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Abstract

E�cient Deep Neural Networks

by

Bichen Wu

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Kurt Keutzer, Chair

The success of deep neural networks (DNNs) is attributable to three factors: increased
compute capacity, more complex models, and more data. These factors, however, are not
always present, especially for edge applications such as autonomous driving, augmented
reality, and internet-of-things. Training DNNs requires a large amount of data, which is
di�cult to obtain. Edge devices such as mobile phones have limited compute capacity, and
therefore, require specialized and e�cient DNNs. However, due to the enormous design
space and prohibitive training costs, designing e�cient DNNs for di↵erent target devices is
challenging. So the question is, with limited data, compute capacity, and model complexity,
can we still successfully apply deep neural networks?

This dissertation focuses on the above problems and improving the e�ciency of deep
neural networks at four levels. Model e�ciency: we designed neural networks for various
computer vision tasks and achieved more than 10x faster speed and lower energy. Data
e�ciency: we developed an advanced tool that enables 6.2x faster annotation of a LiDAR
point cloud. We also leveraged domain adaptation to utilize simulated data, bypassing the
need for real data. Hardware e�ciency: we co-designed neural networks and hardware
accelerators and achieved 11.6x faster inference. Design e�ciency: the process of finding
the optimal neural networks is time-consuming. Our automated neural architecture search
algorithms discovered, using 421x lower computational cost than previous search methods,
models with state-of-the-art accuracy and e�ciency.
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Chapter 1

Introduction

1.1 Three factors for the success of deep learning

In recent years, research on deep neural networks has achieved tremendous progress in a
wide range of artificial intelligence problems, including but not limited to computer vision,
natural language processing, and reinforcement learning. In 2015, ResNet [49] surpassed
the human-level accuracy in the ImageNet classification task. In 2016, an automated agent
named AlphaGo [131] beat the world champion Lee Sedol in the game of Go. In 2018, Hassan
et al. [48] achieved human-level parity in Chinese-to-English translation.

The success of deep neural networks is typically attributable to three factors: more
complex models, more data, and increased compute capacity, as illustrated in Figure 1.1.

More complex models: In many previous works [49, 188, 57], it is commonly observed
that the performance of deep neural networks is highly dependent on the model complexity,
which is measured by a neural network’s parameter size or the number of floating-point
operations (FLOPs). A general trend is that the larger the model is, the higher accuracy
it can achieve in a given task. For examples, AlexNet [81] achieves 58% top-1 accuracy on
ImageNet and the network contains about 60 million parameters. VGG16 [132] contains 138
million parameters and significantly improves the accuracy to 71%. As a result, in order
to achieve better performance, people tend to use the largest model that can still fit in the
computational constraints.

More data: Before deep learning, people realized that with the same learning models,
more data can e↵ectively improve their performance [45]. In the deep learning era, this rule is
confirmed by many works. For example, Sun et al. [138] observed that the performance of an
object detection model “increases logarithmically based on the volume of training data”. For
image classification, ImageNet [21] contains 1.3 million labeled images. For natural language
processing, GPT-2 [116] was pre-trained on a dataset consisting of 8 million documents for a
total of 40 GB of text. For reinforcement learning, AlphaGo [131] was trained on 29 million
self-played games. As a result, in order to get better performance, people have devoted
significant e↵orts into creating large-scale datasets for training deep neural networks.



CHAPTER 1. INTRODUCTION 2

3

More	data

More	
compute

Complex	
models

ImageNet	

dataset:	1.3M	

labeled	images

VGG16	model:

552	MB	model	size

15.8	GFLOPs	

DGX-1:	

170	TFLOPS,

3.2	KWatts,	

128	GB	Memory

Figure 1.1: Three factors for the success of deep neural networks.

More compute: As datasets become larger and models become more complex, corre-
spondingly, deep neural networks rely increasingly more on powerful hardware processors
for training and inference. One forward pass of the ResNet50 model requires 4 GFLOPs
of compute and the training of it requires 1018 FLOPs [170], which takes 14 days on an
NVIDIA M40 GPU. To make the training and inference faster, people spend significant ef-
forts in building more powerful processors. In 2014, Nvidia’s K80 GPU was able to deliver
a compute capacity of 5.6 TFLOPs per second while in 2018, Nvidia’s Tesla V GPU reaches
a compute capacity 125 TFLOPs per second.

This trend is best summarized by Richard Sutton1:

The biggest lesson that can be read from 70 years of AI research is that general
methods that leverage computation are ultimately the most e↵ective, and by a
large margin.

1.2 Deep learning on the edge

Powered by the rapid progress of deep neural networks, people have begun to deploy deep
neural networks to solve practical problems. Among many applications, a wide range of them
require deploying neural networks on the “edge,” i.e., on light-weight devices that perform

1http://www.incompleteideas.net/IncIdeas/BitterLesson.html
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computation locally. For example, users of applications such as biometric identification (face
or finger ID) may have privacy concerns and therefore wish to avoid sending data to the
cloud. Applications such as autonomous driving and augmented reality (AR), on the other
hand, depend on the real-time perception of the environment in order to interact in real
time with the real-world. They cannot tolerate the latency of sending data to the cloud,
processing, and then receiving the results. For internet-of-things (IoT) applications, sensors
are usually deployed at large scale, and they cannot a↵ord the cost of transmitting data to a
centralized server for processing. In such applications, the execution of neural networks has
to be completed locally on light-weight devices.

However, for edge-based applications, the three factors for the success of deep learning
are usually not present. This is summarized in Figure 1.2.

4

More	data

More	
compute

Complex	
models

Mobile	processors
3	Watts

100	GFLOPs

Constraints
<5M	params
<600M	FLOPs

LiDAR	data:
Extremely	
difficult	and	
expensive	to	
annotate

Figure 1.2: For edge-based applications, the three factors for the success of deep learning
are usually not present.

Limited compute capacity: The compute capacity of edge-based processors is much
lower than desktop or server GPUs. For example, the Titan X2, a common desktop GPU
used for most computer vision experiments in 2017, can deliver 11 TFLOPs of compute
and consumes 223 watts of power. In comparison, the thermal design point (maximum
power) of mobile processors is typically under 5 watts. One of the latest mobile SoC, Helio

2https://www.nvidia.com/en-us/geforce/products/10series/titan-x-pascal/
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P903 contains two ARM Cortex A754 CPUs and each of them can deliver around 2.2G
half-precision floating point operations. The compute capacity on the edge is significantly
lower.

Limited model complexity: In order to fit in the compute constraint of edge processors
and meet the real-time speed requirement at the same time, neural network models for the
edge need to be significantly smaller. While the VGG16 model requires 15.8 GFLOPs of
compute per image and 552MB of model size, mobile models typically need to constrain
the FLOPs to under 600 million and model size to less than 5 MB [57, 188]. For always-on
applications such as visual wake up, models need to be constrained to have less than 250
KB of model size and 60M FLOPs [18].

Limited data: In many edge applications, collecting and annotating data is prohibitively
expensive. Take LiDAR-based perception for autonomous driving as an example: collecting
LiDAR point cloud data requires using LiDAR sensors, which typically cost thousands of
dollars. Moreover, annotating LiDAR point clouds is significantly harder than annotating
images for human due to the much lower resolution of the sensor. For such applications,
creating a large-scale dataset is very di�cult.

1.3 Organization of this thesis

In order to address these problems, in this thesis, we focus on improving the e�ciency of
deep neural networks at four di↵erent levels, as illustrated in Figure 1.3.

First, we challenge the popular view that more complex models are necessary for improved
performance. We show that by carefully designing deep neural networks, we can find much
more compact models that achieve the same level of accuracy with significantly lower com-
plexity. We demonstrate this on two diverse computer vision problems: image-based object
detection and LiDAR-based segmentation. In Chapter 2, we first discuss metrics for evaluat-
ing the e�ciency (complexity) of neural networks. In Chapter 3, we introduce SqueezeDet,
a highly e�cient neural network model designed for object detection for autonomous driv-
ing. Compared with previous baselines, SqueezeDet achieved the same accuracy, with 30x
fewer parameters, 20x speedup, and 35x better energy e�ciency. In Chapter 4, we intro-
duce SqueezeSeg, a neural network-based pipeline for LiDAR point-cloud segmentation. By
carefully designing the problem formulation, the network architecture, and data representa-
tion, we successfully adapted 2D convolution neural networks to process 3D point cloud data
and were able to achieve high accuracy with a speed of more than 100 frames per second,
significantly faster than previous traditional methods.

Second, we discuss strategies for improving data e�ciency of deep neural networks via
better annotation and domain adaptation. We use LiDAR-based detection as a motivating
example, since collecting and annotating a LiDAR point cloud dataset is significantly more
di�cult than an image dataset. To address these problems, in Chapter 5, we systematically

3https://www.mediatek.com/products/smartphones/mediatek-helio-p90
4https://www.arm.com/products/silicon-ip-cpu/cortex-a/cortex-a75



CHAPTER 1. INTRODUCTION 5

Model	efficiency:	Chapter	2,	3,	4 Data	efficiency:	Chapter	5	&	6	

Hardware	efficiency:	Chapter	7 Design	efficiency:	Chapter	8

Design	accurate	and	efficient	neural	networks

Co-design	of	NN	and	hardware	accelerator Automated	design	of	efficient	NN

Utilize	simulated	dataBetter	annotation	tool
……

Figure 1.3: An overview of this thesis.

analyze the problems in LiDAR point cloud annotation: low resolution, complex annotation
operation, and temporal correlation. To solve these problems, we built a new annotation
tool that improves annotation e�ciency by 6.2x. In Chapter 6, we discuss a more radical
strategy to leverage simulated data to train neural networks and adapt the model to the
real world. By improving the model structure to make it less sensitive to domain shift and
applying a data-adaptation training pipeline, we are able to train a model on simulated data
and reach the accuracy of the same model trained on real-world data. This allows us to
bypass the need to collect and annotate real data.

Third, to fully optimize the e�ciency of deep neural networks, we not only need to
improve neural network models, but also the hardware processor. In Chapter 7, we discuss
the gap between neural network design and hardware accelerator design. To close this gap,
we perform co-design of neural networks and hardware accelerators. By proposing a novel
operator named shift, we not only significantly reduce the FLOPs and parameter size of a
ConvNet but also simplify the operators and enable building a ConvNet consisting of only
1x1 convolutions. This, in turn, simplifies the design of hardware, allowing us to build a
dedicated compute unit for 1x1 convolutions and achieve 11x speedup over the previous
state-of-the-art hardware accelerators.

Finally, in chpater 8, we discuss the design e�ciency of deep neural networks. Designing
optimal neural networks for given hardware processors and applications is a di�cult task due
to the challenges of intractable design space, conditional optimality, and inaccurate e�ciency
metrics. Traditional iterative and manual design usually has a very long design cycle, and the
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results are suboptimal due to insu�cient design space explorations. Recently, people have
begun to use automated neural architecture search (NAS) to design neural networks. While
the networks searched automatically outperform manual designed counterparts, most of the
NAS methods are computationally expensive, costing tens of thousands of GPU-hours to
find the optimal model. To solve this problem, we present di↵erentiable neural architecture
search (DNAS), an algorithm that automatically searches for neural network models that
surpass the previous state-of-the-art while the search cost is 421x lower.

With this thesis, we show that we are able to significantly improve the e�ciency of deep
neural networks at four di↵erent levels, which facilitates the broad adoption of deep neural
networks in many practical problems.
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Chapter 2

Model E�ciency: Metrics of model
e�ciency

In previous works, it has been shown that increasing the model complexity is an e↵ective way
to improve the performance of neural networks. For example, on the ImageNet classification
task, AlexNet contains 60 million parameters and achieved a top-1 accuracy of 58%. In
comparison, VGG16 [134] contains 138 million parameters and significantly boosted the
top-1 accuracy to 71%.

Despite the performance improvement, the increased model complexity leads to a higher
computational burden and therefore requires higher compute capacity. As a result, while
we were able to run neural networks on powerful GPUs in data centers (in the cloud), it
was infeasible to deploy neural networks on the edge where the compute capacity and power
budget are limited. To solve this problem, we focus on the following key question:

Is it possible to design neural networks to achieve the same performance with
lower model complexity?

We discuss this topic in Chapter 2, 3, and 4. In this chapter, we first discuss a prerequisite
question:

How should we evaluate the e�ciency (complexity) of a neural network?

2.1 Background: memory hierarchy

Before we discuss the e�ciency (complexity) of neural networks, we first introduce some
background of computer architecture briefly. This can help us understand how the compu-
tation of neural networks is executed on a hardware processor, and what characteristics of a
neural network we should consider when we measure its e�ciency.

Modern computer processors organize memories in a hierarchical structure to create an
illusion that CPUs can access a large amount of fast memory. Figure 2.1 illustrates the
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Memory
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On-chip	SRAM

CPU
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Size:	1KB
Speed:	1	cycle
Energy:		0.4	– 3.7	pJ

Size:	32	KB	– 10	MB
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Energy:			10	– 100	pJ

Size:	10	GB
Speed:	200	cycles
Energy:			1.3	– 2.6	nJ

Figure 2.1: The memory hierarchy of computer architecture. The top-level is CPU and
its register files. Data stored in the register file can be accessed in 1 clock cycle, and the
computation consumes a tiny amount of energy (0.4 pJ for a 16-bit floating-point add with
45nm technology [109]). However, the size of the register file is limited to a typical size of
1 KB. The next level is a larger cache memory made of on-chip SRAMs (static random-
access memory). The memory size is larger (typically, 32KB, 256KB, 10MB for L1, L2,
and L3 cache respectively) and the access speed is slower (3, 10, 40 cycles for L1, L2,
and L3 cache respectively). The next stage is the main memory made of o↵-chip DRAMs
(dynamic random-access memory). Accessing or storing data to and from o↵-chip DRAMs
is significantly slower and consumes 3,556x more energy than a 16bit floating point add
operation [109].

typical memory hierarchy of computer architecture. At the top of the hierarchy are the
CPU and its register files. In order to perform a compute operation, such as adding two
numbers, the CPU first fetches data from register files in as fast as 1 clock cycle. The
compute operation itself consumes little energy, typically 0.4 pJ for a 16bit floating point
addition with 45nm technology [109]. If the data is not available in the register file, the
processor goes to the next level of cache memory that is made of on-chip SRAMs. Cache
memories are larger (typically 32KB, 256KB, 10MB for L1, L2, and L3 cache respectively)
and slower (typically 3, 10, 40 cycles for L1, L2, and L3 cache respectively) than register files.
Depending on the level of cache, accessing a piece (64bit) of data from cache can consume
10 to 100 pJ of energy [109]. If the data needed is still not available, the processor needs
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to go to the main memory, which is made of cheaper o↵-chip DRAMs. Main memories are
much larger than on-chip SRAMs, but also much slower (typically 200 cycles) and consumes
significantly more energy (3,556x more than an add operation [109]).

Compared with compute operations such as addition and multiplication, memory ac-
cesses, especially DRAM accesses, require orders-of-magnitude higher energy and latency.
As a result, the e�ciency of most modern computer programs is bounded by memory, in-
stead of compute, so the most e↵ective way to improve e�ciency is to reduce the memory
accesses.

2.2 Compute characteristics and metrics of neural
networks

Compute characteristics

Deep neural networks (DNNs) consist of layers of transformation functions parameterized
by learnable weights. Despite the tremendous diversity of neural network types, the core
computation of neural networks are essentially variations of matrix-multiplications.

We use a convolutional layer as an example to study the compute characteristics of neural
networks. An illustration of a convolutional layer is in Figure 2.2, and the computation is
described in Listing 2.1. For simplicity, we assume the input tensor x has the same spatial
height and width F, and channel size M. We stack B input tensors together to process them
in a batch. We multiply each input tensor with kernel, a weight tensor whose horizontal
and vertical sizes are both K, and the filter size is N. For simplicity, we assume stride of
the convolution is 1, and we use a padding strategy such that the output tensor y has the
same spatial dimensions F as input x. The channel size of the output is N. We ignore the
computation of adding a bias to the output and applying the nonlinear activation functions
since their computational cost is negligible. This representation can also be used for other
layer types. For example, by setting F=1, K=1, Listing 2.1 can represent a fully connected
layer.

Listing 2.1: Pseudo code to compute a convolutional layer

1 f o r b in range (0 , B) : # batch s i z e
2 f o r i in range (0 , F ) : # image he ight
3 f o r j in range (0 , F ) : # image width
4 f o r n in range (0 , N) : # f i l t e r
5 f o r m in range (0 , M) : # channel
6 f o r p in range(�K/2 ,K/2 ) : # v e r t i c a l k e rne l
7 f o r q in range(�K/2 ,K/2 ) : # ho r i z on t a l k e rne l
8 y [ b , n , i , j ] += x [ b ,m, i+p , j+q ]⇤ ke rne l [ n ,m, p+K/2 ,q+K/2 ]
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Figure 2.2: An illustration of a convolutional layer. The computation of this layer is illus-
trated in Listing 2.1.

Theoretical metrics

Using this nested for-loop representation, we can easily calculate several theoretical metrics
to evaluate the complexity of a neural network layer.

MACs (FLOPs): The inner-most operation in Listing 2.1 is a multiply-and-accumulate
(MAC) operation: it multiplies a number x[b,m,i+p,j+q] from the input tensor with
kernel[n,m,p+K/2,q+K/2] from the weight tensor , and add the result to y[b,n,i,j] in
the output tensor. The number of MACs directly reflects the number of compute operations
of a layer, therefore its complexity. For a convolutional layer with the above configurations,
the number of MACs is computed as

B ⇥ F ⇥ F ⇥M ⇥N ⇥K ⇥K. (2.1)

When comparing di↵erent neural networks, the batch size is by default set to 1. Since
neural network weights and activations are typically represented in floating-point numbers,
sometimes people also use the number of floating-point operations (FLOPs) to refer to the
same concept. Strictly speaking, a MAC operation consists of a multiplication and an
addition so that it can be counted as two separate floating-point operations. In addition
to matrix multiplication, neural network layers can also add a bias term to the output.
Such operations can also be counted as FLOPs, but not MACs. However, since the number
of bias addition operations is many fewer than MACs, we can ignore bias additions, and
only consider MACs. Following the convention, in this thesis, we use FLOPs and MACs
interchangeably to denote the same concept unless otherwise noted.
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Parameter size: To perform a MAC operation, we need to load both the input and
weight of a layer into CPUs. As explained above, data loading, especially from o↵-chip
DRAMs, can consume a huge amount of energy and time, so it is important to figure out
how many memory accesses is needed. First, we consider the parameters. The parameter
size of a convolutional layer is calculated as

M ⇥N ⇥K ⇥K. (2.2)

In streaming tasks such as video recognition, new inputs are continuously fed into the net-
work, but the network weights can be reused, so it does not grow with the batch size B. In
an ideal case, if the parameter size of the neural network is small enough and can fit in the
on-chip cache memory, we can load the weights once and avoid the repeated weight accesses
from o↵-chip DRAMs. This can save a huge amount of time and energy. In practice, even
if the weights of a neural network cannot fit into the on-chip cache memory, reducing the
parameter size can also reduce memory accesses and therefore improve the e�ciency.

