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A RAINBOW RAMSEY ANALOGUE OF RADO’S THEOREM

J. A. DE LOERA, R. N. LA HAYE, A. MONTEJANO, D. OLIVEROS,

AND E. ROLDÁN-PENSADO

Abstract. We present a Rainbow Ramsey version of the well-known Ramsey-
type theorem of Richard Rado. We use new techniques from the Geometry of

Numbers. We also disprove two conjectures proposed in the literature.

1. Introduction

Given a set X, a k-coloring of X is a surjective mapping c : X → {1, 2, ..., k},
or equivalently a partition X = C1 ∪C2 ... ∪Ck into k nonempty parts called color
classes. A subset Y ⊆ X is called monochromatic under c if it is contained in a
single color class. On the other hand, Y is called rainbow if the coloring assigns
pairwise distinct colors to its elements. Given a coloring of a subset of the integers,
we say that a vector is rainbow if each of its entries is colored differently.

Arithmetic Ramsey Theory concerns the study of the existence of monochromatic
structures, like arithmetic progressions or solutions of linear equations, in every
coloring of subsets of the integer numbers. The classical results in this area include
Schur’s Theorem: For every k, if n is sufficiently large, every k-coloring of the
starting segment of integers [n] = {1, 2, ..., n} contains a monochromatic solution
to the equation x + y = z. Another result is Van der Waerden’s Theorem which
states that for every pair of integers t and k, when n is sufficiently large, every
k-coloring of [n] contains a monochromatic t-term arithmetic progression. One of
the most important examples is the famous 1933 theorem of Richard Rado: Given
a rational matrix A, consider the homogeneous system of linear equations Ax = 0.
This system or the matrix is called k-regular if, for every k-coloring of the natural
numbers, the system has a monochromatic solution. A matrix is regular if it is
k-regular for all k. Rado’s Theorem characterizes precisely those matrices that are
regular. The characterization depends on simple additive conditions satisfied by
the columns of A (which can be found in [12, 9]). In fact, Rado’s Theorem is a
common generalization of both Schur’s and Van der Waerden’s Theorems.

In contrast to Ramsey Theory, Rainbow Ramsey Theory refers to the study
of the existence of rainbow structures in colored combinatorial universes under
some density conditions on the coloring. Arithmetic versions of this theory have
been recently studied by several authors concerning colorings of integer intervals or
cyclic groups, showing the existence of rainbow arithmetic progressions or rainbow
solutions to linear equations under some density conditions on the color classes
[5, 8, 10, 11, 7]. As pointed out in papers [5, 8], one natural research direction is
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to generalize the known monochromatic results to the case of rainbow solutions of
systems of linear equations. In particular the authors of [5] stated that it would be
very exciting to provide a complete rainbow analogue of Rado’s Theorem. The key
purpose of this paper is to provide such a theorem. As a consequence we disproved
two conjectures [8, 5]. Our techniques combine established combinatorial tools with
ideas from convex geometry, particularly Ehrhart’s Theory of lattice point counting
[2, 3].

Definition 1.1. A matrix A with rational entries is rainbow partition k-regular if
for all n and for every equinumerous k-coloring of [kn] (i.e. k-colorings in which all
color classes have size n), there exists a rainbow vector in ker(A). The smallest k
such that A is rainbow partition k-regular, if it exists, is called the rainbow number
of A and is denoted by r(A). A matrix A is rainbow regular if it is rainbow partition
k-regular for all sufficiently large k.

For instance, it is known that both matrices

A1 =
(
1 −2 1

)
and A2 =

(
1 1 −1 −1

)
,

corresponding to 3-term arithmetic progressions and solutions to the Sidon equa-
tion, are rainbow regular matrices with rainbow numbers r(A1) = 3 and r(A2) = 4
respectively (see [5, 7]).

The authors of [5] and [7] claimed that every 1×n matrix with nonzero rational
entries is rainbow regular if and only if some of the entries have different signs.
That is correct for n ≥ 3, but incorrect for n = 2. This subtle difference is key
for finding the main theorem. Lemma 2.1 shows that all rational nonzero 1 × 2
matrices are not rainbow regular and is used to prove Theorem 1.5.

