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ABSTRACT
Multimodal imaging has transformed neuroscience research. While it presents unprecedented opportu-
nities, it also imposes serious challenges. Particularly, it is di!cult to combine the merits of the inter-
pretability attributed to a simple association model with the "exibility achieved by a highly adaptive
nonlinear model. In this article, we propose an orthogonalized kernel debiased machine learning approach,
which is built upon the Neyman orthogonality and a form of decomposition orthogonality, for multi-
modal data analysis. We target the setting that naturally arises in almost all multimodal studies, where
there is a primary modality of interest, plus additional auxiliary modalities. We establish the root-N-
consistency and asymptotic normality of the estimated primary parameter, the semi-parametric estima-
tion e!ciency, and the asymptotic validity of the con#dence band of the predicted primary modality
e$ect. Our proposal enjoys, to a good extent, both model interpretability and model "exibility. It is also
considerably di$erent from the existing statistical methods for multimodal data integration, as well as
the orthogonality-based methods for high-dimensional inferences. We demonstrate the e!cacy of our
method through both simulations and an application to a multimodal neuroimaging study of Alzheimer’s
disease. Supplementary materials for this article are available online.
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1. Introduction

Multimodal neuroimaging, where di!erent types of images are
acquired for a common set of experimental subjects, is becom-
ing a norm in neuroscience research. It uses di!erent physical
and physiological sensitivities of imaging scanners and tech-
nologies, and measures distinct brain characteristics including
brain structures, functions and chemical constituents. Multi-
modal neuroimaging analysis aggregates such diverse but o"en
complementary information, consolidates knowledge across
di!erent modalities, and produces improved understanding of
neurological development or disorders (Uludağ and Roebroeck
2014). Multimodal data also frequently arise in many other sci-
enti#c applications, for example, integrative genomics (Richard-
son, Tseng, and Sun 2016), multimodal healthcare (Cai et al.
2019), and audio-visual speech recognition (Baltrusaitis, Ahuja,
C., and Morency 2019).

Our motivation is a multimodal neuroimaging study of
Alzheimer’s disease (AD). AD is an irreversible neurodegen-
erative disorder and the leading form of dementia in elderly
subjects. The most notable AD imaging biomarker is the brain
grey matter cortical atrophy measured by structural magnetic
resonance imaging (MRI). Meanwhile, amyloid-β and tau are
two hallmark pathological proteins that are believed to be part
of the driving mechanism of AD, and both can be measured
by positron emission tomography (PET) using di!erent nuclear
tracers. The current model of AD pathogenesis hypothesizes a
sequence of biological cascade among di!erent AD biomarkers
(Jack et al. 2010). It is of great scienti#c interest to study how
they interact with each other and how they a!ect the cognitive
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outcome. These questions are crucial for our understanding
of AD pathophysiology, and also have important therapeutic
implications.

While multimodal neuroimaging presents unprecedented
opportunities, it also imposes numerous serious challenges.
First, neuroimaging data are typically high-dimensional and
highly correlated, with measurements of brain characteristics
at hundreds of brain regions and millions of brain voxel loca-
tions, and those measurements are o"en spatially or temporally
correlated. Besides, the associations between di!erent imag-
ing modalities, and between images and phenotypic outcomes,
are complicated. A linear association model, despite its wide
usage, is hardly adequate to capture such complex associa-
tions. Second, it is particularly challenging to balance between
model interpretability and model $exibility. Breiman (2001)
contrasted two modeling cultures: the “data modeling culture,”
which adopts parametric models that are easier to interpret and
to perform inference but much less $exible, versus the “algo-
rithmic modeling culture,” also known as machine learning,
which involves complex and sometimes black-box type models
that are highly $exible and nonlinear but di%cult to interpret
and infer. Both approaches have been frequently adopted in
neuroimaging analysis. Nevertheless, it is di%cult to combine
the merits of both. Most existing works on multimodal data
integration either assume a simple parametric model for easy
interpretation (e.g., Sperling et al. 2019; Li and Li 2021), or con-
sider a $exible nonlinear model but sacri#ce the interpretability
or inference capability (e.g., Hinrichs et al. 2011; Alam et al.
2018). Finally, rigorously quantifying statistical signi#cance of
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the primary parameter of interest remains a fundamental ques-
tion in scienti#c inquiries. There have been a large number of
highly successful nonlinear modeling techniques, ranging from
the more classical splines, reproducing kernels, and random
forests, to more recent deep neural network models. However,
it is notoriously di%cult to carry out statistical inference when
utilizing those $exible methods. Moreover, when it comes to
inference, naively adding multiple modalities together may suf-
fer from serious biases and produce misleading results, as we
show later.

In this article, we propose an orthogonalized kernel debiased
machine learning approach, built upon the Neyman orthog-
onality (Neyman 1959, 1979), and a form of decomposition
orthogonality (Wahba 1990, chap. 3), for multimodal data anal-
ysis. The principal setting we target is that there is a primary
modality of interest, plus additional auxiliary modalities. Such
a setting naturally arises in almost all multimodal studies, and
is particularly useful from the perspective of scienti#c inquiries.
For instance, in AD pathophysiology modeling (Jack et al. 2010),
it is o"en of interest to quantify the e!ect of brain structural
atrophy on cognition a"er accounting for amyloid-β and tau
accumulations. In this case, the structural atrophy can be treated
as the primary modality, while amyloid-beta and tau are the
auxiliary modalities. In imaging genetics studies (Zhu et al.
2014; Nathoo et al. 2019), brain imaging features o"en play
the role of intermediate phenotype between the genetic vari-
ants and clinical outcome. In this case, the brain image can
be taken as the primary modality, and the genetic variants as
the auxiliary modality. Under this setting, we employ a basis
expansion type model along with model error to characterize
the association between the primary modality and the out-
come, and develop rigorous inference methods for the main
parameter of interest as well as the predicted primary modality
e!ect. Meanwhile, we employ highly $exible machine learn-
ing methods to model the complex associations both between
the auxiliary modalities and the outcome, and between the
primary and auxiliary modalities. A key challenge that comes
with $exible machine learning modeling is that its associated
regularization bias and over#tting would introduce heavy bias
in the estimation of the main parameter of interest. To remove
such an impact, we employ two types of orthogonality formu-
lations based on Neyman (1959, 1979), Chernozhukov et al.
(2018), and Wahba (1990). We establish the

√
N-consistency

and asymptotic normality of the estimated main parameter, the
semi-parametric estimation e%ciency, as well as the asymptotic
validity of the con#dence band of the predicted primary modal-
ity e!ect, where N is the sample size. Our proposed framework
thus enjoys, to a good extent, both model interpretability and
model $exibility.

Our proposal is considerably di!erent from the existing sta-
tistical methods for multimodal data integration. Particularly,
there have been a class of unsupervised multimodal analysis
built on matrix or tensor factorization (Lock et al. 2013), or
canonical correlation analysis (Mai and Zhang 2019; Shu, Wang,
and Zhu 2020). By contrast, we aim at a supervised regression
problem. Under the regression setting with multimodal predic-
tors, Li, Liu, and Chen (2019) proposed an integrative reduced-
rank regression. Xue and Qu (2021) developed an estimating
equations approach to accommodate block missing patterns. Li

and Li (2021) developed a factor analysis-based linear regression
model. These methods are supervised, but all of them still
assume linear type associations, and none utilizes any nonlinear
machine learning modeling.

Relatedly, the Neyman orthogonality has played an impor-
tant role in both statistics and econometrics. Early works date
back to Newey (1990), Robins and Rotnitzky (1995), and van der
Laan and Rubin (2006). Meanwhile, it has received revived
interest in high-dimensional statistical inference in recent years,
thanks to, most notably, Chernozhukov et al. (2018); see also
many references therein. Our proposal can be viewed as an
extension of the double/debiased machine learning framework
developed by Chernozhukov et al. (2018). However, there are
some fundamental di!erences. First and most importantly, we
allow an additional model error for the primary modality, which
has crucial implications in terms of model interpretation, esti-
mation and theoretical analysis. In particular, Chernozhukov
et al. (2018) focused on a low-dimensional primary param-
eter involving no additional error. Kozbur (2020) extended
to a nonparametric primary function through basis expan-
sion, but required that the function can be well approximated
with a vanishing approximation error. By contrast, we do not
impose a vanishing error, which distinguishes our proposal
from Chernozhukov et al. (2018) and Kozbur (2020) and other
double/debiased machine learning methods. This additional
model error essentially o!ers improved inferential robustness.
Depending on the scienti#c context, one may choose a sim-
ple and interpretable yet less accurate model for the primary
modality, or one may choose a more accurate but perhaps less
interpretable model, and our method works for both cases.
On the other hand, this error imposes numerous new chal-
lenges. To address those challenges, we introduce a second form
of orthogonality, similar to the perpendicularity in smooth-
ing splines (Wahba 1990), to ensure the parameter identi#a-
bility. We construct a new reproducing kernel Hilbert space
(RKHS) and employ residual learning to decouple and remove
the impact of the model error in parameter estimation. We
also develop new theoretical tools to establish the asymptotic
guarantees of the estimated primary parameter under model
error. Second, we establish the con#dence band for the nonpara-
metric primary regression function given the high-dimensional
nonlinear nuisance function. This quantity is of key scienti#c
interest, as it quanti#es the predicted e!ect and the contribu-
tion of the primary modality. However, its inference is chal-
lenging, due to the nonparametric nature of the model, high
dimensionality, and strong correlations between the modali-
ties. The existing literature on high-dimensional nonparametric
inference usually requires stronger conditions that are unlikely
to hold in multimodal neuroimaging data. We extend the
framework of Chernozhukov, Chetverikov, and Kato (2014),
and approximate the supremum of high-dimensional empiri-
cal processes by a Gaussian multiplier process to obtain the
asymptotically valid con#dence band. Later, we further compare
with a number of alternative solutions, both analytically and
numerically.

