Lawrence Berkeley National Laboratory Recent Work

Title
ON THE INFRARED DIVERGENCE IN QUANTUM ELECTRODYNAMICS
Permalink
https://escholarship.org/uc/item/48q8s5js

Author

Chung, Victor.
Publication Date
1965-06-10

University of California

Ernest O. Lawrence Radiation Laboratory

ON THE INFRARED DIVERGENCE IN QUANTUM ELECTRODYNAMICS

TWO-WEEK LOAN COPY
This is a Library Circulating Copy which maty be borrowed for two weeks.
For a personal retention copy, call
Tech. Info. Division, Ext. 5545

Berkeley, California

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

Journal Article

Research and Deyedoty

UNIVERSITY OF CALIFORNIA
Lawrence Radiation Laboratory
Berkeley, California

AEC Contract No. W-7405-eng-48

ON THE INFRARED DIVERGENCE IN OUANTUM ELECTRODYNAMICS

Victor Chung
$\Leftrightarrow n \omega$

June 10, 1965

ON THE INFRARED DIVERGENCE IN QUANIUM ELECIRODYNAMICS.*
Victor Chung
Lawrence Radiation Laboratory
University of California
Berkeley, California
June 10, 1965

ABSIRACT

The infrared divergences of quantum electrodynamics are eliminated to all orders of perturbation theory in the matrix elements by an appropriate choice of initial and final soft photon states. The condition for this cancellation restricts, these states to representations of the canonical commutation rules which are unitarily inequivalent to the usual Fock representation.

I. INIRODUCTION

The matrix element in quantum electrodynamics for the scattering from an initial state containing a finite number of electrons and photons into a similar final state contains an integral which aiverges logarithmically for small momentum k. The conventional treatment of this "infrared divergence" has been to sum the cross sections over all possible final states consistent with experimental measurements. In particular, when all states with any number of soft photons with momenta below the threshold of observability are considered, the divergences cancel, and the calculated cross sections are consistent with experiment. It is therefore possible to attribute the original divergence in the matrix element to the inappropriate choice of initial and final states to represent the experimental situation. In an actual scattering experiment, an indefinite number of soft photons are emitted, so that in some sense, states which are eigenstates of the number operator are unphysical.

In this paper, we shall show that there exists a representation of the photon states for quantum electrodynamics which appears more appropriate for describing scattering than the usual Fock representation in that the matrix elements do not have infrared divergences. These states are not eigenstates of the number operator, and are parameterized in a manner similar to that used by Glauber, Bargmann, ${ }^{2}$. and others. When certain conditions of convergence are imposed, the states can be shown to form irreducible representations of the
canonical commutation rules for the "in" and "out" fields which are unitarily inequivalent to the usual Fock representation Similar results have been obtained by Shroer 3 in certain model field theories. In the absence of known solutions to the renormalized field equations, we make no pretence to mathematical rigor. In particular the Feynman-Dyson perturbation techniques are used throughout, and most questions of order in limiting procedures, etc., are treated heuristically.

Section II will summarize the parts of the conventional treatment of infrared divergences which we shail need. IThis section is based on a more complete discussion made in the article by Yennie, Frautschi, and Suura. 4 The parameterization of the states and its relationship to the usual occupation number parameterization ere introduced in Section III. We shall make use of the algebra of states developed in Glauber's paper. ${ }^{1}$ In Section IV the cancellation of the divergences to second order is demonstrated in order to illustrate the methods used in the succeeding sections. A calculation of the matrix elements for potential scattering in Section V shows that the divergences indeed cancel to all orders. In Section VI, the structure and the physical meaning of the representations are examined. Then we show that by squaring the matrix elements and summing over the final states, results are obtained in low order which agree with those obtained by Yennie et al. ${ }^{4}$ by the conventional treatment. Some extensions and generalizations of our treatment are carried out in the appendices.

II. SEPARAIION OF THE INFRARED FACTORS

The following exposition of the separation of the infrared parts from the matrix element can be found in the review article by Yennie et al. ${ }^{4}$ We will summarize here what is relevant to our own discussion. For simplicity, we study the example of an electron scattering from a potential, although similar results can be obtained for more general situations.

Consider a process in which there are a fixed number of photons and an electron of momentum p in the initial state, and a. fixed number of photons with the scattered electron of momentum p' in the final state. The photons may or may not have interacted with the electron ine. The complete matrix element for this process is given by

$$
\begin{equation*}
M\left(\underset{\sim}{p}, \underset{\sim}{p}{ }^{\prime}\right)=\sum_{n=0}^{\infty} M_{n}\left(\underset{\sim}{p},{\underset{\sim}{p}}^{\prime}\right) \tag{1}
\end{equation*}
$$

where $M_{n}(\underset{\sim}{p}, \underset{\sim}{p})$ corresponds to the sum of all diagrams in which there are nivirtual photons which can be distinguished from the potential interactions in the "basic process" M_{0}. The real photon variables have been suppressed.

The quantity $\rho_{n}\left(k_{1}, \cdots \cdot k_{n}\right)$ is defined by the relation:

$$
\begin{equation*}
M_{n}=\frac{1}{n!} \int \cdots \int \prod_{i=1}^{n} \frac{d^{4} k}{k_{1}^{2}-\lambda^{2}+1 \epsilon} \rho_{n}\left(k_{1}, \cdots k_{n}\right) \tag{2}
\end{equation*}
$$

where λ is the photon mass which we allow to approach zero later. It has been shown that ρ_{n} is of the form

$$
\begin{equation*}
\rho_{n}\left(k_{1}, \cdots k_{n}\right)=s\left(k_{n}\right) \rho_{n-1}\left(k_{1}, \cdots, k_{n-1}\right)+\xi^{(1)}\left(k_{1}, \cdots, k_{n-1} ; k_{n}\right), \tag{3}
\end{equation*}
$$

where $S\left(k_{n}\right)$ contains the k_{n} infrared divergence, and can have the form:

$$
\begin{equation*}
S\left(k_{n}\right)=\frac{1}{2}\left[\frac{i e^{2}}{(2 \pi)^{4}}\right]\left(\frac{2 p_{\mu}^{\prime}-k_{\mu}}{2 p^{1} \cdot k-k^{2}}-\frac{2 p_{\mu}-k_{\mu}}{2 p^{2} \cdot k-k^{2}}\right)^{2} \tag{4}
\end{equation*}
$$

The remainder $\xi^{(1)}$ has no infrared divergence in k_{n}, and its infrared divergence in the other k's has not been made worse by the separation.

By iteration of Equation (3), $\rho_{n}\left(k_{1}, \cdots, k_{n}\right)$ can be expressed as a sum over all permutations of the k !s:

$$
\begin{equation*}
\rho_{n}\left(k_{1}, \cdots, k_{n}\right)=\sum_{\operatorname{perm}} \sum_{r=0}^{n} \frac{1}{r!(n-r)!} \prod_{i=1}^{r} s\left(k_{1}\right) \xi_{n-r}\left(k_{r+1}, \cdots, k_{n}\right) \tag{5}
\end{equation*}
$$

The functions 5_{r} are noninfrared and symmetrical in the k.s. If. we adopt the definitions:

$$
\begin{align*}
& \alpha B(\underset{\sim}{p}, \underset{\sim}{p})=\int \frac{a^{4} k s(k)}{k^{2}-\lambda^{2}} \tag{6a}\\
& m_{r}\left(\underset{\sim}{p},{\underset{\sim}{p}}^{\prime}\right) \equiv \frac{1}{r^{\prime}} \int_{i=1}^{r} \frac{a^{4} k}{k_{1}^{2}} \xi_{r}\left(k_{1}, \cdots, k_{n}\right), \tag{6b}
\end{align*}
$$

then substitution of (2), (5), (6a), and (6b) into (1) results in the simple expression:

$$
\begin{equation*}
M=\exp (\alpha B) \sum_{n=0}^{\infty} m_{n} \tag{7}
\end{equation*}
$$

In this expression $m_{0}=\rho_{0}=\xi_{0}=M_{0}$. The $m_{n}^{\prime \prime s}$ in (7) are divergence-free, so that the whole infrared divergence has been isolated in the argument αB of the exponential. For future reference, we can write down the form of $\operatorname{Re}(\alpha B)$. which follows from (4) and (6):

$$
\begin{equation*}
\operatorname{Re}(\alpha B)=\frac{e^{2}}{4(2 \pi)^{3}} \int \frac{d^{3} k}{\left(k^{2}+\lambda^{2}\right)^{\frac{1}{2}}}\left(\frac{2 p_{\mu}^{\prime}-k{ }_{\mu}}{2 p^{6} k-\lambda^{2}}-\frac{2 p_{\mu}-k \mu}{2 p \cdot k-\lambda^{2}}\right)^{2} \tag{8}
\end{equation*}
$$

The extraction of the infrared contribution to the matrix element for the emission of real photons has a form similar to thet in Equation (3). In this case we let $\tilde{\tilde{i}}_{n}\left(k_{1}, \cdots, k_{n}\right)$ be the matrix element corresponding to the emission or absorption of n undetectable photons with momenta $k_{1}, \cdots k_{n}$, and for some arbitrary order in the virtual photon corrections. It has been shown that

$$
\begin{equation*}
\tilde{\rho}_{n}\left(k_{1}, \cdots, k_{n}\right)= \pm \tilde{s}\left(k_{n}\right) \tilde{\rho}_{n-1}\left(k_{1}, \cdots k_{n}\right)+\tilde{\xi}^{(1)}\left(k_{1}, \cdots, k_{n-1} ; k_{n}\right) \tag{9}
\end{equation*}
$$

where $\tilde{S}\left(k_{n}\right)$. is the factor containing the infrared divergence, and has the form:

$$
\begin{equation*}
\tilde{s}(k)=\frac{e}{\left[2(2 \pi)^{3} k_{0}\right]^{\frac{1}{2}}}\left[\frac{p^{\prime} \cdot e}{k \cdot p},-\frac{p \cdot e}{p \cdot k}\right] \tag{10}
\end{equation*}
$$

and the (+) and (-) signs correspond to emission and absorption respectively. Again the remainder $\tilde{\xi}(1)$ is divergence-free in k_{n}, and the divergences in the other k 's is no worse for the separation.

It has been show that the iteration of (9) leads to the form

$$
\begin{equation*}
\tilde{\rho}_{n}\left(k_{1}, \cdots, k_{n}\right)=\sum_{\operatorname{perm}} \sum_{r=0}^{n}(-1)^{m} \frac{1}{r!(n-r)!} \prod_{1=1}^{r} \tilde{s}\left(k_{1}\right) \tilde{\xi}_{n-r}\left(k_{r+1}, \cdots, k_{n}\right) \tag{11}
\end{equation*}
$$

where the functions $\tilde{\xi}$ are noninfrared and symmetrical in the k 's, and m corresponds to the number of absorbed photons.
III. PARAMETERIZATION: OF THE PHOTON STATES

The properties of the states which we will find convenient to use have been discussed by several other authors ${ }^{1,2}$ in different contexts from the one in which we intend to use them.