The papers [5, 7] contain two different conjectures on the classification of rainbow
regular matrices. However, both conjectures as originally stated have the trivial
counterexample

(
1 −1 0

)
. To avoid this, we state them here in slightly modified

versions.

Conjecture 1.2 (Jungić, Nešetřil, Radoičić [8]). A matrix A with integer entries
is rainbow regular if and only if there exist two linearly independent vectors with
distinct positive integer entries in ker(A).

Conjecture 1.3 (Fox, Mahdian, Radoičić [5]). A matrix A with integer entries is
rainbow regular if and only if the rows of A are linearly independent and ker(A)
contains a vector with distinct positive integer entries.

After finding counterexamples to the above conjectures, we were able to obtain a
Rado-style classification theorem of rainbow regular matrices. Moreover, the defi-
nition of rainbow regularity is stronger than it seems. We show that if A is rainbow
regular, it satisfies a stronger version of rainbow regularity where the equinumerous
condition is relaxed.

Definition 1.4. A matrix A with rational entries is robustly rainbow regular if there
exists some constant C, depending only on A such that for every ε > 0, positive
integer N , and large enough integer k, the following holds: For every k-coloring
of [N ] in which each color class contains at most (C − ε) N√

k
elements, there is a

rainbow vector in ker(A).

Note that (robust) rainbow regularity is actually a property of the kernel rather
that the matrix.
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In our main theorem below, we classify rainbow regularity in terms of both the
matrix A and its kernel.

Theorem 1.5. Let A be a m × d rational matrix. The following conditions are
equivalent.

(i) A is rainbow regular.
(ii) A is robustly rainbow regular.

(iii) There exists a vector in ker(A) with positive integer entries, and every sub-
matrix of A obtained by deleting two columns has the same rank as A.

(iv) There exists at least one vector in ker(A) with positive integer entries, and
for every pair of distinct indices (i, j), there exists a pair of vectors x =
(x1, . . . , xd) and y = (y1, . . . , yd) in ker(A) such that xiyj 6= xjyi.

From Theorem 1.5 the reader can easily see that the matrix
(
a −b 0

)
, with

a, b positive integers gives a counterexample to Conjectures 1.2 and 1.3. However,
not all counterexamples are this simple. For instance, the matrix1 0 1 −1 0

0 1 1 0 −1
1 0 0 1 −1


has a kernel generated by (1, 2, 3, 4, 5) and (1, 2, 4, 5, 6) but is not rainbow regular.

In the next section we give the proof of Theorem 1.5 and we prove the following
corollary about k-colorings of N instead of [N ].

Corollary 1.6. Given a rational rainbow regular m × d matrix A there exists a
constant C, depending only on A, that satisfies the following: For every k-coloring
of N with each color class having upper density less than C√

k
, there is a rainbow

vector in ker(A).

Ramsey theory has also been used in graph theory, rainbow Ramsey theory is
no different and we state a corollary to Theorem 1.5 that describes the properties
of graphs and it suggests an interesting connection to the theory of no-where-zero
flows on graphs (see [4, 13] and references therein). For the sake of completeness we
recall some definitions and well known facts. A graph is called k-edge-connected if
has no edge cut of cardinality less that k. A k-flow of an oriented graph G = (V,E)
is an integer function φ on E such that −k < φ(e) < k for all e ∈ E, and satisfies
the Kirchhoff’s law, that is

∑
e∈δ+(v) φ(e) =

∑
e∈δ−(v) φ(e) for each v ∈ V . If a

graph has a k-flow, then it has a positive k-flow. If in addition φ(e) 6= 0 for every
e ∈ E we call φ a nowhere-zero-k-flow. For a given oriented graph G = (V,E)
with |V | = n and |E| = m we consider the incidence matrix M which is a n ×m
matrix. The rank of M is n− c where c is the number of connected components of
G. Theorem 1.5 has the following graph theoretic corollary (for a monochromatic
analogue see [6]).

Corollary 1.7. The connected components of a graph G are all 3-edge-connected
if and only if for some orientation of G there exists a constant C depending only
on the graph such that for every ε > 0, positive integer N , and large enough integer
k, it follows that: for every k-coloring of [N ] in which each color class contains at
most (C − ε) N√

k
elements, there is a rainbow flow on that orientation of G.
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1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

Figure 1. An explicit coloring for N = 12 showing that the ma-
trix

(
1 − 2

)
is not rainbow partition 3-regular.

