initial DVF approximation by B-spline 
Obtain the initial DVF Δ by performing Algorithm A1

D. DIR 
1. Initially deform ′Im by ″ Δ= °′I I ;m m

2.  Calculate DVF u by performing Demons DIR between ″ Im and ′Is  
(equations (14));

3. Obtain the final DVF Δ + u and deformed moving image Δ° +′I u( )m
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(denoted as DVFsim
deform) to simulate tissue deformation in  CTSim

rigid  is generated by changing the 
B-spline control lattice overlaid on CTSim

rigid through manually dragging several B-spline control 
lattice points located away from the AR. By doing this, only the tissue regions are subjected to 
deformation, while deformation inside the AR is negligible. Finally, the combined transforma-
tion +CT DVFSim

rigid
sim
deform (denoted as DVFsim

gt ) is used to wrap CTf
sim

1  and yield a deformed HDR 
CT image (denoted as CTf

sim
2 ). Note that DVFsim

gt  resembles realistic deformation between HDR 
fractions because it mimics rigid and deformable transformations in the tissues but only rigid 
transformations in AR. This approach offers us the ground truth for the evaluation of SPEED: 
CTf

sim
1  and  CTf

sim
2  can be regarded as the moving and static CT images from two HDR frac-

tions, respectively, and DVFsim
gt  is the ground truth DVF used to compare with that calculated 

by SPEED (denoted as DVFsim
SPEED).

2.9. Clinical data

We use CT images of nine clinical HDR cases from three gynecologic cancer patients (three 
HDR fractions per patient, termed as fx1, fx2, fx3 in the following text) to test SPEED. These 
cases involve a scenario of utilization of two types of applicators, i.e. tandem and ovoids (T and 
O) applicator and tandem and cylinder (T and C) applicator. Patient 1 uses different types of 
application in different fractions and patient 2 and 3 use the same type of applicator (T and O 
applicator). The resolution of all the CT images in the transverse plane is 512  ×  512 with pixel 
spacing of 0.98 mm, and the slice thickness is 2.5 mm. For each patient, fx1 is used as the static 
fraction, while fx2 and fx3 are used as the moving fraction in this study. Thus, the CT images 
in fx2 and fx3 are cropped and re-sampled to match the dimension and resolution of that in fx1 
after rigid registration, and all CT images are then down-sampled to half of their original size 
in the transverse plane. Hence, the sizes of images after rigid registration are 256  ×  256  ×  54 
(Case 1, 2, 3), 256  ×  256  ×  50 (Case 4, 5, 6) and 256  ×  256  ×  52 (Case 7, 8, 9) for patient 1, 
2 and 3, respectively, and the voxel size is 1.96  ×  1.96  ×  2.5 mm for all the CT images.

For clarity, the following symbols are used to represent different images used in the algo-

rithm evaluation: CT , CTf f
App

1
App

2  and CTf
App

3  are the HDR CT images with applicator before 

DIR in fx1, fx2 and fx3, respectively. →dCTf f
App

2 1 and →dCTf f
App

3 1 are the deformed CTf
App

2  and 

CTf
App

3  images to match CTf
App

1  after DIR, and the corresponding DVF are →DVF f f
App

2 1 and 
→DVF ,f f

App
3 1  respectively. Similarly, CT , CTf f

NoApp
1

NoApp
2  and CTf

NoApp
3  are the HDR CT images 

with AR removed before DIR in fx1, fx2 and fx3, respectively. →dCTf f
NoApp

2 1 and →dCTf f
NoApp

3 1 
are the deformed CTf

NoApp
2  and CTf

NoApp
3  images to match CTf

NoApp
1  after DIR, and the corre-

sponding DVFs are →DVF f f
NoApp

2 1 and →DVF ,f f
NoApp

3 1  respectively. SP , SP ,f f1 2  and SP f 3 are the AR 

cavity surface points in CT , CTf f
App

1
App

2  and CT ,f
App

3  respectively.  →dSP f f2 1 and →dSP f f3 1 are 

the deformed SP f 2 and SP f 3 to match SP f1 by the TPS-RPM algorithm, and →DVF f f
init

2 1 and 
→DVF f f

init
3 1 the corresponding initial DVF approximated by B-spline, respectively.

