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Abstract

Dynamic functional connectivity, as measured by the time-varying covariance of neurological 

signals, is believed to play an important role in many aspects of cognition. While many methods 

have been proposed, reliably establishing the presence and characteristics of brain connectivity 

is challenging due to the high dimensionality and noisiness of neuroimaging data. We present a 

latent factor Gaussian process model which addresses these challenges by learning a parsimonious 

representation of connectivity dynamics. The proposed model naturally allows for inference and 

visualization of connectivity dynamics. As an illustration of the scientific utility of the model, 

application to a data set of rat local field potential activity recorded during a complex non-spatial 

memory task provides evidence of stimuli differentiation.

1 Introduction

The celebrated discoveries of place cells, grid cells, and similar structures in the 

hippocampus have produced a detailed, experimentally validated theory of the formation 

and processing of spatial memories. However, the specific characteristics of non-spatial 

memories, e.g. memories of odors and sounds, are still poorly understood. Recent results 

from human fMRI and EEG experiments suggest that dynamic functional connectivity 

(DFC) is important for the encoding and retrieval of memories [1, 2, 3, 4, 5, 6], yet DFC in 

local field potentials (LFP) in animal models has received relatively little attention. We here 

propose a novel latent factor Gaussian process (LFGP) model for DFC estimation and apply 

it to a data set of rat hippocampus LFP during a non-spatial memory task [7]. The model 
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produces strong statistical evidence for DFC and finds distinctive patterns of DFC associated 

with different experimental stimuli.

Due to the high-dimensionality of time-varying covariance and the complex nature 

of cognitive processes, effective analysis of DFC requires balancing model parsimony, 

flexibility, and robustness to noise. DFC models fall into a common framework with 

three key elements: dimensionality reduction, covariance estimation from time series, and 

identification of connectivity patterns [8]. Many neuroimaging studies use a combination 

of various methods, such as sliding window (SW) estimation, principal component analysis 

(PCA), and the hidden Markov model (HMM) (see e.g. [9, 10, 11]). In general, these 

methods are not fully probabilistic, which can make uncertainty quantification and inference 

difficult in practice.

Bayesian latent factor models provide a probabilistic approach to modeling dynamic 

covariance that allows for simultaneous dimensionality reduction and covariance process 

estimation. Examples include the latent factor stochastic volatility (LFSV) model [12] and 

the nonparametric covariance model [13]. In the LFSV model, an autoregressive process is 

imposed on the latent factors and can be overly restrictive. While the nonparametric model 

is considerably more flexible, the matrix process for time-varying loadings adds substantial 

complexity.

Aiming to bridge the gap between these factor models, we propose the latent factor 

Gaussian process (LFGP) model. In this approach, a latent factor structure is placed on 

the log-covariance process of a non-stationary multivariate time series, rather than on the 

observed time series itself as in other factor models. Since covariance matrices lie on the 

manifold of symmetric positive-definite (SPD) matrices, we utilize the Log-Euclidean metric 

to allow unconstrained modeling of the vectorized upper triangle of the covariance process. 

Dimension reduction and model parsimony is achieved by representing each covariance 

element as a linear combination of Gaussian process latent factors [14].

In this work, we highlight three major advantages of the LFGP model for practical DFC 

analysis. First, through the prior on the Gaussian process length scale, we are able to 

incorporate scientific knowledge to target specific frequency ranges that are of scientific 

interest. Second, the model posterior allows us to perform Bayesian inference for scientific 

hypotheses, for instance, whether the LFP time series is non-stationary, and if characteristics 

of DFC differ across experimental conditions. Third, the latent factors serve as a low-

dimensional representation of the covariance process, which facilitates visualization of 

complex phenomena of scientific interest, such as the role of DFC in stimuli discrimination 

in the context of a non-spatial memory experiment.