In the third section we look at the matrices which give rise to Fibonacci se-
quences; we use Theorem 1.5 to show that they are rainbow regular and give a
bound for their rainbow number.

2. Proof of Theorem 1.5 and its corollaries

We start this section by considering the simplest case. We show that for any
1× 2 matrix A there is an equinumerous k-coloring of [kn], for sufficiently large k
and n, without rainbow vectors in the kernel of A. This case will later be used in
the proof of the main theorem.

Lemma 2.1. If A is a nonzero rational 1×2 matrix then A is not rainbow regular.

Proof. Assume A =
(
p q

)
with p, q ∈ Q. Then ker(A) is generated by some vector

(a, b).
If either p or q are equal to 0 then either a or b equals 0, thus ker(A) contains

no vectors with positive integer entries. The same conclusion holds if p and q have
the same sign. Therefore, in both cases, the matrix A is not rainbow regular.

Assume p and q are nonzero and have opposite signs. If p = −q, then ker(A) is
generated by (1, 1) and A is not rainbow regular. So we may assume that p 6= −q,
a and b are relatively prime, and a < b.

Let N = nk. In order to define an equinumerous coloring without rainbow
solutions, we give a partition P of [N ]. Each of its classes will be monochromatic.
So i must be in the same class as j if either (i, j) or (j, i) are in ker(A), i.e., ai = bj
or bi = aj.

Since a and b are relatively prime, every integer can be written uniquely as aαbβc
where c is not divisible by neither a or b. The equivalence classes are of the form{

aαb0c, aα−1b1c, . . . , a0bαc
}
∩ [N ].

As mentioned before, all the elements in each class will be colored with the
same color. Now, using a greedy algorithm, we can define the k-coloring of [N ]: In
each step, assign a least used color to a largest uncolored class. For a step-by-step
example of our coloring procedure see Figure 1.

All that remains is to show that this is an equinumerous k-coloring. To do this
we need some bounds related to P; specifically, on the cardinality of the largest
class and the number of classes with one element.
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Observe that each class can be represented by its smallest element. The set of
these representative elements is precisely the set of integers in [N ] which are not
divisible by b. Note that the largest element of any class in P is of the form aγbβc
with aγbβc ≤ N , and the number of elements of this class is β + 1. So clearly the
maximum cardinality of any class is at most 1 + logb(N).

We proceed by counting the number of classes in P with cardinality one. These
classes are represented by aαc with either α = 0 or aα−1bc > N . Here we will
assume that both k and n are equal and large compared to a and b, so we can find
asymptotic bounds up to multiplicative constants depending only on a and b.

The number of classes corresponding to α = 0 are⌊
N

a

⌋
+

⌊
N

b

⌋
−
⌊
N

ab

⌋
= Ω(N).

The classes corresponding to aα−1bc > N are in bijection with the elements c ∈(
a
bN,N

]
\ bZ. The number of those classes is approximately

b− 1

b

(
N − a

b
N
)

= Ω(N).

Thus the number of classes with cardinality one is Ω(N).
Assume that the coloring defined above is not equinumerous. Then at some point

during the greedy algorithm, a color becomes used more than n times. Consider
the first time that this happens: some equivalence class of size m is assigned a color
that has already been used at least n−m+1 times. Note that m > 1, otherwise we
would have already finished coloring. Because on each step we use the least used
color, each color has been already used at least n −m + 1 times. It follows that
k(n−m+ 1) ≥ N − k(1 + logb(N)) integers have been colored. Therefore at most
k(1+logb(N)) elements of [N ] remain uncolored, but we have not colored any class
of size one yet. Therefore there are at least Ω(N) uncolored integers. This gives

Ω(N) ≤ k(1 + logb(N)) = O
(
N1/2 log(N)

)
,

a contradiction.
Therefore, for sufficiently large k = n, the coloring is equinumerous and thus A

is not rainbow k-regular. �

Now we are ready to prove Theorem 1.5. We point out that implication (iii) =⇒
(ii) is based on a proof of [7], but with new ideas from the theory of lattice points
inside polyhedra started E. Ehrhart [2, 3].