3. Results

3.1. Impact of AR removal on DIR

It is interesting to know whether the existence of the AR would influence the DIR accuracy 
in those tissues surrounding AR. To evaluate this, we first compare the DIR results with and 
without AR removal using the Demons algorithm. Figure 3 shows an exemplary comparison 
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Figure 3. DVF comparison of DIR with and without AR removal (Case 4, 5).  

(a) CT ;f
App

1  (b) CT ;f
App

2  (c) →dCTf f
App

2 1 by Demons; (d) CT ;f
NoApp

1  (e) CT ;f
NoApp

2  (f) →dCTf f
NoApp

2 1 

by Demons; (g) →DVF ;f f
App

2 1  (h) →DVF ;f f
NoApp

2 1  (i) Difference image between →DVF f f
App

2 1 

and →DVF f f
NoApp

2 1 in regions outside of the AR. The red arrows indicate the large 
DVF differences. The ARs are manually contoured and removed by an experienced  
physician.
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of DIR with and without AR removal using fractional HDR CT images (Case 4, 5) from 
patient 2. The ARs in evaluated HDR CT images are manually contoured and removed by an 
experienced physician. Visually inspecting the deformed CT images (figures 3(c) and (f)) with 
the static CT images (figures 3(a) and (d)), good alignments are obtained in both scenarios. 
However, if we compare the corresponding DVF (figures 3(g) and (h)) instead, large DVF dif-
ferences are observed outside of the AR (figure 3(i)). These DVF differences are essentially 
caused by the DVF propagation from the AR to its surrounding tissues.

Table 1 shows the results of the mean and maximum DVF differences in regions out-
side the AR (i.e. the patient volume exclusive of the AR), between DIR with and without 
AR removal for patient 1 ~ 3. We can see that the mean DVF differences range from 2.2 
to 3.4 mm and the maximum DVF differences range from 9.1 to 22.8 mm, implying that 
significant DIR errors will occur if the applicator is onsite. This point can be further elabo-
rated by examining the histograms of the DVF differences, which are shown in figure 4. 
For all the cases, we can observe that although the affected volume drops gradually as the 
DVF difference increases, yet, considerably large volumes are subject to DVF difference, 
especially when the DVF difference is <5 mm. In other words, DIR errors are distributed 
vastly instead of locally in regions surrounding the AR and large amount of adjacent soft 
tissues suffer from such DIR errors, which are less likely to be ignored because these 
affected volumes are essentially high dose regions. It is the influence of AR on DIR shown 
above that prompts us to segment and remove the AR in the HDR CT images before per-
forming DIR.

3.2. AR segmentation

We present the AR segmentation results in figure 5. Figure 5(a) illustrates an example of the 
seed-points generation in Case 4. A few FPs and BPs are firstly labeled on one axial slice of 
the CT image (figure 5(a)-1), and the corresponding iFPs and iBPs (figure 5(a)-2) to feed the 
random walks segmentation are then calculated by the seed-points generation scheme which 
was detailed in section 2.2. The corresponding segmentation result is shown in figure 5(a)-3. 
Figure 5(b) summarizes the AR segmentation results for the other eight cases. We can observe 
that, for all the evaluated cases, the ARs shaped by different types of applicators and different 
inhomogeneous packing materials are all successfully segmented. The segmentation results 
are also quantitatively compared with the ground truths contoured by an experienced physi-
cian using two metrics, i.e. the Dice ratio and percent error, which are listed in table 2. The 
mean Dice ratio and percent error of the 9 cases are 0.9(±0.02) and 0.2(±0.04), respectively, 
indicating outstanding segmentation performance.

Table 1. Mean and maximum DVF differences in regions outside the AR between DIR 
with and without AR removal for patient 1 ~ 3.

fx2 → fx1(mm) fx3 → fx1(mm)

Patient 1 Mean(STD) 2.3 (±1.2) 2.5 (±1.5)
Maximum 9.1 12.3

Patient 2 Mean(STD) 2.6 (±2.1) 3.0(±2.9)
Maximum 12.7 22. 8

Patient 3 Mean(STD) 3.4(±3.1) 2.2 (±1.4)
Maximum 19.1 10.3
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3.3. DIR results: synthetic data

Figure 6 shows the DIR results for the synthetic case. Figure 6(a) is a HDR CT image CTf
sim