2 Background

2.1 Sliding Window Covariance Estimation

Sliding window methods have been extensively researched for the estimation and analysis 

of DFC, particularly in human fMRI studies; applications of these methods have identified 

significant associations of DFC with disease status, behavioral outcomes, and cognitive 
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differences in humans. See [8] for a recent detailed review of existing literature. For 

X(t) N(0, K(t)) a p-variate time series of length T with covariance process K(t), the 

sliding window covariance estimate KSW (t) with window length L can be written as 

the convolution KSW (t) = ℎ * XX′ (t) = ∑s = 1
T ℎ(s)X(t − s)X(t − s)′ds, for the rectangular 

kernel h(t) = 1[0,L−1](t)/L, where 1 is the indicator function. Studies of the performance 

of sliding window estimates recommend the use of a tapered kernel to decrease the 

impact of outlying measurements and to improve the spectral properties of the estimate 

[15, 16, 17]. In the present work we employ a Gaussian taper with scale τ defined as 

ℎτ(t) = 1
ζ exp − 1

2
t − L/2
τL/2

2
1[0, L − 1](t) where ζ is a normalizing constant. The corresponding 

tapered SW estimate is Kτ(t) = ℎτ * XX′ (t).

2.2 Log-Euclidean Metric

Direct modeling of the covariance process from the SW estimates is complicated by the 

positive definite constraint of the covariance matrices. To ensure the model estimates are 

positive definite, it is necessary to employ post-hoc adjustments, or to build the constraints 

into the model, typically by utilizing the Cholesky or spectral decompositions. The LFGP 

model instead uses the Log-Euclidean framework of symmetric positive definite (SPD) 

matrices to naturally ensure positive-definiteness of the estimated covariance process while 

also simplifying the model formulation and implementation.

Denote the space of p × p SPD matrices as ℙp. For X1, X2 ∈ ℙp, the Log-Euclidean distance 

is defined by dLE(X1, X2) = ‖Log(X1) − Log(X2)‖, where Log is the matrix logarithm, and 

‖ · ‖ is the Frobenius norm. The metric space ℙp, dLE  is a Riemannian manifold that is 

isomorphic to ℝq with the usual Euclidean norm, for q = (p + 1)p/2.

Methods for modeling covariances in regression contexts via the matrix logarithm were 

first introduced in [18]. The Log-Euclidean framework for analysis of SPD matrices in 

neuroimaging contexts was first proposed in [19], with further applications in neuroimaging 

having been developed in recent years [20]. The present work is a novel application of the 

Log-Euclidean framework for DFC analysis.

2.3 Bayesian Latent Factor Models

For xij, i = 1, …, n, j = 1, …, p, the simple Bayesian latent factor model is xi = fiΛ 

+ εi, with fi
iidN 0, Ir , εi

iidN(0, Σ) and Λ an r × p matrix of factor loadings [21]. Σ is 

commonly assumed to be a diagonal matrix, implying the latent factors capture all the 

correlation structure of the p features of x. The latent factor model shares some similarities 

with principal component analysis, but includes a stochastic error term, which leads to a 

different interpretation of the resulting factors [9, 10].

Variants of the linear factor model have been developed for modeling non-stationary 

multivariate time series [22, 23]. In general, these models represent the p-variate observed 

time series as a linear combination of r latent factors fj(t), j = 1, …, r, with r × q loading 

matrix Λ and errors ε(t): X(t) = f(t)Λ + ε(t). From this general modeling framework, 
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numerous methods for capturing the non-stationary dynamics in the underlying time series 

have been developed, such as latent factor stochastic volatility (LFSV) [12], dynamic 

conditional correlation [24], and the nonparametric covariance model [13].

2.4 Gaussian Processes

A Gaussian process (GP) is a continuous stochastic process for which any finite collection 

of points are jointly Gaussian with some specified mean and covariance. A GP can be 

understood as a distribution on functions belonging to a particular reproducing kernel 

Hilbert space (RKHS) determined by the covariance operator of the process [25]. Typically, 

a zero mean GP is assumed (i.e. the functional data has been centered by subtracting a 

consistent estimator of the mean), so that the GP is parameterized entirely by the kernel 

function κ that defines the pairwise covariance. Let f GP(0, k( ⋅ , ⋅ )). Then for any x and x′ 
we have

f(x)
f x′ N 0, κ(x, x) κ x, x′

κ x, x′ κ x′, x′ . (1)

Further details are given in [26].

