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FULL PAPER

Automatic Segmentation of the Right Ventricle from
Cardiac MRI Using a Learning-Based Approach

Michael R. Avendi,1,2,3 Arash Kheradvar,1,2 and Hamid Jafarkhani3*

Purpose: This study aims to accurately segment the right ven-
tricle (RV) from cardiac MRI using a fully automatic learning-

based method.
Methods: The proposed method uses deep learning algo-
rithms, i.e., convolutional neural networks and stacked autoen-

coders, for automatic detection and initial segmentation of the
RV chamber. The initial segmentation is then combined with

the deformable models to improve the accuracy and robust-
ness of the process. We trained our algorithm using 16 cardiac
MRI datasets of the MICCAI 2012 RV Segmentation Challenge

database and validated our technique using the rest of the
dataset (32 subjects).
Results: An average Dice metric of 82.5% along with an aver-

age Hausdorff distance of 7.85 mm were achieved for all the
studied subjects. Furthermore, a high correlation and level of

agreement with the ground truth contours for end-diastolic vol-
ume (0.98), end-systolic volume (0.99), and ejection fraction
(0.93) were observed.

Conclusion: Our results show that deep learning algorithms
can be effectively used for automatic segmentation of the RV.

Computed quantitative metrics of our method outperformed
that of the existing techniques participated in the MICCAI
2012 challenge, as reported by the challenge organizers.

Magn Reson Med 000:000–000, 2017. VC 2017 International
Society for Magnetic Resonance in Medicine.
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learning; deformable models

INTRODUCTION

Compared with left ventricle (LV), the study of the right
ventricle (RV) is a relatively young field. Although many
recent studies have confirmed the prognostic value of
RV function in cardiovascular disease, for several years
its significance has been underestimated (1,2). Under-
standing the role of RV in the pathophysiology of heart
failure traditionally has dawdled behind that of the LV.
The RV used to be considered a relatively passive

chamber relating the systemic and pulmonary circulation

until more recent studies revealed its importance in sus-

taining the hemodynamic stability and cardiac perfor-

mance (3–5).
Cardiac MRI is the preferred method for clinical

assessment of the RV (6–12). Currently RV segmentation

is manually performed by clinical experts, which is

lengthy, tiresome and sensitive to intra and interoperator

variability (6,13,14). Therefore, automating the RV seg-

mentation process turns this tedious practice into a fast

procedure. This ensures the results are more accurate

and not vulnerable to operator-related variabilities, and

eventually accelerates and facilitates the process of diag-

nosis and follow-up.
There are many challenges for RV segmentation that

are mainly attributed to RV anatomy. These can be sum-

marized as: presence of RV trabeculations with signal

intensities similar to that of the myocardium, complex

crescent shape of the RV, which varies from base to

apex, along with inhomogeneity reflected in the apical

image slices, and considerable variability in shape and

intensity of the RV chamber among subjects, notably in

pathological cases (6).
Currently, only limited studies have focused on RV

segmentation (6). Atlas-based methods have been consid-

ered in some studies (15–17), which require large train-

ing datasets and long computational times while their

final segmentation may not preserve the mostly regular

boundaries of the ground-truth masks (16). Nevertheless,

it is challenging to build a model general enough to cov-

er all possible RV shapes and dynamics (18). Alternative-

ly, graph-cut-based methods combined with distribution

matching (19), shape-prior (20) and region-merging (21)

were studied for RV segmentation. Overall, these meth-

ods suffer from a low robustness and accuracy, and

require extensive user interaction. Image-based methods

have been considered by Ringenberg et al (22) and Wang

et al (23). They showed notable accuracy and processing

time improvement over other methods while deformed

RV shape and patient movement during the scan are the

limitations of their method (22). Current learning-based

approaches, such as probabilistic boosting trees and

random forests, depend on the quality and extent of

annotated training data and are computationally expen-

sive (24–27).
Motivated by these limitations, we developed an accu-

rate, fast, robust and fully automated segmentation frame-

work for cardiac MRI. A convolutional neural network

(28–31) is used to automatically detect the location of RV

in the thoracic cavity and provide a region of interest

(ROI). Afterward, a stacked autoencoder (stacked-AE)

(32–37) is developed to automatically segment the RV and
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provide an initial contour. Finally, a method is introduced
that incorporates the initial contour into classical deform-
able models to provide an accurate and robust RV contour.
The algorithm is successfully validated on the MICCAI
2012 RV database (6).