1  

overlaid with a known rigid transformation DVF ,sim
rigid  and the rigidly transformed image CTSim

rigid 
is shown in figure 6(b). A deformable B-spline transformation DVFsim

deform is simulated using 
the approach described in section 2.7 and overlaid on CTSim

rigid (figure 6(b)). We can see that the 
DVFsim

deform arises mainly from the soft tissue region, in contrast, the AR has negligible deform-
able transformation. The combined transformation DVFsim

gt  is applied on CTf
sim

1  to yield CTf
sim

2  
(figure 6(c)). The DVF ,sim

gt  which is also shown as a grayscale image in figure 6(d), can be 

Figure 4. Histograms of the DVF difference (>1 mm) in regions outside the AR 
between DIR with and without AR removal for patient 1~3.
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Figure 5. Illustration of seed points labelling, iFPs/iBPs auto-generation, AR 
segmentation and removal in Case 4 (a) and AR segmentation results of other eight 
cases (b). (a)-1. FPs (red) and BPs (green) labeled on one axial slice; (a)-2. Auto-
generated iFPs (red) and iBPs (green); (a)-3. AR segmentation result (red curve); (a)-4. 
AR removed; (b)-1 ~ 8: AR segmentation results (red curves) of the other eight cases. 
The three rows are axial, coronal and sagittal views, respectively.

Table 2. The Dice ratio (DR) and percent error (PE) of the AR segmentation of the 
nine cases.

Patient1 Patient 2 Patient 3

Case1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9

DR 0.87 0.90 0.86 0.89 0.90 0.92 0.92 0.91 0.92
PE 0.25 0.21 0.27 0.22 0.20 0.15 0.16 0.18 0.15
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regarded as the ground truth DVF between CTf
sim

1  and CT .f
sim

2  DIR is then performed between 
CTf

sim
1  and CTf

sim
2  using SPEED, and the calculated DVF DVFsim

SPEED is shown in figure 6(e). We 
can see that the SPEED algorithm can produce almost the same DVF as the ground truth (fig-
ure 6(f)), and the major DVF differences are located inside the AR (arrows in figure 6(d)–(f)). 
It is found that the mean and standard deviation of the DVF differences inside and outside of 
the AR are −0.77(±1.28) and −0.07(±0.32) voxels, respectively. The existence of relatively 
large DVF difference inside AR is legitimate because unlike the ground truth DVF ,sim

gt  the 
DVFs of  DVFsim

SPEED  inside the AR embrace little mapping information but merely undesirable 
DVF propagated from neighboring tissues since the AR is segmented and removed in SPEED.

3.4. DIR results: clinical data

In terms of DIR accuracy, the proposed method is quantitatively evaluated using SSIM, NMI 

and Canny edge RMSE between →dCTf f
NoApp

2 1 and CT ,f
NoApp

1  and →  dCTf f
NoApp

3 1  and CT ,f
NoApp

1  where 
→dCTf f

NoApp
2 1 and →dCTf f

NoApp
3 1 are obtained using the Demons or SPEED. A region of interest (ROI) 

with axial size of 50  ×  50 centering at the AR on each CT image is extracted for similarity 
assessment, and the quantitative results are detailed in table  3. Both Demons and SPEED 
increase SSIM and NMI, as well as reduce Canny edge RMSE after DIR. The average SSIM 
increases from 0.15  ±  0.06 to 0.46  ±  0.17 and 0.54  ±  0.08 after DIR by Demons and SPEED, 
respectively. The average NMI increases from 0.53  ±  0.01 to 0.56  ±  0.01 and 0.57  ±  0.01 

Figure 6. Synthetic data and DIR results (display DVF unit is ‘voxels’): (a): DVFsim
rigid

overlaid on CT ;f
sim

1  (b) DVFsim
deform overlaid on CT ;Sim

rigid  (c) DVFsim
gt  overlaid on CTf

sim
2   

(d) DVF ;sim
gt  (e) DVF ;sim

SPEED  (f) DVF difference. The first and second rows in each 
subfigure are the axial and sagittal views, respectively. The red contour in (f) indicates 
the AR region, and the arrows in (d) ~ (f) indicate DVF difference of the AR region.
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after DIR by Demons and SPEED, respectively. The average canny edge RMSE decreases 
from 0.34  ±  0.02 to 0.30  ±  0.03 and 0.27  ±  0.02 after DIR by Demons and SPEED, respec-
tively. These results show that SPEED behaves better than Demons for all the three metrics.