Activation size: The input and output of a neural network layer are also referred to
as activations. During the computation, input needs to be loaded to the CPU while the
output needs to be written back to the memory. Di↵erent from neural network weights,
during inference, the input of a layer can be discarded after the output is computed. This
is called the “double-bu↵er” strategy. For a convolutional layer, memory accesses needed by
the input and output activations can be computed as

B ⇥ (M +N)⇥ F ⇥ F. (2.3)

Arithmetic intensity: Since memory accesses consume significantly more energy than
compute operations, for a given neural network layer, we would like to perform as many
compute operations as possible while reducing memory accesses. To evaluate the potential
of data reuse of a neural network layer, we compute its arithmetic intensity by dividing the
number of MACs by the number of memory accesses as

B ⇥ F ⇥ F ⇥M ⇥N ⇥K ⇥K

M ⇥N ⇥K ⇥K +B ⇥ (M +N)⇥ F ⇥ F
. (2.4)

The number of memory accesses includes both the weights and activations. The arithmetic
intensity provides an estimation of how much we can reuse the fetched data during the
computation of a neural network layer.

Example: variants of convolutional layers

We use the theoretical metrics above to analyze some popular variations of convolutional
layers for computer vision. The equations to calculate the parameters, MACs, and arithmetic
intensity are summarized in Table 2.1. To provide more intuitive examples, we compute those
metrics with typical layer configurations. The results are summarized in Table 2.2.
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Params MACs
Arithmetic
intensity

Spatial
conv

MNK
2

BMNK
2
F

2 BMNK
2
F

2

BF 2(M+N)+K2MN

Spatially
separable

conv
MNK BMNKF

2 BMNKF
2

BF 2(M+N)+KMN

Pointwise
conv

MN BMNF
2 BMNF

2

BF 2(M+N)+MN

Group
conv

MNK
2
/G BMNK

2
F

2
/G

BMNK
2
F

2
/G

BF 2(M+N)+K2MN/G

Depthwise
conv

MK
2

BMK
2
F

2 BMK
2
F

2

2BMF 2+K2M

Table 2.1: Theoretical metrics of convolutional layers.

Spatial convolution: a vanilla spatial convolution is characterized by the following
hyper-parameters: the number of input channels M, the number of output filters N and
kernel size K. Its parameter size, number of MACs and arithmetic intensity are summarized
in Table 2.1. Spatial convolutions are expensive in parameter size and FLOPs as they grow
quadratically with the kernel size. Therefore, many works [66, 57, 158] aim to reduce the
parameter size and MACs by replacing spatial convolutions. We will talk about this in
more detail in Chapter 7. On the other hand, however, spatial convolutions have a higher
arithmetic intensity and therefore have higher potential for data reuse, as shown in Table
2.2.

Spatially separable convolution: Using tensor factorization techniques, a spatial con-
volution of size K ⇥K can be factorized to two convolutions of with kernel sizes of K ⇥ 1
and 1 ⇥ K. Compared with spatial convolution, a spatially separable convolution has K

times smaller parameter size and MACs. This technique is adopted in works such as [37] to
reduce the neural network complexity.

Pointwise convolution is a special case of the spatial convolution with kernel size
K = 1. Compared with spatial convolutions where K > 1, pointwise convolutions have
smaller parameter size and MACs, but the arithmetic intensity is lower because there is less
opportunity for data reuse.

Group convolution divides the input and output channels into G groups, and output
in one group is only dependent on the corresponding input channels. As a result, for a given
input channel size M and number of filters N, the parameter size and FLOPs of a group
convolution is G times smaller than spatial convolutions. However, in practice, this radical
reduction in parameter size and FLOPs usually leads to degraded accuracy. A common
compensation strategy to mitigate the accuracy loss is to increase the channel size (M) or
the number of filters (N), for example, increase N by G times such that the parameter size
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Params MACs
Arithmetic
intensity

Early Late Early Late Early Late
Spatial
conv

9,216 2.36⇥ 106 1.16⇥ 108 1.16⇥ 108 143 48.1

Spatially
separable

conv
3072 7.86⇥ 105 3.85⇥ 107 3.85⇥ 107 47.8 46.1

Pointwise
conv

1024 2.62⇥ 105 1.28⇥ 107 1.28⇥ 107 16.0 41.1

Group
conv

2304 5.89⇥ 105 2.89⇥ 107 2.89⇥ 107 35.9 45.2

Depthwise
conv

288 4,608 3.61⇥ 106 2.26⇥ 105 4.50 4.12

Table 2.2: Comparison of convolutional layers with typical layer configurations. “Early”
denotes a layer next to the input of a convolutional neural network. “Late” denotes a layer
close to the output of a network. In all calculations we assume the batch size B = 1. For
the early layer, we assume M = N = 32, F = 112, and K = 3. For the late layer, we assume
M = N = 512, F = 7 and K = 3. For the group convolution, we assume G = 4.

and FLOPs are the same as the original spatial convolution. This strategy usually leads to
better performance [166]. However, such a strategy results in lower arithmetic intensity and
therefore requires higher memory bandwidth from the hardware.

Depth-wise convolution is an extreme case of group convolution where the group
number G equals the input channel size M, and also generates M output channels. As
discussed above, depth-wise convolution has a very low arithmetic intensity, as shown in
Table 2.2. As a result, even though its FLOPs and parameter size is trivial, if not carefully
handled, it can be very slow, as reported in Shu✏eNet [177].

2.3 Practical e�ciency metrics and how to optimize
them

Practical e�ciency metrics

All the theoretical metrics mentioned above are simple to compute and hardware-agnostic.
Therefore, they are widely adopted to measure and compare the e�ciency of neural networks.
However, in practical applications, what people care about more are metrics such as are speed
(latency or throughput), power, and energy.

Latency: Latency means the interval between the start and end of the computation of
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a neural network. It is critical for applications such as autonomous driving and augmented
reality, where real-time interaction with the environment is needed. As a first-order approx-
imation, on a given processor, a neural network with more FLOPs, more parameters, and
activation size will need more time to finish the computation and therefore will have higher
latency.

Throughput: Throughput means the number of input processed per unit time. This
is di↵erent from latency, and it is a critical metric, especially for cloud-based, high-volume
applications. On parallel architectures, an e↵ective way to improve throughput is to stack
input data in a batch and process them together. This not necessarily improves, sometimes
even hurts the latency, but it can process more inputs in the same amount of time. Adding
a new batch dimension in Listing 2.1 increases more degrees of freedom to optimize the
dataflow, therefore, leads to better utilization. In addition, batching can leads to higher
arithmetic intensity. From Equation 2.4, we can see that while MACs and activation size
grows linearly with the batch size B, the parameter size stay the same, so increasing the
batch size can improve the arithmetic intensity. As a concrete example, for VGG16 [132],
the fc1 layer is a fully connected layer that transforms an unrolled 7⇥ 7⇥ 512 input tensor
to a vector with 4096 dimensions. The arithmetic intensity of this layer is

B ⇥ 7⇥ 7⇥ 512⇥ 4096

7⇥ 7⇥ 512⇥ 4096 + B ⇥ (7⇥ 7⇥ 512 + 4096)
.

In this case, when the batch size is small, the memory accesses for parameters dominate,
so the arithmetic intensity grows almost linearly with the batch size, until it eventually
converges when the batch size B !1.

Power: Power e�ciency is the energy consumed per unit time. For a deep learning
system, the constraint on power can come from several factors, including power supply, heat
dissipation, or overtime, energy constraint. The power e�ciency of a deep learning system
depends on both the thermal design point of the hardware processor and the neural network.
To improve the power e�ciency, an e↵ective way is to optimize the neural network to reduce
its MACs, and more importantly, parameter and activation size for fewer memory accesses.
Moreover, a more compact neural network design enables us to deploy the neural network
on low-power processors with weaker compute capacity.

Energy: The energy e�ciency of a DNN is defined as the energy consumed per data point
(such as image, voice, sentence). In many battery-based embedded applications, the energy
consumption of a neural network is a primary metric for e�ciency. As explained before, the
energy consumption is dominated by memory operations, which are highly dependent on the
parameter and activation size. Optimizing those metrics lead to lower energy consumption.

Guidelines for optimizing practical e�ciency

The practical e�ciency of neural networks not only depends on the neural network archi-
tecture itself but also on the underlying hardware processor and how the computations are
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mapped to the hardware. Given the complexity of modern computer architectures, it is di�-
cult, if not impossible, to establish a simple relationship to map the theoretical metrics such
as MACs and parameter size to practical metrics such as latency and energy. In this section,
we try to provide some high-level guidelines on how to optimize neural network e�ciency.
Details of how to apply these guidelines will be discussed in later chapters of this thesis.

Reducing MACs, parameter sizes, and activation sizes. As a first-order approx-
imation, hardware-agnostic metrics are very useful to estimate the practical e�ciency of a
neural network. Taking parameter size as an example, for streaming applications such as
video recognition, if a neural network is small enough that it can fit into the cache memory
entirely, we can load the model once and reuse its parameters for all the inputs. This leads
to a significant energy reduction. Even if parameters cannot fit into the cache memory,
reducing the parameter size can still lead to fewer memory accesses, therefore improve the
e�ciency. We will discuss this strategy in more detail in Chapter 3 and 4.

Model-hardware co-design. Given the complexity of modern computer architectures,
theoretical metrics such as FLOPs and parameter sizes do not always align with practical
e�ciency metrics. A neural network with fewer FLOPs can have much higher latency due to
its complicated network structure that cannot be e�ciently computed on hardware processors
[188, 59, 125]. Therefore, it is important that we understand how the computation of a neural
network is executed on the underlying hardware and how customized hardware can boost
the e�ciency of neural networks. In Chapter 7, we will discuss how we co-design a neural
network and hardware accelerator to achieve significant e�ciency improvements.

Neural architecture search. Designing e�cient neural networks is intrinsically a di�-
cult problem since both the accuracy and practical e�ciency of neural networks are di�cult,
if not impossible, to predict. Also, for a deep neural network with many layers, each layer can
choose a di↵erent layer configuration. This leads to an intractable design space. In Chapter
8, we will discuss how to formulate the design of neural networks as an optimization problem
and use e�cient algorithms to automatically search for neural networks with high accuracy
and practical e�ciency.
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Chapter 3

Model E�ciency: SqueezeDet

In this chapter, we continue to discuss the model e�ciency of deep neural networks. It has
been shown in previous works that increasing the model complexity is an e↵ective way to
improve the performance of neural networks. However, the increased model complexity also
leads to higher computational burdens, making it more di�cult to deploy neural networks
to mobile and embedded devices. In Chapter 2, we raised a key question:

Is it possible to design neural networks to achieve the same performance with
lower model complexity?

This question is first addressed by SqueezeNet [65] in 2015. SqueezeNet is a neural network
that achieved the same accuracy as AlexNet, but with only 1.2 million parameters, or 50x
fewer than AlexNet. However, SqueezeNet is designed only for the image classification
problem. Starting from SqueezeNet, we want to explore two key questions :

Can we design e�cient neural networks to solve more general computer vision
problems, such as object detection?

Further more:

Can we design e�cient neural networks to process other visual modalities, such
as depth measurements from LiDAR sensors?

We answer these two questions in Chapters 3 and 4. In this chapter, we will introduce
SqueezeDet, an e�cient network designed for image object detection. In Chapter 4, we
discuss SqueezeSeg, an e�cient network designed for LiDAR point cloud segmentation. We
show that by carefully formulating the problem, designing the training protocol and the
neural network model, we are able to achieve over more than 10x e�ciency improvement
over baseline solutions.
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3.1 Object detection for autonomous driving

Object detection is a fundamental problem in computer vision, and it is a crucial task in
many applications, such as autonomous driving. In this chapter, we will use autonomous
driving as a motivating application.

A safe and robust autonomous driving system relies on accurate perception of the en-
vironment. To be more specific, an autonomous vehicle needs to accurately detect cars,
pedestrians, cyclists, road signs, and other objects in real-time in order to make right con-
trol decisions that ensure safety. Moreover, to be economical and widely deployable, this
object detector must operate on embedded processors that dissipate far less power than
powerful GPUs used for benchmarking in typical computer vision experiments.

While recent research has been primarily focused on improving accuracy, for actual de-
ployment in an autonomous vehicle, there are other issues of image object detection that are
equally critical. For autonomous driving, some basic requirements for image object detec-
tors include the following: a) Accuracy. More specifically, the detector ideally should achieve
100% recall with high precision on objects of interest. b) Speed. The detector should have
real-time (typically 30 frames per second) or faster inference speed to reduce the latency
of the vehicle control loop. c) Small model size. As discussed in [65], smaller model size
brings benefits of more e�cient distributed training, less communication overhead to export
new models to clients through wireless update, less energy consumption, and more feasible
embedded system deployment. d) Power and energy e�ciency. Desktop and rack systems
may have the luxury of burning 250W of power for neural network computation, but embed-
ded processors targeting the automotive market must fit within a much smaller power and
energy envelope due to both energy and heat dissipation constraints. While precise figures
vary, the new Xavier1 processor from Nvidia, for example, is targeting a 20W thermal de-
sign point. Processors targeting battery-based applications have an even smaller power and
energy budget and must fit in the 3W–10W range to prevent overheating and ensure battery
lives. Without addressing the problems of a) accuracy, b) speed, c) small model size, and d)
energy and power e�ciency, we will not be able to truly leverage the power of deep neural
networks for autonomous driving.

3.2 Related work

Neural Networks for object detection

From 2005 to 2013, various techniques were applied to advance the accuracy of object detec-
tion on datasets such as PASCAL [28]. In most of these years, versions of HOG (histogram
of oriented gradients) + SVM (support vector machine) [20] or DPM (deformable parts
model) [29] led the state-of-art accuracy on these datasets. However, in 2013, Girshick et al.
proposed Region-based Convolutional Neural Networks (R-CNN) [40], which led to substan-

1https://blogs.nvidia.com/blog/2016/09/28/xavier/
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tial gains in object detection accuracy. The R-CNN approach begins by identifying region
proposals (i.e. regions of interest that are likely to contain objects) and then classifying these
regions using a CNN. One disadvantage of R-CNN is that it computes the CNN indepen-
dently on each region proposal, leading to time-consuming ( 1 fps) and energy-ine�cient
(� 200 J/frame) computation. To remedy this, Girshick et al. experimented with a number
of strategies to amortize computation across the region proposals [39, 64, 38], culminating
in Faster R-CNN [120]. Another model, R-FCN, is fully-convolutional and delivers accu-
racy that is competitive with R-CNN, but R-FCN is fully-convolutional, which allows it to
amortize more computation across the region proposals.

There have been a number of works that have adapted the R-CNN approach to address
object detection for autonomous driving. Almost all the top-ranked published methods on
the KITTI [33] leader board are based on Faster R-CNN. Ashraf et al. [3] modified the CNN
architecture to use shallower networks to improve accuracy. Multi-scale CNN [8] and Sub-
CNN [165] on the other hand focused on generating better region proposals. Most of these
methods focused on better accuracy, while few previous methods have reported real-time
inference speeds on the KITTI dataset [33].

Region proposals are a cornerstone in all of the object detection methods that we have
discussed so far. However, in YOLO (You Only Look Once) [119], region proposition and
classification are integrated into one single stage. Compared with R-CNN and Faster R-CNN
based methods, YOLO’s single-stage detection pipeline is extremely fast, making YOLO the
first CNN based general-purpose object detection model that achieved real-time speed.

Small CNN models

For any particular accuracy level on a computer vision benchmark, it is usually feasible to
develop multiple CNN architectures that are able to achieve that level of accuracy. Given
the same level of accuracy, it is often beneficial to develop smaller CNNs (i.e. CNNs with
fewer model parameters), as discussed in [66]. AlexNet [80] and VGG-19 [133] are CNN
model architectures that were designed for image classification and have since been modified
to address other computer vision tasks. The AlexNet model contains 240MB of parameters,
and it delivers approximately 80% top-5 accuracy on ImageNet [21] image classification. The
VGG-19 model contains 575MB of parameters and delivers about 87% top-5 accuracy on
ImageNet. However, models with fewer parameters can deliver similar levels of accuracy.
The SqueezeNet [66] model has only 4.8MB of parameters (50x smaller than AlexNet), and
it matches or exceeds AlexNet-level accuracy on ImageNet. The GoogLeNet-v1 [139] model
only has 53MB of parameters, and it matches VGG-19-level accuracy on ImageNet.
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3.3 Method

Detection Pipeline

Inspired by YOLO [119], we adopt a single-stage detection pipeline: region proposition and
classification is performed by one single network simultaneously. As shown in Fig.3.1, a
convolutional neural network first takes an image as input and extract a low-resolution, high
dimensional feature map from the image. Then, the feature map is fed into the ConvDet

layer to compute bounding boxes centered around W⇥H uniformly distributed spatial grids.
Here, W and H are numbers of grid centers along horizontal and vertical directions.

Filtering	ConvDet	

feature	
map	

Bounding	
boxes	

Final	
detec9ons	

Input	
image	

Figure 3.1: SqueezeDet detection pipeline. A convolutional neural network extracts a feature
map from the input image and feeds it into the ConvDet layer. The ConvDet layer then
computes bounding boxes centered around W ⇥H uniformly distributed grid centers. Each
bounding box is associated with 1 confidence score and C conditional class probabilities.
Then, we keep the top N bounding boxes with the highest confidence and use NMS to filter
them to get the final detections.

Each bounding box is associated with C + 1 values, where C is the number of classes
to distinguish, and the extra 1 is for the confidence score, which indicates how likely does
the bounding box contain an object. Similar to YOLO [119], we define the confidence
score as Pr(Object) ⇤ IOUpred

truth
. A high confidence score implies a high probability that an
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object of interest does exist and that the overlap between the predicted bounding box and
the ground truth is high. The other C scalars represent the conditional class probability
distribution given that the object exists within the bounding box. More formally, we denote
the conditional probabilities as Pr(classc|Object), c 2 [1, C]. We assign the label with the
highest conditional probability to this bounding box, and we use

max
c

Pr(classc|Object) ⇤ Pr(Object) ⇤ IOUpred

truth

as the metric to estimate the confidence of the bounding box prediction.
Finally, we keep the top N bounding boxes with the highest confidence and use Non-

Maximum Suppression (NMS) to filter redundant bounding boxes to obtain the final detec-
tions. During inference, the entire detection pipeline consists of only one forward pass of one
neural network with minimal post-processing.