Let $\left\{f_{i}(k)\right\}$ be a complete and orthonormal set of functions defined on some region Ω of momentum space including $k=0$ (perhaps all of momentum space). A typical state "belonging to the i th mode" is defined by

$$
\begin{equation*}
\left|\alpha_{i}\right\rangle=\frac{\exp \left(\alpha_{i} a_{i}^{\dagger}\right)}{\exp \left(\frac{1}{2}\left|\alpha_{i}\right|^{2}\right)}|0\rangle=\exp \left(-\frac{1}{2}\left|\alpha_{i}\right|^{2}\right) \sum_{n} \frac{\left(\alpha_{1} a_{i}\right)^{n}}{n!}|0\rangle, \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{i}^{\dagger}=\int d^{3} k f_{i}(k) a^{+}(k) \tag{14}
\end{equation*}
$$

is an "in" or "out" creation operator.
In this expression α_{i} is a complex number which can take on any value in the complex plane, $a^{\dagger}(k)$ is the photon creation operator which obeys the commutation rules

$$
\begin{equation*}
\left[a(k), a^{\dagger}\left(k^{\prime}\right)\right]=8\left(k-k^{\prime}\right),\left[a(k), a\left(k^{\prime}\right)\right]=\left[a^{\dagger}(k), a^{\dagger}\left(k^{\prime}\right)\right]=0, \tag{15}
\end{equation*}
$$

and $|0\rangle$ is the state with no photons; $a_{i}{ }^{\dagger}$ obeys the commutation rules

$$
\begin{equation*}
\left[a_{1}, a_{j}^{\dagger}\right]=\delta_{i j}\left[a_{i}, a_{j}\right]=\left[a_{i}^{\dagger}, a_{j}^{\dagger}\right]=0 \tag{ib}
\end{equation*}
$$

From the commutation rules, it is a trivial matter to show that these states are eigenfunction of the destruction operator

$$
\begin{equation*}
a(k)\left|\alpha_{i}\right\rangle=\alpha_{i} f_{i}(k)\left|\alpha_{i}\right\rangle \tag{17}
\end{equation*}
$$

or

$$
a_{i}\left|\alpha_{i}\right\rangle \quad=\alpha_{i}\left|\alpha_{i}\right\rangle
$$

and that the mean number of "photons" is

$$
\begin{equation*}
\left\langle\alpha_{i}\right| \hat{N}\left|\alpha_{i}\right\rangle=\int \alpha^{3} k\left\langle\alpha_{i}\right| a^{\dagger}(k) a(k)\left|\alpha_{i}\right\rangle=\left|\alpha_{i}\right|^{2} \tag{18}
\end{equation*}
$$

It is sometimes useful to note that the state in Equation (13) can be "created" by a unitary operator

$$
\begin{equation*}
D\left(\alpha_{1}\right)=\exp \left[\alpha_{1} a_{i}^{\dagger}-\alpha_{i}^{*} a_{1}\right] \tag{19}
\end{equation*}
$$

which has the following "translation" property:

$$
\begin{equation*}
D\left(\alpha_{1}\right) D\left(\beta_{1}\right)=\exp \left[\frac{1}{2}\left(\alpha_{1} \beta_{1}^{*}-\alpha_{i}^{*} \beta_{i}\right)\right] D\left(\alpha_{1}+\beta_{i}\right) \tag{20}
\end{equation*}
$$

The states defined in this manner are no orthogonal; the overlap between two states $\left|\alpha_{i}\right\rangle$ and $\left|\beta_{i}\right\rangle$ is given by

$$
\begin{equation*}
\left|\left\langle\alpha_{i} \mid \beta_{i}\right\rangle\right|^{2}=\exp \left\{-\left|\alpha_{i}-\beta_{i}\right|^{2}\right\} \tag{21}
\end{equation*}
$$

However, it follows from (21) that the states are normalized, 1.e..

$$
\begin{equation*}
\left\langle\alpha_{i} \mid \alpha_{i}\right\rangle=1 \tag{22}
\end{equation*}
$$

Another property which these states possess is completeness.
In fact it is easy to show that

$$
\begin{equation*}
\frac{1}{\pi} \int \alpha^{2} \alpha_{1}\left|\alpha_{1}\right\rangle\left\langle\alpha_{i}\right|=\sum_{n_{1}}\left|n_{i}\right\rangle\left\langle n_{i}\right|=I \tag{23}
\end{equation*}
$$

where the state denoted by n_{i} is an eigenstate of the number of photons which have the momentum distribution described by the function $f_{i}(k)$, and $d^{2} \alpha=d\left(\right.$ Re $\left.\alpha_{i}\right) d\left(\operatorname{Im} \alpha_{i}\right)$ is real.

An arbitrary state of the 1 th mode has an expansion in terms of the n-photon states, of the form $\because: \ldots$:

$$
\begin{equation*}
\left.\left\rangle=\sum_{n} c_{n}\right| n\right\rangle=\sum_{n} c_{n} \frac{\left(a_{i}^{+}\right)^{n}}{(n!)^{\frac{1}{2}}}|0\rangle \tag{24}
\end{equation*}
$$

where $\sum_{n}\left|c_{n}\right|^{2}=1$. We associate with each such state an analytic function,

$$
\begin{equation*}
f(z)=\sum_{n} c_{n} \frac{z^{n}}{(n!)^{\frac{1}{2}}} \tag{25}
\end{equation*}
$$

Equation (24) may then be rewritten as

$$
\begin{equation*}
|f\rangle=f\left(a_{i}^{\dagger}\right)|0\rangle \tag{26}
\end{equation*}
$$

Using (23), we can expand $|f\rangle$ in terms of the new states:

$$
\begin{align*}
|f\rangle & =\frac{1}{\pi} \int d^{2} \alpha_{i}\left|\alpha_{1}\right\rangle\left\langle\alpha_{1}\right| f\left(a_{i}^{\dagger}\right)|0\rangle \tag{27}\\
& =\frac{1}{\pi} \int d^{2} \alpha_{i}\left|\alpha_{1}\right\rangle f\left(\alpha_{i}^{*}\right) \exp \left(-\frac{1}{2}\left|\alpha_{i}\right|^{2}\right) .
\end{align*}
$$

In (27) we have used the fact that the states $\left|\alpha_{1}\right\rangle$ are eigenstates of the destruction operator a_{i} :

$$
\begin{equation*}
a_{i}\left|\alpha_{i}\right\rangle=\alpha_{i}\left|\alpha_{i}\right\rangle \tag{28}
\end{equation*}
$$

In a similar fashion, the adjoint state vectors $\langle\mathrm{g}|$ can be shown to possess an analogous expansion,

$$
\begin{equation*}
\langle g|=\frac{1}{\pi} \int\left[g\left(\beta_{i}^{*}\right)\right]^{*}\left\langle\beta_{i}\right| \exp \left(-\frac{1}{2}\left|\beta_{i}\right|^{2}\right) d^{2} \beta_{i} \tag{29}
\end{equation*}
$$

A basis for the whole electromagnetic field is a direct product of the states $\left|\alpha_{i}\right\rangle$ of the individual modes

$$
\begin{equation*}
\left.\left\rangle=\frac{\pi}{1}\right| \alpha_{1}\right\rangle \equiv\left|\left\{\alpha_{1}\right\}\right\rangle \tag{30}
\end{equation*}
$$

and the mean number of photons in such a state is

$$
\begin{equation*}
\sum_{i}\left|\alpha_{i}\right|^{2} \tag{BI}
\end{equation*}
$$

Equations (25), (27), and (30) ensure that states containing a. finite number of photons (the usual Fock representation) can be expanded in terms of the states $\left|\left\{\alpha_{i}\right\}\right\rangle$ which satisfy $\sum\left|\alpha_{i}\right|^{2}\langle\infty$. This will be shown in Section VI. However, this restriction will not be imposed in the discussion that follows, i.e., we shall allow for the possibility that there exist states in which the average number of photons is not bounded.
IV. CANCELTAATION OF THE INFRARED DIVERGENCES TO SECOND ORDER

In order to illustrate the general procedure, we shall choose two particular photon states parameterized in themanner just discussed in Section III, and calculate in lowest order the matrix element for potential scattering from one to the other. The photon is assumed to have a finite mass λ which is allowed to approach zero at the end of the calculation.

Let the initial momentum of the electron be p_{i}, and the final momentum of the scattered electron be p_{f}. For the initial state we choose

$$
\begin{align*}
\left\rangle_{i}\right. & =\exp \left\{-\frac{1}{2} \sum_{\ell=1}^{2} \int\left|\tilde{S}_{i}^{(\ell)}(k)\right|^{2} d^{3} k\right\} \exp \left\{\sum_{l=1}^{2} \int d^{3} k \tilde{S}_{i}^{(l)}(k) e^{(\ell)}(k) a^{(\ell)+}(k)\right\}\left|\psi\left(p_{i}\right)\right\rangle \tag{32}\\
& =\exp \left\{-\frac{1}{2} \sum_{\ell, a}\left|\beta_{1 a}^{\ell}\right|^{2}\right\} \exp \left\{\sum_{l, a}^{\sum} \beta_{i a}^{\ell}\left\{d^{3} k f_{a}(k) e^{(\ell)}(k) a^{(l)+}(k)\right\}\left|\psi\left(p_{i}\right)\right\rangle,\right.
\end{align*}
$$

where

$$
\begin{equation*}
\tilde{\tilde{S}}_{i}^{(l)}(k)=\frac{e^{\cdots}}{\left[2(2 \pi)^{3} k\right]^{\frac{r}{2}}} \frac{p_{i} \cdot e^{(l)}}{k \cdot p_{i}} \tag{33}
\end{equation*}
$$

is a function which depends on the momentum of the initial electron. $\left|\Psi\left(p_{i}\right)\right\rangle$ is the wave function for the electron, and $e^{(l)}(k)$ are the polarization vectors. The superscript (l) is the polarization index. Since Equation (33) is meant to define the momentum distribution only as $|k| \rightarrow 0$, the function $\widetilde{S}_{1}(k)$ for $k \neq 0$ can be
chosen in any manner which makes the integrals in (32) converge as $k \rightarrow \infty$. The second form given above exhibits the relation to the discussion in Section III. The coefficients $\beta_{\text {ia }}{ }^{\ell}$ are the coefficients obtained in the expansion of $\tilde{S}_{1}^{\ell}(k)$ in terms of the chosen orthonormal set.