The developed deep learning algorithm is based on the
supervised learning paradigm. In supervised learning,
some example data and corresponding labels are required
to train and develop the algorithm. In other words, the
algorithm artificially mimics the function of a human
annotator. As a result, the algorithm can perform as good
as the human annotator. Therefore, to obtain good results,
it is important to provide the algorithm with clean and
accurate data and labels (38).

Our major contributions include: (i) designing a fully
automatic RV segmentation method for MRI datasets; (ii)
using deep learning algorithms, trained with limited
data, for automatic RV localization and initial segmenta-
tion; and (iii) incorporating the deep learning output
into deformable models to address the shrinkage/leakage
problems and reduce the sensitivity to initialization.
Finally, a better performance in terms of multiple evalua-
tion metrics and clinical indices was achieved.

METHODS

We used the MICCAI 2012 RV segmentation challenge
(RVSC) database (6) provided by the LITIS Lab, at the
University of Rouen, France. The algorithms were devel-
oped in our research centers at UC Irvine. Then, the
results were submitted to the LITIS lab for independent
evaluations. The cardiac MRI datasets were acquired by
a 1.5 Tesla Siemens scanner that includes 48 short-axis
images of patients with known diagnoses. The database
is grouped into three datasets namely: TrainingSet,
Test1Set, and Test2Set. Each dataset contains 16 image
sequences corresponding to 16 patients. Manual delinea-
tions of RV at the end-diastole (ED) and end-systole (ES)
are included in TrainingSet only. A typical dataset con-
tains nine images at ED and seven images at ES from
base to apex. Image parameters are summarized as: slice
thickness¼7 mm, image size¼256� 216 (or 216� 256)
pixels with 20 images per cardiac cycle.

Our method requires square inputs; therefore, patches
of 216� 216 were cropped out of the original images and
used during the training and testing procedures. We
used images in TrainingSet to train our algorithm. After
completion of training, the algorithm was deployed for

RV segmentation in Test1Set and Test2Set. The ground

truth delineations of Test1Set and Test2Set are not pub-

licly available and the LITIS Lab provided the indepen-

dent assessment results upon receiving the automatic

segmentations.

Algorithm Description

The method is carried out over three stages as shown in

Figure 1. The algorithm receives a short-axis cardiac MR

image as the input (Fig. 1). First, in Step 1, the ROI con-

taining the RV is determined in the image using a convo-

lutional network trained to locate the RV. Then, in Step

2, the RV is initially segmented using a stacked-AE

trained to delineate the RV. The obtained contour is

used for initialization and incorporated into deformable

models for segmentation in Step 3. Each stage of the

block diagram is individually trained during an offline

training process to obtain its optimum values of parame-

ters, as described in our previous publication on LV seg-

mentation (39). After training, the system is deployed for

automatic segmentation. Here, we have used our devel-

oped localization and segmentation algorithms jointly;

however, the two can be applied independently. In other

words, our segmentation algorithm can work in conjunc-

tion with other automatic localization techniques or

even without localization. Each step is further explained

as follows for completeness of the presentation.