The rest of the article is organized as follows. We introduce
the model framework in Section 2, and develop an estimation
procedure in Section 3. We derive the orthogonal statistical
inference procedure and the theoretical guarantees in Section 4.



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 3

We analytically compare with the alternative methods in Sec-
tion 5. We present the simulations in Section 6, and revisit the
multimodal AD study in Section 7. We conclude the article
with a further discussion on the innovation of our method in
Section 8, and relegate all technical proofs to the supplementary
appendix.

2. Model

Suppose there are M + 1 modalities of predictors. Let X =
(X(1), . . . , X(p))

T ∈ X p denote the p-dimensional vector of the
primary modality, where X ⊂ R is a compact domain and
X follows the distribution P in X p. Let Z(m) ∈ Rp′

m denote
the p′

m-dimensional vector of the mth auxiliary modality, m =
1, . . . , M, and let Z = (ZT

(1), . . . , ZT
(M))

T ∈ Rp′ collect all
auxiliary modalities, p′ = p′

1 + · · · + p′
M . Let Y ∈ R denote the

response variable. We propose the following model framework:

Y = f0(X) + g0(Z) + U, (1)

where U ∈ R is the measurement error that is independent of
(X, Z) and E[U] = 0 and E[U2] = σ 2 < ∞, f0 is the regression
function capturing the e!ect of the primary modality on the
response, and g0 is the function capturing the collective e!ects
of the auxiliary modalities. We also note that we can extend (1)
from a linear model form to a generalized linear model form, so
that it works for a binary or count type of response variable.

Next, assuming that f0 : X p → R resides in an RKHS
(Wahba 1990), we decompose f0 as follows:

f0(x) = η(x, θ0) + δ0(x), (2)

where η(·, θ0) is a parametric component that preserves the
interpretability of f0(·), and δ0 is a nonparametric component
that accounts for model error. Together, they form a nonpara-
metric model for f0(x). Despite the wide use of a simple linear
model for f0(·) in the literature, there has been ample evidence
showing that the linear model is inadequate to capture the
complex association between X and Y (e.g., Alam et al. 2018).
This has motivated us to consider a more $exible model for
η(·, θ0), meanwhile taking into account the model error δ0(·) as
in (2).

Next, we employ a basis expansion type model for η(x, θ0),
due to its ease of interpretation, relative $exibility, as well as
computational e%ciency (Huang, Zhang, and Zhou 2007; Wang
et al. 2014; Ma et al. 2015). Speci#cally, let {φ1, . . . , φs} denote
a collection of orthonormal and centered basis functions in X ,
satisfying that E[φk(X(j))] = 0, j = 1, . . . , p, k = 1, . . . , s, where
s is the number of basis functions. There is a rich library of basis
functions, including polynomial basis, Fourier basis, B-splines,
among others. Denote Bs(x(j)) = Span{1, φ1(x(j)), . . . , φs(x(j))}
as the space spanned by these basis functions. Let the paramet-
ric component η(x, θ0) be the projection of f0 onto the space
spanned by the tensor product of the basis functions, that is,

η(x, θ0) = arg min
f ∈⊗p

j=1Bs(x(j))

∫

X p
[f (x) − f0(x)]2dP(x) = '(x)Tθ0,

(3)
where x = (x(1), . . . , x(p))

T ∈ X p, the basis
vector '(x) = [1, φ1(x(1)), . . . , φs(x(1)), . . . , φ1(x(p)),

. . . , φs(x(p)), . . . , φ1(x(1)) · · · φp(x(p))]T ∈ Rd, and d = (s+1)p.
Model (3) is a general model that includes main e!ects
φi(x(j)), i = 1, . . . , s, j = 1, . . . , p, pairwise interactions
φi1(x(j1))φi2(x(j2)), i1, i2 = 1, . . . , s, j1, j2 = 1, . . . , p, as well as
higher-order interactions. It includes additive model (Hastie
and Tibshirani 1990), linear model, and functional ANOVA
model (Lin and Zhang 2006) as special cases. That is, when
η(x, θ0) is the projection of f0 onto the space ⊕p

j=1Bs(x(j))
spanned by the sum of the basis, then (3) is essentially an
additive model. When s = 1 and φs(·) is a centered linear basis
function, (3) becomes a linear model. When η(x, θ0) is the
projection of f0 onto the space spanned by the tensor product
of the basis with pairwise or higher-order interactions, (3)
becomes a functional ANOVA model.

Finally, we characterize the association between the primary
modality X and the auxiliary modalities Z as,

'(X) = r0(Z) + V , E[V|Z] = 0, (4)

where V ∈ Rd accounts for the part of the variation in '(X)

that cannot be explained by Z, and r0 captures the complicated
association between Z and '(X).

Suppose the observed data {(Xi, Zi, Yi) : i = 1, . . . , N} are
independent copies of (X, Z, Y) and satisfy the system of models
(1) to (4). Our main goal is the statistical inference of θ0, which
re$ects the interpretable e!ect of the primary modality X on
the outcome Y , and of f0, which re$ects the predicted e!ect of
the primary modality, and is also directly related to some causal
e!ect and the quanti#cation of the contribution of X. Mean-
while, we view {g0, δ0, r0} as nuisance functions, and propose to
use highly $exible machine learning methods, for example, ran-
dom forests, reproducing kernels, or neural networks, to model
them. The machine learning methods o"en use regularization to
avoid over#tting, especially when X and Z are high-dimensional
and highly nonlinear. However, regularization would introduce
sizable bias, and would invalidate the subsequent inference on
θ0 and f0. Actually, the naive estimator of θ0 by simply plugging
in the machine learning estimators of {g0, δ0, r0} would fail to be√

N-consistent; see Section 5. This has motivated us to develop
an orthogonal statistical inference framework to correct the
bias introduced by the $exible estimators of {g0, δ0, r0}, and to
perform a valid inference for θ0 and f0.

3. Orthogonalized Kernel Debiased Machine Learning

We consider two orthogonality formulations that are essential
for the construction of our estimator. We then present our
estimation algorithm built on those orthogonal formulations.

3.1. Orthogonality

The #rst is the Neyman orthogonality (Neyman 1959, 1979;
Chernozhukov et al. 2018), which allows the estimation of θ0
to be locally insensitive to the values of nuisance functions, and
thus one can plug in noisy estimates of the nuisance functions
for the inference of θ0. We consider the target parameter θ ∈ Rd,
and the nuisance functions r ∈ Hr , g ∈ Hg , δ ∈ Hδ , where Hr
and Hg are functional spaces of #nite mean squared functions,
and Hδ is an RKHS.
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De!nition 1 (Neyman orthogonality). A score function
ψ(θ , r, g, δ) is said to satisfy the Neyman orthogonality
(Neyman 1959, 1979; Chernozhukov et al. 2018) if (i) The
mean E[ψ(θ0, r0, g0, δ0)] = 0 at (θ0, r0, g0, δ0); (ii) The pathwise
derivative map, ∂r{E[ψ(θ0, r0 + t(r − r0), g0 + t(g − g0), δ0 +
t(δ − δ0))]}, exists for all t ∈ [0, 1), where r, g and δ lie in a
neighborhood of r0 ∈ Hr , g0 ∈ Hg and δ0 ∈ Hδ , respectively;
(iii) The pathwise derivative vanishes at t = 0, in that
∂t{E[ψ(θ0, r0 +t(r−r0), g0 +t(g−g0), δ0 +t(δ−δ0))]}|t=0 = 0.