The initial state can then be expanded in lowest order to give

$$
\begin{equation*}
\left\rangle _ { 1 } \cong (1 - \frac { 1 } { 2 } \sum _ { \ell = 1 } ^ { 2 } \int | \tilde { S } _ { i } ^ { (\ell) } (k) | ^ { 2 } d ^ { 3 } k) \left(1+\sum_{\ell+1}^{2} \int d^{3} k \tilde{S}_{i}^{(\ell)}(k) e^{(\ell)}(k) a^{(\ell)+}(k)\left|\Psi\left(p_{i}\right)\right\rangle\right.\right. \tag{34}
\end{equation*}
$$

Similarly, the final state can be expanded to give

$$
\begin{equation*}
\left\rangle _ { f } \cong (1 - \frac { 1 } { 2 } \sum _ { \ell = 1 } ^ { 2 } \int | S _ { f } ^ { (\ell) } (k) | ^ { 2 } d ^ { 3 } k) \left(1+\sum_{\ell+1}^{2} \int d^{3} k \tilde{S}_{f}^{(\ell)}(k) e^{(\ell)}(k) a^{(\ell)+}(k)\left|\Psi\left(p_{f}\right)\right\rangle\right.\right. \tag{35}
\end{equation*}
$$

where

$$
\tilde{S}_{f}^{(\ell)}(k)=\frac{e}{\left[2(2 \pi)^{3} k_{0}\right]^{\frac{1}{2}}} \frac{p_{f} \cdot e^{(\ell)}}{k \cdot p_{f}}
$$

Let the basic interaction given by the matrix element M_{0} be the single potential interaction shown above in Figure (IV.la). In order to calculate the s matrix to order e^{2}, the contributions from all \because the diagrams in Figure \{IV.1) and Figure 'IV.2؛ must be summed. Diagrams (b), (c), and (d) of Figure (IV.I) correspond to the virtual photon radiative corrections to M_{o}. Diagrams (b), (c), (d), and (e) of Figure 'IV. 2 account for the possibility of emission or absorption of single real photons, while Diagram (a) of Figure (IV.2) accounts for the possibility that the photon does not interact with the electrons at all.

From the discussion in Section II of this paper, one knows that the diagrams in Figure 'IV.1: will contribute

$$
\begin{equation*}
M_{0}+(\alpha B+\eta) M_{0} \tag{36}
\end{equation*}
$$

where η is a quantity which is not infrared divergent as $\lambda \rightarrow 0$. The contribution from Diagrams (b) and (c) of Figure IV.2; gives a term with a factor

$$
\begin{equation*}
\sum_{\ell} \int^{3} d^{3} \tilde{S}_{f}^{(\ell)}(k)\left[\tilde{S}^{(\ell)}(k) M_{0}+\xi(k)\right], \tag{37}
\end{equation*}
$$

where $\tilde{S}^{(\ell)}(k)$ was defined in Equation (10) . A similar contribution
from Diagrams (d) and (e) of Figure (IV.2) is

$$
\begin{equation*}
-\sum_{\ell} \int d^{3} k \tilde{S}_{1}^{(l)}(k)\left[\tilde{S}^{(\ell)}(k) M_{0}+\xi(k)\right] \tag{38}
\end{equation*}
$$

The disconnected Diagram (a) of Figure (IV.2) is given by

$$
\begin{equation*}
M_{0} \sum_{\ell} \int d^{3} k \tilde{S}_{1}^{(\ell)}(k) \tilde{S}_{f}^{(\ell)}(k) \tag{39}
\end{equation*}
$$

Summing Equations (36) to (39) with the proper normalization given by Equation (54), one finds the result $\because: \because$. \because,

$$
\begin{align*}
& M_{i \rightarrow f} \cong(1+\alpha B+\eta) M_{0}\left(1-\frac{1}{2} \sum_{\ell} \int\left|\tilde{S}_{i}^{(\ell)}(k)\right|^{2}{ }^{3} k\right)\left(1-\frac{1}{2} \sum_{\ell} \int\left|\tilde{S}_{f}^{(\ell)}(k)\right|^{2} d^{3} k\right) \tag{40}\\
& +\left[\sum_{\ell} \int\left(\tilde{S}_{f}^{(\ell)}-\tilde{S}_{i}^{(\ell)}\right) \tilde{S}^{(\ell)}(k) d^{3} k+\tilde{\eta}\right] M_{0}+M_{0} \sum_{\ell} \int d^{3} k_{1} \tilde{S}_{1}^{(\ell)}(k) \tilde{S}_{f}^{(\ell)}(k),
\end{align*}
$$

where $\tilde{\eta}$ is non-infrared divergent. Thus

$$
\begin{aligned}
M_{i \rightarrow f} & =(1+\alpha B) M_{0}+(\eta+\tilde{\eta}) M_{0}+M_{0} \sum_{\ell} \int\left|\tilde{S}^{(\ell)}(k)\right|^{2} d^{3} k \\
& -M_{0} \sum_{\ell} \int d^{3} k\left\{\frac{1}{2}\left|\tilde{S}_{i}^{(\ell)}(k)\right|^{2}+\frac{1}{2}\left|\tilde{S}_{f}^{(\ell)}(k)\right|^{2}-\tilde{S}_{f}^{(\ell)}(k) \tilde{S}_{i}^{(\ell)}(k)\right\}+0\left(e^{3}\right) \\
\therefore & =\left(1+\alpha B+\frac{1}{2} \sum_{\ell} \int\left|\tilde{S}^{(\ell)}(k)\right|^{2} d^{3} k\right) M_{0}+(\eta+\tilde{\eta}) M_{0}+0\left(e^{3}\right),
\end{aligned}
$$

where we have used

$$
\begin{equation*}
\quad \tilde{S}^{(\ell)}(k) \equiv \tilde{S}_{f}^{(\ell)}(k)-\tilde{S}_{i}^{(\ell)}(k) \tag{42}
\end{equation*}
$$

From (10) we have the relation

$$
\begin{aligned}
\frac{1}{2} \sum_{\ell=1}^{2} \int\left|\tilde{S}^{(\ell)}(k)\right|^{2} d^{3} k & =\sum_{l=0}^{3} \frac{e^{2}}{4(2 \pi)^{3} k_{0}} \int d^{3} k\left[\frac{p_{\mu}^{\prime} \cdot e^{(l)}}{p^{1} \cdot k}-\frac{p \cdot e^{(\ell)}}{p \cdot k}\right]^{2}\left(-e^{\ell \ell}\right) \\
& =-\frac{e^{2}}{4(2 \pi)^{3} k_{0}} \int d^{3} k\left[\frac{p_{\mu}^{\prime}}{p \cdot k}-\frac{p_{\mu}}{p \cdot k}\right]^{2} \\
& \equiv \alpha \tilde{B}^{2}
\end{aligned}
$$

Thus

$$
\begin{equation*}
M_{i \rightarrow p}=(1+\alpha B+\alpha \tilde{B}) M_{0}+(\eta+\tilde{\eta}) M_{0}+O\left(e^{3}\right) \tag{44}
\end{equation*}
$$

By comparing Equation (43) with Equation (8), one can see that the infrared divergence which occurs when $\lambda \rightarrow 0$ has been cancelled in Equation (44).

Note that it is the matrix element which is finite. Thus in the calculation of the cross section, there will be no need to deal with an infinite sum of divergent integrals, as must be done in the conventional treatment of infrared divergences.

V. CANCELLATION OF INFRARED DIVERGENCES TO ALL ORDERS

It is now a matter of algebra to calculate the matrix element for the transition from a state of electron momentum $\underset{\sim}{p}$ and photon "quantum numbers" $\left\{\alpha_{a}^{\lambda}\right\}$ to a state of electron momentum $\underset{\sim}{p}$ '. and photon "quantum numbers" $\left\{\gamma_{c}^{\lambda}\right\}$, where

$$
\begin{equation*}
\left|\left\{\alpha_{a}^{\lambda}\right\}\right\rangle=\Pi_{a} \frac{\exp \sum_{\lambda}\left[\alpha_{a}^{\lambda} \int_{\Omega} d^{3} k f_{a}(k) e_{\mu}^{(\lambda)}(k) a^{(\lambda)+}(k)\right]}{\exp \left[\sum_{\lambda} \frac{1}{2}\left|\alpha_{a}^{\lambda_{i}}\right|^{2}\right]}|0\rangle \tag{45}
\end{equation*}
$$

The superscripts (λ) refer to the polarization indices.
Consider all the diagrams represented by Figure V.I), in which
there are m real photons absorbed by the electron line, m ' real photons emitted by the electron line, and l photons which do not interact with the electron at all.

The matrix element for the process $\left|\left\{\alpha_{a}^{\lambda}\right\}, p_{i}\right\rangle \rightarrow\left|\left\{\gamma_{c}^{\lambda^{\prime}}\right\}, p_{f}\right\rangle$ is then a sum i over all diagrams of the kind shown in Figure V.I for all values of m, m^{i}, and ℓ, and with the proper factors determined by Equations (45).

Considerations which enter the calculation of this matrix element are explained below:

> (a) There is an infrared divergent factor $e^{\alpha B}$ due to the virtual photon corrections. (See Equation 7_{0})
> (b) The overlap of the ℓ initial-state noninteracting photons with the ℓ final-state noninteracting photons contributes a factor
> $\ell!\left[\begin{array}{c}\Sigma \\ \mu, a_{,}, c_{a}, \\ \lambda, \lambda^{\prime}\end{array}\right.$
(c) Equation (11) gives the contribution due to the interaction of m initial-state photons and m^{\prime} final-state photons with the electron line:
$\underset{\rho_{m+m^{\prime}}^{\prime}}{[\lambda]}\left(k_{1}, \cdots, k_{m+m^{\prime}}^{\prime}\right)=\underset{k^{\prime} s}{\sum \sum_{t=0}^{m+m^{\prime}}}(-1)^{m}\left(\prod_{i=1}^{t} \underset{S^{\prime}}{(\lambda)}\left(k_{1}\right)\right)$
(d) Contribution (c) must be integrated over the momentum distribution that is obtained from the formal expansion of the initial and final states (See Equation 45):

$$
\begin{equation*}
\therefore X \xi_{m+m^{\prime}-t}^{[\lambda]}\left(k_{t+1}, \cdots, k_{m^{\prime}+m^{\prime}}\right) \frac{1}{t!\left(m+m^{\prime}-t\right)!} \tag{47}
\end{equation*}
$$

(e) The formal expansion of Equation (45) also leads to the factors

$$
\begin{equation*}
\frac{1}{(m+l)!} \frac{1}{\left(m^{\prime}+\ell\right)!} \exp \left(-\frac{1}{2} \sum_{a, \lambda}\left|\alpha_{a}^{\lambda^{\prime}}\right|^{2}\right) \exp \left(-\frac{1}{2} \sum_{c^{\prime}, \lambda^{\prime}}\left|\gamma_{c}^{\lambda^{\prime}}\right|^{2}\right) \tag{49}
\end{equation*}
$$

(f) In addition to the above, there is a combinatorial factor which accounts for the number of ways that ($m+\ell$) . initial-state photons and ($m^{\prime}+\ell$) final-state photons can be distributed among m initial-state interacting photons, m^{\prime} final-state interacting photons, and ℓ noninteracting photons:

$$
\frac{(m+\ell)!}{m!\ell!} \frac{\left(m^{\prime}+\ell\right)!}{m^{\prime}!\ell!} .
$$