ConvDet

The SqueezeDet detection pipeline is inspired by YOLO [119]. However, as we will describe
in this section, the design of the ConvDet layer enables SqueezeDet to generate tens-of-
thousands of region proposals with fewer model parameters compared to YOLO.

ConvDet is essentially a convolutional layer that is trained to output bounding box
coordinates and class probabilities. It works as a sliding window that moves through each
spatial position on the feature map. At each position, it computes K ⇥ (4 + 1 + C) values
that encode the bounding box predictions. Here, K is the number of reference bounding
boxes with pre-selected shapes. Following the notation from [120], we call these reference
bounding boxes anchors. Each position on the feature map corresponds to a grid center in
the original image, so each anchor can be described by 4 scalars (x̂i, ŷj, ŵk, ĥk), i 2 [1,W ], j 2
[1, H], k 2 [1, K]. Here x̂i, ŷi are spatial coordinates of the reference grid center (i, j). ŵk, ĥk

are the width and height of the k-th reference bounding box. We use the method described
by Ashraf et al. [3] to select reference bounding box shapes to match the data distribution.

For each anchor (i, j, k), we compute 4 relative coordinates (�xijk, �yijk, �wijk, �hijk) to
transform the anchor into a predicted bounding box, as shown in Fig. 3.2. Following Faster
R-CNN [41], the transformation is described as

x
p

i
= x̂i + ŵk�xijk, y

p

j
= ŷj + ĥk�yijk,

w
p

k
= ŵk exp(�wijk), h

p

k
= ĥk exp(�hijk),

(3.1)

where x
p

i
, y

p

j
, w

p

k
, h

p

k
are predicted bounding box coordinates. As explained in the previous

section, the other C+1 outputs for each anchor encode the confidence score for this prediction
and conditional class probabilities.

ConvDet is similar to the last layer of RPN in Faster R-CNN [120]. The main di↵erence
is that RPN is regarded as a “weak” detector that is only responsible for detecting whether
an object exists and generating bounding box proposals for the object. The classification is
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Conf:	0.75	
Car:	0.8	
Bike:	0..1	
Person:0.1	

anchors	 Bounding	box	
transforma9on	

Detec9ons	

Figure 3.2: Bounding box transformation. Each grid center has K anchors with pre-
determined shapes. Each anchor is transformed into its new position and shape using the
relative coordinates computed by the ConvDet layer. Each anchor is associated with a
confidence score and class probabilities of the object within the bounding box.

handed over to fully connected layers, which are regarded as a “strong” classifier. However,
convolutional layers are in fact “strong” enough to detect, localize, and classify objects at
the same time.

For simplicity, we denote the detection layers of YOLO [119] as FcDet (only counting
the last two fully connected layers). Compared with FcDet, the ConvDet layer has orders of
magnitude fewer parameters and is still able to generate more region proposals with higher
spatial resolution. The comparison between ConvDet and FcDet is illustrated in Fig. 3.3.

Assume that the input feature map is of size (Wf , Hf ,Chf ), Wf is the width of the
feature map, Hf is the height, and Chf is the number of input channels to the detection
layer. Denote ConvDet ’s filter width as Fw and height as Fh. With proper padding/striding
strategy, the output of ConvDet keeps the same spatial dimension as the feature map. To
compute K⇥ (4+1+C) outputs for each reference grid, the number of parameters required
by the ConvDet layer is FwFhChfK(5 + C).

The FcDet layer described in YOLO [119] is comprised of two fully connected layers.
Using the same notation for the input feature map and assuming the number of outputs
of the fc1 layer is Ffc1, then the number of parameters in the fc1 layer is WfHfChfFfc1.
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Wf

Hf

Chf

Hf

Wf

K ⇥ (4 + 1)

Feature	map	

1x1	conv	

Region	proposals	

K ⇥ (4 + 1)

(a) Last layer of Region Proposal Network
(RPN) is a 1x1 convolution with K⇥(4+1) out-
puts. 4 is the number of relative coordinates, and
1 is the confidence score. It’s only responsible for
generating region proposals. The parameter size
for this layer is Chf ⇥K ⇥ 5.

Wf

Hf

Chf

Hf

Wf

K ⇥ (4 + 1 + C)

Feature	map	

																	convolu9on	

Detec9on	
output	

K ⇥ (4 + 1 + C)

Fw ⇥ Fh

(b) The ConvDet layer is a Fw ⇥Fh convolution
with output size of K ⇥ (5 + C). It’s responsible
for both computing bounding boxes and classi-
fying the object within. The parameter size for
this layer is FwFhChfK(5 + C).

Wf

Hf

Chf

Feature	map	 FC1	 FC2	

K ⇥ (4 + 1) + C

Detec9on	
output	

Hf

Wf

FC1	output	

Ffc1 Ffc1

Ffc1
Ho

Wo

WoHo(K(4 + 1) + C)

(c) The detection layer of YOLO [119] contains
2 fully connected layers. The first one is of
size WfHfChfFfc1. The second one is of size
Ffc1WoHoK(5 + C).

Figure 3.3: Comparing RPN, ConvDet and the detection layer of YOLO [119]. Activations
are represented as blue cubes and layers (and their parameters) are represented as orange
ones. Activation and parameter dimensions are also annotated.

The second fully connected layer in YOLO [119] generates C class probabilities as well as
K ⇥ (4 + 1) bounding box coordinates and confidence scores for each of the Wo ⇥Ho grids.
Thus, the number of parameters in the fc2 layer is Ffc1WoHo(5K + C). The total number
of parameters in these two fully connected layers is Ffc1(WfHfChf +WoHo(5K + C)).

In [119], the input feature map is of size 7x7x1024. Ffc1 = 4096, K = 2, C = 20,
Wo = Ho = 7, thus the total number of parameters required by the two fully connected
layers is approximately 212⇥ 106. If we keep the feature map sizes, number of output grid
centers, classes, and anchors the same, and use 3x3 ConvDet, it would only require 3⇥ 3⇥
1024⇥ 2⇥ 25 ⇡ 0.46⇥ 106 parameters, which is 460X smaller then FcDet. The comparison
of RPN, ConvDet and FcDet is illustrated in Fig. 3.3 and summarized in Table 3.1.
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RP cls #Parameter
RPN X 7 5ChfK

ConvDet X X FwFhChfK(5 + C)
FcDet X X Ffc1(WfHfChf +WoHo(5K + C))

Table 3.1: Comparison between RPN, ConvDet and FcDet. RP stands for region proposition.
cls stands for classification.

Training protocol

Unlike Faster R-CNN [120], which deploys a (4-step) alternating training strategy to train
RPN and detector network, our SqueezeDet detection network can be trained end-to-end.

To train the ConvDet layer to learn detection, localization, and classification, we define
a multi-task loss function:

�bbox
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(3.2)

The first part of the loss function is the bounding box regression. (�xijk, �yijk, �wijk, �hijk)
corresponds to the relative coordinates of anchor-k located at grid center-(i, j). They are out-
puts of the ConvDet layer. The ground truth bounding box �

G

ijk
, or (�xG

ijk
, �y

G

ijk
, �w

G

ijk
, �h

G

ijk
),

is computed as:
�x

G

ijk
= (xG

� x̂i)/ŵk, �y
G

ijk
= (yG � ŷj)/ĥk,

�w
G

ijk
= log(wG

/ŵk), �h
G

ijk
= log(hG

/ĥk).
(3.3)

Note that Equation 3.3 is essentially the inverse transformation of Equation 3.1. (xG
, y

G
, w

G
, h

G)
are coordinates of a ground truth bounding box. During training, we compare ground truth
bounding boxes with all anchors and assign them to the anchors that have the largest over-
lap (Intersection-over-Union) with each of them. The reason is that we want to select the
“closest” anchor to match the ground truth box such that the transformation needed is re-
duced to the minimum. Iijk evaluates to 1 if the k-th anchor at position-(i, j) has the largest
overlap with a ground truth box, and to 0 if no ground truth is assigned to it. This way,
we only include the loss generated by the “responsible” anchors. As there can be multiple
objects per image, we normalize the loss by dividing it by the number of objects.
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The second part of the loss function is confidence score regression. �ijk is the output
from the ConvDet layer, representing the predicted confidence score for anchor-k at position-
(i, j). �G

ijk
is obtained by computing the IOU of the predicted bounding box with the ground

truth bounding box. As above, we only include the loss generated by the anchor box with
the largest overlap with the ground truth. For anchors that are not “responsible” for the
detection, we penalize their confidence scores with the Īijk�

2
ijk

term, where Īijk = 1 � Iijk.
Usually, there are much more anchors that are not assigned to any object. In order to balance
their influence, we use �+

conf
and �

�
conf

to adjust the weight of these two loss components. By
definition, the confidence score’s range is [0, 1]. To guarantee that �ijk falls into that range,
we feed the corresponding ConvDet output into a sigmoid function to normalize it.

The last part of the loss function is just cross-entropy loss for classification. lG
c
2 {0, 1} is

the ground truth label and pc 2 [0, 1], c 2 [1, C] is the probability distribution predicted by
the neural net. We used softmax to normalize the corresponding ConvDet output to make
sure that pc is ranged between [0, 1].

The hyper-parameters in Equation 3.2 are selected empirically. In our experiments, we
set �bbox = 5,�+

conf
= 75,��

conf
= 100. This loss function can be optimized directly using

back-propagation.

Neural Network Design

So far in this section, we described the single-stage detection pipeline, the ConvDet layer,
and the end-to-end training protocol. These parts are universal and can work with vari-
ous CNN architectures, including VGG16[132], ResNet[49], and so on. When choosing the
“backbone” CNN structure, our focus is mainly on model size and energy & power e�ciency,
and SqueezeNet[66] is our top candidate.

Model size. SqueezeNet is built upon the Fire Module, which is comprised of a squeeze

layer as input, and two parallel expand layers as output. The squeeze layer is a 1x1 convo-
lutional layer that compresses an input tensor with large channel size to one with the same
batch and spatial dimension, but smaller channel size. The expand layer is a mixture of
1x1 and 3x3 convolution filters that take the compressed tensor as input, retrieve the rich
features and output an activation tensor with large channel size. The alternating squeeze

and expand layers e↵ectively reduce parameter size without losing too much accuracy.
Energy & power e�ciency. Di↵erent operations involved in neural network inference

have varying energy needs. The most expensive operation is the o↵-chip DRAM access,
which uses 3,556x more energy than an addition operation [109]. Thus, we want to reduce
o↵-chip DRAM accesses as many as possible.

The most straightforward strategy to reduce o↵-chip DRAM access is to use small mod-
els, which reduces memory access for parameters. An e↵ective way to reduce parameter size
is to use convolutional layers instead of fully connected layers when possible. Convolution
parameters can be accessed once and reused across all neighborhoods of all data items (if
batch>1) of the input data. However, the fully-connected layer only exposes parameter reuse
opportunities in the “batch” dimension, and each parameter is only used on one neighbor-
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hood of the input data. Besides model size, another important aspect is to control the size
of intermediate activations. Assume the on-chip SRAM size of the computing hardware is
16MB, the SqueezeNet model size is 5MB. If the total size of activation output of any two
consecutive layers is less than 11MB, then all the memory accesses can be completed in the
on-chip SRAM, no o↵-chip DRAM accesses are needed.

In this chapter, we adopted two versions of the SqueezeNet architecture. The first one is
the SqueezeNet v1.1 model2 with a model size4.72MB and > 80.3% ImageNet top-5 accuracy.
The second one is a more powerful SqueezeNet variation with a squeeze ratio of 0.75, 86.0%
of ImageNet accuracy and a model size of 19MB [66]. In this chapter, we denote the first
model as SqueezeDet and the second one as SqueezeDet+. We pre-train these two models
for ImageNet classification, then we add two fire modules with randomly initialized weight
on top of the pretrained model, and connect to the ConvDet layer.

3.4 Experiments

We evaluated the model on the KITTI [33] object detection dataset, which is designed
with autonomous driving in mind. We analyzed our model’s accuracy measured by av-
erage precision (AP), recall, speed, and model size, and then compare with our previous
work [3], a faster-RCNN-based object detector trained on the KITTI dataset under the
same experimental setting. Next, we analyzed the trade-o↵ between accuracy and cost in
terms of model size, FLOPS, and activation size by tuning several key hyperparameters.
We implemented training, evaluation, error analysis, and visualization pipeline using Ten-
sorflow [101], compiled with the cuDNN [15] computational kernels. The source code is
released at https://github.com/BichenWuUCB/squeezeDet.

Method
Car
mAP

Cyclist
mAP

Pedestrian
mAP

All
mAP

Model size
(MB)

Speed
(FPS)

FRCN+Alex[3] 82.6 - - - 240 2.9
FRCN+VGG[3] 86.0 - - - 485 1.7
SqueezeDet 82.9 76.8 70.4 76.7 7.9 57.2
SqueezeDet+ 85.5 82.0 73.7 80.4 26.8 32.1
VGG16-Det 86.9 79.6 70.7 79.1 57.4 16.6
ResNet50-Det 86.7 80.0 61.5 76.1 35.1 22.5

Table 3.2: Summary of detection accuracy, model size, and inference speed. The mAP
(mean-average precision) for each category are averaged across three di�culty levels. The
mAP for All is averaged across all categories and di�culty levels.

2https://github.com/DeepScale/SqueezeNet/
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car cyclist pedestrian mAP
method E M H E M H E M H

FRCN+VGG[3] 92.9 87.9 77.3 - - - - - - -
FRCN+Alex[3] 94.7 84.8 68.3 - - - - - - -

SqueezeDet 90.2 84.7 73.9 82.9 75.4 72.1 77.1 68.3 65.8 76.7
SqueezeDet+ 90.4 87.1 78.9 87.6 80.3 78.1 81.4 71.3 68.5 80.4

VGG16-Det 93.5 88.1 79.2 85.2 78.4 75.2 77.9 69.1 65.1 79.1
ResNet50-Det 92.9 87.9 79.4 85.0 78.5 76.6 67.3 61.6 55.6 76.1

Table 3.3: Detailed average precision results for each di�culty level and each category.

KITTI object detection

Experimental setup. In our experiments, unless otherwise specified, we scaled all the
input images to 1242x375. We randomly split the 7381 training images in half into a training
set and a validation set. SqueezeDet, including variations, and the baseline model [3] are
trained and evaluated on the same training-validation dataset. Our average precision (AP)
results are from the validation set. We used Stochastic Gradient Descent with momentum to
optimize the loss function. We set the initial learning rate to 0.01, learning rate decay factor
to 0.5 and decay step size to 10000. Instead of using a fixed number of steps, we trained our
model all the way until the mean average precision (mAP)3 on the training set converges,
and then evaluated the model on the validation set. Unless otherwise specified, we used a
batch size of 20. We adopted data augmentation techniques such as random cropping and
flipping to reduce overfitting. We trained our model to detect three categories of object, car,
cyclist, pedestrian. We used nine anchors for each grid in our model. At the inference stage,
we only kept the top 64 detections with the highest confidence, and use NMS to filter the
bounding boxes. We used NVIDIA TITAN X GPUs for our experiments.

Average Precision. The detection accuracy, measured by average precision, is shown
in Table 3.2. Compared with the baseline [3], SqueezeDet+ is on-par with the Faster-RCNN
+ VGG16 model in terms of car detection accuracy. SqueezeDet is slightly better than
Faster-RCNN + AlexNet. In terms of overall accuracy, our proposed SqueezeDet+ model
achieved the highest mean average precision among all classes and di�culty levels. To
evaluate whether ConvDet can be applied to other backbone CNNs, we appended ConvDet

to the convolution layers of the VGG16 and ResNet50 models. Both variations achieved
competitive AP scores. Example of error detections of SqueezeDet by types are visualized
in Fig. 3.4. More detailed accuracy results are reported in Table 3.3.

Recall. Recall is an essential metric for the safety of autonomous vehicles, so we now
analyze the recall of our proposed models. For each image with a resolution of 1242x375,
SqueezeDet generates in total 15048 bounding box predictions. It is intractable to perform
non-maximum suppression (NMS) on this many bounding boxes because of the quadratic

3Mean of average precision in 3 di�culty levels (easy, medium, hard) of 3 categories (car, cyclist, pedes-
trian).
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(a) Example of a background error. The detec-
tor is confused by a car mirrored in the window.

(b) Classification error. The detector predict a
cyclist to be a pedestrian.

(c) Localization error. The predicted bounding
box doesn’t have an IOU > 0.7 with the ground
truth.

(d) Missed object. The missed car is highly
truncated and overlapped with other cars.

Figure 3.4: Example of detection errors.

time complexity of NMS with respect to the number of bounding boxes. Thus we only kept
the top 64 predictions to feed into NMS.

An interesting question to ask is, how does the number of bounding boxes kept a↵ect
recall? We tested this with the following experiment: First, we collect all the bounding box
predictions and sort them by their confidence. Next, for each image, we choose the top Nbox

bounding box predictions, and sweep Nbox, the number of bounding boxes to keep, from 8
to 15,048. Then, we evaluate the overall recall for all di�culty levels of all categories. The
Recall-Nbox curve is plotted in Fig. 3.5. As we could see, for SqueezeDet and its strengthened
model, the top 64 bounding boxes’ overall recall is already larger than 80%. If using all the
bounding boxes, the SqueezeDet models can achieve 91% and 92% overall recall. Increasing
the image size by 1.5X, the total number of bounding boxes increased to 35,190, and the
maximum recall using all bounding boxes increases to 95%.

Speed. We benchmark the inference speed of SqueezeDet and baselines on a TITAN X
GPU with a batch size of 1. Our models are the first to achieve real-time inference speed on
the KITTI dataset. Compared with the baseline [3], SqueezeDet+ model achieved almost
the same accuracy as Faster-RCNN+VGG16 on the same validation set, but the inference
speed is 19x faster. The smaller SqueezeDet achieved a speed of 57.2 frames per second,
which is almost twice the standard of real-time speed (30 FPS).

Model size. We compare our proposed models with Faster-RCNN based models from [3].
We plot the model sizes and their mean average precisions for three di�culty levels of the
car category in Fig. 3.6 and summarize them in Table 3.2. As can be seen in Table 3.2,
the SqueezeDet model is 61X smaller than the Faster R-CNN + VGG16 model, and it is
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Figure 3.5: Overall recall vs Nobj for SqueezeDet and SqueezeDet+ models. We also tried
to re-scale the input image by 1.5X and 0.75X. The squeezeDet and SqueezeDet+ models
achieved the best recall of 0.91 and 0.92 respectively with all bounding boxes. SqueezeDet
with 1.5X image resolution achieved 0.95. SqueezeDet with 0.75X image resolution achieved
0.90.