Proposition 1. De#ne the score function,

ψ(W; θ , r, g, δ) = [Y − '(X)Tθ − g(Z) − δ(X)][r(Z) − '(X)],

where W = (X, Y , Z). Then under the system of models
(1) to (4), the score ψ(W; θ , m, δ, g) is Neyman orthogonal at
(θ0, r0, g0, δ0).

We brie$y comment that a similar idea to Neyman orthog-
onality is also used in targeted maximum likelihood estimation
(van der Laan and Rubin 2006; Zheng and van der Laan 2011),
which constructs an estimation equation for a target parameter
and requires the score function to be in the orthogonal comple-
ment of the tangent space of the nuisance parameter.

In addition to the Neyman orthogonality, we also require the
functions ' and δ0 in models (2) and (3) to satisfy a decom-
position orthogonality, which is necessary for the identi#ability
of θ0.

De!nition 2 (Decomposition orthogonality). Suppose that '(·)
is bounded on X p. The functions ' and δ0 are said to satisfy the
decomposition orthogonality if EX['(X)δ0(X)] = 0.

Proposition 2. Under models (2) and (3), θ0 is identi#able only
if ' and δ0 satisfy the decomposition orthogonality. Moreover,
for any reproducing kernel K(·, ·) on X p × X p, de#ne

Kδ(x, x′) = K(x, x′) − EX['(X)TK(x, X)]
×

(
EX{EX′ ['(X′)K(X′, X)]'(X)T}

)−1

EX′ ['(X′)K(x′, X′)],

where X and X′ are iid copies of the primary modality. Then
Kδ(·, ·) : X p × X p → R is positive de#nite. Besides, for any
δ̂(x) = ∑m

i=1 ciKδ(x, xi), with ci ∈ R, xi ∈ X p and m ≥ 1,
'(X) and δ̂(X) satisfy the decomposition orthogonality.

The decomposition orthogonality in De#nition 2 is similar
to the perpendicularity requirement in the smoothing splines
literature (see, e.g., Wahba 1990, chap. 3), where the null space
and the RKHS need to be perpendicular under certain norms in
order to #nd a consistent estimator as the sample size diverges,
while we use an *2-norm with respect to the distribution of
X. Hereina"er, let Hδ be the corresponding RKHS of the ker-
nel Kδ(·, ·). By the representer theorem (Wahba 1990), the M-
estimator in RKHS Hδ can be found in a #nite-dimensional sub-
space of Hδ , that is, it can be written as δ̂(x) = ∑m

i=1 ciKδ(x, xi),
with ci ∈ R, xi ∈ X p and m ≥ 1. Proposition 2 shows that
δ̂(X) and '(X) satisfy the decomposition orthogonality, which
in turn ensures the identi#ability of the primary parameter θ0
we target.

Algorithm 1 Orthogonalized kernel debiased machine learning
algorithm

1: Obtain the initial estimators θ̂ (0), ĝ(0), δ̂(0) by (5) using all
the data.

2: Split the data randomly into Q non-overlapping chunks of
equal size. For q ∈ [Q], denote Iq as the corresponding set
of data indices of the qth chunk, and Ic

q = [N]\Iq.
3: for q = 1 to Q do
4: Obtain the estimator r̂0 by (6) using the data in Ic

q.
5: end for
6: repeat
7: for q = 1 to Q do
8: Obtain the iterative estimators {̂g(t)

q , δ̂(t)
q } by (7) using

the data in Ic
q.

9: Obtain the iterative estimator θ̃
(t)
q by (8) using the data

in Iq.
10: end for
11: Obtain the iterative estimator θ̂ (t) by (9).
12: until the stopping criterion is met.
13: Construct the #nal estimator θ̂ ∈ Rd by (10) using cross-

#tting.

3.2. Iterative Cross-Fitting Procedure

We next present an estimation algorithm of θ0 based on the
orthogonality formulations in Propositions 1 and 2. The algo-
rithm consists of #ve main steps. In the #rst step, we obtain the
initial estimators of {θ0, g0, δ0}. In the second step, we split the
data into Q disjoint chunks. In the third step, we estimate r0, and
in the fourth step, we iteratively update the estimates of {g0, δ0}
and θ0. In these two steps, we obtain the estimates by leaving
out some chunk of data in turn. In the #"h step, we construct
the #nal estimator of θ0, by #rst using only one chunk of data
at a time, then averaging over all Q chunks. When estimat-
ing the nuisance functions {r0, g0, δ0}, we employ some penal-
ized learning methods, where we denote PENHr (r), PENHg (g),
PENHδ (δ) as the penalty functionals in the candidate functional
spaces Hr , Hg , and Hδ , respectively. Here, Hδ is chosen to be the
corresponding RKHS of Kδ(·, ·) in Proposition 2, and PENHδ (δ)

is the penalty based on the squared RKHS-norm in Hδ . The
choices of {Hr , Hg} as well as the penalty functions depend
on speci#c data applications, and the tuning follows the usual
tuning procedures in penalized learning. We #rst summarize the
procedure in Algorithm 1, then detail the main steps.

In the #rst step, we obtain the initial estimators of {θ0, g0, δ0}
as follows:

θ̂ (0) = arg min
θ∈Rd

{ 1
N

N∑

i=1

[
Yi − '(Xi)

Tθ − ĝ(0)(Z)
]2

}
,

ĝ(0) = arg min
g∈Hg

{ 1
N

N∑

i=1

[
Yi − g(Zi)

]2 + λ
g
NPENHg (g)

}
,

(5)

and δ̂(0) = 0. Here, λ
g
N ≥ 0 is a tuning parameter, and we use

all the N data samples.
In the second step, we randomly split the sample observations

into Q ≥ 2 nonoverlapping chunks of equal size n = N/Q. For
notational simplicity, we assume N is divisible by Q. For each
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q ∈ [Q] = {1, . . . , Q}, we denote Iq as the set of indices in
[N] = {1, . . . , N} corresponding to the data in the qth chunk,
and denote Ic

q = [N]\Iq as the indices of the complementary
data.

In the third step, we estimate the function r0 by,

r̂q = arg min
r∈Hr

{ 1
n

∑

i∈Icq

['(Xi) − r(Zi)]2 + λr
nPENHr (r)

}
, (6)

where λr
n ≥ 0 is a tuning parameter. Note that we only use the

data from Ic
q in (6). Besides, we estimate r0 only once, without

any iterations, for each q ∈ [Q].
In the fourth step, we iteratively update the estimates of

{g0, δ0} and θ0. That is,

{
ĝ(t)

q , δ̂(t)
q

}
= arg min

g∈Hg ,δ∈Hδ

{ 1
n

∑

i∈Icq

[
Yi − '(Xi)θ̂

(t−1) − δ(Xi) − g(Zi)
]2

+λ
g
nPENHg (g) + λδ

nPENHδ (δ)

}
, (7)

θ̃ (t)
q =

{ 1
n

∑

i∈Iq

[
'(Xi) − r̂q(Zi)

]
'(Xi)

T
}−1

(8)

× 1
n

∑

i∈Iq

[
'(Xi) − r̂q(Zi)

] [
Yi − ĝ(t)

q (Zi) − δ̂(t)
q (Xi)

]
,

θ̂ (t) = 1
Q

Q∑

q=1
θ̃ (t)

q , (9)

where λ
g
n, λδ

n ≥ 0 are the tuning parameters. The estimation in
(7) employs residual learning, since it is based on the residual
[Y − '(X)θ̂

(t−1)
q ]. The resulting estimator δ̂

(t)
q satis#es the

decomposition orthogonality relative to ' in Proposition 2.
Besides, it involves only the complementary data in Ic

q. The esti-
mation in (8) employs the Neyman orthogonality formulation in
Proposition 1, and involves only the data in Iq. The estimation in
(9) averages θ̃

(t)
q from (8) across all q = 1, . . . Q. Moreover, (8)

and (9) together use the idea of centralized training with decen-
tralized execution (Lowe et al. 2017), which greatly facilitates
the convergence of the algorithm. We stop the iterations when
some stopping criterion is met, for example, when the di!erence
between two consecutive estimates of θ0 is smaller than a thresh-
old value. We also remark that, this step is essentially a Gauss-
Seidel iterative algorithm that has been widely used in statistics
(Buja, Hastie, and Tibshirani 1989). In our simulations, we #nd
the algorithm converges fast, usually a"er only 3 to 5 iterations.
We denote the #nal estimators for {g0, δ0} as {̂gq, δ̂q}, q ∈ [Q].

