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REVIEW

Quantifying and controlling bond 
multivalency for advanced nanoparticle 
targeting to cells
Elliot Y. Makhani1†, Ailin Zhang2† and Jered B. Haun1,2,3,4*   

Abstract 

Nanoparticles have drawn intense interest as delivery agents for diagnosing and treating various cancers. Much of 
the early success was driven by passive targeting mechanisms such as the enhanced permeability and retention (EPR) 
effect, but this has failed to lead to the expected clinical successes. Active targeting involves binding interactions 
between the nanoparticle and cancer cells, which promotes tumor cell-specific accumulation and internalization. 
Furthermore, nanoparticles are large enough to facilitate multiple bond formation, which can improve adhesive prop-
erties substantially in comparison to the single bond case. While multivalent binding is universally believed to be an 
attribute of nanoparticles, it is a complex process that is still poorly understood and difficult to control. In this review, 
we will first discuss experimental studies that have elucidated roles for parameters such as nanoparticle size and 
shape, targeting ligand and target receptor densities, and monovalent binding kinetics on multivalent nanoparticle 
adhesion efficiency and cellular internalization. Although such experimental studies are very insightful, information is 
limited and confounded by numerous differences across experimental systems. Thus, we focus the second part of the 
review on theoretical aspects of binding, including kinetics, biomechanics, and transport physics. Finally, we discuss 
various computational and simulation studies of nanoparticle adhesion, including advanced treatments that compare 
directly to experimental results. Future work will ideally continue to combine experimental data and advanced com-
putational studies to extend our knowledge of multivalent adhesion, as well as design the most powerful nanoparti-
cle-based agents to treat cancer.
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1  Introduction
Cancer is one of the leading causes of death, reaching an 
estimated 10 million worldwide in 2020 [1]. Traditional 
cancer management can prolong life expectancy for 
many patients. However, inefficiencies in detection via 
anatomical imaging, biopsy, and biofluid sampling [2], 
as well as treatment via surgery, chemotherapy, radio-
therapy, and immunotherapy, can negatively impact 
patient care by costing valuable time and eliciting adverse 

reactions. These drawbacks of traditional cancer diagno-
sis and therapy have progressively driven more research-
ers to seek out alternative new therapeutic approaches 
that will satisfy critical needs in terms of sensitivity, effi-
cacy, and safety. In recent decades, nanotechnology has 
emerged as a new and powerful way of advancing diag-
nosis and treatment of numerous diseases, including can-
cer [3]. Specifically, anti-tumor research has increasingly 
utilized nanoparticles (NPs) as carriers due to attractive 
pharmacokinetic and biodistribution properties, as well 
as reduced toxicity to the rest of the body. Recent reviews 
have highlighted various NP strategies aimed at enhanc-
ing imaging for diagnosis and drug efficacy for therapy 
[4, 5]. Compared to alternative clinical contrast agents, 
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NPs tend to exhibit higher sensitivity and/or specificity 
for abnormalities such as tumors due to selective delivery 
[6], including preclinical studies that have shown prom-
ise for computed tomography, magnetic resonance imag-
ing, ultrasound, and positron emission tomography (see 
reviews: [7, 8]). However, only a few NP imaging agents 
have been approved for clinical use [9]. For therapy, there 
has been an increasingly large number of nanomedi-
cines for cancer that have achieved preclinical success 
(see review [10]), but only a handful of NP drug systems 
have been approved for clinical use [11, 12]. Many of 
these FDA-approved drugs have ultimately disappointed 
in translational human trials following exciting perfor-
mance with in vitro and in vivo models [13]. For example, 
pegylated liposomal doxorubicin, such as Doxil and Cae-
lyx, have yielded statistically significant survival changes 
with metastatic ovarian cancer, but failed to elicit a sur-
vival advantage for HIV-related Kaposi’s sarcoma and 
metastatic breast cancer [14].

NPs have been designed to reach desired target sites 
and enable selective cellular uptake with increased effi-
cacy and reduced toxicity. This can be achieved through 
passive or active targeting strategies. Nanocarriers 
designed for passive targeting exclusively utilize the 
enhanced permeability and retention (EPR) effect for 
delivery [15]. This results from nanocarrier extravasa-
tion into the tumor tissue via “leaky” vessels, followed 
by accumulation due to poor lymphatic drainage. Pas-
sive targeting relies upon the assumption that unique 
tumor vascularization, which describes the amount 
and homogeneity of vessels in the tumor, is sufficient to 
deliver NPs uniformly and efficiently [16]. Because NPs 
are often designed to be taken orally or through injec-
tion, they must first traverse through the bloodstream 
to the tumor site. Numerous factors influence NP resi-
dence time in the blood (pharmacokinetics) and deliv-
ery to different organs (biodistribution), but generally 
these factors are better for NPs than small molecules 
[17, 18]. Furthermore, the shape and size of the particle 
plays an important role [19]. Of note, passive targeting 
localizes NPs to the tumor tissue, but cannot further 
promote uptake by cancer cells [20]. The drawbacks 
for passive targeting can be mediated by designing NPs 
that actively target receptors overexpressed on tumor 
cell surfaces using antibodies or various other ligands 
including proteins, carbohydrates, nucleic acids, pep-
tides, and small molecules [20, 21]. This is generally 
referred to as active targeting, which must still take 
advantage of the EPR effect to first localize the NPs 
within the tumor before binding to specific cell surface 
receptors and, in many cases, internalization. In addi-
tion to NP shape and size, which are also important 
for passive targeting, actively targeted NPs can benefit 

from the phenomenon of multivalency, which can be 
used to fine-tune adhesion between the NP and tumor 
cells [15, 16].

Interestingly, NPs approved for clinical use for both 
cancer imaging and treatment have all utilized passive 
targeting; thus, there is question of whether active tar-
geting holds the potential to improve accumulation at 
the tumor site and prevent off-target accumulation, pri-
marily within the liver, lung, and kidney. Current active 
targeting NPs have shown only modest improvement in 
drug efficacy with little to no contrast enhancement for 
molecular imaging [22]. Another major challenge has 
been transitioning in vitro results to in vivo animal mod-
els [23], and finally translating to clinical settings. Lastly, 
appreciation has recently increased for the role of cellular 
heterogeneity within tumors [24], which further compli-
cates the design and deployment of NPs for cancer diag-
nosis and/or therapy. Ultimately, the goal is to design NPs 
with maximal targeting efficacy and selectivity for can-
cer cells by selecting optimal properties for the NP and 
targeting ligand (Fig. 1). It may also be advantageous to 
control whether the NPs are internalized or remain on 
the surface, depending on site of action for a given drug. 
Thus, it is critical to evaluate all factors that can influ-
ence NP binding and cellular interactions. Since many of 
the possible factors that influence NP adhesion are dif-
ficult to isolate in experimental settings, computational 
simulations are also utilized to obtain additional insight. 
These simulations are typically “coarse-grained” to main-
tain efficiency, which means that they operate at length 
scales of tens of nanometers to microns and time scales 
of nanoseconds up to seconds (see review: [25]).

Fig. 1  Schematic representation of key parameters influencing NP 
binding and cellular uptake, including size (top left), shape (top right), 
ligand density (bottom left) and linker length (bottom right). Yellow 
represents the NP, green represents ligands, red represents receptors, 
and blue represents linkers
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2 � Cell binding and multivalency
As discussed, active targeting utilizes molecular bind-
ing interactions between ligands on the NP and recep-
tors on diseased cells to attain specificity. Studies have 
demonstrated that ligand-specific targeting enhances NP 
binding and cellular uptake compared to “naked” coun-
terparts [26, 27]. Furthermore, multivalent systems ena-
ble attachment via numerous binding interactions, which 
improves targeting efficiency relative to monovalent 
NPs [28], particularly for weak binding interactions [29]. 
Muro et al. observed a dose-dependent increase in bound 
polymer nanocarriers with higher target receptor sur-
face density both in vitro and in vivo [30]. The increase 
in binding affinity between the ligand-decorated NPs 
and the receptors targeted on the cell surface correlated 
to an increase in surface density of the ligand [31, 32]. 
However, Wang et al. found that high ligand density can 
induce cell toxicity in Ramos (human lymphoma B) cells 
after internalization when targeting transferrin receptor 
[33], suggesting that the connection between binding and 
cell responses can be complex, and targeting effects may 
need to be balanced to achieve optimal results.