30X smaller than the Faster R-CNN + AlexNet model. Almost 80% of the parameters of
the VGG16 model are from the fully connected layers. Thus, after we replace the fully
connected layers and RPN layer with ConvDet, the model size is only 57.4MB. YOLO [119]
is comprised of 24 convolutional layers and two fully connected layers, and the model size of
753MB. SqueezeDet, without any compression, is 95X smaller than YOLO.

Design space exploration

We conducted design space exploration to evaluate some key hyper-parameters’ influence
on our model’s overall detection accuracy (measured in mAP). Meanwhile, we also inves-
tigated the “cost” of these variations in terms of FLOPs, inference speed, model size, and
memory footprint. The results are summarized in Table 3.4, where the first row is our
SqueezeDet architecture, subsequent rows are modifications to SqueezeDet, and the final
row is SqueezeDet+.

Image resolution. For object detection, increasing image resolution is often an e↵ective
approach to improve detection accuracy [3]. However, larger images lead to larger activations,
more FLOPs, longer training time, and so on. We now evaluate some of these tradeo↵s. In
our experiments, we scaled the image resolution by 1.5X and 0.75X receptively. With larger
input images, the training becomes much slower, so we reduced the batch size to 10. As we
can see in Table 3.4, scaling up the input image decreases the mAP and also leads to more
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Figure 3.6: Model size vs. mean average precision for car detection. Each point on this
plane represents a method’s model size and accuracy tradeo↵.

Activation
Model Memory

mAP Speed FLOPs Size Footprint
DSE (%) (FPS) ⇥109 (MB) (MB)

SqueezeDet 76.7 57.2 9.7 7.9 117.0
scale-up 72.4 31.3 22.5 7.9 263.3

scale-down 73.2 92.5 5.3 7.9 65.8
16 anchors 66.9 51.4 11.0 9.4 117.4

SqueezeDet+ 80.4 32.1 77.2 26.8 252.7

Table 3.4: Design space exploration for SqueezeDet. Di↵erent approaches with their accu-
racy, FLOPs per image, inference speed, model size, and activation memory footprint. The
speed, FLOPS, and activation memory footprint are measured for a batch size of 1. We
used mean average precision (mAP) to evaluate the overall accuracy of the KITTI object
detection task.

FLOPs, lower speed, and larger memory footprint. We also experiment with decreasing the
image size. Scaling down the image leads to an astonishing 92.5 FPS of inference speed and a
smaller memory footprint, though it su↵ers from a 3 percentage point drop in mean-average
precision.

Number of anchors. Another hyper-parameter to tune is the number of anchors.
Intuitively, the more anchors to use, the more bounding box proposals are to be generated,
thus should result in better accuracy. However, in our experiment in Table 3.4, using more
anchors actually leads to lower accuracy. However, it also shows that for models that use
ConvDet, increasing the number of anchors only modestly increases the model size, FLOPs,
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Activation
Model Memory Average Inference Energy
Size FLOPs Footprint GPU Power Speed E�ciency mAP

model (MB) ⇥109 (MB) (W) (FPS) (J/frame) (%)
SQDT 7.9 9.7 117.0 80.9 57.2 1.4 76.7

SQDT: scale-up 7.9 22.5 263.3 89.9 31.3 2.9 72.4
SQDT: scale-down 7.9 5.3 65.8 77.8 92.5 0.84 73.2
SQDT: 16 anchors 9.4 11.0 117.4 82.9 51.4 1.6 66.9

SQDT+ 26.8 77.2 252.7 128.3 32.1 4.0 80.4
VGG-Det 57.4 288.4 540.4 153.9 16.6 9.3 79.1

ResNet50-Det 35.1 61.3 369.0 95.4 22.5 4.2 76.1
FRCN+VGG16 [3] 485 - - 200.1 1.7 117.7 -

FRCN-Alex [3] 240 - - 143.1 2.9 49.3 -
YOLO? 753 - - 187.3 25.8 7.3 -

Table 3.6: Comparing SqueezeDet and other models in terms of energy e�ciency and other
aspects. The default image resolution is 1242x375, but the “SQDT: scale-up” variation up-
sampled input image’s height and width by 1.5X. The “scale-down” variation scaled image
resolution by 0.75X. The default SqueezeDet model contains 9 anchors. However, the 16-
anchor variation contains 16 anchors for each grid. ? We launched YOLO to detect 4, 952
VOC 2007 test images, and it took 192 seconds to finish. We then compute the inference
speed as 4, 952/192 ⇡ 25.8FPS, which is slower than the speed reported in [119]. The input
image to YOLO is scaled to 448x448.

and memory footprint.
Model architecture. As we discussed before, by using a more powerful backbone

model with more parameters significantly improved accuracy (See Table 3.4). However,
this modification also costs substantially more in terms of FLOPs, model size and memory
footprint.

Energy & power e�ciency

Di↵erent operations involved in the computation of a neural network consume di↵erent
amounts of energy. According to Pedram et al. [109], an o↵-chip DRAM access consumes
3,556x more energy than an addition operation, so our primary focus is on reducing memory
accesses, which can be realized by reducing the model parameters and intermediate layer
activations. We analyze the memory footprint of SqueezeDet layer by layer. Details of the
SqueezeDet model are shown in Table 3.5.

We counted the activation memory footprint for several models, including SqueezeDet,
variations thereof, and others. Our results are summarized in Table 3.6. As we can see,
SqueezeDet has a much lower memory footprint and performs fewer FLOPs compared to
other models, leading to better energy and power e�ciency.

We measured the energy consumption of SqueezeDet and the other models during the
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layer	
name/type	

ac<va<on	
dimension	

filter	size/
stride	

S1x1	 e1x1	 e3x3	 aciva<on		
size	(MB)	

parameter	
size	(MB)	

Input	 1242x375x3	 5.3	

conv1	 620x187x64	 3x3/2	(x64)	 28.3	 0.007	

maxpool1	 309x93x64	 3x3/2	 7.0	

fire2	 309x93x128	 16	 64	 64	 1.8	 14.0	 0.048	

fire3	 309x93x128	 16	 64	 64	 1.8	 14.0	 0.043	

maxpool3	 154x46x128	 3x3/2	 3.4	

fire4	 154x46x256	 32	 128	 128	 0.86	 6.9	 0.17	

fire5	 154x46x256	 32	 128	 128	 0.86	 6.9	 0.19	

maxpool5	 76x22x256	 3x3/2	 1.6	

fire6	 76x22x384	 48	 192	 192	 0.31	 2.4	 0.40	

fire7	 76x22x384	 48	 192	 192	 0.31	 2.4	 0.42	

fire8	 76x22x512	 64	 256	 256	 0.41	 3.3	 0.72	

fire9	 76x22x512	 64	 256	 256	 0.41	 3.3	 0.75	

fire10	 76x22x768	 96	 384	 384	 0.61	 4.9	 1.60	

fire11	 76x22x768	 96	 384	 384	 0.61	 4.9	 1.69	

ConvDet	 76x22x72	 3x3/1	(x72)	 0.46	 1.90	

117.0	
(total)	

7.9	
(total)	

Table 3.5: Layer specification of SqueezeDet. s1x1 represents the number of 1x1 output filters
in the squeeze layer, e1x1 is number of 1x1 filters in the expand layer and e3x3 is number of
3x3 filters in the expand layer.

object detection evaluation of 3741 images from the KITTI dataset [33]. The default input
image resolution is 1242x375, and the batch size is set to 1. Meanwhile, we measured the
GPU power usage with Nvidia’s system monitor interface (nvidia-smi). We sampled the
power reading with a fixed interval of 0.1 seconds. Then, we obtained the power-vs-time curve
as shown in Fig 3.7. When the GPU is idle, it consumes about 15W of power. Through the
evaluation process, the GPU went through several stages from idle to working and then to
idle again. We denote the period with power measurement � 20W as the working period.
Then, we divide the working period evenly into 3 parts, and we average the measurements
from the middle part to compute the average GPU power. The energy consumption per
image is then computed as

Average Energy [Joule / frame] =
Average Power [Joule / Second]

Inference Speed [Frame / Second]
.

We measured the energy consumption of SqueezeDet and several other models using the
above approach, and our experimental results are listed in Table 3.6. SqueezeDet consumes
only 1.4J per image, which is 84⇥ less than the Faster R-CNN + VGG16 model. Scaling the
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FRCN+VGG16	

SqueezeDet+	

SqueezeDet	

Time	(normalized)	

Power	(W)	

Measurement	
period	

Figure 3.7: GPU power measured by nvidia-smi. Here we plot the power measurement
curve of 3 models, SqueezeDet, SqueezeDet+, and Faster R-CNN + VGG16 model. We
normalize the working period of 3 models to the same range of [0, 1]. We divide the working
period evenly into 3 parts and use the middle part to compute the average GPU power for
each model.

image resolution down by 0.75⇥, the mAP drops by 3 percentage points, but the inference
speed is 1.6⇥ faster, and the energy consumption is less than 1J per image. With much
better accuracy, SqueezeDet+ only consumes 4J per image, which is >10X more e�cient
than Faster R-CNN based methods. We combined the convolutional layers of VGG16 and
ResNet50 with ConvDet, and both models achieved much better energy e�ciency compared
with Faster R-CNN based models, as shown in Table 3.6.

We also compared our models with YOLO. We use YOLO to detect 4,952 images from
the VOC 2007 [28] test set. The input images are scaled to 448x448, and the batch size is
1. It took YOLO 192 seconds to finish the evaluation. Using the same approach to measure
the GPU power of YOLO, we compute the energy per frame of YOLO as 7.3J. Using the
reported frame rate of 45FPS [119], YOLO’s energy consumption per frame is 4.2J, which
is comparable with SqueezeDet+. However, note that the input image (with the size of
1242x375) to SqueezeDet+ in our experiment contains 2X more pixels than the input image
(448x448) to YOLO.

Our experiments show that SqueezeDet and its variations are very energy e�cient com-
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pared with previous neural network-based object detectors.

3.5 Conclusion

We present SqueezeDet, a fully convolutional neural network for real-time object detection.
We integrate the region proposition and classification into ConvDet, which is orders of mag-
nitude smaller than its fully-connected counterpart. With the constraints of autonomous
driving in mind, our proposed SqueezeDet and SqueezeDet+ models are designed to be
small, fast, energy-e�cient, and accurate. Compared with previous baselines, we achieve the
same accuracy with 30.4x smaller model size, 19.7x faster inference speed, and 35.2x lower
energy.
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Chapter 4

Model E�ciency: SqueezeSeg

In this chapter, we continue the discussion of model e�ciency and focus on the following key

question:

Can we design e�cient neural networks to process 3D visual modalities such as
depth measurements from LiDAR?

To answer this question, we discuss SqueezeSeg, an e�cient neural network for LiDAR point
cloud segmentation.

4.1 Introduction to LiDAR-based perception

In this chapter, we continue to use autonomous driving as a motivating application, since
it motivates us to not only consider RGB images, but also other visual modalities such as
depth measurements.

Autonomous driving systems rely on accurate, real-time, and robust perception of the en-
vironment. An autonomous vehicle needs to accurately categorize and locate “road-objects”,
which we define to be driving-related objects such as cars, pedestrians, cyclists, and other
obstacles. Di↵erent autonomous driving solutions may have di↵erent combinations of sen-
sors, but a 3D LiDAR scanner is one of the most prevalent components. LiDAR scanners
directly produce distance measurements of the environment, which are then used by vehicle
controllers and planners. Moreover, LiDAR scanners are robust under almost all lighting
conditions, whether it be day or night, with or without glare and shadows. As a result,
LiDAR-based perception tasks have attracted significant research attention.

In this work, we focus on road-object segmentation using (Velodyne style) 3D LiDAR
point clouds. Given the point cloud output from a LiDAR scanner, the task aims to isolate
objects of interest and predict their categories, as shown in Fig. 4.1. Previous approaches
comprise or use parts of the following stages: Remove the ground, cluster the remaining
points into instances, extract (hand-crafted) features from each cluster, and classify each
cluster based on its features. This paradigm, despite its popularity [24, 55, 150, 174], has
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Ground	truth	segmentation Predicted	segmentation

Figure 4.1: An example of SqueezeSeg segmentation results. Our predicted result is on the
right and the ground truth is on the left. Cars are annotated in red, pedestrians in green
and cyclists in blue.

several disadvantages: a) Ground segmentation in the above pipeline usually relies on hand-
crafted features or decision rules – some approaches rely on a scalar threshold [142] and
others require more complicated features such as surface normals [103] or invariant descrip-
tors [150]. None of these rules are general enough to deal with the real-world complexity. b)
Multi-stage pipelines see aggregate e↵ects of compounded errors, and classification or clus-
tering algorithms in the pipeline above are unable to leverage context, most importantly the
immediate surroundings of an object. c) Many approaches for ground removal rely on iter-
ative algorithms such as RANSAC (random sample consensus) [174], GP-INSAC (Gaussian
Process Incremental Sample Consensus) [24], or agglomerative clustering [24]. The runtime
and accuracy of these algorithmic components depend on the quality of random initialization
and, therefore, can be unstable. This instability is not acceptable for many embedded ap-
plications such as autonomous driving. We take an alternative approach: use deep learning
to extract features, develop a single-stage pipeline and thus sidestep iterative algorithms.

Figure 4.2: LiDAR Projections. Note that each channel reflects structural information in
the camera-view image.

In this chapter, we propose an end-to-end pipeline based on convolutional neural networks
(CNNs) and conditional random fields (CRFs). CNNs and CRFs have been successfully
applied to segmentation tasks on 2D images [97, 78, 11, 181]. To apply CNNs to 3D LiDAR
point clouds, we designed a CNN that accepts transformed LiDAR point clouds and outputs
a point-wise map of labels, which is further refined by a CRF model. Instance-level labels are
then obtained by applying conventional clustering algorithms (such as DBSCAN) on points
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within a category. To feed 3D point clouds to a 2D CNN, we adopt a spherical projection to
transform sparse, irregularly distributed 3D point clouds to dense, 2D grid representations.
The proposed CNN model draws inspiration from SqueezeNet [66] and is carefully designed
to reduce parameter size and computational complexity and achieve real-time inference speed
for our target embedded applications. The CRF model is reformulated as a recurrent neural
network (RNN) module as [181] and can be trained end-to-end together with the CNN model.
Our model is trained on LiDAR point clouds from the KITTI dataset [33] and point-wise
segmentation labels are converted from 3D bounding boxes in KITTI. To obtain even more
training data, we leveraged Grand Theft Auto V (GTA-V) as a simulator to retrieve LiDAR
point clouds and point-wise labels.

Experiments show that SqueezeSeg achieves high accuracy and is extremely fast and
stable, making it suitable for autonomous driving applications. We additionally find that
supplanting our dataset with artificial, noise-injected simulation data further boosts valida-
tion accuracy on real-world data.

4.2 Related work

Semantic segmentation for 3D LiDAR point clouds

Previous work saw a wide range of granularity in LiDAR segmentation, handling anything
from specific components to the whole pipeline. [103] proposed mesh-based ground and
object segmentation relying on local surface convexity conditions. [24] summarized several
approaches based on iterative algorithms such as RANSAC and GP-INSAC for ground re-
moval. Recent work also focused on algorithmic e�ciency. [174] proposed e�cient algorithms
for ground segmentation and clustering while [129] bypassed ground segmentation to directly
extract foreground objects. [150] expanded its focus to the whole pipeline, including seg-
mentation, clustering, and classification. It proposed to directly classify point patches into
background and foreground objects of di↵erent categories then use EMST-RANSAC [174]
to further cluster instances.

CNN for 3D point clouds

CNN approaches consider LiDAR point clouds in either two or three dimensions. Work with
two-dimensional data considers raw images with projections of LiDAR point clouds top-
down [9] or from a number of other views [13]. Other work considers three-dimensional data
itself, discretizing the space into voxels and engineering features such as disparity, mean, and
saturation [126]. Regardless of data preparation, deep learning methods consider end-to-end
models that leverage 2D convolutional [85] or 3D convolutional [102] neural networks.
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Semantic Segmentation for Images

Both CNNs and CRFs have been applied to semantic segmentation tasks for images. [97]
proposed transforming CNN models, trained for classification, to fully convolutional net-
works to predict pixel-wise labels. [78] proposed a CRF formulation for image segmentation
and solved it approximately with the mean-field iteration algorithm. CNNs and CRFs are
combined in [11], where the CNN is used to produce an initial probability map and the
CRF is used to refine and restore details. In [181], mean-field iteration is re-formulated as a
recurrent neural network (RNN) module.

Data Collection through Simulation

Obtaining annotations, especially point-wise or pixel-wise annotations for computer vision
tasks is usually very di�cult. As a consequence, synthetic datasets have seen growing in-
terest. In the autonomous driving community, the video game Grand Theft Auto has been
used to retrieve data for object detection and segmentation [123, 72].

4.3 Method

Point cloud transformation

Conventional CNN models operate on images, which can be represented by 3-dimensional
tensors of size H ⇥W ⇥ 3. The first two dimensions encode spatial position, where H and
W are the image height and width, respectively. The last dimension encodes features, most
commonly RGB values. However, a 3D LiDAR point cloud is usually represented as a set
of cartesian coordinates, (x, y, z). Extra features can also be included, such as intensity or
RGB values. Unlike image pixels, LiDAR point clouds are sparse and irregular. It is not
possible to directly use conventional CNNs to process such data. A naive alternative is to
discretize the 3D space into voxels and extract features based on the point distribution in
each voxel. However, this method is problematic. Discretizing the space with high resolution
will result in high computational complexity. Since most of the voxels are empty, most of
the computation is wasted. On the contrary, if using low resolution to discretize the space,
the accuracy will drop significantly.

In this work, we present a novel way to represent LiDAR point cloud data to bypass
this dilemma. CNNs are e↵ective and e�cient at processing 2D grid data. To obtain such
a compact representation, we project the LiDAR point cloud onto a sphere for a dense,
grid-based representation as

✓ = arcsin
zp

x2 + y2 + z2
, ✓̃ = b✓/4✓c,

� = arcsin
yp

x2 + y2
, �̃ = b�/4�c.