3 Latent Factor Gaussian Process Model

3.1 Formulation

We consider estimation of dynamic covariance from a sample of n independent time series 

with p variables and T time points. Denote the ith observed p-variate time series by Xi(t), i 
= 1, …, n. We assume that each Xi(t) follows an independent distribution D with zero mean 

and stochastic covariance process Ki(t). To model the covariance process, we first compute 

the Gaussian tapered sliding window covariance estimates for each Xi(t), with fixed window 

size L and taper τ to obtain Kτ, i. We then apply the matrix logarithm to obtain the q = 

p(p + 1)/2 length vector Yi(t) specified by Kτ, i = Log u Y i , where u  maps a matrix to its 

vectorized upper triangle. We refer to Yi(t) as the “log-covariance” at time t.

The resulting Yi(t) can be modeled as an unconstrained q-variate time series. The LFGP 

model represents Yi(t) as a linear combination of r latent factors Fi(t) through an r × q 
loading matrix B and independent Gaussian errors ϵi. The loading matrix B is held constant 

across observations and time. Here Fi(t) is modeled as a product of independent Gaussian 

processes. Placing priors p1, p2, p3 on the loading matrix B, Gaussian noise variance σ2, 

and Gaussian process hyper-parameter θ, respectively, gives a fully probabilistic latent factor 

model on the covariance process:

Xi(t) D 0, Ki(t)  where Ki(t) = exp u Y i(t) (2)

Y i(t) = Fi(t) ⋅ B + ϵi where ϵi
iidN 0, Iσ2 (3)
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Fi(t) GP(0, κ(t; θ)) (4)

B p1, σ2 p2, θ p3 . (5)

The LFGP model employs a latent distribution of curves GP (0, κ(t; θ)) to capture temporal 

dependence of the covariance process, thus inducing a Gaussian process on the log-

covariance Y (t). This conveniently allows multiple observations to be modeled as different 

realizations of the same induced GP as done in [27]. The model posteriors are conditioned 

on different observations despite sharing the same kernel. For better identifiability, the GP
variance scale is fixed so that the loading matrix can be unconstrained.

3.2 Properties

Theorem 1. The log-covariance process induced by the LFGP model is weakly stationary 
when the GP kernel κ(s, t) depends only on |s − t|.

Proof. The covariance of the log-covariance process Y (t) depends only on the static loading 

matrix B = βkj 1 ≤ k ≤ r; 1 ≤ j ≤ q and the factor covariance kernels. Explicitly, for factor 

kernels κ(s, t; θk), k = 1, …, r, and assuming εi(t)
iidN(0, Σ), with Σ = σjj′

2
j, j′ ≤ q constant 

across observations and time, the covariance of elements of Y (t) is

Cov Y ij(s), Y ij′(t) = Cov ∑
k = 1

r
Fik(s)βkj + εij′(t), ∑

k = 1

r
Fik(t)βkj′ + εij′(t) (6)

= ∑
k = 1

r
βkjβkj′κ s, t; θk + σjj′

2 , (7)

which is weakly stationary when κ(s, t) depends only on |s − t|. □

Posterior contraction.—To consider posterior contraction of the LFGP model, we make 

the following assumptions. The true log-covariance process w = u (log(K (t)) is in the 

support of the product GP, for F (t) and B defined above, with known number of latent 

factors r. The GP kernel κ is α-Hölder continuous with α ≥ 1/2. Y (t): [0, 1] ℝq is a smooth 

function in lq
∞([0, 1]) with respect to the Euclidean norm, and the prior p2 for σ2 has support 

on a given interval [a, b] ⊂ (0, ∞). Under the above assumptions, bounds on the posterior 

contraction rates then follow from previous results on posterior contraction of Gaussian 

process regression for α-smooth functions given in [28, 29]. Specifically,

E0Πn (w, σ): w − w0 n + σ − σ0 > Mεn Y1, ⋯, Yn 0

for sufficiently large M and with posterior contraction rate εn = n−α/(2α+q) logδ(n) for some 