Automatic Localization (Step 1)

The original images in the database have a large field of

view, covering the RV chamber as well as parts of the

other surrounding organs. In addition, direct handling of

the images is not computationally feasible because of the

large image size. As such, we first localize the RV and

crop out a ROI from the original images such that the RV

chamber is positioned approximately within the center

of the images.
Figure 2 shows a block diagram of the automatic RV

localization using convolutional networks. We use a

down-sampled m�m image as the input to reduce com-

plexity. Let us represent the pixel intensity at coordinate

[i,j] by I [i,j]. Throughout the study, we represent the i-th
element of vector x by x[i] and the element at the i-th
row and the j-th column of matrix X by X [i,j].

Then, the filters ðFl 2 Ra�a;b0 2 Rk ; l ¼ 1; . . . ;kÞ are

convolved with the input image to obtain k convolved

FIG. 1. Block diagram of the integrated deep learning and deformable model algorithm for RV segmentation.
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feature maps of size m1�m1, computed as Cl [i,j]¼ f (Zl

[i,j]) where

Zl½i; j� ¼
Xa

k1¼1

Xa

k2¼1

Fl½k1;k2�I ½i þ k1 � 1; j þ k2 � 1� þ b0½l�;

[1]

for 1� i,j�m1, l¼ 1,���, k, and m1¼m � aþ 1.
As shown in Figure 2, the next step in automatic local-

ization is average pooling. The goal of average pooling is

to down-sample the convolved feature maps by averaging

over p�p nonoverlapping regions in the convolved fea-

ture maps. This is done by calculating

Pl½i1; j1� ¼
1

p2

Xi1p

i¼1þði1�1Þp

Xj1p

j¼1þðj1�1Þp
Cl½i; j� [2]

for 1� i1, j1�m2. This results in k reduced-resolution

features Pl � Rm2�m2 for l¼ 1,���, k, where m2¼m1/p and

p is chosen such that m2 is an integer value. We set

m¼ 54, a¼ 10, m1¼ 45, p¼ 5, m2¼ 9, k¼ 100 for an orig-

inal 216� 216 MR image.

The pooled features are finally converted to vector p �

Rn2, where n2 ¼ km2
2, and fully connected to a linear

regression layer with two outputs. We train the network

to find matrices W1 � R2�n2 and b1 � R2 and compute

yc¼W1pþ b1 at the output layer. Centered at the

obtained output, a ROI with size Mroi is cropped from

the original image to be used for the next stage. The

image slices near the RV base require a larger region to

cover the whole RV with respect to image slices at the

apex. We group the contours into large and small, and

set Mroi¼ 171,91 for those, respectively. To optimize the

performance of the automatic RV localization, the convo-

lutional network is trained using the back-propagation

algorithm (40) to obtain the parameter values Fl,l¼ 1,���,k,

b0,W1 and b1.

Automatic Initialization (Step 2)

We use a stacked-AE to obtain an initial RV segmenta-

tion. As shown in Figure 3, in addition to the input and

output layers, we have two hidden layers in the stacked-

AE. The input vector, xs � Rn1, is constructed by down-

sampling and unrolling the sub-image obtained from the

FIG. 2. Block diagram of the convolutional network for automatic localization.

FIG. 3. Block diagram of the stacked-AE for initialization.

Automatic Segmentation Using a Learning-Based Approach 3



automatic localization block. The hidden layers build the

abstract representations by computing h1¼ f(W2xsþb2)

and h2¼ f(W3h1þ b3). The output layer computes

ys¼ f(W4h2þ b4) to produce a binary mask. The binary

mask is black (zero) everywhere except at the RV borders,

and can also be converted to a contour as shown in Figure

3. Here, W2 � Rn2�n1, b2 � Rn2, W3 � Rn3�n2, b3 � Rn3

and W4 � Rn4�n3, b4 � Rn4 are trainable matrices and vec-

tors that are obtained during the training process. We set

the parameters as n1¼ 3249, n2¼ 300, n3¼ 300, n4¼ 3249.

The output of this stage has a dual functionality; it is used

as the initial contour for the segmentation step as well as a

preliminary RV shape.