In the #nal step, we construct our orthogonal estimator for
θ0 using cross-#tting,

θ̂ =
{ 1

Q

Q∑

q=1

1
n

∑

i∈Iq

[
'(Xi) − r̂q(Zi)

]
'(Xi)

T
}−1

(10)

× 1
Q

Q∑

q=1

1
n

∑

i∈Iq

[
'(Xi) − r̂q(Zi)

] [
Yi − ĝq(Zi) − δ̂q(Xi)

]
.

That is, for each q ∈ [Q], we use the chunk of data that is
le" out when estimating {r0, g0, δ0} earlier, then average over

all Q chunks. Cross-#tting has been commonly used in high-
dimensional inferences in recent years; see, for example, Cher-
nozhukov et al. (2018); Newey and Robins (2018). By swapping
the roles of each chunk and the complementary chunks Q
times, it ensures good statistical properties while regaining the
e%ciency of making use of all available data observations. Later,
we show the estimator θ̂ in (10) is actually semi-parametric
e%cient.

4. Statistical Inference

We aim at two key inference questions: inference for the primary
parameter of interest θ0, and inference for the primary regres-
sion function f0(·). Both are crucial for scienti#c inquires. The
former directly quanti#es the relevance of the variables of the
primary modality to the outcome. The latter captures the pre-
dicted e!ect and the contribution of the primary modality, and
also has some causal interpretation under additional conditions.

4.1. Inference of the Primary Parameter θ0

We begin with the study of the asymptotic behavior of the
estimator θ̂ in (10) as the sample size N tends to in#nity. We
establish the

√
N-convergence that ‖θ̂ − θ0‖*2 = Op(N−1/2), as

well as the asymptotic normality that
√

N(θ̂ − θ0) approaches a
normal distribution. We note that this

√
N-convergence result

is highly nontrivial, because the estimator θ̂ in (10) involves
the nuisance estimators {̂rq, ĝq, δ̂q}. When {r0, g0, δ0} are esti-
mated nonparametrically, the convergence rates of the estima-
tors {̂rq, ĝq, δ̂q} are generally slower than Op(N−1/2) (van der
Vaart 1998). Later in Section 5, we show that many popular
alternative methods cannot achieve the

√
N-consistency.

We #rst present a set of regularity conditions.

(C1) The basis vector '(·) in (3) satis#es that E[‖'(X)‖2
*2

] <

∞.
(C2) The error term V ∈ Rd in (4) satis#es that E(VVT) is

invertible and E(VTV) < ∞.
(C3) The estimators r̂q as constructed in (6), and {̂gq, δ̂q} as con-

structed in (7) at the algorithmic convergence satisfy that
E[‖̂rq(Z)− r0(Z)‖2

*2
] = o(N−1/2), E{[̂gq(Z)− g0(Z)]2} =

o(N−1/2), and E{[̂δq(X) − δ0(X)]2} = o(N−1/2), for q ∈
[Q] and Q is #nite.

Condition (C1) is mild and holds for most practical choices
of the basis functions. For example, (C1) holds with the continu-
ous basis over the compact domain X p. Condition (C2) is a fairly
standard regularity condition, and is needed for the asymptotic
normality of parameter estimation in moment-based problems
(Chernozhukov et al. 2018). Condition (C3) is di!erent from
requiring the estimators {̂rq, ĝq, δ̂q} to be

√
N-consistent, which

is di%cult to satisfy for many nonparametric estimators. Instead,
(C3) holds for a wide range of popular machine learning meth-
ods; for instance, it holds for the *1-penalized linear regres-
sion in a variety of sparse models (Bickel, Ritov, and Tsybakov
2009; Bühlmann and van de Geer 2011), a class of random
forests (Biau 2012), a class of neural networks (Chen and White
1999), and numerous kernel methods in RKHS (Wahba 1990;
van der Vaart 1998), among others. Moreover, we note that
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(C3) is generally less restrictive than the Donsker conditions,
which are commonly assumed in semi-parametric statistical
analysis (Kosorok 2007). The Donsker conditions require the
functional spaces {Hr , Hg , Hδ} to have a bounded complexity,
or more speci#cally, a bounded entropy integral. However, for
multimodal data analysis where the dimension of the auxiliary
modalities Z increases with the sample size, such a requirement
fails even in the linear model setting with the parameter space
speci#ed by the Euclidean ball of unit radius (Raskutti, Wain-
wright, and Yu 2011). By contrast, (C3) holds in this example.

Under (C1)–(C3), we obtain the main theoretical result for
our estimator θ̂ .

Theorem 1. Suppose the system of models (1) to (4), and the
regularity conditions (C1) to (C3) hold. The orthogonalized
kernel debiased machine learning estimator θ̂ in (10) satis#es
that,

θ̂ − θ0 = [E(VVT)]−1
(

1
N

N∑

i=1
ViUi

)

+ op(N−1/2).

where {(Ui, Vi) : i = 1, . . . , N} are independent copies of the
error terms (U, V) in (1) and (4).

The proof of this theorem is given in Appendix S3. We make
two remarks. First, a direct implication of Theorem 1 is the
asymptotic normality of θ̂ , that is,

√
N(θ̂ − θ0)

d→ N
(
0, σ 2[E(VVT)]−1) . (11)

Second, the asymptotic normality in (11) further implies that we
can construct the con#dence interval for the primary parameter
of interest θ0 as,

CI(θ0) = θ̂ ± F−1
N (1 − α/2)

√
σ 2(E[VVT])−1/N,

where FN (·) denotes the cumulative distribution function of
the standard normal distribution. When the variance term
σ 2E[VVT] in (11) is unknown, we use a plug-in estimator,

-̂(θ̂) = Ĵ−1
{ 1

nQ

Q∑

q=1

∑

i∈Iq

[
Yi − '(Xi)

Tθ̂ − ĝq(Zi) − δ̂q(Xi)
]2

[̂rq(Zi) − '(Xi)][̂rq(Zi) − '(Xi)]T
}

Ĵ−1,

where Ĵ = (nQ)−1 ∑Q
q=1

∑
i∈Iq['(Xi) − r̂q(Zi)]'(Xi)T. The

next corollary shows that this plug-in estimator is consistent,
and its proof is given in Appendix S4.

Corollary 1. Suppose the conditions of Theorem 1 hold. If U in
(1) and the elements of V in (4) have bounded fourth moment,
then the plug-in estimator -̂(θ̂) is consistent, in that

-̂(θ̂)
p→ σ 2 (

E[VVT]
)−1 .

Next, we discuss the e%ciency of the estimator θ̂ . We #rst
note that the estimation problem for θ0 under the system of
models (1) to (4) is semi-parametric. This is because the param-
eter of interest θ0 ∈ Rd is #nite-dimensional as speci#ed in
(3), while the parameter space of models (1) and (2) contains

high-dimensional, or in#nite-dimensional functional spaces as
{g0, δ0} ∈ Hg ⊗ Hδ . We also allow the dimensions of g0 and
δ0 to grow with the sample size N. The next theorem shows
that θ̂ in (10) is semiparametric e%cient (Kosorok 2007), in that
it achieves the highest possible e%ciency, if the measurement
error U follows a normal distribution. The proof of this theo-
rem is given in Appendix S5, along with a brief review of the
background on semiparametric estimation e%ciency.

Theorem 2. Suppose the conditions of Theorem 1 hold. If the
measurement error U in (1) follows a normal distribution, then
the estimator θ̂ in (10) is semiparametric e%cient.

4.2. Inference of the Primary Function f0

We next consider inference of the primary regression function
f0(·), which is of particular interest for several reasons. First of
all, it quanti#es the predicted e!ect of the primary modality X
on the outcome Y . In addition, it also captures the amount of
contribution of the primary modality, in terms of the percentage
of variation explained, given all other modalities in the model.
Finally, under some additional assumptions, f0 is directly related
to the notions of the partial dependence of Y on X, as well as the
total e!ect of X on Y in a causal inference sense.

Given the orthogonal estimator θ̂ in (10), a natural estimator
for f0 is f̂ (x) = '(x)Tθ̂ . We seek the con#dence band for f0.
A con#dence band CN is a set of con#dence intervals, CN ={
CN(x) = [cL(x), cU(x)]

∣∣ x ∈ X p}. Consider the empirical
process supx∈X p

√
N [̂f (x) − f0(x)], whose distribution can be

approximated by a Gaussian multiplier process,

ĤN(x) =
√

N'(x)T
{ 1

nQ

Q∑

q=1

∑

i∈Iq

['(Xi) − r̂q(Zi)]'(Xi)
T
}−1

1
nQ

Q∑

q=1

∑

i∈Iq

['(Xi) − r̂q(Zi)]̂σ (θ̂)ξi,

where the estimator σ̂ 2(θ̂) = (nQ)−1 ∑Q
q=1

∑
i∈Iq[Yi −

'(Xi)Tθ̂ − ĝq(Zi) − δ̂q(Xi)]2, and ξ = (ξ1, . . . , ξN)T ∈ RN

are independent N (0, 1) random variables. Let ĉN(α/2) be the
(1−α/2)th quantile of supx∈X p ĤN(x). We construct the 100×
(1 − α)% con#dence band for f0 as,

CN =
{
CN(x) =

[
f̂ (x)− ĉN(α/2)√

N
, f̂ (x)+ ĉN(α/2)√

N

] ∣∣∣∣ x ∈ X p
}

.
(12)

To establish the asymptotic validity of (12), we #rst present
a modi#ed version of the regularity condition (C3), and an
additional condition regarding the function f0.