Proof of Theorem 1.5.
(i) =⇒ (iv): We show the contrapositive. If ker(A) contains no vectors with positive
integer entries or there exist indices i 6= j such that xiyj = xjyi for all x, y ∈ ker(A),
then A is not rainbow regular.

If ker(A) contains no vector with all positive integer entries then A is clearly not
rainbow regular, so we assume that there exists q ∈ ker(A) with positive integer
entries and that for every x ∈ ker(A), xiqj = xjqi.

So
(
qj −qi

)
is a 1 × 2 nonzero rational matrix which, by Lemma 2.1, is not

rainbow regular. That is, for arbitrarily large k0 there exists k > k0, n and an
equinumerous k-coloring of [kn] such that if xiqj − xjqi = 0, then xi and xj share
a color. Therefore A is not rainbow regular.
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(iv) =⇒ (iii): Suppose that there are two columns i and j of A such that the
submatrix A′ obtained by deleting them from A has a different rank than A.

If A has linearly dependent rows, we may remove them and pass to the corre-
sponding submatrices of A and A′ without changing the kernel.

Since A′ is a submatrix of A, rank(A′) < rank(A). Because A and A′ have the
same number of rows but A′ has smaller rank, the rows of A′ are linearly dependent.

Let r` and r′` be the `-th rows of A and A′, respectively. Then there exist scalars
α1, . . . , αm not all zero, such that

∑m
`=1 α`r

′
` = 0. Consequently, the entries of

r =

m∑
`=1

α`r`

are zero except possibly for the i-th and j-th entries. Let qi and qj be those entries.
Then every x, y ∈ ker(A) satisfy r · x = r · y = 0, thus qixi + qjxj = qiyi + qjyj = 0
and therefore xiyj = xjyi.

(iii) =⇒ (ii): Since each color class contains at least one element, then (C−ε) N√
k
≥

1 so that the hypothesis in (ii) can be satisfied. Consequently, we need only prove
that ker(A) contains a rainbow vector for every large enough N independent of k.

We wish to find an upper bound for the number of vectors with entries in [N ]
that are not rainbow. For this we introduce some new notation. If i, j ≤ d then Aî,j
denotes the matrix obtained by removing the i-th column Ai and the j-th column
Aj from A, and if x is a vector then xî,j denotes the vector obtained by removing

the i-th and j-th entries x.
If x ∈ [N ]d ∩ ker(A) is not rainbow, then x has two entries that share a color

(they may have the same value). Assume i and j are these entries, and z1 and z2
are their respective values. Then xî,j must solve the equation

Aî,jy = z1Ai + z2Aj .

In other words, if this equation has no solutions in [N ]d−2 then there is no x ∈
[N ]d ∩ker(A) with xi = z1 and xj = z2. If this equation has some solution y0, then
the set of solutions is simply y0 + ker(Aî,j).

By assumption, rank(Aî,j) = rank(A), hence dim(ker(Aî,j)) = dim(ker(A))− 2.

Thus we only need to choose values for dim(ker(A))−2 of the remaining coordinates
and the rest will be determined. Since there are at most N possible values for each
coordinate, there are at most Ndim(ker(A))−2 ways to choose the remaining d − 2
values of x.

Now we can bound the number of non-rainbow vectors in [N ]d ∩ ker(A). Since
each color class contains at most (C − ε) N√

k
elements, there are at most

k

(
(C − ε) N√

k

)2

= (C − ε)2N2

pairs of integers in [N ] that share a color. Given two such integers z1 and z2, there

are at most
(
d
2

)
ways to place them in a vector x ∈ [N ]d. Therefore there are at

most

(2.1) (C − ε)2N2

(
d

2

)
Ndim(ker(A))−2 = (C − ε)2

(
d

2

)
Ndim(ker(A))

non-rainbow vectors x.
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Now we must bound the number of vectors in [Nd]∩ker(A) from below. Consider
the polytope P = [0, 1]d ∩ ker(A) and its interior P ◦. The number of vectors in
[N ]d ∩ ker(A) is bounded below by the number of integer vectors in NP ◦.

Since P is a rational polytope, the number of integer points in NP is given by
its Ehrhart quasi-polynomial LP (N) [3, Chapter 3], which has degree dim(P ) =
dim(ker(A)). By Ehrhart-Macdonald reciprocity [3, Chapter 4], the number of
integer points inNP ◦ is given by the quasi-polynomial p(N) = (−1)dim(P )LP (−N).
Let ν be the leading coefficient of p (this is in fact the volume of the polytope P ).
Note that ν is a constant depending only on A.