3 � Targeting properties
3.1 � NP size and shape
Passive targeting via the EPR effect requires that NPs 
be a certain size to maximize diffusion and extravasa-
tion. Studies have also shown that cellular uptake is size-
dependent for different cell lines and NP types, with 
maximal internalization ranging from 30 to 50 nm [34]. 
Investigation into a citrate-stabilized gold NP interact-
ing with an unilamellar lipid membrane model system 
showed that gold NPs larger than 50 nm in diameter were 
not internalized efficiently, while NPs under 10  nm in 
diameter tended to show collective aggregation on lipid 
membrane surfaces, forming tubular aggregates with 
membrane wrapping effects [35]. Jiang et al. further dem-
onstrated that binding affinity increased with NP size 
up to 70 nm, but concluded that 40–50 nm NPs demon-
strated the best internalization for gold and silver NPs 
coated with Herceptin antibodies [36]. Haun et  al. also 
found an optimized size of 100–150 nm for polystyrene 
NPs targeting ICAM under fluid flow conditions mimick-
ing a blood vessel [37].

NPs have traditionally been spherical in nature, but 
there has been a recent influx in non-spherical shapes 
(Fig.  2A), including nanodisk, nanorods, elongated 
liposomes, filamentous polymer micelles/carriers, and 
carbon nanotubes (see review: [38]). A key general find-
ing without targeting has been that rod-shaped parti-
cles collectively have better internalization dynamics 
than spherical particles for lengths greater than 100 nm 
[39, 40]. Moreover, longer rods (i.e., higher aspect ratio) 

facilitated better uptake compared to shorter rods [40]. 
This observation also held true for targeted NPs, with 
those larger than 100 nm in length exhibiting better bind-
ing and uptake for breast cancer (via trastuzumab), as 
shown in Fig. 2B, and rat brain endothelial cells (via oval-
bumin) [41, 42]. In fact, the difference between nanorods 
and nanospheres was almost double for the ovalbumin 
case. Similarly, nanorods over 1 µm in equivalent spheri-
cal diameter also displayed better adhesion than nano-
spheres under shear flow via Sialyl-Lewis A ligands, but 
the effect diminished for nanorods with an estimated 
spherical diameter of 500  nm [43]. However, spherical 
NPs yielded better uptake compared to rod-shaped NPs 
for sub-micron NPs [44, 45].  In addition, small nano-
spheres were also favored over other non-spherical NPs, 
such as nanodiscs, in binding and internalization via 
ICAM-1 for endothelial cells [46].

3.2 � Ligand density
Multivalency is proven to be a powerful strategy for 
increasing binding and internalization, and hence, ligand 
density on the NP is a key property. Counterintuitively, 
however, more ligands is not always better. Hong et.al. 
used a dendrimer-based NP with folic acid ligands and 
found that adhesion remained constant beyond ~ 5 
ligands per particle (Fig. 3) [47]. In addition, Wang et al. 
demonstrated that at 25% of the maximum ligand density 
for both human transferrin (hTf) and transferrin recep-
tor antibody (OKT9), NPs displayed a cellular uptake rate 
equal to NPs with 100% ligand density [33]. These stud-
ies suggest that there may be an upper limit to the bind-
ing affinity that can be achieved via multivalency with 
respect to ligand coating density on the NP, at least in 
certain contexts and when viewed from the perspective 
of equilibrium binding behavior.

3.3 � Linker length
Linker length can play an important role by allowing tar-
geting molecules to extend further from the NP surface. 
Using a recombinant protein system with single-chain 
antibodies and ~ 200  nm diameter polymer particles, 
Haun et al. demonstrated that insertion of a linker pro-
tein fragment improved binding efficiency. However, it 
was observed that smaller ligand complexes could reach 
higher coating densities and achieve more efficient bind-
ing [48]. Similarly, using double stranded DNA fragments 
as the linker between the ligand and the magnetic NP, 
Koets et  al. observed that binding was better for parti-
cles with longer double stranded DNA fragments, in the 
range of 290 and 560 base pairs, compared to the smallest 
fragment of 105 base pairs at low density [49]. Interest-
ingly, at higher coating density, there was a shift to the 
smallest fragment yielding better binding results. This 
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led the researchers to postulate that the enhancement in 
binding could be attributed to both length and freedom 
of motion for DNA fragments on the surface, but the 
freedom of motion was more restricted at higher density. 

As a result, the smallest fragment had a better binding 
rate than longer DNA fragments. Furthermore, research-
ers have shown that both shorter poly(ethylene glycol) 
(PEG) linkers at maximum ligand density and longer PEG 
linkers at lower ligand density yield better cellular uptake 
rates in vitro [50, 51], suggesting that linker length must 
also be fine-tuned to maximize binding efficacy (Fig. 4). 
The role of PEG linkers is particularly important, since 
most targeted nanoparticles used in vitro, and especially 
in vivo, utilize PEG to reduce non-specific binding.

3.4 � Binding properties
As expected, the fundamental binding properties of the 
ligand-receptor interactions can have a major impact 
on multivalent NP binding. For example, Csizmar et  al. 
designed a NP system with high and low affinity anti-
EpCAM fibronectins that were attached at various sur-
face densities. It was observed that reducing ligand 
density of the high affinity interaction yielded a targeted 
NP construct that bound well to MCF-7 breast cancer, 
LNCaP prostate cancer, and SK-OV-3 ovarian cancer 
cells, but not to MDA-MB-231 triple negative breast 

Fig. 2  NP shape can affect cellular uptake. A Different NP shapes (scale bar: 2 µm left and 500 nm right) B Internalization of nanospheres, nanorods, 
and nanodisks both (left) without and (right) with trastuzumab bound for BT-474 breast cancer cells. Blue represents BT-474 breast cancer cells. 
Green represents NPs of different shapes. From reference [41]

Fig. 3  Effect of ligand density on NP binding affinity, showing a 
plateau above five folic acid molecules (ligands) per dendrimer. From 
reference [47]
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cancer cells [52]. Alternatively, the low affinity interac-
tion bound to both MCF-7 and LNCaP cells, but not 
to SK-OV-3 and MDA-MB-231 cells, at both full and 
reduced densities. These results suggested that NP avid-
ity can be used to discriminate between different cell 
types based on expression level. Furthermore, Wiley 
et al. observed that at high ligand density, large amounts 
of transferrin functionalized NPs accumulated within 
the endothelial cells that comprised the blood brain bar-
rier, while low ligand density NPs did not bind at all [53]. 
Interestingly, moderate transferrin density was capable of 
binding efficiently with transferrin receptors on the lumi-
nal side of the endothelial layer, and later detaching on 
the brain side. This suggests that tuning multivalent bind-
ing can lead to better infiltration of NPs at complex and 
hard-to-reach target sites.

The individual bond kinetic rates, for association 
and dissociation, have unique impacts that can provide 
insight beyond the equilibrium affinity [29, 48]. However, 
these effects of bond kinetics are best characterized by 
changes in multivalent NP kinetics, which will be dis-
cussed in a subsequent section.

4 � Targeting selectivity
An often underappreciated challenge in the targeting 
field is to discriminate between diseased and healthy 
cells, which almost universally express the same target, 
albeit at different levels. Thus, it is important to consider 
the efficiency of multivalent binding in both contexts. For 
example, during inflammation there is an upregulation 
of ICAM-1 expression by endothelial cells from the basal 
level of ~ 200 sites/µm2 to ~ 1000 sites/µm2 [54, 55]. Haun 
et  al. predicted from experimental binding data that a 

200 nm particle targeted to ICAM-1 would bind nearly as 
well to a normal cell as inflamed [54]. This is because the 
binding rate was so high that delivery would be limited 
primarily by transport limitations. In fact, it was deter-
mined that reducing antibody density by half of the maxi-
mal level would still retain 90% of the maximum delivery 
potential. This led to the recommendation that antibody 
density be decreased to ~ 20% of the maximum value to 
retain the inherent selectivity dictated by expression level 
differences. Zern et  al. later confirmed this recommen-
dation, as they found that reducing ligand density from 
200 to 50 anti-ICAM-1 ligands per NP improved the 
signal:noise ratio in a mouse model of pulmonary disease 
using a PET imaging platform (Fig. 5B) [56]. Within the 
context of cancer, several growth factor receptors, such 
as HER2 and EGFR, are also upregulated on tumor cells 
compared to healthy cells; thus, it is essential to design a 
delivery system based on both efficiency and selectivity. 
As such, tumor cell selectivity via HER2 and transferrin 
was shown to be optimal at moderate ligand coated den-
sities [57]. Other studies have also shown that NP avidity 
can be optimized by reducing maximum ligand density, 
as discussed in review [58].