δ > 0, where E0(Πn(·|Y1, ⋯, Yn)) is the expectation of the posterior under the model priors.
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To illustrate posterior contraction in the LFGP model, we simulate data for five signals 

with various sample sizes (n) and numbers of observation time points (t), with a covariance 

process generated by two latent factors. To measure model bias, we consider the mean 

squared error of posterior median of the reconstructed log-covariance series. To measure 

posterior uncertainty, the posterior sample variance is used. As shown in Table 1, both 

sample size n and number of observation time points t contribute to posterior contraction.

Large prior support.—The prior distribution of the log-covariance process Y 
(t) is a linear combination of r independent GPs each with mean 0 and kernel 

κ(s, t; θk), k = 1, ⋯, r. That is, each log-covariance element will have prior 

Y j(t) = ∑k = 1
r βjkFk(t) GP 0, ∑βjk

2 κ s, t; θk . Considering B fixed, the resulting prior for 

Fi(t)B has support equal to the closure of the reproducing kernel Hilbert space (RKHS) 

with kernel BTK(t, ⋅ )B [26], where K is the covariance tensor formed by stacking κk = 

κ(s, t; θk), k = 1, ⋯, r [25]. Accounting for the prior p1 of B, a function W ∈ lq
∞[0, 1] will 

have nonzero prior probability Π0(W) > 0 if W is in the closure of the RKHS with kernel 

ATK(t, ⋅ )A for some A in the support of p1.

3.3 Factor Selection via the Horseshoe Prior

Similar to other factor models, the number of latent factors in the LFGP model has a crucial 

effect on model performance, and must be selected somehow. For Bayesian factor analysis, 

there is extensive literature on factor selection methods, such as Bayes factors, reversible 

jump sampling [30], and shrinkage priors [31]. While we can compare different models in 

terms of goodness-of-fit, we cannot compare their latent factors in a meaningful way due to 

identifiability issues. Therefore, we instead iteratively increase the number of factors and fit 

the new factors on the residuals resulting from the previous fit. In order to avoid overfitting 

with too many factors, we place a horseshoe prior on the loadings of the new factors, so that 

the loadings shrink to zero if the new factor is unnecessary.

Introduced by [32], the horseshoe prior in the regression setting is given by

β λ, τ N 0, λ2ρ2 (8)

λ Caucℎy+(0, 1) (9)

and can be considered as a scale-mixture of Gaussian distributions. A small global scale 

ρ encourages shrinkage, while the heavy tailed Cauchy distribution allows the loadings to 

escape from zero. The example shown in Figure 1 illustrates the shrinkage effect of the 

horseshoe prior when iteratively fitting an LFGP model with four factors to simulated data 

generated from three latent factors. For sampling from the loading posterior distribution, we 

use the No-U-Turn Sampler [33] as implemented in PyStan [34].

3.4 Scalable Computation

The LFGP model can be fit via Gibbs sampling, as commonly done for Bayesian latent 

variable models. In every iteration, we first sample F|B, σ2, θ, Y from the conditional p(F|Y) 
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as F, Y are jointly multivariate Gaussian where the covariance can be written in terms of 

B, σ2, θ. However, it is worth noting that this multivariate Gaussian has a large covariance 

matrix, which could be computationally expensive to invert. Given F, the parameters B, 
σ2 and θ become conditionally independent. Using conjugate priors for Bayesian linear 

regression, the posterior p(B, σ2|F, Y) is directly available. For the GP parameter posterior 

p(θ|F), either Metropolis random walk or slice sampling [35] can be used within each Gibbs 

step because the parameter space is low dimensional.