The improvement of SPEED over Demons can be further examined by visual inspection 
of the DIR results with different applicator types in figure 7 (T and O and T and C applica-
tors) and with the same applicator type in figure 8 (both T and O applicators). We can see 
that, regions around the tandem tip of the applicator fail to be aligned via Demons-based 
DIR between the two AR-free HDR CT images, and this misalignment is observed in both 
scenarios when different (figure 7(k)) or same type (figure 8(k)) of applicators are inserted 
in different HDR fractions. By applying SPEED, the approximated initial DVF obtained by 
registering the two AR cavity surface points using TPS-RPM can provide a favorable initial 
match (figures 7(g)–(i), figures 8(g)–(i)), which serves as a good starting point for the Demons 
afterward, and therefore, more accurate DIR results can be expected, especially in tissues 
neighboring the AR (figures 7(l) and 8(l)). This is critical because dose is relatively higher on 
the AR surface than in regions far from the AR center, and it is this fact that the DIR accuracy 
on AR surface is of great significance in HDR dose mapping. Similar observations are also 
made in other patients, thus we do not repeat the results.

3.5. Impact of segmentation accuracy

To quantify the segmentation induced registration error, we compare the DIR results generated 
by SPEED using the ground truth manual segmentation and that computed by the proposed 
random walks-based segmentation scheme in this work. Specifically, the physician delineated 
AR and the computed AR are first obtained, and then serve as inputs for the sequential TPS-
RPM point matching, initial DVF approximation, and Demons DIR steps in SPEED. Then, 

Table 3. SSIM, NMI and Canny edge RMSE of the ROI centering at AR between 
→dCTf f

NoApp
2 1 and →  CT , dCTf f f

NoApp
1

NoApp
3 1  and CT .f

NoApp
1

SSIM NMI Canny Edge RMSE

fx2 → fx1 fx3 → fx1 fx2 → fx1 fx3 → fx1 fx2 → fx1 fx3 → fx1

Patient1 Before DIR 0.06 0.20 0.52 0.54 0.36 0.33
(±0.04) (±0.11)

Demons 0.35 0.53 0.55 0.57 0.31 0.26
(±0.16) (±0.16)

SPEED 0.45 0.57 0.56 0.57 0.29 0.25
(±0.09) (±0.12)

Patient 2 Before DIR 0.22 0.14 0.53 0.53 0.33 0.34
(±0.08) (±0.08)

Demons 0.55 0.49 0.56 0.56 0.28 0.28
(±0.14) (±0.08)

SPEED 0.59 0.56 0.57 0.56 0.25 0.26
(±0.17) (±0.06)

Patient 3 Before DIR 0.17 0.11 0.53 0.53 0.36 0.36
(±0.09) (±0.08)

Demons 0.48 0.37 0.56 0.55 0.33 0.32
(±0.20) (±0.29)

SPEED 0.64 0.43 0.59 0.55 0.28 0.31
(±0.16) (±0.29)
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the final DVFs as well as the deformed CT images generated using these two AR sets by 
SPEED can be utilized for DIR discrepancy analysis. Figure 9 shows the DVFs differences 
and the similarity indices between the deformed CT images using the calculated and ground 
truth segmentation in SPEED. The inaccuracy of the AR segmentation is quantified by the 
percent error, which is defined previously in section 2.6. The average percent error between 
the calculated and ground truth segmentation of two fractional CT images ranges from 15 to 
26%, and such segmentation errors induce mean DVFs differences around of the AR rang-
ing from 0.1  ±  0.5 to 0.2  ±  0.7 mm. The mean DVFs difference for all the evaluated cases 
is 0.1  ±  0.5 mm, and the mean Canny edge RMSE, NMI and SSIM between the deformed 
CT images are 0.08, 0.86, 0.99  ±  0.004, respectively. The statistics suggest that the proposed 
segmentation scheme is accurate and robust for AR segmentation and small proportion of 
inaccurate AR segmentation causes only minor and acceptable registration errors.