(C3′) The estimators r̂q as constructed in (6), and {̂gq, δ̂q} as
constructed in (7) at the algorithmic convergence satisfy
that E[‖̂rq(Z) − r0(Z)‖2

*2
] = O(N−1/2−cr ), E[(̂gq(Z) −

g0(Z))2] = O(N−1/2−cg ), and E[(̂δq(X) − δ0(X))2] =
O(N−1/2−cδ ), for some constants cr , cg , cδ ∈ (0, 1/2], q ∈
[Q], and Q is #nite.

(C4) The function f0 : X p → R resides in the kth-order
Sobolev space, k > p, in that f0 and the derivatives f (ν)

0
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are absolutely continuous for any vector of nonnegative
integers ν ∈ Np

0 with ‖ν‖*1 ≤ k − 1, and E{[f (ν)
0 (X)]2} <

∞ for any ν ∈ Np
0 with ‖ν‖*1 = k.

Condition (C3′) is slightly stronger than (C3), which is neces-
sary to obtain the asymptotic validity of the con#dence band CN
in (12). Nevertheless, (C3′) continues to hold for a wide range
of commonly used machine learning methods, including all the
aforementioned ones where (C3) holds. Condition (C4) is a
standard regularity condition in the literature on nonparametric
estimations (Wahba 1990; van der Vaart 1998).

The next theorem shows that the con#dence band CN in
(12) is asymptotically valid, in the sense that the coverage holds
uniformly for all x ∈ X p under a #xed f0,

lim inf
N→∞

P
[
f0(x) ∈ CN(x), for all x ∈ X p] ≥ 1 − α.

Theorem 3. Suppose the system of models (1) to (4), and the
regularity conditions (C1), (C2), (C3′), and (C4) hold. Let s be
the number of bases for each function component in (3), and
cmin = min{cr , cg , cδ} > 0. Suppose the measurement error U
in (1) follows a normal distribution, and the number of basis
functions s = .N(1+2c)/2k/ for a constant c ∈

(
0, (k − p)/2(k +

p)
]
. Then, there exist a constant C > 0, such that the coverage

of the con#dence band CN in (12) satis#es,

P
[
f0(x) ∈ CN(x), for all x ∈ X p] ≥ 1 − α − CN−c,

for any 0 < α < 1.

Consequently, the con#dence band CN in (12) is asymptotically
valid.

The proof of this theorem is given in Appendix S6, and is built
upon the framework of using the Gaussian multiplier process
to approximate the distribution of the supremum of empirical
processes (Chernozhukov, Chetverikov, and Kato 2014). We
#rst note that, for the inference of f0, we require the number
of basis functions s to diverge with the sample size, but for
the inference of θ0, we do not require a diverging s. When s
diverges, the error term V ∈ R(s+1)p in (4) has a diverging
dimension too. Nevertheless, Theorem 3 continues to hold. We
next compare Theorem 3 with Lu, Kolar, and Liu (2020) and
Kozbur (2020). Lu, Kolar, and Liu (2020) studied the inference of
nonparametric additive models, but required there only exists a
weak dependency between the covariates, for example, between
X and Z, in that the di!erence between the joint distribution and
the product of marginal distributions is small under a certain
norm. Multimodal data, however, are typically highly correlated
(Uludağ and Roebroeck 2014), and as such, the requirement of
Lu, Kolar, and Liu (2020) may not always hold. By contrast, we
allow a strong dependency between X and Z, and employ (4)
to model potentially complex dependency between X and Z.
Kozbur (2020) considered a nonparametric primary function f0
through basis expansion, but required the approximation error
to vanish at a rate faster than

√
N, which can be rather restric-

tive. By contrast, we do not require a vanishing approximation
error for our method. This has a crucial implication, because it
essentially allows one to use a simple and interpretable model
to characterize the parametric component of f0, for example, a
linear model, which itself can be inaccurate and may induce a

nonnegligible approximation error. Finally, we brie$y comment
that, to establish an honest con#dence band with a uniform cov-
erage for all f0 ∈ Hf and data-generating functions, one needs to
fully characterize Hf and to extend the classical Smirnov-Bickel-
Rosenblatt condition (Giné and Nickl 2009) to the multimodal
setting. We leave a full investigation as future research.

In addition to the predicted e!ect, the function f0 also cap-
tures the amount of contribution of the primary modality given
other modalities. Recall that in the classical linear regression
model, the coe%cient of determination R2 measures the per-
centage of total variation in the response that has been explained
by the predictors. We next show that f0 is directly related to R2,
then derive the con#dence interval for the R2 measure. Consider
the population version of R2,

R2 = 1 − E(RSS)

E(TSS)
, where E(RSS) = E

[
{Y − f0(X)}2] ,

E(TSS) = E
[
(Y − Ȳ)2] , (13)

Ȳ = N−1 ∑N
i=1 Yi, and RSS and TSS denote the residual sum of

squares and total sum of squares, respectively. De#ne f̂(1)(x) =
f̂ (x)−N−1/2̂cN(α/2), and f̂(2)(x) = f̂ (x)+N−1/2̂cN(α/2). Then
denote R2

(1) = 1 − ∑N
i=1[Yi − f̂(1)(Xi)]2/

∑N
i=1(Yi − Ȳ)2, and

R2
(2) = 1 −∑N

i=1[Yi − f̂(2)(Xi)]2/
∑N

i=1(Yi − Ȳ)2. We construct
the 100 × (1 − α)% con#dence interval for R2 as follows:

CI(R2) =
(

min(R2
(1), R2

(2)), max(R2
(1), R2

(2))
)

.

The next corollary, following directly from Theorem 3, shows
this is a valid con#dence interval.

Corollary 2. Suppose the conditions of Theorem 3
hold. The con#dence interval CI(R2) is valid, in that
lim inf
N→∞

P
[
R2 ∈ CI(R2)

]
≥ 1 − α.

Finally, we note that f0, under some additional conditions,
has a causal interpretation, and is directly related to the notions
of partial dependence and total e!ect. Consequently, our pro-
posed orthogonal inference procedure for f0 may be useful for
inferring causal e!ect.

Speci#cally, following Friedman (2001), the partial depen-
dence of the response Y on the primary modality X = x0 ∈ X p

is de#ned as,

EZ [EU(Y)] = EZ
[
f0(x0) + g0(z)

]
= f0(x0) + c, c ∈ R,

(14)
where (X, Z, Y) follows model (1). That is, the partial depen-
dence is the expectation of Y over the marginal distribution of
all modalities other than X. It is di!erent from the conditional
expectation, EZ[EU(Y)|X = x0] = EZ|X=x0[f0(x0) + g0(z)],
where the expectation is taken over the conditional distribution
of Z given X = x0. By (14), we see that the partial dependence is
equal to f0(x0) up to an additive constant c. This property does
not hold for the conditional expectation.

Next, following Pearl (2009) and Zhao and Hastie (2021), the
partial dependence measure in (14) coincides with the back-
door adjustment formula for identifying the causal e!ect of X on
Y given the observational data. More speci#cally, view (1) as a
structural equation model, where each of the (M+1) modalities
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{X, Z(1), . . . , Z(M)} corresponds to one of the (M +1) nodes in a
directed acyclic graph (Pearl 2009). Let a path be a consecutive
sequence of edges of the directed graph, and a back-door path
be a path that contains an arrow into X. If the following back-
door criteria are satis#ed, such that none of {Z(1), . . . , Z(M)} is a
descendant of X, and {Z(1), . . . , Z(M)} blocks all back-door paths
between X and Y , then the partial dependence measure in (14),
or equivalently f0(·), can be interpreted as the total e!ect of the
primary modality X a!ecting the outcome Y .

5. Comparison With Alternative Methods

We next analytically compare our method with a number
of important alternative solutions, and carefully evaluate the
asymptotic behavior of each estimator.