While it is important to maintain maximum selectiv-
ity for diseased cells over normal cells based on expres-
sion level differences, it would be advantageous if this 
went even further. Specifically, there is a long-standing 
goal to achieve binding level differences that exceed the 
expression level differential, and even create a switch-
like transition in binding between normal and diseased 
expression levels. This general type of behavior is known 
as superselectivity and will be addressed later in this 
article.

5 � Multivalent kinetics
Much of the experimental effort described thus far has 
been focused on systems that have been allowed suffi-
cient time to reach thermodynamic equilibrium. While 
this can be informative, assessing NP adhesion from a 
kinetic perspective can provide additional insight into 
the processes that govern multivalent binding. For 
example, Gratton et  al. found that the rate of inter-
nalization corresponded with NP size and shape [40]. 
Nanorods that were 150 nm in diameter had the fastest 
rate of internalization, reaching 80% of the maximum 
value within 25 min before hitting a plateau, indicating 
a limit in cellular uptake that can potentially be opti-
mized. The rates of initial NP docking, or attachment, 
as well as the rate of detachment have been assessed 
using fluid flow-aided experimental setups such as sur-
face plasmon resonance biosensors or imaging in a flow 
chamber (Fig. 6). Hong et al. observed that the attach-
ment rate of a dendrimer NP increased linearly with 

Fig. 4  Integrin-mediated uptake of polymeric NPs with different 
amounts of cyclic RGD bound (0–100%) and PEG linker lengths (2, 3.5, 
and 5 kDa), showing high density NPs with short linker size result in 
the best cellular uptake. From reference [50]
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the number of folic acid ligands, while the detachment 
rate varied in an exponential manner, indicating that 
multivalent NP stability on a surface is a complex pro-
cess [47].

Haun et  al. studied the kinetics of adhesion for 
200  nm diameter polymer particles mediated by an 
antibody specific for the inflammatory molecule ICAM-
1, and found that NP attachment rate scaled linearly 
with both receptor and ligand densities (Fig.  7) [54]. 
Subsequent work demonstrated that the same molecu-
lar scaling held for attachment rate using 43  nm and 
1.1 µm diameter particles, along with a strong influence 
for particle size [37]. Specifically, larger particles had a 
higher intrinsic attachment rate, but the actual level of 
attachment observed was limited by particle depletion 

effects, which could be overcome in part by smaller 
particles due to higher diffusion rate (Fig. 5A).

Interestingly, NP detachment rate was found to be 
time-dependent, following a power law, acting over a 
time-scale that spanned the entirety of > 30 min experi-
ments [54], and was remarkably similar for different 
particle sizes [37]. It was hypothesized that this time-
dependency was related to an approach to steady state 
from an initial smaller number of bonds, followed by 
additional bond formation that stabilized adhesion, 
but this could not be verified experimentally. Follow up 
studies were then performed using a system of recom-
binant single-chain antibodies, some of which had been 
evolved to display differences of four orders of magni-
tude in bond dissociation rate, as shown in Fig. 8A [48]. 

Fig. 5  Maximizing NP selectivity in vitro and in vivo. A Selectivity, defined as the ratio of NPs delivered to diseased versus normal cells, decreases as 
receptor density increases for large and moderate-sized particles, but remains high for smaller particles due to elevated diffusion rate. B Excessive 
anti-ICAM-1 ligand density results in high non-specific binding, and thus an optimal signal:noise ratio is obtained at lower density. From references 
[37] and [56]

Fig. 6  Schematic representation of NP kinetics under flow. Multivalency enhances binding effects
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Surprisingly, NP attachment rate was similar across 
this single-chain antibody mutant library (Fig.  8B), 
leading to a hypothesis that initial docking may have 
been influenced by bond mechanical strength. Spe-
cifically, the mechanism would require that one single-
chain antibody would be too weak to tether NPs, thus 
necessitating that multiple bonds form simultaneously. 
As for the detachment rate, differences between the 
kinetic mutants were observed following a logarithmic 
dependence (Fig. 8C and D). Finally, the time-depend-
ent detachment rate phenomena was also observed 
with single-chain antibodies, but following a different 
power law.

Tassa et al. used a system of small molecule (FK506) 
derivatives attached to cross-linked iron oxide NPs and 
found a dramatic decrease in detachment rate relative 
to the dissociation rate of the free ligand and a moder-
ate decrease in dissociation constant as ligand density 
increased (Fig.  9) [29]. Although not identified by the 
authors at that time, a clear time-dependence was also 
evident in the multivalent binding data (Fig.  9D), cor-
roborating that this may indeed be a general phenom-
enon for multivalent NP adhesion.

6 � Theoretical and computational modeling 
of multivalent NP adhesion

The experimental efforts discussed above have provided 
a strong foundation for our current understanding of 
NP binding. However, various modeling methods can be 
employed to bolster this understanding, as well as pro-
vide new mechanistic insight. This is particularly true for 
complex phenomena such as mass transport, mechani-
cal forces, and multi-bond formation dynamics. Further-
more, validated models could be used to explore new 
parameter space in a manner that is relatively quick and 
controlled. Purely experimental investigations inherently 
require large amounts of time and energy, and results are 
almost universally confounded by differences in numer-
ous variables. Finally, multiscale modeling approaches 
that consider transport effects, hydrodynamics, bond for-
mation dynamics, and molecular scale interactions will 
ultimately be required to optimize disparate parameters 
and produce the best targeted NPs [59], as well as achieve 
advanced phenomena such as superselectivity. Nota-
bly, the predictive power of simulation modeling will 
improve the likelihood that favorable parameter regimes 
are discovered and optimized. The following sections will 

Fig. 7  A Representation of binding data using ICAM antibody-bound NPs in a flow chamber of varying receptor and ligand densities. B Attachment 
rate constant increases linearly as ligand-receptor numbers increases and C for different shear rates. From reference [54]
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review basic modeling and simulation concepts, starting 
from basic monovalent bonding through more complex 
multivalent and NP-specific treatments.

7 � Molecular bonding
7.1 � Monovalent binding kinetics
To fully understand molecular bonding in the NP con-
text, Bell’s work [60, 61] that describes adhesion medi-
ated by reversible molecular bonds between antibodies 
and antigens is paramount. Allow the classical chemical 
equilibrium equation to represent receptors on a cell sur-
face (R) and ligands on a NP (L) to be in chemical equilib-
rium with the resultant receptor-ligand complex (C):

For the general case of two complementary recep-
tors, each allowed to move with their own independent 

(1)R+ L ⇋ C

degrees of freedom, we can derive the kinetic equation 
for complex (bond) formation:

where [C], [R], and [L] are the concentrations of complex, 
receptor, and ligand; respectively. The terms kof  and kor  are 
the intrinsic forward and reverse kinetic rates of complex 
formation; respectively. At chemical equilibrium, the 
above rate equation can be set to zero, and simply rear-
ranging the equation yields:

where KA is the equilibrium association constant, equal 
to the inverse of the equilibrium dissociation constant, 

(2)
d[C]

dt
= kof [R][L]− kor [C]

(3)KA =
[C]

[R][L]
=

kof

kor

Fig. 8  A NP attachment rate and C detachment rate using single chain antibodies normalized by size (B and D, respectively). From reference [48]
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KD . This result is known as the Gudberg-Waage, or Mass 
Action law.