After summing over all numbers m, m^{\prime}, and ℓ, we arrive at the following expression for the matrix element \tilde{M} :

$$
\begin{aligned}
& \tilde{M}=e^{\alpha B} \sum_{\ell=0}^{\infty} \sum_{m=0}^{\infty} \sum_{m^{\prime}=0}^{\infty}\left[\frac{1}{(m+\ell)!} \frac{1}{\left(m^{i}+\ell\right)!}\right]\left[\frac{(m+l)!\left(m^{\prime}+\ell\right)!}{m!m^{\prime}!\ell!\ell!}\right]
\end{aligned}
$$

$$
\begin{align*}
& \chi\left[\left(\begin{array}{ccc}
m & \Sigma & \alpha \\
r=1 & \lambda, a & a
\end{array}\right] d^{3} k_{r^{\prime}} f_{a}\left(k_{r}\right)\right)\left(\begin{array}{ccc}
m+m^{\prime} \\
r^{\prime}=m+1 & \lambda^{\prime}, c & r^{*} \lambda^{\prime}
\end{array} d^{3} k_{r^{\prime}} f_{c}^{*}\left(k_{r^{\prime}}\right)\right) \\
& \left.\tilde{\rho}_{m+m^{\prime}}^{\left\{\lambda, \lambda^{\prime}\right\}}\left(k_{1}, \cdots, k_{m+m}\right)\right] \cdot \tag{51}
\end{align*}
$$

Another factor corresponding to the contribution from the scattering of photons by photons could have been included explicitiy, but since this term does not contribute to the cancellation of infrared divergences, nor does add to the divergences, it has not been considered in this analysis.

Making the appropriate cancellations, and combining the terms with a little bit of careful counting, we arrive at the expression

$$
\begin{align*}
& M=e^{\alpha B} \sum_{l=0}^{\infty} \frac{1}{l!} \sum_{m=0}^{\infty} \frac{1}{m^{\prime}!} \sum_{m^{\prime}=0}^{\infty} \frac{1}{m^{\prime}!}\left[\sum_{a, \lambda^{\prime} \alpha_{a}^{\lambda}}^{\gamma_{a}^{* \lambda}}\right]\left\{\begin{array}{l}
\sum_{j=0}^{m} \sum_{j^{\prime}=0}^{m} \frac{m!(m-j)!}{j^{\prime}!\left(m^{\prime}-j^{\prime}\right)!}
\end{array}\right. \\
& \left.X\left[-\sum_{a, \lambda} \alpha_{a}^{\lambda}\left(\tilde{S}^{\lambda}, f_{a}\right)\right]_{\Omega}^{j}\left[\sum_{c, \lambda^{\prime}} \gamma_{c}^{* \lambda^{\prime}}\left(f_{c}^{*}, x^{\lambda^{\prime}}\right)\right]_{\Omega}^{j^{\prime}} P_{m-j, m^{\prime}-j^{\prime}}\left(p_{i}, p_{f}\right)\right\} \\
& \chi\left[\exp \left(-\frac{1}{2} \Sigma_{\lambda, a}\left|\alpha_{a}^{\lambda}\right|^{2}\right) \exp \left(-\frac{1}{2} \Sigma{ }_{\lambda, a}\left|\gamma_{a}^{\lambda}\right|^{2}\right)\right], \tag{52}
\end{align*}
$$

where

$$
\begin{aligned}
&\left(S^{\lambda}, f_{a}\right)_{\Omega} \equiv \int_{\Omega} a^{3} k \tilde{S}^{(\lambda)}(k) f_{a}(k) \\
&\left(f_{c^{*}}, \tilde{S}^{\lambda^{\prime}}\right)_{\Omega} \equiv \int_{\Omega} a^{3} k \tilde{S}^{\left(\lambda^{\prime}\right)}(k) f_{c}^{*}(k),
\end{aligned}
$$

and

$$
\begin{gather*}
P_{j, j^{\prime}} \equiv(-1)^{j}\left(\prod_{r=1}^{j} \int_{d^{3} k}^{\left.\sum_{\lambda, a} \alpha_{a} \lambda_{f_{a}}\left(k_{r}\right)\right)} \begin{array}{l}
\prod_{r^{\prime}=1}^{j^{\prime}} \int d^{3} k_{r^{\prime}} \sum_{\lambda^{\prime}, c} \gamma_{c}^{* \lambda^{\prime}} f_{c}^{*}\left(k_{r^{\prime}}\right)
\end{array} \tilde{\xi}_{j+j^{\prime}}^{\{\lambda\}}\left(k_{l_{1}} \cdots k_{j+j^{\prime}}\right)\right.
\end{gather*}
$$

Defining the "residuals" $m_{j, j}$ by

$$
\begin{equation*}
m_{\jmath, j!}\left(p_{i}, p_{f}\right)=\frac{P_{j, j!}}{j!j!} \tag{54}
\end{equation*}
$$

and reordering the sums in (52), we can write

$$
\begin{aligned}
& \tilde{M}=e^{\alpha B} \exp \left[-\frac{1}{2} \sum_{\lambda, a}\left|\alpha_{a}^{\lambda^{\prime}}\right|^{2} \exp \left[\left.-\frac{1}{2} \sum_{\lambda, a} \cdot \right\rvert\, \gamma_{a} \lambda^{2}\right] \exp \left[\sum_{\lambda, a}, \alpha_{a}^{\lambda_{\gamma^{*}} \cdot \lambda}\right]\right. \\
& X \exp \left[\sum_{\lambda, a} \alpha_{a}^{\lambda}\left(\tilde{S}^{\lambda}, f_{a}\right)_{\Omega}\right] \exp \left[\sum_{\lambda, c} \gamma_{c}^{* \lambda}\left(f_{c}^{*}, \tilde{S}^{\lambda}\right){ }_{\Omega}\right]\left\{\begin{array}{cc}
\infty & m_{m, m} \\
m, m^{\prime}=0 & m^{\prime}
\end{array}\right\}
\end{aligned}
$$

To simplify the notation further, we define the coefficients $\beta_{a} \lambda$ by

$$
\begin{equation*}
\beta_{a}^{\lambda} \equiv\left(f_{a}^{*} ; \tilde{S}^{\lambda}\right)_{\Omega} \tag{56}
\end{equation*}
$$

Since the function \tilde{S} is real, Equation (55) becomes

$$
\begin{align*}
& \chi \exp \left[\begin{array}{ccc}
\Sigma_{\lambda, a} & \beta_{a}^{\lambda} & \gamma_{a}^{* \lambda}
\end{array}\right]\left\{\begin{array}{c}
\infty \\
\sum_{m}=0 \\
m, m^{\prime} \\
\left.m_{i}, p_{f}\right)
\end{array}\right\} . \tag{57}
\end{align*}
$$

As in Section IV, it proves convenient to split the function $S^{(\lambda)}$ into two parts:
$\tilde{S}_{i}^{(\lambda)}(k)=\frac{e}{\left[2(2 \pi)^{3} k_{0}\right]^{\frac{1}{2}}} \frac{p_{i} \cdot e^{(\lambda)}}{k \cdot p_{i}}, \tilde{S}_{f}^{(\lambda)}(k)=\frac{e^{\xi}}{\left[2(2 \pi)^{3} k_{0}\right]^{\frac{1}{2}}} \frac{p_{f} \cdot e^{(\lambda)}}{k \cdot p_{f}}$.
We can then define the coefficients $\beta_{\text {ia }}^{\lambda}$ and $\beta_{f a}^{\lambda}$ by

$$
\begin{equation*}
\beta_{i a}^{\lambda}=\left(f_{a}^{*}, \tilde{S}_{i}^{(\lambda)}\right), \quad \beta_{\Omega a}^{\lambda}=\left(f_{a}^{*}, \tilde{S}_{f}^{(\lambda)}\right)_{\Omega} \tag{59}
\end{equation*}
$$

so that by Equations (10) and (56),

$$
\begin{equation*}
\beta_{a}^{\lambda}=\beta_{f a}^{\lambda}-\beta_{i a}^{\lambda} \tag{60}
\end{equation*}
$$

The complex coefficients $\left\{\alpha_{a}^{\lambda}\right\}$ and $\left\{\gamma_{c}^{\lambda^{\prime}}\right\}$ which specify the initial and final states of the photons may be regarded as a set of coordinates in some complex infinite-dimensional space X. It is then possible to simplify Equation (57) by making a translation of the coordinate system in X by the amounts defined in Equation (59):

$$
\begin{equation*}
\gamma_{a}^{\lambda}=\beta_{f a}^{\lambda}+\epsilon_{f a}^{\lambda}, \alpha_{a}^{\lambda}=\beta_{1 a}^{\lambda}+\epsilon_{i a}^{\lambda} \tag{61}
\end{equation*}
$$

Thus

$$
\begin{aligned}
& \tilde{M}=e^{\alpha B}\left\{\operatorname { e x p } \sum _ { a , \lambda } \left[-\frac{1}{2}\left|\beta_{i a} \lambda^{\lambda}+\epsilon_{i a}^{\lambda}\right|^{2}-\frac{1}{2}\left|\beta_{f a}^{\lambda}+\epsilon_{f a}^{\lambda}\right|^{2}+\left(\beta_{1 a}^{\lambda_{+}+\epsilon_{1 a} \lambda^{\prime}}\right)\left(\beta_{f a}^{\lambda+\epsilon_{f a}{ }^{\lambda}}\right)^{*}\right.\right. \\
& \left.\left.-\left(\beta_{i a}^{\lambda}+\epsilon_{i a}^{\lambda}\right) \beta_{a}^{* \lambda}+\beta_{a}^{\lambda}\left(\beta_{f a}^{\lambda}+\epsilon_{f a}^{\lambda}\right)^{*}\right\}\right\}\left\{\sum_{m, m^{j}=0}^{\infty} m_{m, m^{\prime}}^{\infty}\right\} \\
& =e^{\alpha B}\left\{\exp \sum_{a, \lambda}\left[+\frac{1}{2}\left|\beta_{f}-\beta_{i}\right|^{2}-\frac{1}{2}\left|\epsilon_{f}-\epsilon_{i}\right|^{2}+1 \operatorname{Im}\left(\beta_{i}^{*} \epsilon_{i}+\beta_{f} \epsilon_{f}^{*}-\beta_{i} \beta_{f}^{*}-\epsilon_{i} \epsilon_{f}^{*}\right)\right]\right\} \therefore
\end{aligned}
$$

where the mode and polarization indices have been suppressed for convenience. .