5.1. Uni-Modality Regression

A common solution in practice is to focus on a single data
modality and exclude all other modalities from the analysis. This
approach is simple, and shares a similar spirit as the marginal
regression (Fan and Lv 2008). We term it as the uni-modality
regression. Speci#cally, it regresses the outcome on the primary
modality, and estimate the primary parameter θ0 by,

θ̂UR = arg min
θ∈Rd

{
1
N

N∑

i=1

[
Yi − '(Xi)

Tθ
]2

}

.

Proposition 3 characterizes the asymptotic behavior of the
uni-modality estimator θ̂UR.

Proposition 3. Suppose the system of models (1)–(4) hold.
Suppose E['(X)'(X)T] is invertible. Then, the uni-modality
regression estimator θ̂UR satis#es that,

θ̂UR − θ0 =
{
E['(X)'(X)T]

}−1

{
1
N

N∑

i=1
'(Xi)

[
δ0(Xi) + g0(Zi) + Ui

]
}

+ op(N−1/2).

The proof of this proposition is given in Appendix S7. We
next compare the behavior of θ̂UR with our orthogonal esti-
mator θ̂ in (10) in terms of the asymptotic bias and variance,
respectively.

In terms of the bias, we note that θ̂UR may su!er from a severe
bias, because

E(θ̂UR) − θ0 =
{
E['(X)'(X)T]

}−1

E{'(X)[δ0(X) + g0(Z)]} + o(N−1/2),

which can be arbitrarily large, due to both the model error δ0
in (2), and the e!ect of the auxiliary modality re$ected by g0
in (1). In multimodal analysis, however, both δ0 and g0 can be
substantial. Because of this bias, we have

√
N(θ̂UR − θ0) =

Op(
√

N), which diverges as N tends to in#nity. Consequently,
θ̂UR is unsuitable for statistical inference tasks. By contrast, the
proposed orthogonal estimator θ̂ is asymptotically unbiased.

In terms of the variance, we note that θ̂UR achieves a variance
that is no larger than that of θ̂ . Speci#cally, the asymptotic
variance of θ̂UR is var(θ̂UR) = N−1σ 2{E['(X)'(X)T]}−1.
Compared to the asymptotic variance of our orthogonal estima-
tor θ̂ as given in (11), we have

var(θ̂) − var(θ̂UR) ≥ 0, as N → ∞,

in the sense that the di!erence of the two covariance matrices is
semi-positive de#nite. The two asymptotic variances are equal
only when r0 = 0 in (4), that is, when the primary and
auxiliary modalities are completely independent of each other.
The in$ated variance of θ̂ compared to that of θ̂UR is due to the
intrinsic correlation between X and Z that is modeled by r0. It
can be viewed as a generalization of the well-known variance
in$ation phenomenon in the classical linear regression model
due to the collinearity. For instance, consider the linear model
Y = Xθ0 + ZTβ0 + U, with E(X) = E(Y) = 0. The vari-
ance of the least-square estimator becomes E(U2)/[E(X2)(1 −
κ)] a"er incorporating the auxiliary modality Z, where κ =
E(XZT)[E(ZZT)]−1E(ZX)/E(X2) characterizes the correlation
between X and Z. This variance increases compared to the
case when there is no Z in the model. On the other hand, we
also note that, the orthogonal estimator θ̂ actually attains the
smallest possible variance when Z is incorporated, as shown in
Theorem 2.

5.2. Debiased Uni-Modality Regression

We next consider a debiased version of the uni-modality regres-
sion. Numerous debiasing strategies have been successfully
developed in high-dimensional regression modeling in recent
years (see, e.g., Zhang and Zhang 2014; van de Geer et al. 2014;
Cai and Guo 2017, among others). The debiased estimator is
obtained in two stages. First, the model error δ0 is estimated
based on the uni-modality regression estimator θ̂UR and some
machine learning method as in (7),

δ̂DUR = arg min
δ∈Hδ

{
1
N

N∑

i=1

[
Yi − '(Xi)θ̂UR − δ(Xi)

]2 + λδ
N PENHδ (δ)

}

,

where λδ
N ≥ 0 is a tuning parameter. Then the debiased

estimator of θ0 is obtained by explicitly taking the model error
into account

θ̂DUR = arg min
θ∈Rd

{
1
N

N∑

i=1

[
Yi − '(Xi)

Tθ − δ̂DUR(Xi)
]2

}

.

Proposition 4 characterizes the asymptotic behavior of the
debiased uni-modality estimator θ̂DUR.

Proposition 4. Suppose the conditions of Proposition 3 hold.
Suppose the regularity condition (C1) holds. Then, the debiased
uni-modality regression estimator θ̂DUR satis#es that,

θ̂DUR − θ0 = {E['(X)'(X)T]}−1
{

1
N

N∑

i=1
'(Xi)[g0(Zi) + Ui]

}

+Op[(E{[̂δDUR(X)−δ0(X)]2})1/2]+op(N−1/2).
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The proof of this proposition is given in Appendix S8. We
make two observations regarding the asymptotic bias of θ̂DUR.
First, θ̂DUR indeed achieves a reduced bias compared to the uni-
modality estimator θ̂UR. This is because under the regularity
condition (C3), the bias of θ̂DUR is

E(θ̂DUR)−θ0 = {E['(X)'(X)T]}−1E['(X)g0(Z)]+o(N−1/4).

Comparing this bias with that of θ̂UR, we see that θ̂DUR removes
the bias term due to the model error δ0 as N → ∞, but θ̂UR does
not. On the other hand, θ̂DUR is still an inconsistent and biased
estimator of θ0, because θ̂DUR does not remove the bias due to
the e!ect of the auxiliary modality g0. Consequently, θ̂DUR is
unsuitable for statistical inference neither.

5.3. Simple Joint Regression

Another common solution in multimodal analysis is to incor-
porate multiple data modalities in a simple additive fashion into
a single regression model. This strategy is intuitive, and we term
it as the simple joint regression. Speci#cally, it obtains the joint
estimator for {θ0, g0} as,

{θ̂SJR, ĝSJR} =

arg min
θ∈Rd ,g∈Hg

{
1
N

N∑

i=1

[
Yi − '(Xi)

Tθ − g(Z)
]2 + λ

g
NPENHg (g)

}

,

where λ
g
N ≥ 0 is a tuning parameter, and ĝSJR is obtained by a

machine learning method as in (7).
Proposition 5 characterizes the asymptotic behavior of the

simple joint estimator θ̂SJR.

Proposition 5. Suppose the conditions of Proposition 3 hold.
Suppose the regularity condition (C1) holds. Then, the simple
joint regression estimator θ̂SJR satis#es that

θ̂SJR − θ0 = {E['(X)'(X)T]}−1
{

1
N

N∑

i=1
'(Xi)[δ0(Xi) + Ui]

}

+Op((E{[̂gSJR(Z) − g0(Z)]2})1/2) + op(N−1/2).

The proof of this proposition is given in Appendix S9. We
again study the asymptotic behavior of θ̂SJR. Under the regularity
condition (C3), the asymptotic bias of θ̂SJR is,

E(θ̂SJR)− θ0 = {E['(X)'(X)T]}−1E['(X)δ0(X)]+ o(N−1/4),

which is not vanishing due to the non-zero model error δ0. The
mean squared error of θ̂SJR is,

E
[
(θ̂SJR − θ0)

2] = O(E{[̂gSJR(Z) − g0(Z)]2 + δ2
0(X)}),

which does not converge at the rate of N−1 if ĝSJR is estimated
using machine learning methods, or if δ0 is not negligible. Con-
sequently, θ̂SJR is generally an ine%cient and biased estimator
of θ0.

5.4. Double/Debiased Machine Learning

The seminal work of Chernozhukov et al. (2018) developed the
framework of double/debiased machine learning (DML), which
lays the foundation for the inference of the primary parameter
of interest in the presence of high-dimensional nuisance param-
eters. Our proposal extends the DML framework to incorporate
the additional model error δ0. More speci#cally, DML randomly
splits the data into Q disjoint chunks, and estimates g0 by

ĝDML,q = arg min
g∈Hg





1
n

∑

i∈Icq

[Yi − g(Zi)]2 + λ
g
nPENHg (g)




 .

where λ
g
n ≥ 0 is a tuning parameter. It then estimates θ0 by

θ̂DML =





1

nQ

Q∑

q=1

∑

i∈Iq

['(Xi) − r̂q(Zi)]'(Xi)
T






−1

1
nQ

Q∑

q=1

∑

i∈Iq

['(Xi) − r̂q(Zi)][Yi − ĝDML,q(Zi)].

Proposition 6 characterizes the asymptotic behavior of DML
estimator θ̂DML.