For efficient GP posterior sampling, it is essential to exploit the structure of the covariance 

matrix. For each independent latent GP factor Fj, there are n independent sets of 

observations at t time points. Therefore, the GP covariance matrix Σj has dimensions 

nT × nT. To reduce the computational burden, we notice that the covariance Σj can be 

decomposed using a Kronecker product Σj = In ⊗ Ktime(t), where Ktime is the T × T 

temporal covariance. The cost to invert Σj using this decomposition is O T 3 , which is a 

substantial reduction compared to the original cost O (nT )3 . For many choices of kernel, 

such as the squared-exponential or Matérn kernel, Ktime (t) has a Toeplitz structure and can 

be approximated through interpolation [36], further reducing the computational cost.

Combining the latent GP factors F (dimensions n × T × r) and loading matrix B (dimensions 

r × q) induces a GP on Y. The dimensionality of Y is n ×T × q so the full (nTq) × (nTq) 

covariance matrix ΣY is prohibitive to invert. As every column of Y is a weighted sum of 

the GP factors, the covariance matrix ΣY can be written as a sum of Kronecker products 

∑j = 1
r Aj ⊗ Σj + Iσ2, where Σj is the covariance matrix of the jth latent GP factor and Aj 

is a q × q matrix based on the factor loadings. We can regress residuals of Y on each 

column of F iteratively to sample from the conditional distribution p(F|Y) so that the residual 

covariance is only Aj ⊗ Σj + I. The inversion can be done in a computationally efficient way 

with the following matrix identity

(C ⊗ D + I)−1 = (P ⊗ Q)T I + Λ1 ⊗ Λ2
−1(P ⊗ Q) (10)

where C = PΛ1PT and D = QΛ2QT are the spectral decompositions. In the identity, obtaining 

P, Q, Λ1, Λ2 costs O q3  and O (nT )3 , which is a substantial reduction from the cost of direct 

inversion, O (nTq)3 ; calculating (I + Λ1 ⊗ Λ2)−1 is straightforward since Λ1 and Λ2 are 

diagonal.

4 Experiments

4.1 Model Comparisons on Simulated Data

We here consider three benchmark models: sliding window with principal component 

analysis (SW-PCA), hidden Markov model, and LFSV model. SW-PCA and HMM are 

commonly used in DFC studies but have severe limitations. The sliding window covariance 

estimates are consistent but noisy, and PCA does not take the estimation error into account. 

HMM is a probabilistic model and can be used in conjunction with a time series model, but 

it is not well-suited to capturing smoothly varying dynamics in brain connectivity.
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To compare the performance of different models, we simulate time series data Xt ~ N(0, 
K(t)) with time-varying covariance K(t). The covariance K(t) follows deterministic dynamics 

that are given by u (log(K(t))) = U(t) ⋅ A. We consider three different scenarios of dynamics 

U(t): square waves, piece-wise linear functions, and cubic splines. Note that both square 

waves and piece-wise linear functions give rise to dynamics that are not well-represented 

by the LFGP model when the squared-exponential kernel is used. For each scenario, 

we randomly generate 100 time series data sets and fit all the models. The evaluation 

metric is reconstruction loss of the covariance as measured by the Log-Euclidean distance. 

The simulation results in Table 2 show that the proposed LFGP model has the lowest 

reconstruction loss among the methods considered. Each time series has 10 variables with 

1000 observations and the latent dynamics are 4-dimensional as illustrated in Figure 3. For 

the SW-PCA model, the sliding window size is 50 and the number of principal components 

is 4. For the HMM, the number of hidden states is increased gradually until the model does 

not converge, following the implementation outlined in [37]. For the LFSV model, the R 

package factorstochvol is used with default settings. All simulations are run on a 2.7 GHz 

Intel Core i5 Macbook Pro laptop with 8GB memory.

4.2 Application to Rat Hippocampus Local Field Potentials

To investigate the neural mechanisms underlying the temporal organization of memories, [7] 

recorded neural activity in the CA1 region of the hippocampus as rats performed a sequence 

memory task. The task involves the presentation of repeated sequences of 5 stimuli (odors 

A, B, C, D, and E) at a single port and requires animals to correctly identify each stimulus 

as being presented either “in sequence” (e.g., ABC…) or “out of sequence” (e.g., ABD…) 

to receive a reward. Here the model is applied to local field potential (LFP) activity recorded 

from the rat hippocampus, but the key reason for choosing this data set is that it provides 

a rare opportunity to subsequently apply the model to other forms of neural activity data 

collected using the same task (including spiking activity from different regions in rats [38] 

and whole-brain fMRI in humans).