(4.1)
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� and ✓ are azimuth and zenith angles, as shown in Fig. 4.2 (a). (✓̃, �̃) denotes the position
of a point on a 2D spherical grid and 4✓ and 4� are resolutions for discretization. Applying
Equation (4.1) to each point in the cloud, we can obtain a 3D tensor of size H ⇥W ⇥C. In
this chapter, we consider data collected from a Velodyne HDL-64E LiDAR with 64 vertical
channels, so H = 64. Limited by data annotations from the KITTI dataset, we only consider
the front view area of 90� and divide it into 512 grids soW = 512. C is the number of features
for each point. In our experiments, we used 5 features for each point: 3 cartesian coordinates
(x, y, z), an intensity measurement and range r =

p
x2 + y2 + z2. An example of a projected

point cloud can be found at Fig. 4.2 (b). As can be seen, such representation is dense and
regularly distributed, resembling an ordinary image Fig. 4.2 (c). This featurization allows
us to avoid hand-crafted features, bettering the odds that our representation generalizes.

Network structure

Our convolutional neural network structure is shown in Fig. 4.3. SqueezeSeg is derived from
SqueezeNet [66], a light-weight CNN that achieved AlexNet level accuracy with 50X fewer
parameters. SqueezeNet has been successfully adopted for image based object detection and
achieved the state-of-the-art e�ciency [160].

Conv1b

Figure 4.3: Network structure of SqueezeSeg.

The input to SqueezeSeg is a 64 ⇥ 512 ⇥ 5 tensor as described in the previous section.
We ported layers (conv1a to fire9 ) from SqueezeNet for feature extraction. SqueezeNet used
max-pooling to down-sample intermediate feature maps in both width and height dimensions,
but since our input tensor’s height is much smaller than its width, we only down-sample the
width. The output of fire9 is a down-sampled feature map that encodes the semantics of
the point cloud.
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To obtain full resolution label predictions for each point, we used deconvolution mod-
ules (more precisely, “transposed convolutions”) to up-sample feature maps in the width
dimension. We used skip-connections to add up-sampled feature maps to lower-level feature
maps of the same size, as shown in Fig. 4.3. The output probability map is generated by a
convolutional layer (conv14 ) with softmax activation. The probability map is further refined
by a recurrent CRF layer, which will be discussed in the next section.

In order to reduce the number of model parameters and computation, we replaced con-
volution and deconvolution layers with fireModules [66] and fireDeconvs. The architecture of
both modules are shown in Fig. 4.4. In a fireModule, the input tensor of size H ⇥W ⇥C is
first fed into a 1x1 convolution to reduce the channel size to C/4. Next, a 3x3 convolution is
used to fuse spatial information. Together with a parallel 1x1 convolution, they recover the
channel size of C. The input 1x1 convolution is called the squeeze layer and the parallel 1x1
and 3x3 convolution together is called the expand layer. Given matching input and output
size, a 3x3 convolutional layer requires 9C2 parameters and 9HWC

2 computations, while
the fireModule only requires 3

2C
2 parameters and 3

2HWC
2 computations. In a fireDeconv

module, the deconvolution layer used to up-sample the feature map is placed between squeeze

and expand layers. To up-sample the width dimension by 2, a regular 1x4 deconvolution layer
must contain 4C2 parameters and 4HWC

2 computations. With the fireDeconv however, we
only need 7

4C
2 parameters and 7

4HWC
2 computations.

Conv 1x1,	C/4

Conv 3x3,	C/2 Conv 1x1,	C/2

Concatenate

Input	tensor:	H	x	W	x	C

Output	tensor:	H	x	W	x	C

Conv 1x1,	C/4

Conv 3x3,	C/2 Conv 1x1,	C/2

Concatenate

Input	tensor:	H	x	W	x	C

Output	tensor:	H	x	2W	x	C

Deconv
upsample X2

FireModule FireDeconv

Figure 4.4: Structure of a FireModule (left) and a fireDeconv (right).

Conditional Random Field

With image segmentation, label maps predicted by CNN models tend to have blurry bound-
aries. This is due to the loss of low-level details in down-sampling operations such as max-
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pooling. Similar phenomena are also observed with SqueezeSeg.
Accurate point-wise label prediction requires understanding not only the high-level se-

mantics of the object and scene but also low-level details. The latter is crucial for the
consistency of label assignments. For example, if two points in the cloud are next to each
other and have similar intensity measurements, it is likely that they belong to the same
object and thus have the same label. Following [11], we used a conditional random field
(CRF) to refine the label map generated by the CNN. For a given point cloud and a label
prediction c where ci denotes the predicted label of the i-th point, a CRF model employs
the energy function

E(c) =
X

i

ui(ci) +
X

i,j

bi,j(ci, cj). (4.2)

The unary potential term ui(ci) = � logP (ci) considers the predicted probability P (ci) from
the CNN classifier. The binary potential terms define the “penalty” for assigning di↵erent
labels to a pair of similar points and is defined as bi,j(ci, cj) = µ(ci, cj)

P
M

m=1 wmk
m(fi, fj)

where µ(ci, cj) = 1 if ci 6= cj and 0 otherwise, km is the m-th Gaussian kernel that depends
on features f of point i and j and wm is the corresponding coe�cient. In our work, we used
two Gaussian kernels

w1 exp(�
kpi � pjk

2

2�2
↵

�
kxi � xjk

2

2�2
�

)

+w2 exp(�
kpi � pjk

2

2�2
�

).

(4.3)

The first term depends on both angular position p(✓̃, �̃) and cartesian coordinates x(x, y, z)
of two points. The second term only depends on angular positions. �↵, �� and �� are three
hyper parameters chosen empirically. Extra features such as intensity and RGB values can
also be included.

Minimizing the above CRF energy function yields a refined label assignment. Exact min-
imization of Equation (4.2) is intractable, but [78] proposed a mean-field iteration algorithm
to solve it approximately and e�ciently. [181] reformulated the mean-field iteration as a
recurrent neural network (RNN). We refer readers to [78] and [181] for a detailed derivation
of the mean-field iteration algorithm and its formulation as an RNN. Here, we provide just
a brief description of our implementation of the mean-field iteration as an RNN module as
shown in Fig. 4.5.

The output of the CNN model is fed into the CRF module as the initial probability map.
Next, we compute Gaussian kernels based on the input feature as Equation (4.3). The value
of above Gaussian kernels drops very fast as the distance (in the 3D cartesian space and
the 2D angular space) between two points increases. Therefore, for each point, we limit the
kernel size to a small region of 3⇥5 on the input tensor. We then filter the initial probability
map using the above Gaussian kernels. This step is also called message passing in [181] since
it essentially aggregates probabilities of neighboring points. This step can be implemented as
a locally connected layer with the above Gaussian kernels as parameters. Next, we re-weight
the aggregated probability and use a “compatibility transformation” to decide how much
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it changes each point’s distribution. This step can be implemented as a 1x1 convolution
whose parameters are learned during training. We update the initial probability by adding
it to the output of the 1x1 convolution and use softmax to normalize it. The output of the
module is a refined probability map, which can be further refined by applying this procedure
iteratively. In our experiment, we used 3 iterations to achieve an accurate label map. This
recurrent CRF module together with the CNN model can be trained together end-to-end.
With a single-stage pipeline, we sidestep the thread of propagated errors present in multi-
stage workflows and leverage contextual information accordingly.

Message	passing	
as	a	locally	

connected	layer

Re-weighting	&	
compatibilty

transformation	as	a	
1x1	conv layer

Gaussian	filters

Unary	update

Refined	
label	map

Iteration

Softmax
normalization

LiDAR input

CNN	output

Figure 4.5: Conditional Random Field (CRF) as an RNN layer.

Data collection

Our initial data is from the KITTI raw dataset, which provides images, LiDAR scans and
3D bounding boxes organized in sequences. Point-wise annotations are converted from 3D
bounding boxes. All points within an object’s 3D bounding box are considered part of the
target object. We then assign the corresponding label to each point. An example of such a
conversion can be found in Fig. 4.2 (a, b). Using this approach, we collected 10,848 images
with point-wise labels.

In order to obtain more training samples (both point clouds and point-wise labels), we
built a LiDAR simulator in GTA-V. The framework of the simulator is based on DeepGTAV1,

1https://github.com/aitorzip/DeepGTAV
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which uses Script Hook V2 as a plugin.
We mounted a virtual LiDAR scanner atop an in-game car, which is then set to drive

autonomously. The system collects both LiDAR point clouds and the game screen. In our
setup, the virtual LiDAR and game camera are placed at the same position, which o↵ers
two advantages: First, we can easily run sanity checks on the collected data, since the points
and images need to be consistent. Second, the points and images can be exploited for other
research projects, e.g. sensor fusion, etc.

We use ray casting to simulate each laser ray that LiDAR emits. The direction of each
laser ray is based on several parameters of the LiDAR setup: vertical field of view (FOV),
vertical resolution, pitch angle, and the index of the ray in the point cloud scan. Through a
series of APIs, the following data associated with each ray can be obtained: a) the coordinates
of the first point the ray hits, b) the class of the object hit, c) the instance ID of the object
hit (which is useful for instance-wise segmentation, etc.), d) the center and bounding box of
the object hit.

Figure 4.6: Left: Image of a game scene from GTA-V. Right: A LiDAR point cloud corre-
sponding to the game scene.

Using this simulator, we built a synthesized dataset with 8,585 samples, roughly doubling
our training set size. To make the data more realistic, we further analyzed the distribution
of noise across KITTI point clouds (Fig. 4.7). We took empirical frequencies of noise at each
radial coordinate and normalized to obtain a valid probability distribution. First, let Pi be
a 3D tensor in the format described earlier in Section 4.3 denoting the spherically projected
“pixel values” of the i-th KITTI point cloud. For each of the n KITTI point clouds, consider
whether or not the pixel at the (✓̃, �̃) coordinate contains “noise.” For simplicity, we consider
“noise” to be missing data, where all pixel channels are zero. Then, the empirical frequency
of noise at the (✓̃, �̃) coordinate is

✏(✓̃, �̃) =
1

n

nX

i=1

1{Pi[✓̃,�̃]=0}.

2http://www.dev-c.com/gtav/scripthookv/
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Then, we can then augment the synthesized data using the distribution of noise in the KITTI
data. For any point cloud in the synthetic dataset, at each (✓̃, �̃) coordinate of the point
cloud, we randomly add noise by setting all feature values to 0 with probability ✏(✓̃, �̃).

Figure 4.7: Fixing distribution of noise in synthesized data

It is worth noting that GTA-V used very simple physical models for pedestrians, often
reducing people to cylinders. In addition, GTA-V does not encode a separate category for
cyclists, instead of marking people and vehicles separately on all accounts. For these reasons,
we decided to focus on the “car” class for KITTI evaluation when training with synthetic
data.

4.4 Experiments

Evaluation metrics

We evaluate our model’s performance on both class-level and instance-level segmentation
tasks. For class-level segmentation, we compare predicted with ground-truth labels, point-
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wise, and evaluate precision, recall, and IoU (intersection-over-union) scores, which are de-
fined as follows:

Prc =
|Pc \ Gc|

|Pc|
, recallc =

|Pc \ Gc|

|Gc|
, IoUc =

|Pc \ Gc|

|Pc [ Gc|
,

where Pc and Gc respectively denote the predicted and ground-truth point sets that belong
to class-c. | · | denotes the cardinality of a set. IoU score is used as the primary accuracy
metric in our experiments.

For instance-level segmentation, we first match each predicted instance-i with a ground
truth instance. This index-matching procedure can be denoted as M(i) = j where i 2

{1, · · · , N} is the predicted instance index and j 2 {;, 1, · · · ,M} is the ground truth index.
If no ground truth is matched to instance-i, then we set M(i) to ;. The matching procedure
M(·) 1) sorts ground-truth instances by the number of points and 2) for each ground-truth
instance, finds the predicted instance with the largest IoU. The evaluation script can be
found in our code release.

For each class-c, we compute instance-level precision, recall, and IoU scores as

Prc =

P
i
|Pi,c \ GM(i),c|

|Pc|
,

recallc =

P
i
|Pi,c \ GM(i),c|

|Gc|
,

IoUc =

P
i
|Pi,c \ GM(i),c|

|Pc [ Gc|
.

Pi,c denotes the i-th predicted instance that belongs to class-c. Di↵erent instance sets are
mutually exclusive, thus

P
i
|Pi,c| = |Pc|. Likewise for GM(i),c. If no ground truth instance

is matched with prediction-i, then GM(i),c is an empty set.

Experimental setup

Our primary dataset is the converted KITTI dataset described above. We split the publicly
available raw dataset into a training set with 8,057 frames and a validation set with 2,791
frames. Note that KITTI LiDAR scans can be temporally correlated if they are from the
same sequence. In our split, we ensured that frames in the training set do not appear in
validation sequences. Our training/validation split will be released as well. We developed
our model in Tensorflow and used NVIDIA TITAN X GPUs, Drive PX2 AutoCruise and
AutoChau↵eur systems for our experiments. Since the KITTI dataset only provides reliable
3D bounding boxes for front-view LiDAR scans, we limit our horizontal field of view to the
forward-facing 90�. We used DBSCAN to further process the output of SqueezeSeg to obtain
instance-level segmentation, with a proximity radius of 0.3m and minPts of 20. Details of
our model training protocols and experiment parameters can be found in our code release:
https://github.com/BichenWuUCB/SqueezeSeg.
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Experimental results

Segmentation accuracy of SqueezeSeg is summarized in Table 4.1. We compared two varia-
tions of SqueezeSeg, one with the recurrent CRF layer and one without. Although our pro-
posed metric is very challenging – as a high IoU requires point-wise correctness–SqueezeSeg
still achieved high IoU scores, especially for the car category. Note that both class-level and
instance-level recalls for the car category are higher than 90%, which is desirable for au-
tonomous driving, as false negatives are more likely to lead to accidents than false positives.
We attribute lower performance on pedestrian and cyclist categories to two reasons: 1) there
are many fewer instances of pedestrian and cyclist in the dataset. 2) Pedestrian and cyclist
instances are much smaller in size and have much finer details, making it more di�cult to
segment.

By combining our CNN with a CRF, we increased accuracy (IoU) for the car category
significantly. The performance boost mainly comes from improvement in precision since
CRF better filters misclassified points on the borders. At the same time, we also noticed
that the CRF resulted in slightly worse performance for pedestrian and cyclist segmentation
tasks. This may be due to lack of CRF hyperparameter tuning for pedestrians and cyclists.

Table 4.1: Segmentation Performance of SqueezeSeg

Class-level Instance-level
P R IoU P R IoU

car
w/ CRF 66.7 95.4 64.6 63.4 90.7 59.5
w/o CRF 62.7 95.5 60.9 60.0 91.3 56.7

pedestrian
w/ CRF 45.2 29.7 21.8 43.5 28.6 20.8
w/o CRF 52.9 28.6 22.8 50.8 27.5 21.7

cyclist
w/ CRF 35.7 45.8 25.1 30.4 39.0 20.6
w/o CRF 35.2 51.1 26.4 30.1 43.7 21.7

Summary of SqueezeSeg’s segmentation performance. P, R, IoU in the header row respectively
represent precision, recall and intersection-over-union. IoU is used as the primary accuracy
metric. All the values in this table are in percentages.

Runtime of two SqueezeSeg models are summarized in Table 4.2. On a TITAN X GPU,
SqueezeSeg without CRF only takes 8.7 ms to process one LiDAR point cloud frame. Com-
bined with a CRF layer, the model takes 13.5 ms each frame. This is much faster than the
sampling rate of most LiDAR scanners today. The maximum and typical rotation rate for
Velodyne HDL-64E LiDAR, for example, is 20Hz and 10Hz respectively. On vehicle embed-
ded processors such as Nividia Drive PX2 AutoCruise and AutoChau↵eur, where compu-
tational resources are more limited, SqueezeSeg can still achieve a frame rate of 13.5Hz to
40.0Hz. Also, note that the standard deviation of runtime for both SqueezeSeg models is
very small, which is crucial for the stability of the entire autonomous driving system. How-
ever, our instance-wise segmentation currently relies on conventional clustering algorithms
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Figure 4.8: Visualization of SqueezeSeg’s prediction on a projected LiDAR depth map. For
comparison, visualization of the ground-truth labels is plotted below the predicted ones.
Notice that SqueezeSeg additionally and accurately segments objects that are unlabeled in
the ground truth.

such as DBSCAN3, which in comparison takes much longer and has much larger variance.
A more e�cient and stable clustering implementation is necessary, but it is out of the scope
of this chapter.

We tested our model’s accuracy on KITTI data when trained on GTA simulated data.
The results are summarized in Table 4.3. Our GTA simulator is currently still limited
in its ability to provide realistic labels for pedestrians and cyclists, so we consider only
segmentation performance for cars. Additionally, our simulated point cloud does not contain
intensity measurements; we, therefore, excluded intensity as an input feature to the network.
To quantify the e↵ects of training on synthesized data, we trained a SqueezeSeg model on
the KITTI training set, without using intensity measurements, and validated on the KITTI

3We used the implementation from http://scikit-learn.org/0.15/modules/generated/sklearn.
cluster.DBSCAN.html
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Table 4.2: Average runtime and standard deviation of SqueezeSeg

unit: ms Titan X
Drive PX2
AutoCruise

Drive PX2
AutoChau↵eur

Xeon E5
CPU

SqueezeSeg 13.6/0.8 74.0/0.8 37.8/1.7 -
SqueezeSeg
w/o CRF

8.7/0.5 52.0/1.3 25.1/0.8 -

DBSCAN - - - 27.3/45.8

Average runtime and standard deviation of SqueezeSeg, SqueezeSeg without CRF and DBSCAN
on di↵erent processors. The unit for above values is millisecond. The first number in each cell
is the average runtime and the second is the standard deviation.

validation set. The model’s performance is shown in the first row of the table. Compared with
Table 4.1, the IoU score is worse, due to the loss of the intensity channel. If we train the model
completely on GTA simulated data, we see a significantly worse performance. However,
combining the KITTI training set with our GTA-simulated dataset, we see significantly
increased accuracy that is even better than Table 4.1.

A visualization of the segmentation result by SqueezeSeg vs. ground truth labels can
be found in Fig.4.8. For most of the objects, the predicted result is almost identical to
the ground-truth, save for the ground beneath target objects. Also, notice SqueezeSeg
additionally and accurately segments objects that are unlabeled in the ground truth. These
objects may be obscured or too small, therefore placed in the “Don’t Care” category for the
KITTI benchmark.