Training Stacked-AE

Although, an end-to-end supervised training can be used

to train the stacked-AE, it does not lead to a good gener-

alization due to the small size of the training data. For

better generalization, we use an unsupervised layer-wise

pretraining followed by an end-to-end supervised fine-

tuning. Four typical examples of input images and labels

are shown in Figure 4. The details can be found in

Avendi et al (39).

RV Segmentation (Step 3)

As shown in Figure 1, the initial segmentation derived

from the previous step is used as a preliminary contour

in a deformable model. Deformable models are dynamic

contours that eventually lie on the boundary of the

object of interest. The evolution of the deformable mod-

els is aimed at minimizing an energy function. In con-

ventional deformable methods, contours tend to shrink

inward or leak outward because of the fuzziness of the

cavity borders and presence of RV trabeculations. These

issues are resolved by integrating the preliminary RV

shape obtained from the previous stage into the deform-

able models.
We define the level-set function u(x,y) with negative

and positive values for the pixels inside and outside a con-

tour, respectively. We also define the following energy

function

EðwÞ ¼ a1ElenðwÞ þ a2EregðwÞ þ a3EshapeðwÞ; [3]

which is a combination of the length-based, region-

based, and prior shape energy terms. The weights a1, a2,

and a3 are the combining parameters, empirically deter-

mined as a1¼ 1, a2¼ 0.5, and a3¼0.25. The deformable

method minimizes the energy function in Equation [3] to

find the following unique contour:

w ¼ arg min
F
fEðwÞg [4]

The solution u* will lie on the boundary of the object of

interest. The optimization problem in Equation [4] can

be solved using the gradient descent algorithm.

Implementation Details

Images of all cases in TrainingSet were collected and

divided into the large-contour and small-contour groups.

As such, there are approximately 128 and 75 images of

size 256� 216 or 216� 256 in each group, respectively.

We also artificially enlarged the training dataset by trans-

lation, rotation and changing the pixel intensities of our

images based on the standard principal component anal-

ysis (PCA) technique explained by Koikkalainen et al

(41). Accordingly, we augmented the training dataset by

a factor of 10. Afterward, we built and trained two net-

works, one for the large-contour and one for the small-

contour dataset.

FIG. 4. Four examples of the training data for the stacked-AE, input (upper row) and labels (lower row).
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Over-fitting is a main issue in deep learning networks
as many parameters should be learned. A poor perfor-
mance on the test data is possible despite a well-fitted
network to the training data. To overcome this issue, we
adopted multiple techniques including artificial enlarge-
ment of the training dataset, performing layer-wise pre-
training, l2 regularization and sparsity constraints. The
use of layer-wise pretraining greatly helped to mitigate
the challenge of limited training data. To keep track of
the number of parameters, the inputs were down-
sampled and only two hidden layers were used in the
networks. To monitor the overfitting problem during
training, a four-fold cross-validation was performed.
Accordingly, the original training data (16 subjects) was
divided into four partitions, with three partitions in
training and one partition for validation, in each fold.
The average of the four-fold cross-validations is typically
considered the final outcome of the model.

Our method was developed in MATLAB 2014a, per-
formed on a Dell Precision T7610 workstation, with
Intel(R) Xeon(R) CPU 2.6 GHz, 32 GB RAM, on a 64-bit
Windows 7 platform.

RESULTS

The performance of our methodology was assessed based
on comparing the accuracy of the automated segmenta-
tion with the ground truth (i.e., manual annotations by
experts). TrainingSet of the RVSC database (6) was used
for training only, and Test1Set and Test2Set were used
for validation. Because the reference contours of Test1Set