This treatment concretely describes the reaction rates 
for the receptor-ligand complex from the reaction rates 
for ligands in solution and diffusion constants of ligands 
in solution and receptors on membranes. Bell also 
describes an “encounter complex” which is an interme-
diate step between the receptors and ligands in solution 
and the resultant receptor-ligand complex. However, it 
is a good approximation that the concentration of the 
encounter complex is small compared to that of the reac-
tants or product, therefore it is accurate to ignore it in 
the chemical equilibrium equation above.

7.2 � Bond biophysics
Once the reactants and products form a noncovalent 
bond, the bond can be modeled as a Hookean spring. 
Under forces that do not lead to rupture, biomolecular 
bonds will reach a new equilibrium state by minimiz-
ing chemical potential, such that the separation distance 
equals the new bond length, as shown in Fig. 10. Using a 
Taylor expansion, the chemical potential ( µo

b ) as a func-
tion of separation distance [ S ] can be expressed as:

where [ κ ] is the biomolecular bond spring constant and 
µo
b(L) is the chemical potential at equilibrium, [ L ] is the 

equilibrium bond length, and higher order terms are 
dropped as they are not required for accurate experi-
mental validation. The bond spring force, Fsp , can then be 
expressed as:

 
Atomic force microscopy (AFM) experiments have ver-

ified bond force for the avidin–biotin biomolecular bond 
[62–65]. Specifically, the force quantum of an individual 
biotin-avidin was measured to be 160 ± 20 pN [66]. The 
value of biomolecular spring constants have been esti-
mated at ~ 0.1 pN/m, based on Bell’s original model [60, 
61], but experimental validation has remained elusive.

From the kinetic theory of the strength of solids [67], 
Zhurkov et  al. explained that the lifetime of a covalent 
bond in a solid can be modeled by an amplitude of the 
reciprocal of the natural oscillation frequency of atoms. 

(4)µo
b(S) = µo

b(L)+
1
/

2κ(S − L)2 + . . .

(5)Fsp(S) = −κS

Fig. 9  A comparison of bond dissociation constant (KD) for free ligands versus the ratio of A dissociation constant, B association rate, and C 
dissociation rate of bivalent NP. Blue line represents the correlation between free ligands and NP, which is strongest for part C. D Representation of 
protein-NP binding data for multivalent NP. From reference [29]
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The difference between this equation compared to 
Zhurkov’s is that γ is now the empirically measured reac-
tive compliance of the bond, in units of length. Therefore, 
the term γ fB dictates the amount of mechanical work 
that is performed on the bond to drive rupture. We can 
also interpret kor  , from the context of Zhurkov, as the 
reciprocal of the natural oscillation frequency of a har-
monic oscillator. Merkel et  al. performed single bond 
rupture experiments using AFM and the avidin–biotin 
interaction to validate Eq.  6 and quantify the reactive 
compliance. It was found that bond lifetime varied from 
1 min to 0.001 s when subjected to forces ranging from 
5 to 170 pN [62]. Moreover, Alon et al. [63] plotted the 

Fig. 10  Biomolecular bonds, with average length S, acting as cell–cell bridges. A To minimize chemical potential, the length of the individual 
biomolecular bonds stretch and squish so that the cells are at an optimal separation distance, or equilibrium bond length L. When the biomolecular 
bonds are B stretched with S > L or C compressed with S < L, chemical potential will be elevated, which will eventually direct the system back to the 
equilibrium state (S = L). From reference [61]

Part of Bell’s insight was adapting this equation for sol-
ids to a non-covalent, multivalent molecular binding 
context. Let’s now consider the case where a receptor-
ligand complex has formed at some interface, say a NP 
and cell. Let’s also assume that the bond is under a force 
load, defined as fB , that will act to accelerate bond rup-
ture. The observed kinetic reverse reaction rate, kr , can 
be expressed in terms of the intrinsic value, kor  , and fB , as 
follows:

(6)kr
(

fB
)

= kor e
γ fB
kBT
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bond rupture force of P-selectin carbohydrate as a func-
tion of the force loading rate, and also found agreement 
with Eq.  6 (Fig.  11). Relaxation time describes the time 
required to overcome the activation energy to break a 
bond and minimize the free energy, which follows a har-
monic oscillator.

8 � Multivalent NP adhesion kinetics
8.1 � Attachment and detachment rates
For a NP to bind, it must arrive at a vacant site on the tar-
get surface. Turitto calculated a flux theory that assessed 
the probability of a particle reaching an unoccupied site 
and subsequently binding as the product of the former 
and the latter [68]. However, in the low-binding density 
limit, valid either at early stages or low binding efficiency, 
we can consider only the binding effects. Using an anal-
ogy to Eq.  2, but now for multivalent NPs, Haun et  al. 
[54] used the following rate equation:

where B is the bound NP density (number/area), CW  is 
the unbound NP concentration at the wall, t is the time, 
kA is the NP attachment rate constant, and kD is the NP 
detachment rate constant. kA and kD refer to multivalent 
reaction rates, which differ from the monovalent reaction 

(7)
d[B]

dt
= kA[CW ]− kD[B]

rates for the receptor-ligand pair, kof  and kor  . It is assumed 
that the multivalent and monovalent reaction rates are 
correlated, however, at this time, these relationships have 
not been established. Haun et al. did demonstrate that kA 
scaled proportionally with receptor and ligand coating 
densities regardless of particle size [37, 54], as well as 
receptor length [48]. The scaling laws for kD were consid-
erably more complex, however, which may have been due 
to indirect contextual factors that ultimately affected 
bond numbers. In the limit of low values for B, and if the 
total number of bound NPs (BTotal) is known, then a lin-
ear attachment rate is obtained by setting kD = 0 in Eq. 7 
and integrating:

Thus, kACW  is given by the slope of BTotal vs time. At 
high reaction rates, NPs can be depleted from the bulk 
solution so fast that CW  decreases, which will appear to 
represent a lower value for kA . These conditions can be 
anticipated by calculating the Damkohler number, and 
kA can be isolated from CW  using appropriate transport-
reaction modeling [54].

Whether a NP attaches will depend on formation of the 
first bond tether, which can be determined based on the 
observed rate ( kf  ) and probability of bond formation ( Pf  ). 
These phenomena have been studied in simulations by 

(8)BTotal
= kACW t

Fig. 11  Plot of kr (denoted as koff  ) as a function of bond force fB(bond force) for a P-selectin carbohydrate bond with a χ2 = .484 . This confirms that 
Bell’s use of Zhurkov’s covalent bond model on biomolecular bonds provides an accurate prediction for the observed reverse reaction rate under 
force loads. From reference [63]
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describing NP fluctuations between bound and unbound 
states as thermally-driven jumps over a potential energy 
barrier. This can be conceptualized as taking place over 
two discrete steps. First, the NP comes sufficiently close 
to the surface of interest. Second, bond formation can 
occur at the intrinsic rate k◦f  . For the first step, a Hookean 
spring is used to model extension of the unbound mole-
cules towards each other, resulting in the observed reac-
tion rate kf :

where σts is the transition state spring constant that con-
fers an entropic penalty based on the orientation of adhe-
sion molecules. The probability of formation can then be 
calculated directly as follows:

where �t is the observed time, or time step in a simula-
tion context. During each time-step, Pf is calculated for 
each potential bond in a given system and compared to 
a randomly-generated number. If the random number is 
less than Pf, a bond is considered to have formed. Using 
this simulation approach, it was found that the maximum 
extension or compression length for biomolecular bonds 
is ~ 0.9 nm [61].

8.2 � Time‑dependent detachment rate
Multivalent NP stability after binding was also found 
to be complex from a temporal perspective [37, 48, 54]. 
Specifically, kD appeared to decrease over time, which 

(9)kf = kof exp[
−σts(S − L)2

2kBT
]

(10)Pf = 1− e−kf �t

was referred to as adhesion strengthening. Although the 
mechanism underlying this effect was unknow, the time-
dependency was successfully captured by a phenomeno-
logical power law:

where koD sets the initial magnitude of the detachment 
rate, α sets the type of time dependent polynomial func-
tion, and tref is a reference time that was included for unit 
consistency (value = 1 s).