LFP signals were recorded in the hippocampi of five rats performing the task. The local field 

potentials are measured by surgically implanted tetrodes and the exact tetrode locations vary 

across rats. Therefore, it may not make sense to compare LFP channels of different rats. This 

issue actually motivates the latent factor approach because we want to eventually visualize 

and compare the latent trajectories for all the rats. For the present analysis, we have focused 

on the data from a particular rat exhibiting the best memory task performance. To boost the 

signal-to-noise ratio, six LFP channels that recorded a majority of the attached neurons were 

chosen. Only trials of odors B and C were considered, to avoid potential confounders with 

odor A being the first odor presented, and due to substantially fewer trials for odors D and E.

During each trial, the LFP signals are sampled at 1000Hz for one second after odor release. 

We focus on 41 trials of odor B and 37 trials of odor C. Figure 4 shows the time series 

of these six LFP channels for a single trial. We treat all 78 trials as different realizations 

of the same stochastic process without distinguishing the stimuli explicitly in the model. 

In order to facilitate interpretation of the latent space representation, we fit two latent 

factors which explain about 40% of the variance in the data. The prior for GP length 
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scale is a Gamma distribution concentrated around 100ms on the time scale to encourage 

learning frequency dynamics close to the theta range (4–12 Hz). Notably, oscillations in this 

frequency range have been associated with memory function but have not previously been 

shown to differentiate among the type of stimuli used here, thus providing an opportunity 

to test the sensitivity of the model. For the loadings and variances, we use the Gaussian-

Inverse Gamma conjugate priors. 20,000 MCMC draws are taken with the first 5000 draws 

discarded as burn-in.

For each odor, we can calculate the posterior median latent factors across trials and visualize 

them as a trajectory in the latent space. Figure 5 shows that the two trajectories start in 

an almost overlapping area, with separation occurring around 250ms. This is corroborated 

by the experimental data indicating that animals begin to identify the odor 200–250ms 

after onset. We also observe that the two trajectories converge toward the end of the odor 

presentation. This is also consistent with the experimental data showing that, by then, 

animals have correctly identified the odors and are simply waiting to perform the response 

(thereby resulting in similar neural states). In order to quantify odor separation, we can 

evaluate the difference between the posterior distributions of odor median latent trajectories 

by using classifiers on the MCMC draws. We also fit the model to two random subsets of 

the 58 trials of odor A and train the same classifiers. Table 3) shows the classification results 

and the posteriors are more separated for different odors.

As a comparison, a hidden Markov model was fit to the LFP data from the same six 

selected tetrodes. Figure 6 compares the estimated covariance with different models. Eight 

states were selected with an elbow method using the AIC of the HMM; we note that the 

minimum AIC is not achieved for less than 50 states, suggesting that the dynamics of the 

LFP covariance may be better described with a continuous model. Moreover, the proportion 

of time spent in each state for odor B and C trials given in Table 4 fails to capture odor 

separation in the LFP data.

Collectively, these results provide compelling evidence that this model can use LFP 

activity to differentiate the representation of different stimuli, as well as capture their 

expected dynamics within trials. Stimuli differentiation has frequently been accomplished 

by analyzing spiking activity, but not LFP activity alone. This approach, which may be 

applicable to other types of neural data including spiking activity and fMRI activity, may 

significantly advance our ability to understand how information is represented among brain 

regions.

5 Discussion

The proposed LFGP model is a novel application of latent factor models for directly 

modeling the dynamic covariance in multivariate non-stationary time series. As a fully 

probabilistic approach, the model naturally allows for inference regarding the presence 

of DFC, and for detecting differences in connectivity across experimental conditions. 