and Test2Set are not publicly available, we submitted

our automatic segmentation results to the LITIS Lab for

independent evaluation.
Dice metric (DM) and Hausdorff distance (HD) were

computed (6). DM is a measure of contour overlap, with

a range between zero and one. A higher DM indicates a

better match between automated and manual segmenta-

tions. Data augmentation improved the results related to

DM for approximately 2.5%. HD measures the maximum

perpendicular distance between the automatic and man-

ual contours. Table 1 presents the computed DM, HD,

and correlation coefficient R for RV volumes at the ED

and ES. To test the effect of permuting the test and vali-

dation data, we used four-fold cross-validation, i.e.,

divided the Training dataset into four partitions. Then,

we used three partitions (12 patients around 180 images)

for training and one partition (4 patients, around 60

images) for validation in each fold. The DM results of

the four fold cross-validations are 0.79, 0.80, 0.84, and

0.78. The average DM of the four fold cross-validations

is 0.80. The results are slightly different for each fold.

This is due to the fact that the model is trained with dif-

ferent sets of images and tested on different images in

each fold. Two exemplary segmentations at the ED and

ES are shown in Figures 5 and 6, respectively. Addition-

al segmentation figures, including the results in Steps 2

and 3, can be found in Supporting Figures S2–S5, which

are available online. These figures display images from

the base to the apex for the best and worst DM results of

Test1Set. The red and yellow contours correspond to

FIG. 5. Endocardial contours of RV at ED from base to apex (Patient #33 from Test2Set).

Table 1
Quantitative Metrics and Mean Values (SDs) of DM and HD and Correlation Coefficient R2 for RV Volumes

Test1Set (16 patients) Test2Set (16 patients)

Phase DM HD (mm) R2
vol DM HD (mm) R2

vol

ED (step 2) 0.82 (0.18) 12.40 (8.60) 0.90 0.84 (0.80) 10.10 (6.90) 0.94
ED (all steps) 0.86 (0.11) 7.80 (4.26) 0.98 0.86 (0.10) 7.85 (4.56) 0.96
ES (step 2) 0.70 (0.25) 12.95 (8.70) 0.92 0.74 (0.26) 10.20 (9.20) 0.98

ES (all steps) 0.79 (0.16) 7.51 (3.66) 0.98 0.76 (0.20) 8.27 (4.23) 0.98

Automatic Segmentation Using a Learning-Based Approach 5



Step 2 and Step 3, respectively. The refinement in Step
3 leads to overall improvement in the average DM and
volume calculations.

For clinical validation, end-diastolic volume (EDV),
end-systolic volume (ESV), and ejection fraction (EF) were
computed. Correlation and Bland-Altman plots were
obtained to assess their agreement to the ground truth.
Correlation plots are shown in Figures 7 and 8 and the
remaining plots can be found in Supporting Figure S1.

The range of EDV, ESV and EF was (40 mL to 232 mL),
(17 mL to 173 mL) and (21% to 67%), in Test1Set and
(61 mL to 242 mL), (18 mL to 196 mL), and (19% to 71%)
in Test2Set, respectively. The correlation with the
ground truth contours of R¼ 0.99, 0.99, 0.96 and
R¼ 0.98, 0.99, 0.93 for EDV, ESV, and EF were achieved,
for Test1Set and Test2Set, respectively. No statistically
significant difference in global EDV (Test1Set P¼0.96,
Test2Set P¼ 0.25), ESV (Test1Set P¼ 0.12, Test2Set
P¼ 0.54) and EF (Test1Set P¼ 0.1, Test2Set P¼ 0.22),
was observed. The DM shows the average overlap
between the manual delineations and the automatic

results. However, R2 values correspond to the EDV, ESV,
and EF. Obviously, a higher DM leads to a better volume
estimation and higher R2 values. This can be seen in
Table 1, where both DM values and R2 improve from
Step 2 to Step 3.