Proposition 6. Suppose the conditions of Proposition 3 hold.
Suppose the regularity conditions (C1)–(C3) hold. Then the
DML estimator θ̂DML satis#es that,

θ̂DML − θ0 = (E[VVT])−1
(

1
N

N∑

i=1
ViUi

)

+ Op({E[δ2
0(X)]}1/2) + op(N−1/2).

The proof is given in Appendix S10. The mean squared error
of θ̂DML is,

E
[
(θ̂DML −θ0)

2] = 1
N σ 2(E[VVT])−1 +O(E[δ2

0(X)])+o(N−1).

Compared to our estimator θ̂ , whose mean squared error
is N−1σ 2(E[VVT])−1 + o(N−1), θ̂DML has an in$ated mean
squared error at the order of E[δ2

0(X)]. Consequently, it can-
not achieve the

√
N-consistency if the model error δ0 is not

negligible.

6. Simulations

We next study the #nite-sample performance of the proposed
orthogonalized kernel debiased machine learning (OKDML)
method. We #rst evaluate the performance of inferring θ0 in an
additive model setting. We also numerically compare with the
alternative methods of uni-modality regression (UR), debiased
uni-modality regression (DUR), simple joint regression (SJR),
and double machine learning (DML) that ignores δ0. We next
evaluate the performance of inferring f0 in a high-dimensional
additive setting. We also study the sensitivity of using di!erent
machine learning methods for nuisance function estimation
when inferring θ0, and report the results in Section S11 of the
appendix. In all these examples, the model error δ0 is estimated
in the RKHS constructed as in Proposition 2. We use the Matérn
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kernel K(x, x′) = (1+
√

5‖x−x′‖+5‖x−x′‖2/3) exp(−
√

5‖x−
x′‖), where the corresponding RKHS contains twice di!eren-
tiable functions. The tuning parameter λδ

n in (7) is selected by
generalized cross-validation (Wahba 1990). We set Q = 2 in
Algorithm 1.

6.1. Empirical Performance of Inference on θ0

We begin with an additive model, Yi = f0(Xi) + g01(Zi1) +
g02(Zi2) + g03(Zi3) + Ui, where

f0(x) = 5x − [cos(2πx) + sin(2πx)],

g01(z1) = 6
[
0.1 sin(2πz1) + 0.2 cos(2πz1) + 0.3 sin2(2πz1)

+ 0.4 cos3(2πz1) + 0.5 sin3(2πz1))
]
,

g02(z2) = 3(2z2 − 1)2, g03(z3) = 4 sin(2πz3)

2 − sin(2πz3)
.

We generate random variables E1, . . . , E5 independently from
Uniform[0, 1], and set the primary and auxiliary modalities as

X = (E1 + ρE5)/(1 + ρ) ∈ X = [0, 1], and Zj = (Ej+1 +
ρE5)/(1 + ρ), for some ρ > 0 and j = 1, 2, 3. The correlation
between any two variables in X and Z is thus ρ2/(1 + ρ2). We
generate iid copies (Xi, Zi1, Zi2, Zi3) of (X, Z1, Z2, Z3), and gener-
ate the error Ui from N (0, σ 2). We set the sample size N = 500.
We set η(x, θ0) = θ0x, and apply the random forests averaged
over 500 trees to estimate the nuisance functions {r0, g0}.

Figure 1 shows the histograms of the competing estimators,
θ̂UR, θ̂DUR, θ̂SJR, θ̂DML, and our proposed OKDML estimator
θ̂OKDML, under ρ = 1 and σ = 1, based on 500 data repli-
cations. It is clearly seen that all four competing estimators are
biased, whereas the histogram of the OKDML estimator θ̂OKDML
matches that of the normal distribution. Figure 2 further reports
the empirical mean squared error of di!erent estimators under
various combinations of the noise level σ and the correlation
level ρ. When σ−1 increases, the signal-to-noise ratio increases.
However, the mean squared errors of the four competing meth-
ods do not decrease much due to the estimation bias, whereas
the mean squared error of our OKDML estimator continuously
decreases.

Figure 1. Empirical distribution of the estimator of θ0 based on 500 data replications. The bell-shape curve denotes the oracle normal distribution.

Figure 2. Mean squared error of the estimator of θ0 with varying noise level σ and correlation level ρ. Both axes are in the log scale.
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Figure 3. The true and estimated primary function f0(x), with the 95% upper and lower con!dence bounds, of the OKDML method, under varying noise level σ .

6.2. Empirical Performance of Inference on f0

We next consider a high-dimensional additive model, Yi =
f0(Xi)+∑600

j=1 g0j(Zij)+Ui, where f0(x), g01(z1), g02(z2), g03(z3)
are the same as the #rst example, and

g0j(zj) = zj, for j ∈ {4, . . . , 100},
g0j(zj) = 0, for j ∈ {101, . . . , 600}.

We generate random variables E1, . . . , E602 independently from
Uniform[0, 1], and set the primary and auxiliary modalities as
X = (E1 + ρE602)/(1 + ρ), and Zj = (Ej+1 + ρE602)/(1 +
ρ), for ρ = 1 and j = 1, . . . , 600. We generate i.i.d. copies
(Xi, Zi1, Zi2, . . . , , Zi600) of (X, Z1, Z2, . . . , Z600), and generate
the error Ui from N (0, σ 2) with σ ∈ {0.25, 0.5, 1}. We set the
sample size N = 500.

We construct both the con#dence band (12) for the primary
e!ect f0(x), and the con#dence interval (13) for the coe%cient
of determination R2. We use polynomial basis functions with
s = 5 following Theorem 3, while we estimate δ0 in a similar
way as in the #rst example. We employ the Lasso to estimate
the nuisance functions {r0, g0} due to the high-dimensionality of
this example, and tune the Lasso parameter using tenfold cross-
validation. We compute the quantile estimator ĉN(α/2) in (12)
by bootstrap with 500 replications.

Figure 3 shows the true and estimated primary function
f0(x), along with the 95% upper and lower con#dence bounds,
of the proposed orthogonal method with the varying noise level
σ . We also compute the empirical coverage probability of the
con#dence band CN at the signi#cance level 95%, by discretizing
the interval X = [0, 1] into 1000 grids, then calculating the
percentage that the con#dence band covers the truth on the
1000 grid points in 500 data replications. The resulting coverage
probability is 0.968, 0.958, and 0.946, when σ = 0.25, 0.50, and
1.00, respectively. Moreover, we compute the empirical coverage
probability of CI(R2) as the percentage that the con#dence
interval covers the true R2. The resulting coverage probability
is 0.990, 0.972, and 0.964, when σ = 0.25, 0.50, and 1.00,
respectively. It is seen from both the estimated function and the
coverage probability that our proposed method works well.

7. Multimodal Neuroimaging Study for AD

We revisit the motivating example of multimodal neuroimaging
analysis for AD. The data are part of the Berkeley Aging Cohort

Study, and consists of 697 subjects. For each subject, the imaging
data includes the anatomical MRI scan, which measures brain
cortical thickness and is summarized as a 68-dimensional vec-
tor that corresponds to 68 prede#ned brain regions-of-interest
(ROIs), and the PET scan, which measures tau deposition and
is summarized as a 70-dimensional vector that corresponds
to 70 ROIs. In addition, the subject’s age, gender, education,
and a scalar measure of the total amyloid-β accumulation are
collected. The response is a composite cognition score that com-
bines assessments of episodic memory, timed executive func-
tion, and global cognition. We study two scienti#c questions
given this data, #rst, the e!ect of brain atrophy on cognition a"er
controlling for demographic variables and amyloid-β , tau depo-
sitions, and second, the cascade of AD biomarkers as suggested
by Jack et al. (2010).

For the #rst problem, we take the brain MRI cortical thick-
ness as the primary modality, with p = 68, and take the
PET tau deposition along with the demographic variables and
the total amyloid-β as the auxiliary modalities, resulting in
p′ = 74. We apply the proposed OKDML method to infer
the e!ect of cortical thickness of individual brain regions on
the cognitive outcome. We adopt a similar implementation as
used in our #rst simulation example, and set η(x, θ0) = θT

0 x.
Table 1 reports the estimated e!ects of the brain regions where
the cortical thickness is found to be signi#cantly correlated with
the cognitive outcome a"er controlling for amyloid-β , tau and
other covariates, with the corresponding p-values under the
FDR control at the 5% level (Benjamini and Hochberg 1995).
These #ndings agree well with the AD literature. Particularly,
the entorhinal cortex is a brain area located in the medial
temporal lobe, and functions as a hub in a widespread network
for memory, navigation and the perception of time. Atrophy
in the entorhinal cortex has been consistently reported in AD
(Pini et al. 2016). The parahippocampal gyrus is a grey matter

Table 1. Multimodal study of AD: the identi!ed signi!cant brain regions.