Moreover, the latent factor structure enables visualization and scientific interpretation of 

connectivity patterns. Currently, the main limitation of the model is scalability with respect 

to the number of observed signals. Thus, in practical applications it may be necessary to 
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select a relevant subset of the observed signals, or apply some form of clustering of similar 

signals. Future work will consider simultaneously reducing the dimension of the signals and 

modeling the covariance process to improve the scalability and performance of the LFGP 

model.

The Gaussian process regression framework is a new avenue for analysis of DFC in 

many neuroimaging modalities. Within this framework, it is possible to incorporate other 

covariates in the kernel function to naturally account for between-subject variability. In our 

setting, multiple trials are treated as independent observations or repeated measurements 

from the same rat, while in human neuroimaging studies, there are often single observations 

from many subjects. Pooling information across subjects in this setting could yield more 

efficient inference and lead to more generalizable results.
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Figure 1: 
Violin plots of loading posteriors show that the loadings for the fourth factor (indices 30 

to39) shrink to zero with the horseshoe prior (left). Compared to the posteriors of the first 

three factors (dashed gray), the posterior of the extraneous factor (solid red) is diffused 

around zero as a result of zero loadings (right).
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Figure 2: 
The full covariance matrix ΣY is composed of building blocks of smaller matrices. (a) GP
covariance matrix at evenly-spaced time points, (b) covariance matrix of factor Fj for n 
sets of observations, (c) contribution to the covariance of Y from factor Fj, and (d) full 

covariance matrix ΣY.
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Figure 3: 
With the jagged dynamics of discrete states, the LFGP model fails to capture the “jumps” 

but approximates the overall trend (left). When the underlying dynamics are smooth, the 

LFGP model can accurately recover the shape up to some scaling constant (right).
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Figure 4: 
Time series of 6 LFP channels for a single trial sampled at 1000Hz include all frequency 

components (left). Posterior draws of latent factors for the covariance process appear to be 

smoothly varying near the theta frequency range (right).
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Figure 5: 
Posterior draws of median GP factors visualized as trajectories in latent space can be 

separated based on the odor, with maximum separation around 250ms (left). The latent 

trajectories are much more intertwined when the model is fitted to data of the same odor. 

(right)
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Figure 6: 
Median covariance matrices over time for odor B trials estimated with sliding window (top), 

HMM (middle), and LFGP model (bottom) reveal similar patterns in dynamic connectivity 

in the six LFP channels.
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Table 1:

Mean squared error of posterior median (posterior sample variance) ×10−2

n = 1 n = 10 n = 20 n = 50

t = 25 12.212 (20.225) 7.845 (8.743) 7.089 (7.714) 5.869 (7.358)

t = 50 6.911 (7.588) 4.123 (5.836) 3.273 (3.989) 3.237 (3.709)

t = 100 3.728 (5.218) 1.682 (2.582) 1.672 (2.659) 1.672 (1.907)
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Table 2:

Median reconstruction loss (standard deviation) across 100 data sets

SW-PCA HMM LFSV LFGP

Square save 0.693 (0.499) 1.003 (1.299) 4.458 (2.416) 0.380 (0.420)

Piece-wise 0.034 (0.093) 0.130 (0.124) 0.660 (0.890) 0.027 (0.088)

Smooth spline 0.037 (0.016) 0.137 (0.113) 0.532 (0.400) 0.028 (0.123)
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Table 3:

Odor separation as measured by Latent space classification accuracy (standard deviation)

Different odors Same odor

Logistic regression 69.97 (0.78) 63.10 (0.91)

k-NN 87.12 (0.33) 78.41 (0.65)

SVM 74.53 (0.67) 64.75 (1.21)
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Table 4:

State proportions for odors B and C as estimated by HMM

Odor State 1 State 2 State 3 State 4 State 5 State 6 State 7 State 8

B 0.123 0.089 0.146 0.153 0.109 0.159 0.160 0.061

C 0.133 0.092 0.144 0.147 0.106 0.164 0.152 0.062
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