The Bland-Altman analysis showed small biases for
EDV (0.11 mL, -3 mL), ESV (0.12 mL, 1.1 mL), and EF
(1.6%, 1.6%), in Test1Set and Test2Set, respectively.
The level of agreement between the automatic and manu-
al results was represented by the interval of the percent-
age difference between mean 6 1.96 standard deviation
(SD). The confidence interval of the difference between
the automatic and manual was measured as EDV (-18 mL
to 18 mL), (-23 mL to 17 mL), ESV (-23 mL to 17 mL), (-
12 mL to 15 mL), and EF (-8.7% to 5.5%), (-11% to
8.1%), for Test1Set and Test2Set, respectively. In addi-
tion, the coefficient of variation was measured as EDV
(6.6%, 7.5%), ESV (9.1%, 10%), and EF (7.4%, 9.1%),
for Test1Set and Test2Set, respectively.

Approximate elapsed times for training and test pro-
cesses were obtained using the tic-toc command in

FIG. 6. Endocardial contours of RV at ES from base to apex (Patient #42 from Test2Set).

FIG. 7. Correlation plots for EDV
and ESV of Test1Set and Test2Set.
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MATLAB and were as follows: training convolutional

network: 7.8 h, training stacked-AE: 74 min. Once

trained, the elapsed times for segmenting the RV in a

typical MR image were as follows: ROI detection (convo-

lution, pooling, and regression): 0.25 s, initialization

(stacked-AE): 0.002 s, segmentation (deformable model):

0.2 s. The elapsed times during inference is the average

of 10 tests. Also, the average elapsed time per patient

was around 5 s assuming 10 image slices per patient at

the ES or ED.

DISCUSSION AND CONCLUSIONS

Most of the challenges for RV segmentation are due to

the complex anatomy of the RV chamber. These include

RV trabeculations with signal intensities similar to the

myocardium’s, complex crescent shape of the RV that

varies from base to apex, as well as significant variation

of RV shape and intensity among the subjects (6). Due to

these challenges, only limited studies have focused on

RV segmentation. Among those, the state-of-the-art meth-

ods for RV segmentation suffer from several limitations

such as leakage and shrinkage of contours due to the

fuzziness of the RV borders and presence of trabecula-

tions. Our learning-based method overcame these short-

comings and minimized shrinkage/leakage by integrating

the inferred shape into the deformable model. Figures 5

and 6 show that the RV was properly segmented from

base to apex. Like many other methods in the literature

(6), the large contours can be more accurately segmented

compared with the small contours, and working with

image slices in vicinity of the apex particularly at ES can

be challenging due to the small size and irregular shape.
Computed metrics in Table 1 show that the contours

at ED were more accurately segmented in terms of DM

compared with the contours at the ES, with an overall

accuracy of 86% in both testing sets. This is because the

contours at ES are larger and easier to segment. Again,

this is also a characteristic of other segmentation meth-

ods as reported in Petitjean et al (6).
Table 2 summarizes the computed quantitative metrics

averaged over ED and ES. As can be seen from the table,

our method outperforms the state-of-the-art methods.

Mean DM improvements compared with the other meth-

ods range from 0 to 0.28 on Test1Set and 0 to 0.22 on

Test2Set. Ringenberg et al (22) demonstrated a mean

improvement of 0.01 on Test2Set. Our mean HD

improvements range from 1.38–20.77 mm on Test1Set

and 0.7–14.18 mm on Test2Set. The closest results to our

method is the work by Ringenberg et al (22) with similar

DM values. However, our method provides better HD

values, i.e., 7.67 mm and 8.03 mm for Test1Set and

Test2Set, respectively, compared with 9.05 mm and

8.73 mm reported by Ringenberg et al (22). The smaller

HD values of our method indicates superiority of our

method over Ringenberg et al.
Figures 7 and 8 show a high correlation for ESV, EDV,

and EF (greater than 0.98 for RV volumes), denoting

excellent match between the automatic and manual con-

tours. The Bland-Altman analysis revealed negligible

biases and a better level of agreement compared with

that of the other methods. For example, the Bland-

Altman diagrams related to EF showed a bias close to

zero with the 95% limits of agreement ( 6 1.96 SD) close

to 6 0.10. This performance is similar to what reported

by Caudron et al (42) for intraoperator variability values.