By Equations (43), (53), (56), and (60), we have

$$
\begin{align*}
\sum_{\lambda, a} \frac{1}{2}\left|\beta_{f a}^{\lambda}-\beta_{i a}^{\lambda}\right|^{2} & =\sum_{\lambda, a} \frac{1}{2}\left|\beta_{a}^{\lambda}\right|^{2}=\sum_{\lambda, a}\left[\int d^{3} k \tilde{S}^{(\lambda)}(k) f_{a}(k)\right]\left[\int d^{3} k^{\prime} \tilde{S}^{(\lambda)}\left(k^{\prime}\right) f_{a}^{*}\left(k^{\prime}\right)\right] \\
& =\sum \frac{1}{2} \int d^{3} k \tilde{S}^{(\lambda)}(k) \tilde{S}^{(\lambda)}(k)=\alpha \tilde{B} \tag{63}
\end{align*}
$$

Substituting Equation (63) into (62), we arrive at the important result:
where \varnothing is real.
The argument of the first exponential was shown in Section IV to be infrared divergenceless in the limit of zero photon mass. The third exponential has modulus unity, and the last. sum is term by term divergence-free. If the possible states of the system are restricted by the condition:

$$
\begin{equation*}
\sum_{\lambda, a}\left|\epsilon_{f a}^{\lambda}-\epsilon_{i a}^{\lambda}\right|^{2}<\infty \tag{65}
\end{equation*}
$$

the second exponential is nonzero, but less than or equal to unity. With this condition satisfied the infrared divergences have been eliminated. The interpretation of this restriction is discussed in the next section.

VI. INTERPRETAIIION OF THE PHOTON STATES

In the beginning of this section, we will show that Equation (65) defines a separable Hilbert space. To do this, we study a related space which will turn out to be id entical to the ordinary Fock space ${ }^{*}$. Translations like Equation (61) will not change the intrinsic properties of this space. Finally a calculation of the total cross section will relate this whole discussion to experiment.

Much of the mathematical material here will be treated heuristically, but a more rigorous formulation of the statements can be found in the papers by V. Bargmann. 2,5

We will define a separable Hilbert space in the following manner: Let $\left\{\theta_{i}\right\}$ be in infinite'sequence of complex numbers. A set of "principal vectors" $\left|\left\{\theta_{i}\right\}\right\rangle$ is then defined by the equation

$$
\begin{align*}
\left|\left\langle\theta_{i}\right\}\right\rangle=\frac{\pi}{i}\left|\theta_{i}\right\rangle & =\exp \left[-\frac{1}{2}\left|\theta_{i}\right|^{2}\right] \exp \left[\theta_{i} a_{i} \dagger\right]|0\rangle \tag{66}\\
& =\prod_{i} \exp \left[-\frac{1}{2}\left|\theta_{i}\right|^{2}\right] \exp \left[\theta_{i}\left[f_{i}(k) a^{\dagger}(k)\right]|0\rangle\right.
\end{align*}
$$

and the condition:

$$
\begin{equation*}
\sum_{1}\left|\theta_{1}\right|^{2}<\infty \tag{67}
\end{equation*}
$$

The elements of \mathcal{F} are taken to be the closure of all finite
linear combinations of the principal vectors.
From (66) and the commutation rules for $\mathrm{a}^{+}(\mathrm{k})$, the inner product of two elements, $|f\rangle=\sum_{j=1}^{p} \lambda_{j}\left|\left\{\theta_{i}(j)\right\}\right\rangle$, and $\left|f^{i}\right\rangle=\sum_{k=1}^{q} \mu_{k}\left|\left\{\theta_{i}^{(k)}\right\}\right\rangle$, is given by
$\left\langle f \mid f^{\prime}\right\rangle=\sum_{j, k} \lambda_{j}^{*} \mu_{k}\left\{\exp \left[\sum_{i} \theta_{i}^{*}(j)_{\theta_{i}}(k)\right] \exp \left[-\frac{1}{2} \sum_{i}\left|\theta_{i}^{(j)}\right|^{2}\right] \exp \left[-\frac{1}{2} \sum_{i}\left|\theta_{i}^{(k)}\right|^{2}\right]\right\}$.
In particular, the inner product of two principal vectors $\left|\left\{\theta_{i}{ }^{(j)}\right\}\right\rangle$ and $\left|\left\{\Theta_{i}{ }^{(k)}\right\}\right\rangle$ has the property

$$
\begin{align*}
\left|\left\langle\left\{\theta_{i}^{(j)}\right\} \mid\left\{\theta_{i}^{(k)}\right\}\right\rangle\right|^{2} & =\left|\exp \left[\sum_{i} \theta_{i}^{(j)} \theta_{i}^{(k)}\right] \exp \left[-\frac{1}{2} \sum_{i}\left|\theta_{i}^{(j)}\right|^{2}\right] \exp \left[-\frac{1}{2} \sum_{i}\left|\theta_{i}^{(k)}\right|^{2}\right]\right|^{2} \\
& =\exp \left\{-\sum_{i}\left|\theta_{i}^{(j)}-\theta_{i}^{(k)}\right|^{2}\right\} \tag{69}
\end{align*}
$$

so that the principal vectors are all normalized to unit length. Moreover, by Equation (67), no two principal vectors are normal to each other.

The properties of the space could in fact have been derived by using Equation (69) instead of Equation (66), but we wish to retain the connection with the previous sections of this paper.

The separability of follows from the existence of a countable sequence of vectors which is dense in \vec{f}. Let $\left|\left\{\theta_{1}\right\}\right\rangle$ be any principal vector. From Equation (67), it is known that for any $\delta_{\mathbb{N}}>0$ there exists an integer $\quad \mathbb{N}$ such that $\sum_{i>N}\left|\theta_{i}\right|^{2}<\delta_{N}$.

Moreover, for any $1<\mathbb{N}$ and $\delta>0$ it is always possible to find rational numbers $\left\{R_{i}\right\}$ such that $\left|\theta_{i}-R_{i}\right|^{2}<\delta$.

Consider a principal vector $\left|\left\{\theta_{i}^{\prime}\right\}\right\rangle$ such that $\theta_{i}^{\prime}=0$ for $i>N$, and $\theta_{i}^{\prime}=R_{i}$ for $i<N$ Let $\sum_{i}\left|\theta_{i}\right|^{2}=A^{2}$. Then.

$$
\sum_{1}\left|\theta_{1}^{\prime}-\theta_{1}\right|^{2} \leqslant N \delta+\delta_{N}
$$

and

$$
\begin{aligned}
\left|\operatorname{Im} \sum_{i} \theta_{i}^{*} \theta_{i}^{\prime}\right| & =\left|\operatorname{Im} \underset{i}{\Sigma} \theta_{i}^{*} \theta_{i}+\operatorname{Im} \sum_{i} \theta_{i}^{*}\left(\theta_{i}^{\prime}-\theta_{i}\right)\right| \\
& \leqslant \sum_{i} \varepsilon_{i}^{*}\left(\theta_{i}^{\prime}-\theta_{i}\right) \mid \\
& \leqslant \sqrt{\sum_{i}\left|\theta_{i}\right|^{2} \sum\left|\theta_{i}^{\prime}-\theta_{i}\right|^{2}} \\
& \leqslant A \sqrt{N \delta+\delta_{N}}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \left.\left|\left|\left\{\theta_{i}\right\}\right\rangle-\right|\left\{\theta_{i}^{\prime}\right\}\right\rangle\left.\right|^{\dot{\psi}}=2-\left\langle\left\{\theta_{i}\right\} \mid\left\{\theta_{i}^{\prime}\right\}\right\rangle-\left\langle\left\{\theta_{i}^{\prime}\right\} \mid\left\{\theta_{i}\right\}\right\rangle \\
& =2-\exp \left[-\frac{1}{2} \Sigma\left|\theta_{1}\right|^{2}\right] \exp \left[-\frac{1}{2} \Sigma\left|\theta_{i}^{\prime}\right|^{2}\right] \\
& \chi\left\{\exp \left[\begin{array}{l}
\Sigma \\
\theta_{i}^{*}
\end{array} \theta_{i}^{\prime}\right]+\exp \left[\begin{array}{lll}
\Sigma & \theta_{1}^{*} & \theta_{i}
\end{array}\right]\right\} \\
& =2-\exp \left[-\frac{1}{2} \sum_{1}\left|\theta_{1}^{\prime}-\theta_{1}\right|^{2}\right]\left\{\begin{array}{c}
\exp \left[1 \operatorname{Im} \Sigma \theta_{1}^{*} \theta_{1}^{\prime}\right]
\end{array}\right. \\
& \left.+\exp \left[1 \operatorname{Im} \sum_{1} \quad \theta_{i}^{*}, \theta_{i}\right]\right\} \\
& =2\left\{1\left(-\exp \left[-\frac{1}{2} \sum_{i}\left|\theta_{i}^{\prime}-\theta_{i}\right|^{2}\right]\right)\left(\cos \left[\operatorname{Im} \sum_{1} \theta_{i}^{*} \theta_{i}^{\prime}\right]\right)\right\} \\
& \leqslant\left(A^{2}+1\right)\left(N \delta+\delta_{N N}\right)
\end{aligned}
$$

Since $\left|\left\{\theta_{i}\right\}\right\rangle, \delta_{N}$, and δ were arbitrary; we have shown that any principal vector can be approximated by another principal vector belonging to a denumerable set. The denumerable set which consists of all finite sums of principal vectors like $\left|\left\{\theta_{i}^{\dagger}\right\}\right\rangle$ is dense in \ddagger.

In the case of massless soft photons, there is no reason to restrict the photon states by Equation (67). Let $\left\{\theta_{i}^{(0)}\right\}$ be a sequence of complex numbers which are not square-summable, i.e.,

$$
\begin{equation*}
\sum_{i}\left|\theta_{i}^{(0)}\right|^{2} \nvdash \infty \tag{70}
\end{equation*}
$$

Then the states defined by the complex numbers $\left\{\theta_{i}\right\}$, and which satisfy the condition

$$
\begin{equation*}
\sum_{i}\left|\theta_{i}-\theta_{i}^{(0)}\right|^{2}<\infty \tag{71}
\end{equation*}
$$

form a separable Hilbert space $\ddagger(0)$ with all the properties of \nexists, except." Equation (67). $\mathrm{A}^{(0)}$ is unitarily inequivalent to \mathcal{F}, i.e., it forms a unitarily inequivalent representation of the canonical commutation rules.

In Section III we discussed the connection between the Fock states and the principal vectors for a single mode. We will now briefly study the relationship between the occupation number parameterization and the principal vector parameterization.