Table 4.3: Segmentation Performance on the Car Category with Simulated Data

Class-level Instance-level
P R IoU P R IoU

KITTI 58.9 95.0 57.1 56.1 90.5 53.0
GTA 30.4 86.6 29.0 29.7 84.6 28.2

KITTI + GTA 69.6 92.8 66.0 66.6 88.8 61.4

4.5 Conclusion

We present SqueezeSeg, an accurate, fast, and stable end-to-end approach for road-object
segmentation from LiDAR point clouds. Addressing the deficiencies of previous approaches
that were discussed in the Introduction, our deep learning approach 1) does not rely on
hand-crafted features, but utilizes convolutional filters learned through training; 2) uses a
deep neural network and therefore has no reliance on iterative algorithms such as RANSAC,
GP-INSAC, and agglomerative clustering; and 3) reduces the pipeline to a single-stage,
sidestepping the issue of propagated errors and allowing the model to leverage object context
fully.
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LiDAR points sparse and irregularly distributed in a 3D space. Such data are challenging
to process e�ciently. To bypass this problem, we propose a novel spherical transformation to
turn a 3D point cloud into a compact 2D representation that can be directly fed into a CNN.
In order to obtain training data, we propose an idea to convert bounding box annotations
into point-wise labels. To obtain more data, we leverage simulation engine to synthesize
large amounts of training data. Finally, we design the model structure of SqueezeSeg to be
compact and high e�ciency. As a result, SqueezeSeg accomplishes very high accuracy at
faster-than-real-time inference speeds with small variance, as required for applications such
as autonomous driving.
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Chapter 5

Data E�ciency: LATTE

Deep neural networks require a large amount of data for training and evaluation. In many
applications, however, obtaining such large amounts of data is not feasible due to the cost
and di�culty of data collection and annotation. A typical example of this is LiDAR-based
perception. Collecting LiDAR point cloud data requires installing costly LiDAR sensors, and
more importantly, annotating LiDAR point clouds is significantly more di�cult than anno-
tating images, due to low resolution, complex operation, and temporal correlation. There-
fore, getting enough LiDAR point cloud data to train neural networks is very challenging
and expensive. It is important for us to address the following key question:

Can we improve the data e�ciency of deep neural networks?

In the next two chapters, we discuss how to improve the data e�ciency of deep neural net-
works from two perspectives. In Chapter 5, we discuss how to build e�cient annotation tools
to accelerate the process of LiDAR annotation. In Chapter 6, we adopt a more aggressive
approach to utilize simulated data to train neural networks, bypassing the need for collecting
and annotating real data.

5.1 Introduction

LiDAR (Light detection and ranging) is an essential and widely adopted sensor for au-
tonomous vehicles. This is particularly true for applications such as Robo-Taxis that require
higher levels (L4-L5) of autonomy. Compared with cameras, LiDARs are more robust to
ambient light condition changes. They can also provide very accurate distance measure-
ments (error < 2cm 1) to nearby obstacles, which is essential for the planning and control of
autonomous vehicles.

To understand the environment through LiDAR, autonomous vehicles need to extract
semantic meaning from the point cloud and accurately identify and locate objects such as
cars, pedestrians, cyclists, and so on. Such problems are called LiDAR-based detection, and
they have long been studied by the research community. An increasing number of works [161,
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Figure 5.1: A screenshot of LATTE. Best viewed in color.

163, 113, 85] have demonstrated the promise of using Deep Learning to solve this problem.
Compared with previous approaches, deep learning solutions obtain superior accuracy and
faster speed, but they are also extremely data-hungry, requiring large amounts of data for
training.

Compared to annotating camera images, annotating LiDAR point clouds is much more
di�cult. The challenges can be summarized in the following three aspects and are illustrated
in Fig. 5.2: 1) Low resolution: Cameras can easily capture high-resolution images, with
widespread support for 4K resolution (3840 x 2160 pixels). In comparison, LiDAR sensors
have much more limited resolution. For example, typical vertical resolutions for Velodyne
LiDARs are 32 or 64 lines (pixels). For the 64-line LiDAR1 with a vertical angular resolution
of 0.41�, the spatial resolution at 50 meters is only 0.36 meters. As a result, LiDAR point
clouds are very sparse, making it di�cult for human annotators to identify objects, as shown
in Fig. 5.2(a). 2) Complex annotating operations: LiDAR-based detection problems
have di↵erent formulations, and the most popular two are 3D bounding box detection and
point-wise segmentation. The former requires predicting a 3D bounding box that tightly
covers a target object, and the latter requires finding all the points that belong to a target
object. In both scenarios, annotating 3D point cloud is significantly more complex than
annotating a 2D image. In bounding box detection, for example, a 2D bounding box can be
determined by drawing two corners. For 3D bounding boxes, however, annotators have to

1https://velodynelidar.com/hdl-64e.html
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Figure 5.2: Challenges of annotating LiDAR point clouds. (a) LiDAR point clouds have low
resolution and therefore objects are di�cult for humans to recognize. The upper two figures
are point clouds of a tra�c pole and a cyclist, but both are di�cult to recognize. The lower
two are the corresponding images. (b) Annotating 2D bounding boxes on an image vs. 3D
bounding boxes on a point cloud. Annotating 3D bounding boxes is more complicated due
to more degrees of freedom of 3D scaling and rotation. (c) Point clouds of two consecutive
frames are shown here. Even though the two frames are highly similar, target objects are
moving and have di↵erent speeds. As a result, new bounding boxes are needed on new
frames.

determine not only the center position, the length, width, and height of the target, but also
3D rotations. As a result, correctly annotating a 3D bounding box is much more complex
for human annotators, as shown in Fig. 5.2(b). 3) Sequential correlation: Many LiDAR
point cloud data are collected in sequences, so consecutive frames are di↵erent but highly
correlated. If we were to annotate LiDAR point cloud frame by frame naively, most of the
annotations would be repeated, as shown in Fig. 5.2(c).

Without addressing these challenges, it is di�cult to annotate LiDAR data e�ciently
over a large dataset. This limits the progress of research for LiDAR-based detection. Fur-
thermore, although several e↵orts are trying to create more open-sourced datasets ([33, 63])
for LiDAR-based detection, the annotation tools behind these datasets are not publicly ac-
cessible. Moreover, there are obvious advantages in enabling groups to e�ciently annotate
LiDAR datasets for their own LiDAR sensors, configurations, and so on.

To address these problems, we propose LATTE, an open-sourced LiDAR annotation tool,
as shown in Fig. 5.1. We address the challenges above with the following solutions: 1) Sen-
sor fusion: Cameras have much higher resolution than LiDAR sensors, and image-based
detection algorithms are much more mature than LiDAR-based. LiDAR sensors are usually
paired with cameras, and the two sensors are calibrated such that each point from the cloud
can be projected to a corresponding pixel in the image. Therefore, we can apply camera-
based image detection algorithms and transfer labels from an image to a 3D point cloud.
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The algorithm-generated labels are not perfect and are limited by the algorithm accuracy,
projection and synchronization errors, but we can use them as pre-labels to help human
annotators recognize objects and “fine-tune” the labels. 2) One-click annotation: We
simplify the operational complexity for LiDAR annotation from drawing point-wise labels
to drawing 3D bounding boxes, then to top-view 2D bounding boxes, and eventually to one-
click annotations. For a target object, a human annotator need only click on one point on it,
and we utilize clustering algorithms to expand the point-annotation to the entire object, and
automatically estimate a top-view 2D bounding box around the object. From the top-view
of a 2D bounding box, we can infer point-wise labels for segmentation problems, simply by
treating each point inside the bounding box as part of the target object. 3) Tracking: To
reduce repeated annotations on consecutive frames in a sequence, we utilize tracking algo-
rithms to transfer annotations from one frame to subsequent ones. By integrating all these
solutions, our annotation tool enables a 6.2x reduction in annotation time while delivering
better label quality, as measured by 23.6% and 2.2% higher instance-level precision and re-
call, and 2.0% higher bounding box IoU. Furthermore, we open-source our annotation tool
and build it in a modular way such that each component can be replaced and improved
easily if more advanced algorithms for each part become available.

5.2 Related work

LiDAR-based detection and datasets: LiDAR-based detection aims to identify and lo-
cate objects of interest from a LiDAR point cloud. Two main problem formulations for these
point clouds are bounding box object detection [85] and semantic segmentation[161]. Object
detection aims to draw a tight bounding box that covers the target object, and semantic
segmentation aims to predict labels for each point in the cloud and therefore find the cluster
corresponding to target objects. Earlier works mainly rely on handcrafted geometrical fea-
tures for segmentation and classification [24, 55, 150]. More recent works adopt deep learning
to solve this problem [161, 163, 114, 112, 113, 85] and achieve significant improvements in
accuracy and e�ciency.

Deep learning methods require much more data for training, therefore many e↵orts have
focused on creating public datasets for LiDAR-based detection. The KITTI dataset [33]
contains about 15,000 frames of 3D bounding box annotations for road-objects. The Apol-
loscape dataset [63] contains 140,000 frames of point-wise background annotation. Public
datasets serve as benchmarks to facilitate research, but they are not enough to support prod-
uct adoption since di↵erent configurations of LiDAR sensors, locations, and so on requires
creating di↵erent datasets. Therefore, it is equally important to provide annotation tools to
enable more groups to create their own datasets.

Annotation tools: Many e↵orts focus on improving annotation tools to generate more
data for deep learning training, but most of the annotation tools are focusing on images.
VIA [26] provides a simple yet powerful webpage-based tool for drawing bounding boxes and
polygons on images. Later works such as PolygonRNN [10, 2] seek to utilize more advanced
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algorithms to facilitate and accelerate human annotations. For video annotation, VATIC
[147] integrates tracking (mainly linear interpolation) to reduce annotating repeated entities
in consecutive frames. For autonomous driving applications, Yu et al. propose Scalabel
[171], a package of tools that support annotating bounding boxes and semantic masks on
images. Few works have focused on building LiDAR annotation tools. The Apolloscape
[63] dataset’s annotation pipeline uses sensor fusion and image-based detection to generate
labels through images. But their 3D annotations are for static backgrounds instead of moving
objects. [111] adopts a sensor-fusion strategy to generate LiDAR point cloud labels using
image-based detectors, and directly use them to train LiDAR-based detectors. However, the
correctness of such labels is limited by the accuracy of the image detector, projection and
synchronization error. Moreover, neither [63] nor [111] have open-sourced their annotation
tools.

Data collection through simulation: To sidestep the di�culty of data collection and
annotation, many research e↵orts aim at using simulation to generate LiDAR point cloud
data to train neural networks. Yue et al. [173] built a LiDAR simulator on top of the video
game GTA-V. The simulated data are then used to train, evaluate, and verify deep learning
models [161, 163, 173]. Carla [23] is an open-source simulator for autonomous driving, and it
supports image and LiDAR data generation. However, due to the distribution shift between
the simulated data and the real-world data, deep learning models trained on simulated data
perform poorly on the real-world data. Many works aim to close the gap between simulation
and the real world by domain adaptation [163]. Despite some promising progress, domain
adaptation remains a challenging problem and the gap has been reduced but not closed.
Therefore, collecting and annotating real-world data is still critical.

5.3 Method

In this section, we discuss in detail three features of LATTE that aim to accelerate LiDAR
point cloud annotation: sensor fusion, one-click annotation, and tracking.

Sensor Fusion

As shown in Fig.5.2(a), LiDAR sensors are low resolution and are di�cult for human annota-
tors to recognize. In comparison, cameras have higher resolution, and image-based detection
algorithms are more mature than LiDAR-based. Therefore, we use image-based detection to
help us annotate LiDAR point cloud. Our pipeline is illustrated in Fig. 5.3.

LiDAR sensors are paired with cameras, and the two sensors are calibrated such that
for each point pi with a 3D coordinate (xi, yi, zi) in the point cloud, we can project it to
a pixel qi with a 2D coordinate (ui, vi) in the corresponding image. The projection can be
mathematically described as

qi = Ppi + t,

where P 2 R
2⇥3 is the projection matrix and t 2 R

2 is the translation vector.
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Figure 5.3: The sensor-fusion pipeline of LATTE. A LiDAR point cloud is projected onto
its corresponding image. Next, we use Mask-RCNN to predict semantic labels on the image.
The labels are then transferred back to the LiDAR point cloud.

We then apply semantic segmentation on the image. In our annotator, we use Mask
R-CNN [52] to get semantic labels for each pixel in the image. The semantic labels can be
regarded as a mask M such that for each pixel qi with coordinates (ui, vi), we can find its
label li as li = M(ui, vi). Finally, this label can be transferred to its corresponding point in
the 3D space. This way, we can automatically generate pre-labels for the point cloud.

We highlight the pre-labeled points in the original point cloud such that human annota-
tors can quickly identify objects of interest. After an annotator draws a bounding box over
the target object, we again project all the points in the cluster back to the image, find the
patch of the image that contains the target object, crop the patch and show it to human
annotators for confirmation, as illustrated in Fig. 5.4.

One-click Annotation

In this section, we discuss how we simplify the annotation operation from drawing point-wise
labels to drawing 3D bounding box, then to top-view 2D bounding boxes, and eventually to
simply one-click annotation. A comparison of drawing a 3D bounding box, a top-view 2D
bounding box, and one-click annotation is illustrated in Fig.5.5.

LiDAR-based perception can be formulated as a bounding box detection problem or a se-
mantic segmentation problem. The former requires annotating 3D bounding boxes as shown
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Figure 5.4: We use sensor fusion to help annotators confirm the category of a selected object.
Once a 3D bounding box is chosen, we project all the points within the bounding box to
the image and show the corresponding crop of the image to human annotators for visual
confirmation.

in Fig.5.2(b), while the latter requires annotating point-wise labels. Naively annotating each
point to obtain point-wise categorical labels is not feasible. Fortunately for 3D point cloud,
point-wise labels can be obtained from 3D bounding boxes, as explained in [161]. For most
of the road-objects we care about, their bounding boxes do not overlap in 3D space. As
a result, point-wise labels can be converted from 3D bounding boxes, simply by treating
each point inside a bounding box as part of the target object and therefore with the same
categorical label.

However, drawing 3D bounding boxes is still operationally complex. As illustrated in
Fig. 5.5, ideally, drawing a 3D bounding box requires 1 operation to locate the object, 3
operations to scale the sides of the bounding box, and 3 rotations to adjust the orientation.
For autonomous driving applications, what is more important is to locate the object from
the top-view. Therefore, we can simplify a 3D bounding box to a top-view 2D bounding box,
which can be determined by its 2D center position, 2D sizes of width and length, and its yaw
angle. The operations needed to draw such a bounding box include 1 locating operation, 2
scaling operations, and 1 rotation, as illustrated in Fig. 5.5.

To further reduce the annotation complexity, we built one-click annotation – human an-
notators only need to click on one point on the target object, as illustrated in Fig. 5.5. After
the locating operations by human annotators, we automatically apply clustering algorithms
to find all the points for the target object. From the point cluster, we estimate a top-view
2D bounding box for the target object. Then, human annotators only need to adjust the
automatically generated bounding box if it does not fit the object perfectly. Our one-click
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annotation is summarized in Fig. 5.6. It mainly contains three steps: ground removal,
clustering, and bounding box estimation.
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Figure 5.5: A comparison of drawing a 3D bounding box, a top-view 2D bounding box, and
one-click annotation.
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Figure 5.6: The one-click annotation pipeline of LATTE. For a given LiDAR point cloud,
we first remove the ground. After an annotator clicks on one point on a target object, we
use clustering algorithms to expand from the clicked point to the entire object. Finally, we
estimate a top-view 2D bounding box for the object.

Ground removal: We model the ground as a segment of planes where each plane is
characterized by a linear model:

nTp = d,
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where n = [a, b, c]T is the normal vector, p = [x, y, z]T is a point at the plane, and d is the
distance to the ground. To determine the ground, we need to estimate the normal vector n
from the noisy LiDAR data. We initially estimate the normal vector by sampling a set of
lowest points in the vertical direction (z-direction). We denote the set as G0 and compute
the covariance matrix C0 2 R

3⇥3:

p̄ =
1

|G0|

|G0|X

i=1

pi,

C0 =
|G0|X

i=1

(pi � p̄)(pi � p̄)T .

where p̄ is the mean of the points in G0 and the covariance matrix C0 represents how
spread-out the points in G0 are. We analyze the direction of the dispersion by computing its
singular value decomposition (SVD). The first two singular vectors corresponding to the two
largest singular values represent the span of the plane. The singular vector corresponding to
the smallest singular value is a good approximation for the normal because the variance in
the direction of the normal is the smallest among all directions.

After computing the normal vector, we now have an updated estimate of the ground
plane. With our estimated plane we resample the ground points by their distance and
iteratively update the normal vector:

Gk = {p : |nT

k�1 · p| < thresh}

where |nT

k�1·p| is the distance between point p and the plane whose normal vector at iteration
k� 1 is nk�1. The normal vector approximation and ground sampling are repeated until the
segmentation converges or for a fixed number of iterations.

Clustering: After removing the ground we find the nearest cluster to the point where
the human annotator clicks on. The clustering algorithm is based on density-based spatial
clustering of applications with noise (DBSCAN) [27] and is described in Algorithm 1, where
FindNeighbor(p, X, ✏) finds the neighbors in X that are ✏-close to p.

Since LiDAR point clouds can contain a large number of points (approximately 100,000
points per frame for Velodyne LiDAR), we perform pruning and downsampling in order to
make one-click annotation e�cient. Fig. 5.8 shows that the distribution of bounding box
sizes is concentrated around 6m2, the size of a typical car. Therefore we can assume an
upper bound on the dimensions of an object and appropriately prune the point cloud.

Bounding box estimation: After we find the cluster, we use a search-based rectangle
fitting [178] to estimate bounding boxes. Other methods, such as PCA based ones, can also
be plugged into LATTE. To have the optimal rectangle fitting for a cluster, we need to know
the appropriate heading of the rectangle. Ideally, the rectangle can be found by solving the
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Algorithm 1: Clustering Algorithm

Input: seed s 2 R
3, point cloud P 2 R

n⇥3, distance threshold ✏

Output: cluster C 2 R
m⇥3

seen = ;, initialize Q;
Q.push(seed);
while Q not empty do

neighbors = FindNeighbors(Q.pop(), P, ✏);
for neighbor in neighbors do

if neighbor not in seen then
seen.add(neighbor);
Q.push(neighbor);

end
end

end
return seen;

following optimization problem:

argmin
✓,U,V,c1,c2

X

i2|U |

(xi cos ✓ + yi sin ✓ � c1)
2+

X

j2|V |

(�xj sin ✓ + yj cos ✓ � c2)
2
,

subject to U [ V = G,U \ V = ;.

It aims to partition observed points in G into two mutually exclusive groups U and V

depending on which edges they are closer to. Points in U are closer to the edge x cos ✓ +
y sin ✓ � c1, and points in V are closer to �x sin ✓ + y cos ✓ � c2.