A nonzero bias with the 95% limits closer to 6 0.2 exist

for the other methods (6). Compared with the work by

Ringenberg et al (22), that provides the closest results to

ours in Table 2, our method provides a better R-value

(correlation coefficient) for EDV, ESV and EF. For

FIG. 8. Correlation plots for ejection fraction of Test1Set and
Test2Set.

Table 2

Quantitative Metrics and Mean Values (SDs) of DM and HD Average over ED and ES, for Our Method Compared to Other Techniques
Evaluated on TEST1SET and TEST2SET of MICCAI 2012 RVSC Database (6)

Test1Set (16 patients) Test2Set (16 patients)

Method A/sA1 DM HD (mm) DM HD (mm)

Our Method A 0.83 (0.14) 7.67 (4.00) 0.82 (0.16) 8.03 (4.41)
Ringenberg et al 2014 (22) A 0.83 (0.16) 9.05 (6.98) 0.83 (0.18) 8.73 (7.62)
Zuluaga et al 2013 (43) A 0.78 (0.23) 10.51 (9.17) 0.73 (0.27) 12.50 (10.95)

Wang et al 2012 (23) A 0.57 (0.33) 28.44 (23.57) 0.61 (0.34) 22.20 (21.74)
Ou et al 2012 (16) A 0.55 (0.32) 23.16 (19.86) 0.61 (0.29) 15.08 (8.91)

Maier et al 2012 (44) sA 0.80 (0.19) 11.15 (6.62) 0.77 (0.24) 9.79 (5.38)
Nambakhsh et al 2013 (45) sA 0.59 (0.24) 20.21 (9.72) 0.56 (0.24) 22.21 (9.69)
Bai et al 2013 (17) sA 0.78 (0.20) 9.26 (4.93) 0.76 (0.23) 9.77 (5.59)

Grosgeorge et al 2013 (20) sA 0.76 (0.20) 9.97 (5.49) 0.81 (0.16) 7.28 (3.58)

A¼automatic, sA¼ semiautomatic.

Automatic Segmentation Using a Learning-Based Approach 7



example, for EF, our method provides R¼ 0.96 and 0.93
for Test1Set and Test2Set, respectively, compared with
R 5 0.78 and 0.91 reported by Ringenberg et al (22). The
higher R-values in our statistical evaluation demonstrates
a better performance. These observations show the
potential clinical applicability of our framework for auto-
matic RV segmentation.

The measured elapsed times show that the method can
be trained within a relatively short time and off-line. The
first stage, i.e., convolutional network, requires the longest
computational time among the three stages. This is
because the most time-consuming operation needed is the
convolution of the filters with images. Nevertheless, these
computational times can be reduced by developing the
algorithms into GPU-accelerated computing platforms.

During the test, the average time to perform RV seg-
mentation, in a typical image, was less than 0.5 s. Most
of the computational time was spent by the convolution
network and the integrated deformable model. Yet, the
integrated deformable model converges faster than classi-
cal deformable models because of the initialization and
integration with the inferred shape. Overall, our method
needs 5 s per patient for the processing. Unfortunately, a
fair comparison between computational-time related to
different methods was not possible because the other
methods have been developed over different platforms.
Their reported computational times range from 19 s to
30 min per patient (6,16,17,19–23,43). In particular, the
reported computational time reported by Ringenberg
et al (22) on a similar workstation with Xeon processor
is 19 s per patient, which is approximately four times
more than the 5 s needed by our method.

As a limitation, the developed method may not per-
form as efficiently in patients with irregular RV shape,
such as congenital heart defects. This is due to the fact
that learning-based approaches are as good as their train-
ing data. A rich and diverse dataset for training will
ensure the performance for various cases. In other words,
to efficiently perform on patients with irregular shape
RV, the training dataset should include some of those
examples.