The states in the Fock space \exists_{∞} are specified by a set M of infinite sequences of : nonnegative integers $\left\{m_{i}\right\}$, or "occupation numbers" of which a finite number are different from zero. An orthonormal basis of Fock space is given by

$$
\begin{equation*}
\left|u_{\{m\}}\right\rangle=\pi \frac{\left(a_{i}^{+}\right)^{m_{i}}}{\sqrt{m_{i}!}}|0\rangle \tag{72}
\end{equation*}
$$

An arbitrary state $|f\rangle$ of \exists_{ω} is given by

$$
\begin{equation*}
|f\rangle=\sum_{\{m\} \in M} \gamma_{\{m\}}\left|u_{\{m\}}\right\rangle \tag{73}
\end{equation*}
$$

where the complex coefficients: $\gamma_{\{\mathrm{m}\}}$ satisfy: i,

$$
\begin{equation*}
\sum_{\{m\} \in \mathrm{M}} \gamma_{\{\mathrm{m}\}}{ }^{2}<\infty \tag{74}
\end{equation*}
$$

At this point, it should be apparent that $\mathcal{F}_{\subset} \mathcal{F}_{\infty}$, since

$$
\begin{equation*}
\left|\left\{\theta_{i}\right\}\right\rangle=\sum_{\{m\} \in M} \Pi_{i} \frac{\left(\theta_{i} a_{i} \dagger\right)^{m_{i}}}{m_{i}!}|0\rangle=\sum_{\{m\} \in M} \prod_{i} \frac{\left(\theta_{i}\right)^{m_{i}}}{\sqrt{m_{i}!}}\left|u_{\{m\}}\right\rangle \tag{75}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{\{m\} \in M}\left|\prod_{i} \frac{\left(\theta_{i}\right)^{m_{i}}}{\sqrt{m_{i}!}}\right|^{2}=\prod_{i}\left(\sum_{m=0}^{\infty} \frac{\left|\theta_{i}\right|^{2 m_{i}}}{m_{i}!}\right)=\exp \left(\Sigma\left|\theta_{i}\right|^{2}\right)<\omega_{1} \tag{76}
\end{equation*}
$$

The scalar product of two vectors $|f\rangle$, and $\left|f^{\prime}\right\rangle$ in y_{∞}^{\prime} can be obtained from (72) and (73):

$$
\begin{equation*}
\left\langle f \mid f^{\prime}\right\rangle=\sum_{\{m\} \in M} \gamma_{\{m\}}^{*} \gamma_{\{m\}}^{p} \tag{77}
\end{equation*}
$$

Let $Q_{n}\left\{m_{1}\right\}$ be the truncated sequence

$$
\begin{equation*}
Q_{n}\left\{m_{i}\right\}=\left(m_{1}, m_{2}, \cdots, m_{n}, 0,0, \cdots\right) \tag{8}
\end{equation*}
$$

and define a projection on \mathcal{J}_{∞} by

Where M_{n} is the set of all sequences of the form given by Equation (78). Then it follows from Equation (74) that $E_{n}|f\rangle$ converges strongly to $|f\rangle$ as $n \rightarrow \infty$. We will show that $E_{n}|f\rangle$

The expansion of $E_{n}|f\rangle$ in terms of the principal vectors follows directly from Equation (27):

$$
\begin{equation*}
E_{n}|f\rangle=\sum_{\{m\} \in M_{n}} \gamma_{\{m\}} \prod_{i=1}^{n} \int d \mu_{1}\left|\left(\theta_{1}, \theta_{2}, \ldots, \theta_{n}, 0,0, \cdots\right)\right\rangle \frac{\left(\theta_{i}^{*}\right)^{m_{1}}}{\sqrt{m_{1}!}} \tag{80}
\end{equation*}
$$

where

$$
\begin{equation*}
d \mu_{i}=\exp \left[-\frac{1}{2}\left|\theta_{i}\right|^{2}\right] d\left(\operatorname{Re} \theta_{i}\right) d\left(\operatorname{Im} \theta_{i}\right) \tag{81}
\end{equation*}
$$

From Equation (69), it is clear that principal vectors $\left|\left\{\theta_{1}\right\}\right\rangle$ which do not satisfy Equation (67) are orthogonal to $E_{n}|f\rangle$. Therefore $E_{n}|f\rangle \epsilon \nexists$ and the result $\#_{\infty}=\mathcal{H}$ follows, i.e., the Fock space built from states with a finite number of photons, and the space of principal vectors satisfying Equation (67), are the same space.

In order to satisfy the requirement Equation (65) for finite matrix elements; it will be necessary not to restrict the scattering states to $\not \mp$. For if the initial state were in \neq, i.e., the $\left\{\alpha_{a}^{\lambda}\right\}$ of Equation (45) satisfied the condition

$$
\begin{equation*}
\sum_{\lambda, a}\left|\alpha_{a}^{\lambda}\right|^{2}<\infty \tag{82}
\end{equation*}
$$

then the final state parameterized by the sequence of complex numbers $\left\{\gamma_{a}^{\lambda}\right\}$ would be given by

$$
\begin{equation*}
\gamma_{a}^{\lambda}=\alpha_{a}^{\lambda}+\left(\beta_{f a}^{\lambda}-\beta_{i a}^{\lambda}\right)+\left(\epsilon_{f a}^{\lambda}-\epsilon_{i a}^{\lambda}\right) \tag{83}
\end{equation*}
$$

where we hove used Equation (61), and the ϵ^{\prime} s would satisfy

$$
\begin{equation*}
\sum_{\lambda, a}\left|\epsilon_{f a}^{\lambda}-\epsilon_{i a} \lambda^{\lambda}\right|^{2}<\infty \tag{84}
\end{equation*}
$$

But we know from. Section IV and Equation (63) that

$$
\begin{equation*}
\sum_{\lambda, a}\left|\beta_{f a}^{\lambda}-\beta_{i a}^{\lambda}\right|^{2}=\frac{1}{2} \sum_{l=1}^{2} \int\left|\tilde{S}^{(l)}(k)\right|^{2} d^{3} k=\alpha \tilde{B}, \tag{85}
\end{equation*}
$$

and $\tilde{B} \rightarrow \infty$ as the photon mass approaches zero. Therefore ta

$$
\begin{equation*}
\sum_{\lambda, a}\left|\gamma_{a}^{\lambda}\right|^{2} \rightarrow \infty \tag{86}
\end{equation*}
$$

as the photon mass approaches zero. Thus the final state cannot belong to 7 .

Nevertheless, the coefficients $\left\{\gamma_{a}^{\lambda}\right\}$ define a final state. It must be that the final state belongs to an inequivalent representation: of the canonical commutation rules whose most outstanding feature is that the average number of photons is infinite. Not any final state will do, however, for the boundaries of this new space च' are restricted by the condition Equation (65). One of many ways to satisfy Equation (65) which preserves symmetry between the initial and final states is to write these states as:

$$
\begin{aligned}
& \alpha_{a}^{\lambda}=\epsilon_{i a}^{\lambda}+\beta_{i a}^{\lambda}+\epsilon_{o a}^{\lambda}, \\
& \gamma_{a}^{\lambda}=\epsilon_{f a}^{\lambda}+\beta_{f a}^{\lambda}+\epsilon_{o a}^{\lambda},
\end{aligned}
$$

and to restrict the states by

$$
\sum_{\lambda, a}\left|\epsilon_{i a} \lambda^{2}<\infty, \sum_{\lambda, a}\right| \epsilon_{f a} \lambda^{2}<\infty
$$

Then we would get different theories by different choices of the sequence $\left\{\epsilon_{\infty}^{\lambda}\right\}$. With such a choice, the photon states would have a dependence upon the momenta of the participating electrons. So far we have not spoken at all about Ω, the region of momentum space on which the single photon states $\left\{f_{a}\right\}$ were defined. In an experimental situation, there is always a threshold below which a single photon cannot be detected. We identify Ω with what we shail call the "resolution region," i.e., ail photons with momentum $\underline{k} \in \Omega$ are not detectable, while those which satisfy $\underline{k} \in \delta$ are detectable. In what follows, the nondetectable photons will be spoken of as "soft" photons, while the others will be called "hard." Furthermore, we shall indicate the resolution region of the momentum space by a subscript, eg.n X_{Ω}.

In a practical calculation where one wants to treat, for example, the scattering of an electron with the emission of hard photons, the hard photons can be dealt with by the conventional occupation-number parameterization, while the soft photons are described in terms of the translated principal vectors. More specifically, consider the calculation of the cross section for an electron of momentum p_{i} scattering into a state with an electron of momentum p_{f} plus several hard photons. The incoming electron is associated with a photon field described by a sequence $\left[\alpha_{a}{ }^{\lambda}\right\}$ and the outgoing electron has a photon fleld $\left(\gamma_{a}{ }^{\lambda}\right)$. In Equation (64) the "basic matrix element" $m_{o, 0}$ corresponds to diagrams with' only the detectable real photons and those virtual photons necessary
for the process to occur. The terms $m_{i j}$ for $1, j=0$ contain the effects of the noninfrared parts of the real and virtual soft photons to higher order in the coupling constant.

To lowest order in the noninfrared photons, the squared. matrix element for a particular diagram m_{00} is from Equation (64):

$$
\begin{equation*}
|\tilde{M}|^{2}=e^{2\left(R \dot{\theta} \alpha B+\alpha \tilde{B}_{\Omega}\right)} \exp \left[-\sum_{\lambda, a}\left|\epsilon_{f a}^{\lambda}-\epsilon_{i a}^{\lambda}\right|^{2}\right]\left|m_{0,0}\right|^{2} \tag{87}
\end{equation*}
$$

We can then sum over final states. The result (to lowest order) is Independent of the initial state:

$$
\begin{align*}
& \sum_{\text {final }}|\tilde{M}|^{2}= 2\left(\operatorname{ee} \alpha B+\alpha \tilde{B}_{\Omega}\right) \\
& \text { states } \tag{88}\\
&\left.\ddots m_{0,0}\right|^{2} \lim _{n \rightarrow \infty}\left(\pi^{-1}\right)^{n}\left[\int d^{2} \epsilon_{f} e^{-\left|\epsilon_{f}\right|^{2}}\right]^{n} \\
&= e .
\end{align*}
$$

The remaining exponential contains part of the effect of the choice of $\tilde{S}_{i}(k)$ and the region of resolution δ; and we obtain a similar result to what Yennie et al obtained (for a nonenergy-conserving potential). In fact, the "reason" why the results are the same is that in the summation over all final states in the conventional treatment of the infrared divergence, the main contributions came from states which were not in the usual Fock space, but were in a nonseparable space defined by Equation (72) without any restrictions on the sequence $\{\mathrm{m}\}$ of occupation numbers. In particular, the separable space of final states \mathcal{A}^{\prime} is contained in this
; nonseparable space.
In the above computation, and in Section V, the resolution regions for the initial and final states were assumed to be the same. One can argue that the resolution region of the initial state can be made arbitrarily small, but finite, by waiting a sufficiently long time before the scattering experiment. The situation where the initial resolution region is smaller than the final state resolution region is discussed in the Appendix.

ACKNOWLFEDGMENT

.The author gratefully thanks Professor Stanley Mandelstam for the suggestion of this problem, and for his patient guidance and helpful advice.

APPENDIX A

GENERALIZATION OF ITE CANCEILATION TO SEVERAL ELECIRON LINES

For simplicity, only the case of a single electron line interacting with a potential was treated in section V. The generalization to several electron lines interacting with one another will be outlined here for completeness. It is possible to make an extension to positron scattering, pair production, and other processes, but we shall not do so here.