Due to the combinatorial nature of the problem, it is infeasible to solve it exactly. To solve
this problem approximately and e�ciently, we use search-based rectangle fitting algorithm
[178] that searches headings and projects the points in the cluster to two perpendicular edges.
It searches the optimal heading to minimize a loss function as:

✓
⇤ = argmin

✓2[0,⇡]
L(Ge✓,1, Ge✓,2),

where G 2 R
n⇥2 denotes a matrix where each row contains the (x, y)-coordinate of a point.

e✓,1 = [cos ✓, sin ✓]T , e✓,2 = [� sin ✓, cos ✓]T are orthogonal unit vectors representing the di-
rections of two perpendicular edges. The loss function L(·, ·) is defined as the following. We
denote c1 = Ge✓,1, c2 = Ge✓,2, which represent projection of points to e✓,1, e✓,2. Then the
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distances from points in G to the closer edge is computed as

d1 = argmin
v2{c1�min{c1},c1�max{c1}}

kvk2,

d2 = argmin
v2{c2�min{c2},c2�max{c2}}

kvk2.

We can then divide all the points to two groups according to above distances and compute
the loss function as

L(Ge✓,1, Ge✓,2) =� Var({d1,i : d1,i < d2,i})

� Var({d2,i : d2,i < d1,i})

where d1,i is the i-th element of d1, and similar for d2,i. Var(·) computes the variance of a
set of values. After solving for the optimal heading ✓

⇤, the following equations are used to
compute the four edges of the rectangle:

Edge 1:x cos ✓⇤ + y sin ✓⇤ �min{c⇤1} = 0

Edge 2:x cos ✓⇤ + y sin ✓⇤ �max{c⇤1} = 0

Edge 3:� x sin ✓⇤ + y cos ✓⇤ �min{c⇤2} = 0

Edge 4:� x sin ✓⇤ + y cos ✓⇤ �max{c⇤2} = 0

where c⇤1 = Ge✓⇤,1, c⇤2 = Ge✓⇤,2.

Tracking

To accelerate annotation on sequences, we integrate tracking to LATTE such that annota-
tions from one frame can be transferred to subsequent ones, as illustrated in Fig. 5.7.

LATTE is constructed in a modular way such that it can support di↵erent tracking
algorithms, but we adopt Kalman filtering [152] in our implementation. We use Kalman
filtering to track the bounding box center of a target object. Human annotators need to
label the first frame of a sequence. Next, our algorithm predicts the centers of bounding
boxes for the next frame. For non-rigid objects (such as pedestrians), their bounding boxes
do not have fixed shapes. Therefore, we re-estimate the bounding boxes using a similar
algorithm as the one-click annotation, as described in section 5.3. For rigid objects such as
cars, their bounding boxes should not change over time, so we only estimate the yaw angle.
The predicted bounding box is displayed at the next frame, and the human annotator can
simply make adjustments to the bounding boxes. The adjusted bounding boxes then serve
as observations in the Kalman update step.

Formally, we define the state vector of a bounding box at frame k as xk = [px, py, vx, vy, ax, ay]T ,
where px and py are the coordinates for the center of the bounding box at frame k. vx, vy and
ax, ay represent the velocity and acceleration of the center, respectively. A human annotates
the first frame in the sequence, and we can obtain the initial values for the center position.
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Figure 5.7: The tracking pipeline of LATTE. Annotators label a bounding box in the initial
frame. Next, we use Kalman filtering to predict the center position of the bounding box
at the next frame. Human annotators then adjust the bounding box, and we use the new
center position as a new observation to update the Kalman filter.

The initial velocity and acceleration values are left to be zero. Next, we predict the center
coordinates at the next frame as

x̂k|k�1 = F x̂k�1|k�1,

Pk|k�1 = FPk�1|k�1F
T +Q,

where F 2 R
6⇥6 represents the state transition model. We assume a constant acceleration

model and define F as

F =

2

6666664
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2�t

2 0
0 1 0 �t 0 1

2�t
2

0 0 1 0 �t 0
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Figure 5.8: Distribution of bounding boxes by class, box area, and orientation in our test
benchmark.

where �t is the sampling interval of the sensor. Q 2 R
6⇥6 represents the process noise

covariance matrix and is modeled asQ = diag(nx, ny, nvx , nvy , nax , nay), where the coe�cients
are tuned by trial-and-error. The values are based their on the units of the state vector (m,
m/s, m/s

2) and their uncertainty level. Since we can directly observe center coordinates,
we have higher certainty for nx and ny than others. x̂k�1|k�1 represents the a posteriori state
estimate at time k � 1 given observations up to and including at time k. Pk�1|k�1 2 R

6⇥6

represents the a posteriori error covariance matrix, and the initial value P0|0 is estimated
empirically by computing the error covariance matrix on a sample of 100 tracking objects.

Based on the center position prediction, we then estimate the bounding box at frame
k and ask the human annotator to adjust it. The adjusted bounding box provides us an
observation of the new center coordinates zk = [px,k, py,k]T , which we use to update the
Kalman filter as

ỹk = zk �Hx̂k|k�1,

Kk = Pk|k�1H
T (R +HPk|k�1H

T )�1
,

x̂k|k = x̂k|k�1 +Kkỹk,

Pk|k = (I �KkH)Pk|k�1(I �KkH)T +KkRK
T

k
,

whereH 2 R
2⇥6 is the observation model. Since we only observe the center position through,

we define

H =


1 0 0 0 0 0
0 1 0 0 0 0

�
.

R 2 R
2⇥2 is the covariance of the observation noise and is defined as R = diag(�x,�y)

where �x and �y are the resolution of the LiDAR scanner in the x and y direction. We
iteratively apply Kalman filtering from the first frame to the end, as shown in Fig. 5.7.
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5.4 Experiments

Experiment Setup

Providing precise quantitative measurements of productivity improvements using human
subjects is very time consuming and complicated [83]. Nevertheless, while we feel that the
productivity advantages of features such as ”one-click annotation” are obvious, we wanted
to provide some estimate of the productivity improvements that LATTE provided. So, to
estimate productivity we simply measured the time and operation count used by volunteers
using LATTE to annotate LiDAR point cloud data from the KITTI dataset [33]. The KITTI
dataset involves eight object categories and includes 3D Velodyne point cloud data, accom-
panying color images, GPS/IMU data, 3D object tracklet labels, and camera-to-Velodyne
calibration data. We randomly selected 30 sequences of LiDAR data, where each sequence
contains five frames. This test benchmark contains a total amount of 1,116 instances. More
detailed analysis of object statistics can be found in Fig. 5.8.

We asked nine volunteers to annotate these frames using LATTE with all three features
(sensor fusion, one-click annotation, and tracking). We divide the data and volunteers such
that each feature is evaluated on the entire dataset. In other words, each frame is annotated
using each feature so that every feature is evaluated on the same frames. This is to ensure
that we are testing each feature on the same data.

The annotators were asked to draw bounding boxes for instances that they feel confident,
for example, instances of vehicles where at least two complete edges are visible. Instances
that far away tend to be sparse or occluded and are therefore not annotated. We only
evaluate objects whose bounding box intersects with a ground truth bounding box. To form
a baseline for comparison, we asked volunteers to draw top-view 2D bounding boxes on the
test LiDAR point cloud without using LATTE’s advanced features. To further evaluate the
e�cacy of each component, we also asked volunteers to use only one of the three features
for annotation. Each volunteer annotates a sequence of 5 frames with one feature a time.
We also asked the volunteers to annotate with a fully-featured version of the tool. In order
to eliminate the case where annotation e�ciency is improved solely due to the fact that
the annotator has seen the frame before, each frame is seen only once by each volunteer.
Therefore we do not falsely attribute an improvement in e�ciency to the feature we are
testing.

Metrics

To evaluate the accuracy of annotations, we used our own ground truth instead of using the
bounding boxes from KITTI dataset. This is because bounding boxes provided by KITTI do
not include all instances in a scene, particularly the ones that are behind the car. Therefore,
we asked an experienced human annotator to provide high-quality annotations as ground
truth. We measure the intersection-over-union (IoU) between an annotated bounding
box and the ground truth as the accuracy metric per instance, and we report the IoU averaged
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over all the instances annotated by all of the volunteers. Note that comparing our ground
truth with KITTI’s bounding boxes, we see 86.0% average IoU.

To better understand the typical agreement between two human annotators, we ask
di↵erent volunteers to use LATTE to label the same frames and instances and compute the
pair-wise IoU agreement per instance. Among 452 pairs of annotations on 132 instances,
the average IoU is 84.5% with a standard deviation of 8.74%. This serves as a reference
for considering other IoU results. In addition, we select a few samples of bounding box
annotations and compare them with our ground truth and KITTI’s annotation in Fig. 5.9.
As we can see, the IoU between each pair ranges from 78.1% to 93.8%, but the bounding
boxes are very similar to each other.
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Figure 5.9: Visualization of bounding box annotations from our volunteers, our ground truth,
and KITTI. The IoU between each pair is listed.

Another factor of accuracy is the correct identification of objects of interest. To evaluate
this, we measure the instance-level precision and recall. We compare all the annotated
bounding boxes and ground truth bounding boxes. We pair each ground truth box to an
annotated box with the highest overlap. Next, if a ground truth box has over 50% of overlap
with an annotated box, then we the annotated box as a true positive, or TP. If the ground
truth is not matched with any other annotation, it is a false negative, or FN. If an annotated
box is not matched with any ground truth boxes, it is a false positive, or FP. Then, the
instance level precision is defined as

TP

FP + TP

while the recall is defined as
TP

TP + FN
.
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This is di↵erent from the IoU above since IoU is counted on objects that are both annotated
by a volunteer and the ground truth. We report the IoU result in Table 5.1 and the precision
and recall in Table 5.2.

To evaluate e�ciency, we record the time spent on annotation per instance. In addition,
we also measure the number of annotation operations, which is defined as bounding
box adjustments (resizing, rotation, translation) and assigning classes. The e�ciency result
is reported in Table 5.1.

Results

Table 5.1: Accuracy and e�ciency of LATTE

Method IoU (%)
IoU(%)

w/ KITTI
Time (s) #ops

Ground Truth 100.0 86.0 - -
Baseline 85.5 82.3 9.51 3.76

Sensor fusion 86.3 82.5 3.88 2.88
One-click annotation 86.2 82.9 2.55 1.29

Tracking 86.4 83.5 2.41 1.53
Full features 87.5 84.7 1.53 1.02

The accuracy and e�ciency of LATTE are listed. The “IoU”
column shows the average IoU of annotation vs. our ground
truth. The “IoU w/ KITTI” column shows the average IoU of
annotations vs. the KITTI ground truth. The “Time” column
shows the average time spent on annotating one instance. The
“#ops” column shows the average number of operations spent
on annotating one instance. As a reference for the IoU result,
the average pair-wise IoU from di↵erent annotators is 84.5%
with a standard deviation of 8.74%.

Table 5.2: Instance-level precision & recall of LATTE

Method Precision (%) Recall (%)
Baseline 69.9 82.9

Sensor fusion 83.9 85.0
One-click annotation 78.8 84.8

Tracking 91.8 85.2
Full features 93.5 85.1

Baseline: Since there are no other open-source tools with similar functionality, we com-
pare LATTE to a stripped-down version with all of the new features removed. The volunteers
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are asked to manually annotate all instances by drawing top-view bounding boxes, as illus-
trated in Fig. 5.5. From Table 5.1, we can see that it takes an average of 9.51s, and 3.76
operations to annotate one instance. Despite the longer time, the label quality is the poorest
among all variations. The IoU with the ground truth is just 85.5%, the precision is 69.9%,
and the recall is 82.9%.

Full features: To test LATTE with all of the features, we ask the volunteers to use
the following workflow. For the first frame of a sequence, we use sensor fusion to highlight
objects of interest and ask human annotators to use one-click annotation to draw annotations
and make necessary adjustments. After volunteers are confident with the first frame, they
can move on to the next frame, where tracking will generate bounding box proposals for
volunteers to verify and adjust. The full features show a 6.2 times speed-up in annotation
time and 3.7 times reduction in the number of operations while achieving higher IoU at
87.5% over the baseline’s 85.5%, higher recall (85.1% vs. 82.9%) and significantly higher
precision (93.5% vs. 69.9%). We visualize some samples of annotations and compare them
with the ground truth and KITTI dataset’s annotations in Fig. 5.9.

Ablation study: To study the e↵ectiveness of each of the proposed features, we ask
volunteers to use a variation of LATTE with only one feature enabled. When volunteers are
only allowed to use the sensor fusion feature, we are able to achieve a 2.4 times speed-
up in annotation time compared to the baseline while achieving higher IoU (+0.8%), recall
(+2.1%), and significantly higher precision (+14.0%). In addition, the number of operations
per instance on average reduces by 0.9, nearly an entire operation. This supports our claim
that sensor fusion helps human annotators to better recognize objects from point clouds.
With only one-click annotation, our method shows a 3.8 times speed-up in annotation
time and 2.9x reduction in the number of annotation operations while achieving higher IoU,
precision, and recall. With only tracking, we show a speed-up of 4.74x while achieving
better annotation agreement than the baseline. This is largely due to the fact that tracking
saved redundant annotations on sequential frames.

5.5 Conclusion

E�ciently annotating LiDAR point clouds at scale is crucial for the development of LiDAR-
based detection and autonomous driving. However, annotating LiDAR point clouds is di�-
cult due to the challenges of low resolution, complex annotating operations, and sequential
correlation. To solve these problems, we propose LATTE, an open-sourced LiDAR anno-
tation tool that features sensor-fusion, one-click annotation, and tracking. Based on our
experiments we estimate that LATTE achieves a 6.2x speedup compared with baseline an-
notation tools and delivers better label quality with 23.6% and 2.2% higher instance-level
precision and recall, and 2.0% higher bounding box IoU.
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Chapter 6

Data E�ciency: SqueezeSegV2

As discussed in Chapter 5, collecting and annotating large amounts of data to train deep
neural networks is very di�cult, especially for LiDAR point cloud data. Advanced tools
such as LATTE significantly reduce the cost of data annotation by 6.2x, from about 10
seconds per frame to 1.5 seconds. However, it is still costly to annotate large scale datasets
that typically consist of millions of frames. This motivates us to explore more aggressive
approaches to improve the data e�ciency of deep learning.

A promising approach is to leverage simulated data to train deep neural networks. Today,
many simulators and video games such as CARLA[23] and GTA-V [173, 77] can synthesize
photo-realistic images and depth maps. The advantage of leveraging simulated data to train
deep neural networks include: 1) we can easily obtain large amounts of, or even unlimited
data through simulation; 2) labels for simulated data are readily available, therefore bypass-
ing the need for manual annotation. However, models trained on simulated data usually do
not generalize to the real world, due to the problem of domain shift – the data distribution
of the target domain (real world) is di↵erent from that of the source domain (simulation).
In this chapter, we discuss our approaches to solve this problem and address the following
key question:

Can we use simulated data to train deep neural networks and transfer the trained
model to the real world?

6.1 Introduction

In Chapter 4, we introduced SqueezeSeg for LiDAR point cloud segmentation. SqueezeSeg
is extremely e�cient – the fastest version achieves an inference speed of over 100 frames per
second. However, SqueezeSeg still has several limitations: first, its accuracy still needs to
be improved to be practically useful. A critical reason for accuracy degradation is dropout
noise – missing points from the sensed point cloud caused by limited sensing range, mirror
di↵usion of the sensing laser, or jitter in incident angles. A visualization of the dropout noise
is provided in Figure 6.1 (b). Such dropout noise can corrupt the output of convolution filters
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(b) Real LiDAR point cloud with ground truth labels

(a) Synthetic LiDAR point cloud with ground truth labels

(c) Before adaptation (Car IoU: 30.0)

(d) After adaptation (Car IoU: 57.4)

Figure 6.1: An example of domain shift. The point clouds are projected onto a spherical
surface for visualization (cars in red, pedestrians in blue). Our domain adaptation pipeline
improves the segmentation from (c) to (d) while trained on synthetic data.

and therefore reduces overall accuracy. More importantly, training deep learning models
requires tens of thousands of labeled point clouds; however, collecting and annotating such
data is even more time consuming and expensive than collecting comparable data from
cameras. GTA-V is used to synthesize LiDAR point cloud as an extra source of training
data [162]; however, this approach su↵ers from the domain shift problem [143] – models
trained on synthetic data fail catastrophically on the real data, as shown in Fig. 6.1. Domain
shift comes from di↵erent sources, but the absence of dropout noise and intensity signals in
GTA-V are two important factors. Simulating realistic dropout noise and intensity is very
di�cult, as it requires sophisticated modeling of both the LiDAR device and the environment,
while both contain a lot of non-deterministic factors. As such, the LiDAR point clouds
generated by GTA-V do not contain dropout noise and intensity signals. The comparison of
simulated data and real data is shown in Fig. 6.1 (a), (b).

In this chapter, we focus on addressing the challenges above. First, to improve the
accuracy, we mitigate the impact of dropout noise by proposing the Context Aggregation
Module (CAM), a novel CNN module that aggregates contextual information from a larger
receptive field and improves the robustness of the network to dropout noise. Adding CAM
to the early layers of SqueezeSegV2 not only significantly improves its performance when
trained on real data, but also e↵ectively reduces the domain gap, boosting the network’s real-
world test accuracy when trained on synthetic data. In addition to CAM, we adopt several
improvements to SqueezeSeg, including using focal loss [90], batch normalization [67], and
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LiDAR mask as an input channel. As shown in section 6.5, these improvements together
boosted the accuracy of SqueezeSegV2 by 6.0% - 8.6% in all categories on the converted
KITTI dataset [162]. A qualitative visualization of such improvement is provided in Figure
6.7.

Second, to better utilize synthetic data for training the model, we propose a domain
adaptation training pipeline that contains the following steps: first, before training, we
render intensity channels in synthetic data through learned intensity rendering. We train
a neural network that takes point coordinates as input and predicts intensity values. This
rendering network can be trained in a ”self-supervised” fashion on unlabeled real data. After
training the network, we feed the synthetic data into the network and render the intensity
channel. Second, we use the synthetic data augmented with rendered intensity to train
the network. Meanwhile, we follow [105] and use geodesic correlation alignment to align
the batch statistics between real data and synthetic data. 3) After training, we propose
progressive domain calibration to further reduce the gap between the target domain and
the trained network. Experiments show that the above domain-adaptation training pipeline
doubles the test accuracy on real data from 29.0% to 57.4% while training on synthetic data.
A qualitative visualization of this improvement is provided in Figure 6.1, where the adapted
model’s performance is obviously better than the original model’s.