As discussed in our previous publication (39), a diffi-
culty in applying deep learning approaches for cardiac
MRI segmentation is the lack of enough data for training
and eventually validation. For this work, we used a por-
tion of the MICCAI 2012 RVSC dataset (6) and artificially
enlarged that for training. Similar to LV segmentation,
currently, no analytic approach exists to design hyper-
parameters in deep learning networks and they should
be obtained empirically (39). Nevertheless, the results
indicate that our automated method is accurate. Another
limitation of this study is that the validation was per-
formed on a dataset with a rather limited number of sub-
jects and abnormalities. Also, because there is only one
manual segmentation available from the MICCAI 2012
RVSC dataset, it was not possible to evaluate the intra-
and interobserver variability. Testing our method on a
larger set of clinical data with multiple manual segmen-
tation, that currently we do not have access to, is subject
of future research.

In prospect, manual segmentation is time-consuming
and requires dedicated operator training that makes it

inefficient due to the extent of information in CMR
images (46,47). Furthermore, because the traditional
practice of manual segmentation is subjective, less repro-
ducible and time-consuming, fully automatic 3D segmen-
tation methods are highly desirable for computing
functional parameters in patients, such as ejection frac-
tion, cardiac output, peak ejection rate, filling rates
among the other.

Our learning approach has the potential to be per-
formed across the whole cardiac cycle. The method can
also be extended to RV myocardial segmentation to pro-
vide additional clinical details. The current RV endocar-
dial segmentation can be used as a preprocessing step to
more accurately consider RV trabeculations. Comparison
of RV segmentation results with that of LV segmentation,
DM (94%), and HD (3.45 mm) (39), confirmed the diffi-
culty of RV segmentation because of its complex shape
variability. Nevertheless, further improvements of these
metrics for RV segmentation to reach an accuracy similar
to that of LV segmentation should be considered. Fur-
thermore, the method can be considered for simulta-
neous multiple chamber segmentation by providing
training labels that include multiple chambers.

In conclusion, we have developed a novel method for
fully automatic RV segmentation from cardiac MRI short-
axes. The method uses deep learning algorithms com-
bined with deformable models. It brings more robustness
and accuracy, particularly for challenging images with
fuzzy borders. In contrast to the other existing automated
approaches, our method is based on learning several lev-
els of representations, corresponding to a hierarchy of
features and does not assume any model or assumption
about the image or heart. The method is simple to imple-
ment, and potentially more robust against anatomical
variability and image contrast variations. The feasibility
and performance of this segmentation method was suc-
cessfully demonstrated through computing standard met-
rics and clinical indices with respect to the ground truth
on the MICCAI 2012 RVSC dataset (6). Results indicate
improvements in terms of accuracy and computational
time compared with the existing RV segmentation
methods.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of
this article
Fig. S1. Bland-Altman plots for EDV, ESV, EF of Test1Set (top row) and
Test2Set (bottom row).
Fig. S2. Endocardial contours of RV at ED from base to apex (Patient #21
from Test1Set). Our method resulted in best DM (0.93) for this case. Red
and yellow correspond to Step 2 and Step 3 segmentation results,
respectively.
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Fig. S3. Endocardial contours of RV at ES from base to apex (Patient #21
from Test1Set). Our method resulted in best DM (0.93) for this case. Red
and yellow correspond to Step 2 and Step 3 segmentation results,
respectively.
Fig. S4. Endocardial contours of RV at ED from base to apex (Patient #29
from Test1Set). Our method resulted in worst DM (0.74) for this case. Red

and yellow correspond to Step 2 and Step 3 segmentation results,
respectively.
Fig. S5. Endocardial contours of RV at ES from base to apex (Patient #29
from Test1Set). Our method resulted in worst DM (0.74) for this case. Red
and yellow correspond to Step 2 and Step 3 segmentation results,
respectively.
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