Since the cancellation of the infrared divergences in this more complicated situation requires a proliferation of subscripts and superscripts, we drop all notation having to do with the polarization of the photons. Superscripts will now designate the electron line.

The initial state consists of N incoming electrons with momenta $p_{i 1}, p_{i 2}, \cdots p_{i v}, \cdots p_{i N}$, along with some photons. They scatter into a final state of N outgoing electrons with momenta $p_{f I}, \cdots, p_{f v},: p_{f N Y}$, again with some photons. We have assumed that a.11 resolution regions are identical.

Thus the soft photon initial state can, for example, be conveniently written as

$$
\pi \frac{\exp \left[\sum_{v}\left(\beta_{i a}^{v}+\epsilon_{i a}^{v}\right) \int_{\Omega} a^{3} k f_{a}(k) a^{+}(k)\right]}{\exp \left[\frac{1}{2}\left|\sum_{v} \beta_{i a}^{v}+\epsilon_{i a}^{v}\right|^{2}\right]} \quad|0\rangle
$$

where

$$
\begin{equation*}
\beta_{i a}^{v} \equiv\left(p_{a}^{*}, s_{i}\left(p_{i v}\right)\right)_{\Omega} \tag{A:2}
\end{equation*}
$$

The final-state soft photons are described by a similar expression. The interaction is illustrated in Figure $A=1:$.

In this diagram, our attention is focused on the y th electron line. The integer $m_{\xi}{ }^{\nu}$ denotes the number of photons in the initial state which "belongs" to the $\underline{\xi}$ th electron and interact with the \underline{v} th electron line. Similarly m_{ξ}^{\prime} is the number of photons in the final state belonging to the $\underline{\xi}$ th electron which interact with the $\underline{\underline{t}}$ th electron line. The number of noninteracting photons coming from the Eth incoming electron, and becoming part of the ξ^{\prime} th outgoing electron, is given by the integer $\ell_{\xi \xi^{\prime}}$.

We arrive at an equation analogous to Equation (64) through the following considerations.
(a) The overlap of the $\ell=\sum_{\xi \xi^{\prime}} \ell_{\xi \xi}$, initial- state noninteracting photons with the ℓ final-state noninteracting photon contributes a factor

$$
\begin{equation*}
\prod_{\xi \xi^{-}}\left[l_{\xi \xi^{\prime}}:\left(\Sigma \alpha_{a}^{\xi} \gamma_{a}^{* \xi^{\prime}}\right)^{l_{\xi \xi}}\right] \tag{1}
\end{equation*}
$$

where

$$
\alpha_{a}^{\xi} \equiv \beta_{i a}^{\xi}+\epsilon_{i a}^{\xi}, \gamma_{a}^{\xi} \equiv \beta_{f a}^{\xi}+\epsilon_{f a}^{\xi}
$$

Note again that the superscript ξ refers to the electron line, and not to the polarization.
(b) A contribution from the interaction of $m=\sum_{N \xi}^{N} m_{\xi} \nu$ initial-state photons, and the $m^{q}=\sum_{\mu \xi} m_{\xi}^{\prime}{ }_{j}^{v}$ final-state photons with the \mathbb{N} electron lines, gives

$$
\begin{aligned}
& \left.\frac{1}{t!\left(m^{v}+m^{v}-t\right)!}\right],
\end{aligned}
$$

where $m^{v}=\sum_{\xi} m_{\xi}^{v}, m^{v}=\sum_{\xi} m_{\xi}^{\prime v}$,
(c) Contribution (b) must be integrated over the momentum distribution that is obtained from the formal expansion of the initial and final states,
where

$$
m_{\xi}=\sum_{V} m_{\xi}^{v}, \quad m_{\xi}^{\prime}=\sum_{V} m_{\xi}^{\prime} v .
$$

(d) The formal expansion of Equation (A:1) also leads to the factors:
$\frac{\pi}{\xi}\left[\frac{1}{\left(m_{\xi}+\ell\right)^{\ell}!} \frac{1}{\left(m_{\xi}^{!}+\ell_{\xi}\right)!}\right] \exp \left[-\frac{1}{2} \sum_{a}\left|\sum_{\xi} \alpha_{a}^{\xi}\right|^{2}\right] \exp \left[-\frac{1}{2} \sum_{c}\left|\sum_{\xi} \gamma_{c}^{\xi}\right|^{2}\right]$,
where $\ell_{\xi}=\sum_{\xi^{\prime}} \ell_{\xi \xi^{\prime}}, \quad \ell_{\xi}^{\prime}=\sum_{\xi} \ell_{\xi \xi^{\prime}} \cdot$
(e) In addition to the above; there is a combinatorial factor which accounts for the number of ways that the ($m+\ell$) initial-state photons, ($m^{\prime}+l$) final-state photons, and the l noninteracting photons, can be distributed among themselves:

$$
\left[\pi_{\xi} \frac{\left(m_{\xi}+\ell_{\xi}\right)!}{\prod_{v}\left(m_{\xi}^{v}\right)!\prod_{\xi}^{v}\left(\ell_{\xi \xi^{\prime}}\right)!}\right]\left[\pi_{\xi} \frac{\left(m_{\xi}^{\prime}+\ell_{\xi}^{\prime}\right):}{\left.\prod_{V}^{\left(m_{\xi}^{\prime}\right)^{\prime}}\right)!\prod_{\xi}\left(\ell_{\xi \xi^{\prime}}^{\prime}\right)!}\right]
$$

(f) There is an infrared divergent factor due to virtual photon corrections. (see Yennie et al. . ${ }^{4}$):
$F=\exp [\alpha B]$

To get the matrix element \tilde{M}, the contributions are summed over all values of $\left\{m_{\xi}^{v}\right\},\left\{m_{\xi}^{v}\right\},\left(\ell_{\xi \xi^{\prime}}\right\}$,

$$
\begin{aligned}
& M=F \sum_{\left\{\ell_{\xi \xi}^{\prime}\right\}=0}^{\infty} \sum_{\left\{m_{\xi}\right.}^{\sum_{i}} \sum_{\sum_{j}}^{\infty}\left[\frac{\pi}{\xi}\left(\frac{1}{\left(m_{\xi}+l_{\xi}\right)!} \frac{1}{\left(m_{\xi}^{\prime}+l_{\xi}^{\prime}\right)!}\right)\right] \\
& {\left[\frac{\pi}{\xi} \frac{m\left(m_{\xi}+i_{\xi}^{\prime}\right)!}{\pi\left(m_{\xi}^{v}\right)!\prod_{\xi}^{\prime}\left(l_{\xi \xi}^{\prime}\right)!} \prod_{\xi} \frac{\left(m_{\xi}^{\prime}+l_{\xi}^{\prime}\right)!}{\pi\left(m_{\xi}^{\prime}\right)!\prod_{\xi}\left(l_{\xi \xi^{\prime}}^{\prime}\right)!}\right]} \\
& \chi\left[\exp \left[-\frac{1}{2} \sum_{a}\left|\sum_{\xi} \alpha_{a}^{\xi}\right|^{2}\right] \exp \left[-\frac{1}{2} \sum_{a}\left|\sum_{\xi} \gamma_{a}^{\xi}\right|^{2}\right]\right]\left[\prod_{\xi \xi} \prod_{\xi \xi}, \ell_{a}\left(\Sigma_{a} \alpha_{a}^{\xi} \gamma_{a}^{* \xi^{\prime}}\right)^{\ell}\right]
\end{aligned}
$$

The last factor in the braces can be reduced by separating out the divergent terms:

$$
\begin{aligned}
& \left\{\begin{array}{c}
\pi\left[\begin{array}{ccc}
m_{\xi}^{v} & m_{\xi}^{\prime v} & \left(m_{\xi}^{v}\right)! \\
\sum_{j}^{v}=0 & \sum_{\xi}^{v}=0 & \left(j_{\xi}^{v}\right)!\left(m_{\xi}^{v}-j_{\xi}^{v}\right)! \\
\left(j_{\xi}^{v}\right)!\left(m_{\xi}^{v}-j_{\xi}^{\prime v}\right)!
\end{array}\left(-\sum_{a} \alpha_{a}^{\xi}\left(\tilde{S}_{v}, f_{a}\right)\right)^{j_{\xi}^{v}} .\right.
\end{array}\right. \\
& \left({ }_{a}^{\left.\sum \gamma_{a}^{* \xi}\left(f_{a}^{*}, \tilde{s}_{v}\right)\right)^{j_{\xi}^{\nu}},}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left.x \tilde{\xi}_{j_{\xi}^{v}+j_{\xi} v}^{v}\left(\mathrm{k}_{1}, \cdots \mathrm{k}_{j_{\xi}^{v}+j_{\xi} v}\right)\right]
\end{aligned}
$$

Again one defines a divergence-free "residual"! by

$$
m(j, j ')=\frac{P}{j!j^{I!}}
$$

so that
$\tilde{M}=F\left[\prod_{\xi \xi^{\prime}} \exp \left[\sum_{a} \alpha_{a}^{\xi} \gamma_{a}^{* \xi^{\prime}}\right]\right] \exp \left[-\sum_{a}\left|\sum_{\xi} \alpha_{a}^{\xi}\right|^{2}\right] \exp \left[-\sum_{a}\left|\sum_{\xi} \gamma_{a}^{\xi}\right|^{2}\right]$

Making the translation to a new coordinate system, we get.

$$
\alpha_{a}^{\xi}=\beta_{i a}^{\xi}+\epsilon_{i a}^{\xi}, \gamma_{a}^{\xi}=\beta_{f a}^{\xi}+\epsilon_{f a}^{\xi}, \quad \beta_{a}^{v}=\beta_{f a}^{v}-\beta_{f a}^{v},
$$

and with a little additional algebra, the final result is exhibited:

$$
\begin{aligned}
& \tilde{M}=F \exp \left[\frac{1}{2} \sum_{a}\left|\sum_{\xi} \beta_{f a}^{\xi}-\beta_{i a}^{\xi}\right|^{2} \quad \exp \left[-\frac{1}{2} \sum_{a}\left|\sum_{\xi} \epsilon_{f a}^{\xi}-\epsilon_{i a}^{\xi}\right|^{2}\right] e^{i \phi}\right. \\
& \chi\left[\begin{array}{ccc}
\Pi & \sum_{v \xi}^{\infty} & \sum_{j_{\xi}=0}^{\infty} \\
j_{\xi}^{\nu}=0
\end{array} m\left(\left\{j_{\xi}^{v}\right\},\left\{j_{\xi}^{, v}\right\}\right)\right] .
\end{aligned}
$$

The divergences in the factor F, and the first exponential cancel.
(Yennie et al $)^{4}$). Again the condition for finite matrix elements is

$$
\begin{equation*}
\sum_{a}\left|\sum_{\xi} \epsilon_{f a}^{\xi}-\epsilon_{1 a}^{\xi}\right|^{2}<\infty \tag{A:4}
\end{equation*}
$$