In a detachment experiment, where buffer is flowed 
over pre-bound NPs, the constants koD and α can be found 
directly from experimental data by substituting Eq. 9 into 
Eq. 7 and setting kA = 0, arriving at:

where Bo and to are the initial bound particle density and 
time, respectively. It is important to note that α repre-
sents the power law value that correlates to real-world 
experimental time. Empirically-determined values for α 
were found to be ~ 2/3 for different receptor/ligand den-
sities and NP sizes [37, 48, 54].

Since different NPs bound at different experimental 
times, Eqs. 11 and 12, as well as α, hold little mechanis-
tic value. Therefore, analogous equations were developed 
in which experimental time was replaced by the bound 
particle time, tb. To distinguish the experimental and 
individual NP contexts, kD , koD , and α were replaced in 
Eqs.  9 and 10 by κD , κoD , and β , respectively. NP bound 

(11)kD(t) =
koD

(t/tref )α

(12)B = Boexp

[

koD
1− α

(

t1−α
o − t1−α

)

]

Fig. 12  A Two ligating units (LU1 and LU2) that comprise component D can bind to receptor R at sites 1 and 2. B Graph of [D]1/2, or free receptors, 
vs root mean squared (RMS) linker length (r) between the two ligating units. An asymmetry in the curve is observed, with a minima around 40 Å, 
followed by a subsequent slow increase with RMS linker length. Below 40 Å, decreasing RMS linker length causes [D]1/2 to increase rapidly. This 
confirms that a linker length larger than the minima of 40 Å would tend to reduce the concentration of free receptors, increasing the concentration 
of bound ligating units, increasing avidity. From reference [70]
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time tB can be measured experimentally, but is easiest to 
track using a simulation, and a simple method was devel-
oped by Haun et  al. [54]. A detachment probability, PD, 
was calculated from the time-dependent rate κD , using an 
analogy to Eq. 9:

where �t is again the simulation time-step. Simulations 
were conducted by adding a constant number of particles 
to the system during each time step, �B , based on the 
experimentally-measured attachment rate. During each 
time-step, PD was calculated for each NP in the system 
and compared to a randomly-generated number. If PD 
was less than the random number, the particle detached, 
otherwise the bound time was updated for the next time 
step. This simulation approach determined that the NP-
centric power law constant, β , was ~ 3/4 for most systems 
studied [37, 48, 54]. The agreement between experimen-
tally determined values of α and simulation determined 
values of β is strong evidence for the predictive capa-
bilities of the Monte Carlo generated time-dependent 
detachment rate.

9 � Model considerations for simulating multivalent 
NP adhesion

9.1 � Minimizing thermodynamic free energy
An influential work by Wang and Landau presented a 
Monte Carlo algorithm that simulated thermodynamic 
and entropic models for calculating free energy, entropy, 
and phase transformations speedier and more accurately 
[69]. Diestler and Knapp [70] based their Monte Carlo 
algorithm on Wang and Landau’s model and used it to 
model the simplest multivalent binding scenario, a diva-
lent ligand binding to a divalent receptor. This interac-
tion can be understood through Eq.  1, which describes 
reversible biomolecular bonding. Figure 12A shows two 
ligating units, LU1 and LU2, are connected by a linker, 
with  length r. The divalent receptor was comprised of 
sites 1 and 2, which combined on the membrane surface 
with the ligating units to form the bound complex, D.

Using these initial conditions, along with a chemi-
cal potential description of thermodynamic equilib-
rium, the Hamiltonian, and the Helmholtz free energy, 
an “enhancement factor” was described that was based 
on the effective concentration ( Ceff  ) of ligating units. 
The enhancement factor predicted that the most sta-
ble configuration of a divalent ligand is one where the 
linker length is the exact same as the distance between 
the receptor sites. Furthermore, it was shown that if the 
linker length did not match the separation distance, a 

(13)PD = 1− e−κD�t
= 1− exp





−κoD

( tB
tref

)β
�t





longer linker length is preferable. Kramer and Karpen 
[71] performed a validation experiment on vertebrate 
photoreceptors (RET) and olfactory neurons (OLF), 
which are both ion channels that are activated using diva-
lent receptors. The activation of OLF and RET ion chan-
nels is shown in Fig. 12B after ion current normalization. 
The root mean squared (RMS) linker length values at the 
lowest points on the RET and OLF theory curves are pre-
dicted to be optimal based on the enhancement effect 
predictions by Diestler and Knapp. The predicted values 
are within a few angstroms of the experimentally calcu-
lated values, which shows the accuracy of minimizing 
thermodynamic free energy with respect to linker length, 
at least for the simplest case of divalent ligands.

Wang et al. analyzed multivalent NP binding affinity by 
varying binding energy, ligand functionalization, bond 
length, ligand density, and NP radius. Key findings were 
that increasing tether length without increasing ligand 
density decreased binding efficiency due to tether exten-
sion and a conformational entropy penalty from com-
pression. Simultaneously, however, increasing tether 
length or NP radius increased NP affinity. These predic-
tions were based on Monte Carlo simulations that calcu-
lated a probability of bonds forming from conformational 
entropy of tether extension/compression and thermody-
namic free energy models. They showed linear increases 
in binding efficiency with increases in ligand density for 
the monovalent particle simulations. The researchers 
noted that, in order to minimize thermodynamic free 
energy, the tether length had to be at the equilibrium sep-
aration distance [72], similar to Diestler and Knapp.

Kitov and Bundle created a partition function for NPs 
based on the number of states in a system, which showed 
an increase in binding strength with multivalency. 
These favorable bound states result from an increase in 

Fig. 13  Average number of available bonds per NP (n) as a function 
of the log volume fraction of colloids. At low NP concentrations, a 
linear decrease in available bonds per NP is observed, while at larger 
concentrations the decrease follows a power law. From reference [74]
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degeneracy, through increased in entropy and reduced 
thermodynamic free energy. The multivalent binding 
strength of NPs can be improved by rearranging the 
receptors and ligands to increase the number of possible 
bonds that can form. This reduced the overall free energy, 
termed in this context as reducing the avidity entropy. 
Avidity entropy is a function of the degeneracy of bound 
states calculated based on the positions of the surface 
ligands/receptors and the permutations of wall and NP 
surface curvatures [73].

9.2 � Minimizing conformational entropy
Researchers simulated a fixed number of NPs diffusing to 
a flat surface with a fixed density of receptors. By calcu-
lating the conformational entropy of the ligand receptor 
interaction, the receptors on the surface, and the ligated 
NPs, Fig. 13 shows a linear regime at low concentrations 
and a power law at high concentration. It is interesting 
to note that Fig. 13 is an attachment rate that mimics a 
surface depletion effect, or a reduction in NP attachment 
due to a lack of available receptors. This result qualita-
tively confirmed, by experiment, the researchers’ calcula-
tions and simulations of minimization of conformational 
entropy. The two regimes are maintained qualitatively for 
a small number of receptors [74].

A minimization of conformational entropy host–guest 
binding for multivalent guests with monovalent hosts 
was developed that used a similar effective concentration, 
Ceff  , along with calculations of rate constants and diffu-
sion-limited association. It was found that multivalent 
interactions improved binding efficiency. Huskens et  al. 
showed the linear attachment rate at low concentrations, 
as well as a power law for attachment rate at high con-
centrations. The researchers here noted Langmuir-type 
adsorption behavior. Their results only deviated at high 

NP concentrations because they could not account for 
biomolecular bond stability using the Langmuir model. 
The Huskens et  al. thermodynamic work on effective 
concentration and guest host interactions had excel-
lent model fitting with experimental data and was able 
to determine intrinsic binding constants from only basic 
assumptions about molecular stoichiometry, geometry, 
and available data on monovalent interactions [75].