Estimate SD p-value

Entorhinal cortex, left 3.214 0.709 6.957 × 10−6

Entorhinal cortex, right 2.853 0.671 2.454 × 10−5

Superior temporal cortex, left 10.42 2.444 2.321 × 10−5

Superior temporal cortex, right 5.061 1.451 5.213 × 10−4

Parahippocampal gyrus, left 1.076 0.362 3.112 × 10−3

Parahippocampal gyrus, right 1.366 0.474 4.098 × 10−3
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Figure 4. The estimated individual e"ect of the signi!cant brain regions.

cortical region of the brain that surrounds the hippocampus,
and plays an important role in memory encoding and retrieval.
It is among the #rst to su!er damage from AD (Jack et al.
2010). The superior temporal gyrus locates in the temporal
lobe, and contains the Wernicke’s area responsible for processing
of speech. Its connection with AD needs further veri#cation.
Moreover, Figure 4 shows the con#dence band for the estimated
individual e!ect of each signi#cant brain region. Besides, the
95% con#dence interval for the R2 measure is (0.402, 0.437),
which supports the common belief that brain structural atrophy
is closely related to the cognition outcome.

For the second problem, Jack et al. (2010) suggested that tau
deposition precedes structural atrophy in AD pathogenesis. To
help verify this theory, we take the PET tau deposition as the
primary modality, with p = 70, then compare two model #ts,
one with the MRI cortical thickness as part of the auxiliary
modalities, and the other without. In both models, we include
age, gender, education and amyloid-β as the auxiliary modali-
ties. This yields p′ = 72 when the cortical thickness is included,
and p′ = 4 if not. We obtain the 95% con#dence interval
for the total e!ect of tau, which is (−1.724, 0.702) when the
cortical thickness is included, and (−5.212, −3.945) when it is
not. These results suggest that, not including structural atrophy
as the auxiliary modality would result in a much larger e!ect
of tau on cognition outcome, which in turn implies structural
atrophy likely occurs a"er tau deposition, and thus lends some
support to the existing theory.

8. Discussion

We conclude the article by reiterating and further elaborating
the innovation of our proposal and its di!erence from Cher-
nozhukov et al. (2018). We divide our discussion in two parts:
the inference for the primary parameter θ0, and the inference
for the primary function f0. For each part, we #rst discuss why
the question is important, what are the challenges, and why the

existing solutions are not directly applicable. We then detail our
methodological and theoretical contributions.

(A) Inference for θ0: A key innovation of our proposal is
that we allow an explicit and non-vanishing model error δ0 for
the primary modality e!ect f0 in (2), whereas Chernozhukov
et al. (2018) did not consider δ0. This di!erence has profound
implications in model interpretation, estimation approach, and
theoretical analysis, which in turn di!erentiates our proposal
from the existing DML solutions such as Chernozhukov et al.
(2018) and Kozbur (2020).

1. In scienti#c studies such as multimodal analysis, it is crucial
to balance model interpretability and model $exibility, which
is also the main motivation for this article. In numerous
applications, it is not uncommon for scientists to employ
some relatively simple models, for example, linear models, for
the primary modality. Such models are easy to interpret, but
may not be accurate, and can induce a nonnegligible approxi-
mation error. In other applications, it is likely to employ more
advanced and accurate but less interpretable models. It is thus
pivotal to o!er inferential robustness for both cases, and to
achieve a balanced trade-o! between model interpretability
and model $exibility.

2. Chernozhukov et al. (2018) focused on a low-dimensional
primary parameter involving no additional error. Kozbur
(2020) extended to a nonparametric primary function
through basis expansion, but imposed that the error must be
negligible, in that the squared approximation error is o(N−1).
However, this condition requires either the working model
to be su%ciently close to the truth, or the number of basis
functions to diverge to in#nity with the sample size, which
in e!ect excludes the use of simple yet inaccurate models in
characterizing the e!ect of the primary modality. We also
utilize basis expansion to approximate the primary modality
e!ect, but we do not require a vanishing approximation error,
nor a diverging number of basis functions, when we establish
the asymptotic guarantees of the estimated θ0.
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3. To decouple the primary parameter θ0 and the non-negligible
model error δ0, we introduce the second form of orthogonal-
ity, the decomposition orthogonality, in addition to the Ney-
man orthogonality, into the framework of double/debiased
machine learning. The new orthogonality is similar to the
perpendicularity property in smoothing splines (Wahba
1990). We show in Proposition 2 that, this decomposition
orthogonality between the expanded basis functions and the
model error ensures the identi#ability of the primary param-
eter θ0. This is a new result, and is potentially useful for
obtaining improved inferential robustness in other settings
too when there exist non-negligible model error.

4. Methodologically, the new decomposition orthogonality
leads to the construction of a new RKHS, and a residual
learning approach in our estimation algorithm, which helps
decouple and remove the impact of the model error in param-
eter estimation.

5. Theoretically, we successfully establish the
√

N-consistency
and asymptotic normality of the estimated main param-
eter under model error. Compared to the existing semi-
parametric inferential analysis, our proof relies on the score
function that is Neyman orthogonal with respect to the
model error δ0, and as such requires a weaker regularity
condition (C3) than the Donsker conditions that are com-
mon but would o"en fail in multimodal analysis. Com-
pared to the alternative multimodal solutions, including uni-
modality regression, debiased uni-modality regression, sim-
ple joint regression, and double/debiased machine learning
without taking into account δ0, we show in Section 5 that
our estimator is unbiased, but the alternative ones all su!er
from a non-vanishing estimation bias when there is model
error.

6. We also show that our estimator is semi-parametric e%cient,
in that it achieves the highest possible e%ciency, when the
measurement error U follows a normal distribution. This
is also a new result, and its proof is based on construct-
ing an oracle estimator from an ideal #nite-dimensional
parameter space that achieves the same asymptotic variance
as our estimator from an in#nite-dimensional parameter
space.

(B) Inference for f0: Another key innovation of our proposal
is that we establish the con#dence band for the nonparametric
primary function f0 in the presence of high-dimensional non-
linear nuisance function, whereas Chernozhukov et al. (2018)
considered a low-dimensional primary parameter involving no
nonparametric f0.

1. The function f0 captures the predicted e!ect of the pri-
mary modality, quanti#es the amount of contribution of the
primary modality in terms of the percentage of variation
explained, and also has some causal interpretation under
additional conditions. It is thus of great scienti#c interest to
perform rigorous inference on f0.

2. The high-dimensional nonparametric inference of f0 is chal-
lenging. Construction of con#dence intervals in such a set-
ting is o"en intertwined with penalized model estimation and
selection, giving rise to post-regularization inference. There
has been pioneering research on high-dimensional inference
for parametric models such as linear and generalized linear

models (Zhang and Zhang 2014; van de Geer et al. 2014;
Cai and Guo 2017, among others). Early nonparametric
inference usually focused on a #xed dimensionality (e.g.,
Wahba 1983; Fan and Jiang 2005). More recently, Lu, Kolar,
and Liu (2020) and Kozbur (2020) studied high-dimensional
inference for nonparametric models. However, as we point
out a"er Theorem 3, Lu, Kolar, and Liu (2020) required the
variables to be only weakly correlated, which is unlikely to
hold for multimodal data, whereas Kozbur (2020) required
a fast vanishing approximation error, which sacri#ces model
interpretability.

3. Our inference on f0 is di!erent from the existing litera-
ture, as it targets a high-dimensional nonparametric regres-
sion setting, allows the primary and auxiliary modalities to
be strongly correlated, and also takes into account a non-
negligible approximation error when modeling the primary
modality e!ect.

4. Technically, we extend the inferential framework of Cher-
nozhukov, Chetverikov, and Kato (2014) to our system of
models for multimodal data analysis. We construct the supre-
mum of high-dimensional empirical processes arising from
our OKDML estimator, which enables us to control the
supreme norm rate of our estimator, while allowing a diverg-
ing dimensionality. We then approximate the supremum with
a Gaussian multiplier process to derive the corresponding
quantiles and to obtain the asymptotically valid con#dence
band.

In summary, our proposal integrates reproducing kernel
learning (Wahba 1990) with double/debiased machine learn-
ing (Chernozhukov et al. 2018). We believe it makes a useful
addition to and also extends the scope of the general methodol-
ogy and theory for multimodal data analysis, high-dimensional
nonparametric inference, as well as double/debiased machine
learning. Meanwhile, such an extension is far from simple and
straightforward.

Supplementary Appendix

The online Supplementary Appendix collects all technical proofs and addi-
tional simulation results.
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