3.6. Efficiency

All the experiments in this study were conducted on a GPU platform with an NVIDIA Telsa 
C2075 card with a total number of 448 processors of 1.15 GHz. It is also equipped with 6 GB 
GDDR5 memory, shared by all processors. The computational times of the main procedures, 

Figure 7. DIR results of HDR CT images with T and O applicator (Case1, i.e. fx1 of 

patient 1) and T and C applicator (Case 2, i.e. fx2 of patient 1). (a) CTf
App

1  overlaid with 

dose; (b) CTf
App

2  overlaid with dose; (c) CTf
NoApp

1  overlaid with dose; (d) CTf
NoApp

2  overlaid 

with dose; (e) →dCTf f
NoApp

2 1 overlaid with deformed dose; (f) CTf
NoApp

1  overlaid with 
accumulated dose; (g) SP f1 (green) and  SP f 2 (red); (h)  SP f1 (green) and   →dSP f f2 1 
(red); (i)  →DVF ;f f

init
2 1  (j) CTf

NoApp
1  (green) and  CTf

NoApp
2  (red); (k) →dCTf f

NoApp
2 1 (red) by 

Demons and CTf
NoApp

1  (green); (l)   →dCT f f
NoApp

2 1 (red) by SPEED and CTf
NoApp

1  (green).

X Zhen et alPhys. Med. Biol. 60 (2015) 2981



2998

i.e. AR removal, TPS-RPM point matching, B-spline DVF approximation and Demons DIR, 
in SPEED are listed in table 4. It can be seen that the computational time depends on the 
complexity of the cases tested. Currently, for the typical clinical patient cases shown here, the 
runtime is about 1 ~ 1.5 min.

Figure 8. DIR results of two HDR CT images with both T and O applicators (Case 4 
and 6, i.e. fx1 and fx3 of patient 2). (a) ~ (l) have the same arrangements with those in 
figure 7.

Figure 9. Error bar of the DVFs differences around of the AR (left) and the similarity 
indices between the deformed CT images (right) using the calculated and ground truth 
segmentation in SPEED. In the left figure, markers and both ends in each case indicate 
the mean and standard deviation of the DVFs differences, respectively, and the x axis is 
the average percent error between the calculated and ground truth segmentation of two 
fractional CT images.
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4. Discussion and conclusions

In this paper, we have successfully applied a novel DIR scheme that incorporates a segmen-
tation step and a point matching step, namely SPEED, to the challenging DIR problem of 
HDR CT images with inserted applicator for gynecological cancer patients. Though hitherto 
many methods had been proposed and studied to address different DIR issues in radiotherapy 
(Gao et al 2006, Godley et al 2009, Paquin et al 2009, Xie et al 2009, Yang et al 2009, 
Nithiananthan et al 2012, Zhen et al 2012, Gu et al 2013, Huger et al 2013, Kim et al 2013, 
Pace et al 2013, Zhen et al 2013), yet, none of these methods are suitable for the registration 
problem of the HDR CT images with inserted medical apparatus, such as vaginal applicators 
and radiation source. Therefore, it is appealing to develop a more accurate DIR method to 
handle the DIR between interfractional HDR CT images facilitating dose mapping. To the best 
of our knowledge, this work is the first attempt to incorporate applicator segmentation and 
removal into the DIR framework for HDR CT images. It is expected that the proposed method 
will provide the basis for improving patient therapeutic outcome through accurate HDR dose 
accumulation and dose re-optimization.

In SPEED, we employ the semi-automatic segmentation algorithm, the random walks, for 
applicator segmentation. The reason of choosing random walks over other fully automatic 
segmentation algorithms is mainly because of its user-interactive capability. When a failed 
segmentation result is obtained, it is usually difficult to fine-tune the result using the automatic 
approaches. In contrast, the random walks can provide a friendly way to adapt segmenta-
tion result by simply adding or deleting unsatisfactory seed points (Grady 2005, Grady et al  
2005, Grady 2006). This merit allows room for emendation for potential segmentation error. 
Furthermore, in order to minimize user interaction, the foreground and background seed 
points for random walks are generated automatically via growth on a probability map esti-
mated through a few user-labeled points. This scheme greatly enhances the performance of 
random walks in that seed points are generated automatically instead of labeled manually and 
carefully to cover as much intensity levels as possible in an inhomogeneous target. To note that, 
nevertheless, segmentation error is intrinsic for almost all the automatic and semi-automatic 
segmentation algorithms, and therefore, the computed AR segmentation should be carefully 
examined and modified if necessary before it is applied in SPEED. On the other hand, an 
accurate segmentation method can greatly reduce the workload and labor for revising the 
computed segmentation. In this sense, the robust AR segmentation performance that has been 
accomplished in this work is essentially a practical gain of SPEED for its clinical applications.