9.3 � Molecular motion
A Monte Carlo-based kinetic model that described a 
framework for simulating polymer motion was first cre-
ated by Deutsch and Binder [76]. This consisted of a bond 
fluctuation model (BFM) combined with a lattice model 
for dense polymer solutions and polymer mixtures in three 
dimensions. The next advance for polymer chains was the 
Reptation model, which described anisotropic “slither-
ing” of a polymer chain with long flexible tethers, similar 
to a snake. Reptation dynamics were modeled through 
real world experimental analyses [77] and computational 
validation [78]. The Rouse model involves a series of beads 
connected by Hookean springs, and for short flexible teth-
ers, is more accurate. This is because for short polymer 
chains, minimal bending occurs, which reduces entangle-
ment. The Rouse model is accurate for depicting the mini-
mal entanglement, while the slithering tubes of reptation 
are more accurate for long polymer chains in an entangled 
regime. Classical Rouse simulations work by randomly 
selecting a direction and distance for each monomer unit 
to move. The probability of motion is higher if the lattice 
site being moved to is empty, and the resultant bond vector 
is allowed. If both variables are favorable, then consequent 
motion ensues, otherwise a new probability is calculated. 
However, there is a regime between Reptation and Rouse 
that doesn’t fully describe polymer chain biophysics [79]. 

Fig. 14  The partition function for polymer position (Z) calculated from the number of positions a polymer can occupy for a given length of 
polymer (s), number of chain ends (N = 2), and types of vertices ( σp ). σp is proportional to the number of ways the segment vertices can flex. A No 
flexible vertices, therefore the partition function is only proportional to the number of chain ends to the power of the chain end vertex constant 
( σ1 ), or Z ∼ N2σ1 . B There are 2 chain ends and a vertex with 4 possible configurations, or Z ∼ N2σ1 sσ4+2σ1 . C There are 2 chain ends and a vertex 
with 6 possible configurations, or Z ∼ N2σ1 sσ6+2σ1 . From reference [81]
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Evans [80] also performed similar work explaining the 
mechanics of bond formation, but with a computational 
solution that minimized total free energy for bridges 
between membranes. This model determined the mini-
mum macroscopic tension to separate the membranes and 
the maximum macroscopic tension for bridge formation. 
Evans’ computational solution is an extension of Bell’s orig-
inal model, which further the understanding and predic-
tions of bond formation. Lee et  al. described geometrical 
considerations for a partition function of polymer binding. 
Incorporating the Rouse model, the researchers considered 
a chain of monomers that must overcome a volume barrier 
with osmotic pressure acting as boundary conditions. Their 
results suggested that chain folding is another key mecha-
nism for efficient internal polymer binding, as shown in 
Fig. 14 [81]. A similar chain configuration geometrical par-
tition function was described by Sung and Park [82]. Sarkar 
et  al. explored numerical models of multivalent adhesion 
using Brownian motion, polymer melt Reptation models, 
and crosslinking density for deformable NPs. Researchers 
explored orientation, deformation, and shear stress, and 
found an accurate stiffness for crosslinkers. Sakar et al. used 
a coarse grain model of NPs because Brownian motion, 
polymer melt reptations, and crosslinking dominated the 
deformation of the NPs [83]. Further work on the motion 
of flexible NPs was performed by Farokhirad et al. [84].

9.4 � Diffusion of a sphere
Kinetic models trace their roots to the Langevin equa-
tions, which dictate that the mean squared displacement of 
a spherical NP is stochastic, arising from random fluctua-
tions of solvent molecules, which is also known as Brown-
ian motion.

where m is the mass, v is the velocity, � is the viscosity, 
and 

⇀
η (t) is noise following from a gaussian distribution. 

Boulbitch et  al. confirmed experimentally and theoreti-
cally that at small ligand concentrations, the adhesion 
regime is governed by diffusivity, while at high ligand 
concentrations, the adhesion regime is governed by 
ligand receptor association [85, 86]. Non-equilibrium 
conformations have also been explored [87–91], but are 
outside of the scope of this article.

9.5 � Shear force on a sphere
For situations in which NP adhesion occurs under fluid 
flow, the role of hydrodynamic shear force, Fsh , can 
assessed for spherical particles near a wall using the analy-
sis by Goldman, Cox, and Brenner [92]:

(14)m
d
⇀
v

dt
= −�

⇀
v +

⇀
η (t)

where a is the NP radius, µ is the chemical potential, 
and S is the length of the NP bond. The term µS should 
be ~ 1 Pa, which would therefore set the shear force act-
ing on a 100  nm particle to be ~ 0.5 pN. This is insuffi-
cient force to break most single biological bonds, which 
are typically in excess of 100 pN [60]. Furthermore, AFM 
measurements have shown that forces greater than 200 
pN are required to break immunoglobulin biological 
bonds [93].

10 � Integrated models and simulations 
of multivalent NP adhesion

10.1 � Membrane undulation
Model systems have include rigid, static surfaces, such as 
glass or plastic, but biological membranes are fluid and 
always in motion. The dilation and movement of surfaces 
is persistent due to thermal effects, and can be particu-
larly important in environments with shear stresses and 
bulk flow. At the nanoscale, relative motion between a 
particle and a surface is not governed by macroscopic 
forces such as bulk flow [54], but instead dominated by 
thermal collisions. As a result, a study by Chung and Yu 
inspected the effect of a moving membrane surface on 
a bound NP, with considerations for thermal forces act-
ing upon transport of both the membrane and NP [94]. 
Utilizing coupled Langevin equations, and governing 
undulations of the membrane surface using the Helfrich 
Hamiltonian equation in Monge parametrization, the 
authors modeled dynamics within a Fourier space under 
deterministic and stochastic conditions. Inspection of the 
autocorrelation functions indicated that mobile, fluctu-
ating surfaces reduce the oscillatory behavior of velocity 
relaxation despite the NP’s obedience to the Maxwell–
Boltzmann velocity distribution. Furthermore, the effect 
of oscillatory modulation increased for a higher kA , 
and lower surface rigidity. In contrast, as surface rigid-
ity increased, it was found that fluctuations in NP posi-
tion aligned more closely with fluctuations of membrane 
binding sites, and the distribution of particle-membrane 
distances became increasingly narrow. Finally, varia-
tions in relative NP-membrane position influenced bond 
strengths; by implementing two locally harmonic stable 
equilibria, “bond states” were segmented and the tran-
sition rates between these bond states were measured. 
Addition of the moving membrane corresponded to an 
increase in the rate of bond state transitions [93].

A biophysical model of NP adhesion was developed 
by Radhakrishnan et  al., which computed membrane 
entropy through two main simulation techniques [95]. 
First, the researchers separated the oscillating harmonics 

(15)Fsh =
10πa2

µS
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of a membrane through principal component analy-
sis and Fourier decomposition of Helfrich energies, as 
well as application of the equipartition theorem. After 
accounting for the stretch modulus of the membrane, 
both methods agreed on membrane entropy calcula-
tions. Furthermore, these membrane entropies were on 
the same order of magnitude as the NP conformational 
entropy and NP-receptor binding enthalpy. The enthalpy-
entropy relationship between the formation and destruc-
tion of bonds on spherical NPs showed that structural 
flexibility promoted higher levels of multivalent adhesion 
and stronger avidity, as compared to rigid spherical NPs 
[95]. The same group later compared their prediction to 
other groups using NPs injected into a mouse model [96, 
109]. However, the authors were quick to exercise caution 
when interpreting this agreement between simulation 
and real-world experiments due to modeling approxi-
mations. More research is required to confirm whether 
shear rate is significant in vivo for flexible NPs, but simu-
lation results are not promising. Simulations have shown 
that micron-sized particles display better margination 
independent of shear rate. However, this work failed to 
consider that micron-sized particles would increase 
shear force acting on bonds, leading to decreased avidity. 
Another interesting conclusion from this paper was that 
although spherical particles have a higher margination 
effect, ellipsoidal particles display enhanced adhesion due 
to slower rotation, which is caused by a higher moment 
of inertia [97]. Based on these conclusions, a hypotheti-
cal way to decouple these disparate effects could be to 

create spherical microparticles with ellipsoidal NPs 
inside. Once the microparticles reach a critical distance 
from the endothelium due to margination, the ellipsoi-
dal NPs would be released. This would achieve enhanced 
margination without sacrificing affinity. A mechanism 
that would allow microparticles to be aware of their dis-
tance from the endothelium is not currently known, but 
could involve a surface enzyme or soluble factor.