Take C =
√

ν

(d
2)

. Then p(N) is larger than the coefficient of Ndim(ker(A)) in (2.1)

for all ε > 0. Therefore, for sufficiently large N , the non-rainbow vectors do not
cover [N ]d ∩ ker(A).

(ii) =⇒ (i): This follows immediately by taking N = kn. �

Now we show that as a consequence of Theorem 1.5 that we can deal with
colorings of N where the color classes have bounded upper density:

Proof. (of Corollary 1.6) Let A be a rational rainbow regular m × d matrix. By
Theorem 1.5, there is some C := C(A) such that for every ε > 0, positive integer
N , and large enough integer k, it follows that: every k-coloring of [N ] in which
each color class contains at most (C − ε) N√

k
elements, contains a rainbow vector in

ker(A).
Suppose N is k-colored such that each color class has upper density strictly less

than C√
k

. Then there exists N ∈ N and small ε > 0 such that for each color class

K ⊆ N and all n > N ,
#(K ∩ [n])

n
≤ C√

k
− ε.

Consequently, ker(A) contains a rainbow vector. �

We now move to the graph theory consequences:

Proof. (of Corollary 1.7) Let G be a graph.
=⇒ : Suppose each connected component of G is 3-edge-connected. Then G is

bridgeless so by [13], G has a nowhere-zero 6-flow. Consequently, we may choose
an orientation of G which has a positive 6-flow. Let M be the incidence matrix
corresponding to that orientation. Note that the positive 6-flow, written as a vector,
is an element of the ker(M) with positive integer entries.

Consider a submatrix obtained by deleting two columns from M . This corre-
sponds to the subgraph obtained by deleting two edges from G. Because G is
3-edge connected, the deleting of two edges from G does not change the number of
connected components—and thus rank—of G. Hence any submatrix obtained by
deleting two columns from M has the same rank as M .

Therefore M is (robustly) rainbow regular by Theorem 1.5. That is, there exists
a constant C depending only on M (and thus G) such that for every ε > 0, positive
integer N , and large enough integer k, it follows that: for every k-coloring of [N ]
in which each color class contains at most (C − ε) N√

k
elements, there is a rainbow

vector in ker(M)—which corresponds to a rainbow flow on the chosen orientation
of G.
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⇐=: Suppose that for some orientation of G there exists a constant C depending
only on the graph such that for every ε > 0, positive integer N , and large enough
integer k, it follows that: for every k-coloring of [N ] in which each color class
contains at most (C − ε) N√

k
elements, there is a rainbow flow on that orientation

of G. Then the incidence matrix M corresponding to the chosen orientation of G
is robustly rainbow regular. By theorem 1.5, the rank of any submatrix obtained
by deleting two columns from M is the same as the rank of M . This implies that
the deletion of any two edges from G does not change the rank—and thus the
number of connected components—of G. Therefore each connected component of
G is 3-edge-connected. �

3. Examples

We would like to note that as a corollary of Theorem 1.5 all known examples of
rainbow regular matrices are in fact robustly rainbow regular. This includes several
well-known families such as matrices associated with arithmetic progressions. In
this section we use Theorem 1.5 to analyze Fibonacci sequences and show that
their associated matrices are rainbow regular (and thus robustly rainbow regular);
we also give bounds for their rainbow number.

Here we look at sequences p1, . . . , pd where pi+2 = pi + pi+1; we call these
Fibonacci sequences. In this case we use the (d− 2)× d matrices

Ad =



1 1 −1 0 0 . . . 0 0
0 1 1 −1 0 . . . 0 0
0 0 1 1 −1 . . . 0 0
...

...
. . .

. . .
. . .

. . .
...

...
0 0 0 0 0 . . . −1 0
0 0 0 0 0 . . . 1 −1


.

To verify that this matrix is rainbow regular, we show that it satisfies the condition
described in part (iv) of Theorem 1.5.

Let Fi be the usual Fibonacci sequence with F0 = 0 and F1 = 1. Let x =
(F1, . . . , Fd) and y = (F2, . . . , Fd+1). The vector x only has positive integer entries
and it is easy to see that xiyj = FiFj−1 6= FjFi−1 = xjyi.