APPENDIX B

THE PROJECTION OF ENERGY-MOMENIUM EIGENSTIATES

For completeness, the procedure for projecting out energymomentum eigenstates will be given here. Consider a typical soft photon state described by a principal vector $\left|\left\{\alpha_{a}^{\xi}\right\}\right\rangle$:

$$
\begin{aligned}
& \left|\left\{\alpha_{a}^{\lambda}\right\}\right\rangle=\exp \left[-\frac{1}{2} \sum_{\lambda, a}\left|\alpha_{a}^{\lambda}\right|^{2}\right] \exp \left[\sum_{\lambda, a} \alpha_{a}^{\lambda} \int_{\Omega} d^{3} k f_{a}(k) e^{(\lambda)}(k) a^{(\lambda)+}(k)\right]|0\rangle \cdot(B: 1) \\
& =\exp \left[-\frac{1}{2} \sum_{\lambda, a}\left|\alpha_{a}^{\lambda}\right|^{2}\right]_{n=0}^{\infty} \frac{1}{n!}\left[\sum_{a, \lambda} \alpha_{a}^{\lambda} \int_{\Omega_{a}} \alpha^{3} k_{1} f_{a}\left(k_{1}\right) e^{(\lambda)} a^{(\lambda)+}(k)\right] \cdots \\
& x\left[\sum_{a, \lambda} \alpha_{a}^{\lambda} \int_{\Omega} d^{3} k_{n} f_{a}\left(k_{n}\right) e^{\left.(\lambda)_{a}(\lambda)+\left(k_{n}\right)\right]|0\rangle} .\right.
\end{aligned}
$$

Using the formula,

$$
\begin{equation*}
\frac{1}{2 \pi} \int e^{1 x y} d y=8(x) \tag{B:2}
\end{equation*}
$$

It is then possible to project out from $\left|\left\{\alpha_{a}^{\lambda}\right\}\right\rangle$ the elgenstates of energy momentum:
-44-

$$
\begin{align*}
& P(E, K)\left|\left\{\alpha_{a}^{\lambda}\right\}\right\rangle=\exp \left[-\frac{1}{2} \cdot \Sigma\left|\alpha_{a}^{\lambda}\right|^{2}\right] \sum_{n=0}^{\infty} \cdot \frac{1}{n!} \\
& \chi\left\{\int d^{3} k_{i} \cdots d^{3} k_{n} \prod_{i=1}^{n}\left[\sum_{a, \lambda} \alpha_{a}^{\lambda_{a} f_{a}}\left(k_{i}\right) e^{(\lambda)}\left(k_{i}\right) a(\lambda)+\left(k_{i}\right)\right] \delta\left(E-\sum_{1} \omega_{i}\right) \delta^{3}\left(\underset{\sim}{K}-\sum_{i} \underset{\sim}{k}\right)\right\}|0\rangle \\
& =\exp \left[-\frac{1}{2} \sum_{\lambda, a}\left|\alpha_{a}^{\lambda}\right|^{2}\right] \sum_{n=0}^{\infty} \frac{1}{n!} \frac{1}{(2 \pi)^{4}} \int d y d^{3} \underset{\sim}{x} e^{i E y} e^{i K \cdot x} \underset{\sim}{x} . \\
& x\left\{\int d^{3} k_{i} \cdots d^{3} k_{n} \prod_{i}\left[\sum_{\lambda, a} d_{a}^{\lambda} e^{-i \alpha y_{1}} \mathrm{~m}^{-i k_{1} \cdot x} e^{f}\left(k_{1}\right) e^{(\lambda)}\left(k_{1}\right) a(\lambda)+\left(k_{1}\right)\right]\right\} \\
& =\frac{1}{(2 \pi)^{4}} \int d y d^{3} \underset{\sim}{x} \exp \left[-\frac{1}{2} \underset{\lambda, a}{\sum}\left|\alpha_{a}^{\lambda}\right|^{2}\right] e^{1 E y+1 K \cdot \underset{\sim}{x}} \exp \left[\sum_{\lambda, a} \alpha_{a}^{\lambda} \int d^{3} k e^{-1 \alpha_{y}} e^{-1 k \cdot x}\right. \\
& \left.\chi f_{a}(k) e^{(\lambda)}(k) a^{(\lambda)+}(k)\right] . \tag{B:3}
\end{align*}
$$

APPENDIX C

INIIIAL AND FINAL STATES WITH DIFFFERENT RESOLUTION REGIONS

Suppose that we are dealing with the situation where the resolution region Ω for the initial state is smaller than the resolution region Ω^{\prime} for the final state ($\Omega_{0} \Omega^{\prime}$). In other words, the threshold for detecting low-energy photons is lower before the scattering experiment than afterwards. Then an infrared divergenceless matrix element in a form analogous to Equation (64) may be obtained with very little additional complication.

Let us define a domain D of momentum space such that

$$
\Omega^{\prime}=\Omega U D \text { where } \Omega U D=0
$$

Then we suppose that there exists a complete set of orthnormal functions $\left\{g_{j}(k)\right\}$ defined on D. A typical final state is now given by

$$
\begin{equation*}
|f\rangle=\left|\left\{\gamma_{i}, \gamma_{j}^{\prime}\right\}\right\rangle=\frac{\exp \left[\prod_{i} \gamma_{i} \int_{\delta_{8}} d_{k} f_{i}(k) a^{+}(k)\right]}{\exp \left[\frac{1}{2} \sum_{i}\left|\gamma_{i}\right|^{2}\right]} \frac{\exp \left[\Pi \gamma_{j}^{\prime} \int_{D} d^{3} k_{g_{j}}(k) a^{+}(k)\right]}{\exp \left[\frac{1}{2} \sum_{j}\left|\gamma_{j}\right|^{2}\right]} . \tag{c:1}
\end{equation*}
$$

The indices having to do with polarization have been suppressed. The result of the modification is that in the derivation of Equation (55), one must make the substitutions:

$$
\gamma_{a}^{\lambda} \int_{\Omega} f_{a} e^{(\lambda)} \longrightarrow \gamma_{a}^{\lambda} \int_{\Omega} f_{a} e^{(\lambda)}+\gamma_{a}^{\prime \lambda} \int_{D} g_{a} e^{(\lambda)},
$$

so that Equation (55) is correct only if we have on the right-hand side the additional factor

$$
\exp \left[-\frac{1}{2} \Sigma\left|\gamma_{\mathrm{c}, \mathrm{c}}^{\prime \lambda}\right|^{2}\right] \exp \left[\sum_{\lambda, c} \gamma_{\mathrm{c}}^{* * \lambda}\left(\mathrm{~g}_{\mathrm{c}}^{*}, \tilde{\mathrm{~s}}^{(\lambda)}\right)_{D}\right]
$$

and the divergenceless sum

$$
\sum_{m, m^{\prime}=0}^{\infty} m_{m, m^{\prime}}
$$

contains integrals of the functions $\left\{g_{c}\right\}$ over the addition region D. We now define new coefficients $\beta_{a}^{\prime \lambda}$ and variables $\epsilon_{f a}^{\prime \lambda}$ in a similar way to Equations (59) and (61),

$$
\begin{equation*}
\beta_{a}^{\prime \lambda}=\left(g_{a}^{*}, \tilde{s}^{(\lambda)}\right)_{D}, \gamma_{a}^{\prime \lambda}=\beta_{a}^{\prime \lambda}+\epsilon_{f a}^{\lambda} . \tag{c:2}
\end{equation*}
$$

Then the additional (non-infrared-divergent) factor becomes:

$$
\exp \left[\sum_{\lambda, a}\left(\frac{1}{2}\left|\beta_{a}^{\prime \lambda}\right|^{2}-\left|\epsilon_{f a}^{\prime} \lambda^{2}+i \operatorname{Im} \epsilon_{f a}^{*}\right|_{a}^{\prime \lambda} \beta_{a}^{\beta \lambda}\right)\right]
$$

It is natural to define

$$
\begin{equation*}
\alpha \tilde{B}_{D}=\exp \left[\sum_{\lambda, a} \frac{1}{2}\left|\beta_{a}^{\prime \lambda}\right|^{2}\right], \tag{c:3}
\end{equation*}
$$

so that Equation (64) becomes

$$
\begin{gathered}
\tilde{M}=e^{\left(\alpha B+\alpha \tilde{B}_{\Omega}+\alpha \tilde{B}_{D}\right)} \exp \left[-\frac{1}{2} \Sigma\left|\epsilon_{f a}^{\lambda}-\epsilon_{i a}^{\lambda}\right|^{2}\right] \\
X \exp \left[-\frac{1}{2} \sum_{\lambda, a}\left|\epsilon_{f a}^{\prime}\right|^{2}\right] e^{i \phi} \sum_{m, m^{\prime}=0}^{\infty} m_{m, m}
\end{gathered}
$$

.. In this expression the infrared divergences cancel. In the sum $\alpha B+\alpha B_{\Omega}$ of the argument of the first exponential. The term $e^{\alpha \tilde{B}_{D}}$
accounts for the difference in resolution regions. The condition for finite matrix elements is now:

$$
\begin{aligned}
& \sum_{\lambda, a}\left|\epsilon_{f a}^{\lambda}-\epsilon_{1 a}^{\lambda}\right|^{2}<\infty \\
& \sum_{\lambda, a}\left|\epsilon_{f a}^{\lambda}\right|^{2}<\infty
\end{aligned}
$$

This work was performed under the auspices of the United States Atomic Energy Commission.

1. Roy J. Glauber, Phys. Rev. 131, 2766 (1963).
2. V. Bargmann, Proc. Natl. Acad. Sci. U.S. 48, 199 (1962):
3. B. Schroer, Fortschr. Physik 11, I (1963).
4. D. R. Yennie, S. C. Frautschi, and H. Suura, Ann. Phys. 13, 379 (1961).
5. V. Bargmann, Comm. Pure Appl. Math. 14, 187. (1961).

Fig. IV-1. Contributions to the second-order virtual photon radiative corrections. Diagram (a) corresponds to the original uncorrected matrix element. M_{0} -
Fig. IV-2. Contributions to the second-order corrections due to emission or absorption of real soft photons. Diagram (a) accounts for the possibility that the photon does not interact with the electrons at all.

Fig. V-1. Representation of ℓ noninteracting real soft photons, - m real soft photons absorbed by the electron line, and m^{\prime} real soft photons emitted by the elecron line.

Fig. A-1. Representation of ℓ noninteracting real soft photons, $m_{\xi}{ }^{\nu}$ real soft photons associated with the ξ th electron and absorbed by the \underline{v} th electron, and m_{ξ}^{v} real soft photons associated with the ξ th electron and emitted by the \underline{v} th electron.

(a)

4

(c)

(b)

(d)

MU-36178

$$
\{\underbrace{\{ }_{m^{1}}\}
$$

$M U-3617.9$

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:
A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