Yuan et  al. used simulations to demonstrate that NP 
radius and ligand/receptor density exhibit a phase tran-
sition with exiguous ligands and endocytosis [98], as 
shown in Fig.  15A. After estimating NP wrapping, or 
the amount of membrane coating during endocytosis 
(Fig.  15B), from a Boltzmann distribution, their analy-
ses showed that wrapping is driven by adhesion strength 
but penalized by membrane deformation. Through limit-
ing conditions of enthalpic contributions, a lower bound 
of ligand density and particle radius can be found. The 
lower bound of ligand density is a good predictor of high 
binding affinity and endocytosis due to its accurate con-
tribution to membrane deformation calculations. Below 
these lower bounds, they found the “Ligand-Shortage 
Phase” (I), or that ligand density was too low to support 
NP binding. Alternatively, there is an upper limit to tun-
able endocytosis when there are too few receptors on the 
surface as compared to the number of ligands available 
for binding to the surface, which is why particle radius is 
a factor, known as the “Receptor-Shortage Phase” (III). 
This upper bound on ligand density and NP radius was 
also set by an entropic limit, above which adhesion was 

Fig. 15  A Plot of NP Radius vs Ligand Density, given as a percentage of surface coverage, showing that varying adhesion strengths leads to a phase 
diagram. Phase (I) describes a lower limit to ligand density compared to the density of receptors, and is known as the “Ligand-Shortage Phase”. 
Phase (III) is the upper limit to tunable endocytosis when there are too few receptors on the surface as compared to the number of ligands available 
for binding to the surface, and is known as the “Receptor-Shortage Phase.” Finally Phase (II) describes NPs with matching receptor and ligand 
densities adherent enough to overcome the limiting enthalpies and membrane undulation entropy, is known as the “Endocytosed Phase”, and is 
shown between the dotted white and red lines. B Schematic showing different levels of wrapping behavior for multivalent NPs. From reference [98]
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too weak to overcome membrane deformation. NPs with 
matching receptor and ligand densities are adherent 
enough to overcome the limiting enthalpies and mem-
brane undulation entropy, this is known as the “Endo-
cytosed Phase” (II). The ratio of high ligand density, 
~ 80–100% surface coverage, to small particle radius, 
~ 22–25  nm, was the sweet spot for maximum endocy-
tosis, correlated with high attachment rate. However, an 
asymptotic decrease was observed at a particle radius 
of 20  nm, which is the limit where decreasing particle 
radius negatively impacts endocytosis due to an inability 
to overcome the membrane undulation entropic barrier 
[98]. Wrapping thermodynamic analyses have also been 
independently verified by Meng and Li [99].

10.2 � Superselective adhesion
There is a great deal of interest in designing environments 
where NPs bind to regions of high receptor density, while 
leaving sparse receptor regions largely unaffected [100]. 
This sharp variation between receptor density and bond 
formations was discussed in a previous section, and 
defined as superselectivity. Particularly for most types 
of cancer, identifying receptors that are entirely unique 
to the diseased state is a major challenge. Therefore, it is 
useful to take an approach that selects between diseased 
and normal cells based on receptor density [101–103]. 
This could include multivalent binding via a single target 
receptor, or possibly multiple different receptors, but the 

ultimate goal is to induce a switch-like transition in bind-
ing efficiency for multivalent NP adhesion [104]. Such 
behavior would be ideal for physiological contexts that 
demand high contrast and resolution, as well as minimal 
off-site effects from binding to normal cells. Numerical 
simulations have already elucidated the fact that mono-
valent adhesion cannot yield superselectivity, and both 
numerical simulations and experimental testing have 
demonstrated that superselective regimes correlate with 
nonlinear increases in receptor binding arrangements, 
not by highly varying binding rates [98, 100].

Multivalent adhesion has been understood by grouping 
states based on thermodynamic free energy. In a seminal 
work, Martinez-Veracoechea et  al. [100] built upon the 
partition function from Kitov and Bundle [73] to cre-
ate a grand canonical partition function that described 
the number of states of a system that can exchange both 
heat and particles with the environment at a fixed tem-
perature, volume, and chemical potential. This produced 
the common Langmuir adsorption isotherm (adsorption 
function), which showed the adsorption probability’s 
reliance on receptor density. The researchers first dem-
onstrated that monovalent binding behavior could only 
linearly increase the adsorption function with respect to 
receptor density. Therefore, researchers submitted two 
possibilities for superselctive multivalent adhesive behav-
ior. NPs can attach with many short and stiff bonds or a 
small number of long flexible bonds. In both cases, the 
coarse-grained Monte Carlo simulations validated the 
analytical adsorption function with nonlinear growth 
with respect to receptor density, as shown in Fig. 16.

10.3 � Nano adhesive dynamics (NAD) simulations
As discussed, Haun et  al. performed a series of flow 
chamber binding experiments that established relation-
ships between multivalent NP attachment ( kA ) and 
detachment ( kD ) rate constants and various parameters 
including receptor/ligand surface densities, flow rate, NP 
size, and monovalent binding kinetics ( kof  , kor  ) [37, 48, 54]. 
To better understand these relationships, and further 
study the time-dependent detachment rate phenomenon, 
Wang M et al. developed a simulation method that com-
bined Brownian motion, hydrodynamic forces, and a sto-
chastic treatment of bonding [105]. A Monte Carlo 
method was used to create distributions of NP dynamics 
to extract the expected rate value for bond formation and 
rupture ( kf , kr ; Eqs. 6 and 9), and subsequently the prob-
abilities for bond formation and rupture ( Pf ,Pr ; Eq. 10). 
The Bell model for binding was used to describe binding 
kinetics and HIV docking model, called Brownian Adhe-
sive Dynamics (BRAD) [102, 103], was used to model NP 
motion via a refined Langevin equation. By leveraging 

Fig. 16  State-based Monte Carlo simulation results prediction 
superselectivity. Under the monovalent case, increasing receptor 
densities vary by a factor of three increased binding efficiency by 
< twofold. With multivalent binding, however, binding efficiency 
increased by a factor 10. From reference [100]
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these methods to study NP adhesion, the resulting simu-
lations were named Nano Adhesion Dynamics (NAD).

NAD simulations were developed to model experi-
mental data obtained using a 200  nm diameter sphere 
and adhesion mediated by an antibody to the vascular 
adhesion molecule ICAM-1 [54]. The focus was only 
on detachment after NP docking, since this simpli-
fied the simulation and was related to the biggest open 
questions. Simulations were initiated by generating the 
NP and a flat surface, then decorating the former with 
antibody and the latter with ICAM-1 at the appropriate 
molecular sizes and densities. Next, a single bond was 
formed that tethered the NP to the surface (Fig. 17A). 
During each time step, the NP was rotated and trans-
lated based on the Langevin treatment, bond break-
age was assessed using the Monte Carlo algorithm, 
and unbound ICAM-1 antibodies were sampled for 
bond formation. By combining the results of multiple 
detachment simulations into an ensemble detachment 
profile, the resultant curves could be fit using Eq. 12 to 
obtain the parameters, kD0 and β . Under a large subset 
of conditions, time-dependent detachment rate behav-
ior was clearly observed. Upon inspection, a correlation 
was then identified between time-dependent detach-
ment and situations in which bonds were subjected to 
high mechanical forces. Specifically, these forces were 
as high as 300 pN, which is sufficient to rupture bonds. 
Moreover, the source of bond stress was Brownian 
motion of the NP, which imparted an entropic penalty 
to the underlying bonds. Another key finding was the 
apparent time-dependency of detachment rate was 
caused by heterogeneity in terms of NP binding ability, 
as some NPs were able to form more bonds than others. 

Over time, those restricted to lower bond numbers 
were removed from the system by detachment, which 
progressively evolved the remaining NP population 
towards higher bond numbers and overall adhesion sta-
bility (Fig. 17B). Based on this insight, it was concluded 
that it will not be possible to characterize a population 
of NPs using a single multivalent detachment rate, and 
for that matter, avidity. Instead, a series of detachment 
rates co-exist together, each corresponding to sub-
populations that possess unique bond numbers and 
dynamics [105, 106]. This simulation is unique because 
it correctly predicted the power law detachment of NPs 
in experiment. As anticipated, the mean bond number 
monotonically increased during the first second a NP 
is bound. Over a longer period of time, an increase in 
mean bond number was attributed to detachment of 
NPs with low bond valencies due to low bond strength 
[105].