Next, we present exponential bounds on the rainbow number r(Ad).
Recall that for d = 3, A3 is the Schur equation and r(A3) = 3 (see [1]).

Theorem 3.1. For d > 3, Fd+1 ≤ r(Ad) ≤ (d2 − d+ 1)Fd−1Fd−2.

Proof. For the lower bound, note that any rainbow solution x = (x1, . . . , xd) of Ad
has xd ≥ Fd+1. So for n = 1, k ≥ Fd+1 and therefore Fd+1 ≤ r(Ad).

For the upper bound, we compute an Ehrhart-like polynomial to refine the
bounds in the proof of the (iii) =⇒ (ii) part in Theorem 1.5.

Consider the polytope P = [0, 1]d ∩ ker(Ad). The dimension of ker(A) is 2, so
dim(P ) = 2. The following claim ensures that this is a triangle.

Claim 3.2. The vertices of P = [0, 1]d ∩ ker(Ad) are O = (0, 0, . . . , 0), A =
1

Fd−1
(F0, F1, . . . , Fd−1) and B = 1

Fd−2
(1, F0, . . . , Fd−2).

Proof. Suppose that v = (v1, . . . , vd) is a vertex of P . Since dim(P ) = 2 then two
entries of v are equal to either 0 or 1. If both entries are 0 then v is the origin O.
So assume v contains an entry vi = 1.
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Because v is a Fibonacci sequence containing nonnegative elements then vj ≤
vj+1 for j ≥ 2. Consequently, if vi = 1, then i ∈ {1, d−1, d}, as otherwise vi+2 ≥ 2.

If v1 = 1 then v2 = 0, as otherwise v3 > 1. In this case v = (1, 0, 1, 1, 2, . . . ),
which is B if d = 4 and invalid otherwise.

If vd−1 = 1 then vd = 1, as vd ≥ vd−1. In this case v = (. . . ,−1, 1, 0, 1, 1), which
is B if d = 4 and invalid otherwise.

So assume vd = 1 and v1, vd−1 6= 1. No other entry of v can be 1, so some entry
vj = 0. If j ≥ 2 then v2 = 0 because v2 ≤ vj , in this case v = B. If v1 = 0 then
v = A. �

Therefore the dilation (Fd−1Fd−2)P is an integer polytope. Now we need to
count the number Ld(t) of lattice points in (tFd−1Fd−2)P with positive entries.

Let Q be the polytope obtained by projecting (Fd−1Fd−2)P onto its first two
coordinates. It is a triangle with vertices (0, 0), (Fd−1, 0), and (0, Fd−2).

Claim 3.3. For any t ∈ Z, this projection gives a bijection between the lattice
points in (tFd−1Fd−2)P and the lattice points in tQ.

Proof. Clearly the projection is injective. Suppose (a, b) is an integer point in
the dilation nQ. Then a, b ≥ 0 and Fd−2a + Fd−1b ≤ tFd−1Fd−2. Consider the
Fibonacci sequence

(a, b, a+ b, . . . , Fd−2a+ Fd−1b).

This sequence is contained in (tFd−1Fd−2)P and is projected to (a, b). �

We may compute Ld by counting the lattice points in tQ with positive entries:

Ld(t) =
(tFd−1 + 1)(tFd−2 + 1) + (t+ 1)

2
− (tFd−1 + 1)− (tFd−2 + 1) + 1

=
Fd−1Fd−2

2
t2 − Fd − 1

2
t.

Now we need to show that if k = (d2−d+1)Fd−1Fd−2 then for any equinumerous
k-coloring of [kn] there is a rainbow solution to Adx = 0. From the computation
in (2.1), we know there is a solution whenever

Ld

(
kn

Fd−1Fd−2

)
= Ld

(
(d2 − d+ 1)n

)
=
Fd−1Fd−2

2
(d2 − d+ 1)2n2 − Fd − 1

2
(d2 − d+ 1)n

>
d(d− 1)

2k
(kn)2 =

Fd−1Fd−2
2

d(d− 1)(d2 − d+ 1)n2.

This is equivalent to Fd−1Fd−2n > Fd − 1, which is true for all integers d > 3 and
n ≥ 1. �
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