Another key reason for the success of SPEED is the introduction of the TPS-RPM for AR 
cavity surface points matching, as well as the initial DVF approximation prior Demons-based 

Table 4. Computational times of the main procedures in SPEED for patients 1–3.

Time (sec)

AR removal TPS-RPM point B-spline DVF Demons 

Total(fx2,fx3\fx1) matching approximation DIR

Patient 1 fx2 → fx1 24.0\25.3 23.5 0.4 7.4 80.6
fx3 → fx1 23.8\25.3 29.1 0.37 8.1 86.7

Patient 2 fx2 → fx1 28.6\28.8 27.6 0.37 7.5 92.9
fx3 → fx1 28.4\28.8 32.9 0.37 9.3 99.8

Patient 3 fx2 → fx1 23.6\23.3 9.46 0.37 8.1 64.8
fx3 → fx1 22.8\23.3 9.89 0.37 8.1 64.5
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DIR. As we mentioned in the Introduction section, the applicator geometry and position may 
vary dramatically between fractional insertions, even though Demons is renowned for its 
capability for handling large deformations, our results showed that it is unable to register the 
tandem tips of the applicators (section 3.3). Moreover, the sharp dose gradient (5 ~ 12% mm−1) 
neighboring AR in intracavitary brachytherapy makes it is less forgiving to DIR errors there. 
In SPEED, a feature-based TPS-RPM algorithm is utilized to obtain the point-to-point cor-
respondence of the two segmented AR cavity surface, and the resulting mapping characteristic 
of fractional AR surfaces deformation is used to approximate an initial DVF defined on each 
voxel for subsequent Demons-based DIR. This scheme generally facilitates the DIR process in 
that it lowers the requirement of Demons for handling large deformation, particularly in those 
regions where DIR accuracy needs to be emphasized.

In the seed-points auto-generation step, the threshold pT controlling the FPs growth is 
empirically chosen. Theoretically, larger pT implies stricter growing condition. Note, however, 
that pT is not the only factor contributing to the FPs generation. Connectivity of voxels in the 
probability map pi is another factor, which is purely relative to the textural characteristics of 
the image. According to our observation, although satisfactory segmentation performances 
can be obtained when smaller pT is used, we still employ a relatively rigorous pT = 0.9 to filter 
out those points with high similarity to the user-labeled FPs and include them into the FPs 
chain. This value is not necessarily to be optimal and more sophisticated methods, e.g. adap-
tive approaches, need to be investigated in future work.

A synthetic dataset with realistic fractional deformation based on a clinical HDR CT image 
of a gynecologic cancer patient was developed and used for the evaluation of SPEED. We have 
generated the deformation as close as possible to the real HDR fractional changes such that 
rigid and deformable transformations are simulated in the tissues while only rigid transforma-
tion is mimicked in the AR.

One limitation of this work is the lack of a physical deformable phantom to confirm the 
findings presented here. In fact, such a physical phantom for this purpose is being developed 
in our institute in parallel with the current research. We are building a realistic 3D phantom 
that consists of anatomies from a HDR CT image of a gynecological cancer patient, and dif-
ferent organs inside the phantom are molded using the 3D printing technique with the con-
toured anatomies. The phantom is made up of different mixtures of polyvinyl chloride and 
softener dioctyl terephthalate, in order to mimic different tissue densities and deformations. 
Crafty phantom design is being investigated to allow for accommodation of landmarks and 
dosimeters, and insertions of different types of applicators. The applicator insertion in the 
clinic is a very sophisticated procedure and fractional applicator position change might not be 
simply modeled as a rigid transformation. Furthermore, it is also challenging to quantitatively 
investigate the impact of applicator on DIR. This phantom should be carefully designed such 
that applicator withdrawal only induces negligible neighboring structural deformations, and 
fiducial marker implant is also needed for deformation benchmarking. In this way, DVF dif-
ference in regions surrounding the AR calculated via DIR with and without applicator can be 
quantified. Also, the imaging quality, material elasticity, reproducibility, tissue characteriza-
tions, etc regarding this phantom need to be explored extensively before it can be used for DIR 
performance evaluation. We would like to include this phantom study into our future work.
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