Building on the latter observation regarding NP bind-
ing heterogeneity, Wang et  al. developed a population-
scale detachment model [107]. The key was to develop 
the concept of Bond Potential (BP), which was the maxi-
mum number of bonds that each NP could achieve due 
to availability of free receptors or ligands. This BP var-
ied because both molecules were randomly distributed. 
Using NAD simulation results, a constant detachment 
rate was assigned to each BP category, and an aggregate 
detachment rate was calculated for the entire population. 
The empirical BP model accurately predicted experimen-
tal results, as shown in Fig. 18.

Fig. 17  NAD simulations. A NP decorated with antibody, flat surface decorated with ICAM-1 molecules, and a single bond tether. B Plot containing 
both NP detachment data and a trace of mean bond number. The detachment curve shows a slowing rate characteristic of the time-dependent 
phenomena. This corresponds to an increase in mean bond number. From reference [105]
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Fig. 18  Fitting of time-dependent NP detachment curves using the population-scale detachment model for different experimental conditions 
including the A base case, B low antibody density, C low ICAM-1 density, D ICAM-1 dimers, E clustered ICAM1 dimers, F γ = .29 nm, G γ = 0.3 nm, H 
kr = 5× 10

−4s−1 , I kor  = 10−3s−1 . From reference [107]

Fig. 19  A Multivalent NP attachment rate ( kA ) varies as a function of the number of antibodies per nanocarrier, where Ab/NC spans 12–162 
(5–74% surface coverage). B Endothelial cell targeting percentage vs #Ab/NC. The simulation results from A strongly correlates with the endothelial 
targeting percentage in B. From reference [108]
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10.4 � Validation of computational frameworks in vitro 
and vivo

Liu et  al. developed a Monte Carlo algorithm based on 
the weighted histogram analysis method (WHAM) that 
accurately predicted free energy landscapes and quanti-
tatively agreed with in vitro cell binding assays for 50 nm 
diameter NPs with ICAM-1 [108]. Additionally, the cal-
culated NP free energy space produced binding affinities 
that agreed with in vitro AFM measurements. NP simula-
tions varied antibody surface coverage ( σs defined as anti-
bodies/NP), and a threshold σs appeared at 100, below 
which the attachment rate drastically reduced (Fig. 19A). 
Figure 19A is split between a Potential Mean Force calcu-
lation of 3 mean bond valencies (green) and 2 mean bond 
valencies (red). Thus, the researchers demonstrated that a 
mean bond valency shift of 3 to 2 is significant enough to 
cause an exponential decay in attachment rate. Moreover, 
the trend for σs in Fig.  19A concurred with the in  vitro 
vascular endothelium targeting data shown in Fig. 19B, as 
well as AFM force rupture experiments. This is an excel-
lent example where simulation and modeling enhanced 
experimental results to provide previously unverifiable 
insights.

10.5 � Additional computational frameworks
The following methods are out of the primary scope 
of this review, but worth noting as novel target-
ing approaches. For micron-Sized NPs, Decuzzi et  al. 
described three key biophysical steps starting when 
the NP is within a short range, tens of nanometers, of a 
ligand receptor. A transient bond is formed, and immedi-
ately there is a viscoelastic elongation of the bond, tether-
ing it to the surface. The second step is deceleration of 
the bond-NP system and a resultant rolling across the 
surface of the endothelium. The final step is an extension 
of the bond-NP system across the cell endothelium which 
constitutes firm adhesion. The bonds created between 
a NP and a cell wall are balanced between short range 
attractive forces, Van Der Waals interactions, short range 
repulsive forces, and steric forces from overlapping elec-
tron clouds [109].

Molecular Dynamics (MD) simulations model forces 
on each individual atom and molecule within a system, 
moving through short time steps (pico to nano seconds), 
and provide accurate stochastic equations of motion that 
can be used to predict the behavior and shape of nano 
and pico scale objects [110]. Mackenzie et  al. used MD 
simulations to provide a molecular-scale view of docking 
dynamics, which can provide more detailed insight into 
multivalency, binding free energy, and entropic losses. 
Specifically, the authors showed that, for NPs smaller 
than 350  nm in diameter, binding affinity is dictated by 
a balance of enthalpy and entropy, whereas for larger 

NPs, the enthalpy of binding is the strongest predictor. 
Furthermore, anisotropic NPs have a higher propensity 
for multivalency as compared to their spherical counter-
parts. Finally, it has been shown that varying ligand type 
can modify binding affinity without changing multiva-
lency [111].

Physiologically Based Pharmacokinetics (PBPK) mod-
els seek to understand how targeted NPs would behave 
inside the body through a mathematical description of 
adsorption, distribution, metabolism, and elimination. A 
key PBPK model was developed by Radhakhrishnan et al., 
where simulation modeling and real-world experimen-
tal results confirmed that higher red blood cell volume 
fraction increases NP margination, which increased rela-
tive binding of flexible and nonflexible NPs. The model 
indicated roles for protein expression and biomolecular 
bond mechanics that were validated upon intravenous 
NP injection into mouse models [96]. The researchers 
claimed that higher shear rate leads to enhanced target-
ing of flexible NPs, known as the shear enhancement 
margination factor. However, this effect was only mar-
ginally significant [112]. Furthermore, it has been shown, 
through agreement between model predictions and tis-
sue experiments in  vivo in mice, that shear forces and 
volume fraction effects from hydrodynamic transport 
improve functionalized NP disease site targeting effi-
ciency. This effect does not originate from multivalent 
binding. Furthermore, grouping NPs by bond number 
has been shown to predict the time-dependent detach-
ment of functionalized NPs from the surface [104].

11 � Conclusions
Nanomedicine has emerged as a potent technology that 
holds the promise of being safer and more effective 
than traditional cancer diagnosis and treatment meth-
ods. Although success in clinical settings has remained 
elusive to date, active targeting holds exciting poten-
tial to enhance NP efficacy so that nanomedicine can 
become part of regular patient care. This is particularly 
true if multivalent binding interactions can be fully lev-
eraged to maximize accumulation at, and internaliza-
tion within, tumor cells. However, as discussed in this 
review, numerous NP design parameters influence mul-
tivalent adhesion. Key parameters discussed included, 
but are not limited to, NP size, NP shape, ligand den-
sity, ligand linker length, and receptor density. Addi-
tionally, the kinetic rate of multivalent bond formation, 
from single tethers to the final equilibrium state, pro-
vides additional control mechanisms, but also higher 
complexity. Thus, computational simulations of multi-
valent NP binding are increasingly needed to track the 
effects for individual parameters in a controlled manner 
and explore parameter space in a manner that would 
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never be tractable for experiments. As our understand-
ing of multivalent adhesion and computational power 
have improved over the years, ever more complicated 
simulations have been developed that simultaneously 
account for transport physics, bond stochastics and 
biophysics, and kinetic treatments of NP adhesion. 
These works have greatly added to our understand-
ing of avidity, superselectivity, mechanical forces, and 
novel adhesion phenomena. Most importantly, these 
computational works are beginning to directly incor-
porate experimental data that serves as critical valida-
tion. Future efforts will ideally be focused on combined 
experimental and computational studies of multivalent 
NP adhesion to add to this knowledge base, as well as 
enable design of the most powerful targeted NP-based 
diagnostic and therapeutic agents for cancer.

List of symbols
kof : Monovalent forward reaction rate; kor : Monovalent reverse reaction rate; 
kf : Multivalent forward reaction rate; kr: Multivalent reverse reaction rate; KA: 
Fundamental equilibrium constant; kA: Individual multivalent attachment 
rate; kD: Individual multivalent detachment rate; κA: Experimental multivalent 
attachment rate; κD: Experimental multivalent detachment rate; α: 
Experimental power law exponent; β: Simulation power law exponent; kB: 
Boltzmann constant; µb: Chemical potential; S: Separation distance between 
receptor and ligand; L: Equilibrium bond length; κ: Hookean spring constant; 
Fsp: Hookean spring force of a biomolecular bond; CW : Wall concentration; 
[B]: Bound particle density; PA: Monte Carlo Probability of Attachment; PD: 
Monte Carlo Probability of Detachment; tB: Time an NP is bound; tref : 
Reference time for unit consistnecy; Fsh: Shear force on a sphere.
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