6.2 Related work

3D LiDAR Point Cloud Segmentation aims to recognize objects from point clouds
by predicting point-wise labels. Non-deep-learning methods [104, 25, 174] usually involve
several stages such as ground removal, clustering, and classification. SqueezeSeg [162] is one
early work that applies deep learning to this problem. Piewak et al. [111] adopted a similar
problem formulation and pipeline to SqueezeSeg and proposed a new network architecture
called LiLaNet. They created a dataset by utilizing image-based semantic segmentation to
generate labels for the LiDAR point cloud. However, the dataset was not released, so we were
not able to conduct a direct comparison to their work. Another category of methods is based
on PointNet [114, 112], which treats a point cloud as an unordered set of 3D points. This
is e↵ective with 3D perception problems such as classification and segmentation. Limited
by its computational complexity; however, PointNet is mainly used to process indoor scenes
where the number of points is limited. Frustum-PointNet [113] is proposed for out-door
object detection, but it relies on image object detection to first locate object clusters and
feeds the cluster, instead of the whole point cloud, to the PointNet.

Unsupervised Domain Adaptation (UDA) aims to adapt the models from one
labeled source domain to another unlabeled target domain. Recent UDA methods have
focused on transferring deep neural network representations [108, 19]. Typically, deep UDA
methods employ a conjoined architecture with two streams to represent the models for the
source and target domains, respectively. In addition to the task-related loss computed from
the labeled source data, deep UDA models are usually trained jointly with another loss, such
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Focal Loss

Figure 6.2: The network structure of the proposed SqueezeSegV2 model for road-object
segmentation from 3D LiDAR point clouds.

as a discrepancy loss [98, 137, 186, 180, 105], adversarial loss [94, 31, 144, 130, 7, 56], label
distribution loss [180] or reconstruction loss [36, 35].

The most relevant work is the exploration of synthetic data [130, 180, 56]. By enforcing
a self-regularization loss, Shrivastava et al. [130] proposed SimGAN to improve the realism
of synthetic data using unlabeled real data. Another category of relevant work employs a
discrepancy loss [98, 137, 186, 105], which explicitly measures the discrepancy between the
source and target domains on corresponding activation layers of the two network streams.
Instead of working on 2D images, we try to adapt synthetic 3D LiDAR point clouds by a
novel adaptation pipeline.

Simulation has recently been used for creating large-scale ground truth data for training
purposes. Richter et al. [122] provided a method to extract semantic segmentation for the
synthesized in-game images. In [73], the same game engine is used to extract ground truth
2D bounding boxes for objects in the image. Yue et al. [173] proposed a framework to
generate synthetic LiDAR point clouds. Richter et al. [121] and Krähenbühl [77] extracted
more types of information from video games.

6.3 Improving the model structure

We propose SqueezeSegV2, by improving upon the base SqueezeSeg model, adding Context
Aggregation Module (CAM), adding LiDAR mask as an input channel, using batch normal-
ization [67], and employing the focal loss [90]. The network structure of SqueezeSegV2 is
shown in Fig. 6.2.

Context Aggregation Module

LiDAR point cloud data contains many missing points, which we refer to as dropout noise,
as shown in Fig. 6.1(b). As can be seen, in many pixels in the projected LiDAR depth
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Figure 6.3: Structures of the Context Aggregation Module. The module starts with a max-
layer with a kernel size of 7. Next, two 1x1 convolution layers are used, followed by a
sigmoid activation at the output. Following [60], we perform an element-wise multiplication
to combine the output of CAM and its input.

map, the LiDAR measurements are missing. This usually happen on cars’ window areas,
end of the roads, cars that are far away, and so on. Dropout noise is mainly caused by 1)
limited sensor range, 2) mirror reflection (instead of di↵usion reflection) of sensing lasers
on smooth surfaces, and 3) jitter of the incident angle. Dropout noise has a significant
impact on SqueezeSeg, especially in the early layers of a network. At early layers where the
receptive field of the convolution filter is very small, missing points in a small neighborhood
can corrupt the output of the filter significantly. To illustrate this, we conduct a simple
numerical experiment, where we randomly sample an input tensor and feed it into a 3 ⇥ 3
convolution filter. We randomly drop out some pixels from the input tensor, and as shown
in Fig. 6.4, the errors of the corrupted output increases with the dropout probability.

This problem not only impacts SqueezeSeg when trained on real data but also leads to a
serious domain gap between synthetic data and real data, since simulating realistic dropout
noise from the same distribution is very di�cult.

To solve this problem, we propose a novel Context Aggregation Module (CAM) to reduce
the sensitivity to dropout noise. As shown in Fig. 6.3, CAM starts with a max-pooling with
a relatively large kernel size. The max-pooling aggregates contextual information around a
pixel with a much larger receptive field, and it is less sensitive to missing data within its
receptive field. Also, max-pooling can be computed e�ciently even with a large kernel size.
Two cascaded convolution layers then follow the max-pooling layer with a ReLU activation
in between. Following [60], we use the sigmoid function to normalize the output of the
module and use an element-wise multiplication to combine the output with the input. As
shown in Fig. 6.4, the proposed module is much less sensitive to dropout noise – with the
same corrupted input data, the error is significantly reduced.

In SqueezeSegV2, we insert CAM after the output of the first three modules (1 convolu-
tion layer and 2 FireModules), where the receptive fields of the filters are small. As can be
seen in later experiments, CAM 1) improves the accuracy when trained on real data, and 2)
reduces the domain gap while trained on synthetic data and testing on real data.
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Figure 6.4: We feed a random tensor to a convolutional filter, one with CAM before a 3⇥ 3
convolution filter and the other one without CAM. We randomly add dropout noise to the
input and measure the output errors. As we increase the dropout probability, the error also
increases. For all dropout probabilities, adding CAM improve the robustness towards the
dropout noise and therefore, the error is always smaller.

Focal Loss

LiDAR point clouds have a very imbalanced distribution of point categories – there are many
more background points such as roads, sky, and trees, than there are foreground objects such
as cars, pedestrians. This imbalanced distribution makes the model focus more on easy-to-
classify background points that contribute no useful learning signals, with the foreground
objects not being adequately addressed during training.

To address this problem, we replace the original cross entropy loss from SqueezeSeg [162]
with a focal loss [90]. The focal loss modulates the loss contribution from di↵erent pixels
and focuses on hard examples. For a given pixel label t, and the predicted probability of pt,
focal loss [90] adds a modulating factor (1� pt)� to the cross-entropy loss. The focal loss for
that pixel is thus

FL(pt) = �(1� pt)
� log (pt) (6.1)

When a pixel is misclassified and pt is small, the modulating factor is near 1, and the
loss is una↵ected. As pt ! 1, the factor goes to 0, and the loss for well-classified pixels is
down-weighted. The focusing parameter � smoothly adjusts the rate such that well-classified
examples are down-weighted. When � = 0, the Focal Loss is equivalent to the Cross-Entropy
Loss. As � increases, the e↵ect of the modulating factor is likewise increased. We choose �

to be 2 in our experiments.
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Other Improvements

LiDAR Mask: Besides the original (x, y, z, intensity, depth) channels, we add one more
channel – a binary mask indicating if each pixel is missing or existing. As we can see from
Table 6.1, the addition of the mask channel significantly improves segmentation accuracy for
cyclists.

Batch Normalization: Unlike SqueezeSeg [162], we also add batch normalization
(BN) [67] after every convolution layer. The BN layer is designed to alleviate the issue
of internal covariate shift – a common problem for training a deep neural network. We
observe an improvement in car segmentation after using BN layers in Table 6.1.

6.4 Domain adaptation training

In this section, we introduce our unsupervised domain adaptation pipeline that trains Squeeze-
SegV2 on synthetic data and improves its performance on real data. We construct a large-
scale 3D LiDAR point cloud dataset, GTA-LiDAR, with 100,000 LiDAR scans simulated
on GTA-V. To deal with the domain shift problem, we employ three strategies: learned
intensity rendering, geodesic correlation alignment, and progressive domain calibration, as
shown in Fig. 6.5.

The GTA-LiDAR Dataset

We synthesize 100,000 LiDAR point clouds in GTA-V to train SqueezeSegV2. We use the
framework in [77] to generate depth semantic segmentation maps, and use the method in
[173] to do Image-LiDAR registration in GTA-V. Following [173], we collect 100,000 point
cloud scans by deploying a virtual car to drive autonomously in the virtual world. GTA-V
provides a wide variety of scenes, car types, tra�c conditions, which ensures the diversity
of our synthetic data. Each point in the synthetic point cloud contains one label, one
distance, and x, y, z coordinates. However, it does not contain intensity, which represents
the magnitude of the reflected laser signal. Also, the synthetic data does not contain dropout
noise as in the real data. Because of such distribution discrepancies, the model trained on
synthetic data fails to transfer to real data.

Learned Intensity Rendering

The synthetic data only contains x, y, z, depth channels but does not have intensity. As
shown in SqueezeSeg [162], intensity is an important signal. A visualization of the intensity
map is provided in Figure 6.6 (a). Intensity not only encodes the structure information of
the environment, but also reflects geometry and surface features that are unique to certain
objects such as cars. The absence of intensity can lead to severe accuracy loss. Rendering
realistic intensity is a non-trivial task, since a multitude of factors that a↵ect intensity, such
as surface materials and LiDAR sensitivity, are generally unknown to us.
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Figure 6.5: The framework of the proposed unsupervised domain adaptation method for
road-object segmentation from the synthetic GTA-LiDAR dataset to the real-world KITTI
dataset.

To solve this problem, we propose a method called learned intensity rendering. The idea
is to use a network to take the x, y, z, depth channels of the point cloud as input, and predict
the intensity. Such rendering network can be trained with unlabeled LiDAR data, which can
be easily collected as long as a LiDAR sensor is available. As shown in Fig. 6.5a, we train
the rendering network in a self-supervision fashion, splitting the x, y, z channels as input to
the network and the intensity channel as the label. The structure of the rendering network
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(a) Ground truth intensity (b) Rendered intensity with loss (c) Rendered intensity with hybrid loss

Figure 6.6: Rendered v.s. ground truth intensity in the KITTI dataset.

is almost the same as SqueezeSeg, except that the CRF layer is removed.
The intensity rendering can be seen as a regression problem, where the `2 loss is a natural

choice. However, `2 fails to capture the multi-modal distribution of the intensity – given the
same input of x, y, z, the intensity can di↵er. To model this property, we designed a hybrid
loss function that involves both classification and regression. We divide the intensity into
n = 10 regions, with each region having a reference intensity value. The network first predicts
which region the intensity belongs. Once the region is selected, the network further predicts
a deviation from the reference intensity. This way, the categorical prediction can capture
the multi-modal distribution of the intensity, and the deviation prediction leads to more
accurate estimations. We train the rendering network on the KITTI [34] dataset with the
hybrid loss function and measure its accuracy with mean squared error (MSE). Compared
to `2 loss, the converged MSE drops significantly by 3X from 0.033 to 0.011. A few rendered
results using two di↵erent losses are shown in Fig. 6.6. After training the rendering network,
we feed synthetic GTA-LiDAR data into the network to render point-wise intensities.

Geodesic Correlation Alignment

After rendering intensity, we train SqueezeSegV2 on the synthetic data with focal loss.
However, due to distribution discrepancies between synthetic data and real data, the trained
model usually fails to generalize to real data.

To reduce this domain discrepancy, we adopt geodesic correlation alignment during train-
ing. As shown in Fig. 6.5b, at every step of training, we feed in one batch of synthetic data
and one batch of real data to the network. We compute the focal loss on the synthetic batch,
where labels are available. Meanwhile, we compute the geodesic distance [105] between the
output distributions of two batches. The total loss now contains both the focal loss and the
geodesic loss. Where the focal loss focuses on training the network to learn semantics from
the point cloud, the geodesic loss penalizes discrepancies between batch statistics from two
domains. Note that other distances, such as the Euclidean distance can also be used to align
the domain statistics. However, we choose the geodesic distance over the Euclidean distance
since it takes into account the manifolds curvature. More details can be found in [105].

We denote the synthetic input data as Xsim, synthetic labels as Ysim the real input data
as Xreal. Our loss function can be computed as

FL(Xsim, Ysim) + � · GL(Xsim, Xreal), (6.2)
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Algorithm 2: Progressive Domain Calibration
Input: Unlabeled real data X , model M
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Output: Calibrated model M

where FL denotes focal loss between the synthetic label and network prediction, GL denotes
the geodesic loss between batch statistics of synthetic and real data. � is a weight coe�cient,
and we set it to 10 in our experiment. Note that in this step, we only require unlabeled
real data, which is much easier to obtain than annotated data as long as a LiDAR sensor is
available.

Progressive Domain Calibration

After training SqueezeSegV2 on synthetic data with geodesic correlation alignment, each
layer of the network learns to recognize patterns from its input and extract higher-level
features. However, due to the non-linear nature of the network, each layer can only work
well if its input is constrained within a certain range. Taking the ReLU function as an
example, if somehow its input distribution shifts below 0, the output of the ReLU becomes
all zero. Otherwise, if the input shifts towards larger than 0, the ReLU becomes a linear
function. For deep learning models with multiple layers, distribution discrepancies from the
input data can lead to distribution shift at the output of each layer, which is accumulated or
even amplified across the network and eventually leads to serious degradation of performance,
as illustrated in Fig. 6.5c.

To address this problem, we employ a post-training procedure called progressive domain
calibration (PDC). The idea is to break the propagation of the distribution shift through each
layer with progressive layer-wise calibration. For a network trained on synthetic data, we feed
the real data into the network. Starting from the first layer, we compute its output statistics
(mean and variance) under the given input, and then re-normalize the output’s mean to
be 0 and its standard deviation to be 1, as shown in Fig. 6.5c. Meanwhile, we update the
batch normalization parameters (mean and variance) of the layer with the new statistics.
We progressively repeat this process for all layers of the network until the last layer. Similar
to geodesic correlation alignment, this process only requires unlabeled real data, which is
presumably abundant. This algorithm is summarized in Algorithm 2. A similar idea was
proposed in [86], but PDC is di↵erent since it performs calibration progressively, making
sure that the calibrations of earlier layers do not impact those of later layers.
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(a) Ground truth labels (b) Segmentation results by SqueezeSeg (c) Segmentation results by SqueezeSegV2

Figure 6.7: Segmentation result comparison between SqueezeSeg [162] and our SqueezeSegV2
(red: car, green: cyclist). Note that in first row, SqueezeSegV2 produces much more accurate
segmentation for the cyclist. In the second row, SqueezeSegV2 avoids a falsely detected car
that is far away.

(a) Ground truth labels (b) Before adaptation (c) After adaptation

Figure 6.8: Segmentation result comparison before and after domain adaptation (red: car,
blue: pedestrian).

6.5 Experiments

In this section, we introduce the details of our experiments. We train and test SqueezeSegV2
on a converted KITTI [34] dataset as [162]. To verify the generalization ability, we further
train SqueezeSegV2 on the synthetic GTA-LiDAR dataset and test it on the real world
KITTI dataset.

Experimental Settings

We compare the proposed method with SqueezeSeg [162], the state-of-the-art model for se-
mantic segmentation from 3D LiDAR point clouds. We use KITTI [34] as the real-world
dataset. KITTI provides images, LiDAR scans, and 3D bounding boxes organized in se-
quences. Following [162], we obtain point-wise labels from 3D bounding boxes. All points
within a bounding box are considered part of the target object. In total, 10,848 samples
with point-wise labels are collected. For SqueezeSegV2, the dataset is split into a training
set with 8,057 samples and a testing set with 2,791 samples. For domain adaptation, we
train the model on GTA-LiDAR and test it on KITTI for comparison.

Similar to [162], we evaluate our model’s performance on class-level segmentation tasks
by a point-wise comparison of the predicted results with ground-truth labels. We employ
intersection-over-union (IoU) [161] as our evaluation metric, which is defined as IoUc =
|Pc\Gc|
|Pc[Gc| , where Pc and Gc respectively denote the predicted and ground-truth point sets that

belong to class-c. | · | denotes the cardinality of a set.
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Table 6.1: Segmentation performance (IoU, %) comparison between the proposed Squeeze-
SegV2 (+BN+M+FL+CAM) model and state-of-the-art baselines on the KITTI dataset.

Car Pedestrian Cyclist Average
SqueezeSeg [162] 64.6 21.8 25.1 37.2

+BN 71.6 15.2 25.4 37.4
+BN+M 70.0 17.1 32.3 39.8

+BN+M+FL 71.2 22.8 27.5 40.5
+BN+M+FL+CAM 73.2 27.8 33.6 44.9

PointSeg [151] 67.4 19.2 32.7 39.8

+BN denotes using batch normalization. +M denotes adding LiDAR mask as input. +FL
denotes using focal loss. +CAM denotes using the CAM module.

Improved Model Structure

The performance comparisons, measured in IoU, between the proposed SqueezeSegV2 model
and baselines are shown in Table 6.1. Some segmentation results are shown in Fig. 6.7.

From the results, we have the following observations. (1) both batch normalization and
the mask channel can produce better segmentation results - batch normalization boosts seg-
mentation of cars, whereas the mask channel boosts segmentation of cyclists. (2) Focal loss
improves the segmentation of pedestrians and cyclists. The number of points corresponding
to pedestrians and cyclists is low relative to a large number of background points. This
class imbalance causes the network to focus less on the pedestrian and cyclist classes. Focal
loss mitigates this problem by focusing the network on optimization of these two categories.
(3) CAM significantly improves the performance of all the classes by reducing the network’s
sensitivity to dropout noise.

Domain Adaptation Pipeline

The performance comparisons, measured in IoU, between the proposed domain adaptation
pipeline and baselines are shown in Table 6.2. Some segmentation results are shown in
Fig. 6.8. From the results, we have the following observations. (1) Models trained on the
source domain without any adaptation does not perform well. Domain discrepancy lowers
models’ transferability from the source domain to the target domain. (2) All adaptation
methods are e↵ective, with the combined pipeline performing the best, demonstrating its ef-
fectiveness. (3) Adding the CAM to the network also significantly boosts the performance on
the real data, supporting our hypothesis that dropout noise is a significant source of domain
discrepancy. Therefore, improving the network to make it more robust to dropout noise can
help reduce the domain gap. (4) Compared with [162] where a SqueezeSeg model is trained
on the real KITTI dataset but without intensity, our SqueezeSegV2 model trained purely on
synthetic data and unlabeled real data achieves a better accuracy, showing the e↵ectiveness of
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Table 6.2: Segmentation performance (IoU, %) of the proposed domain adaptation pipeline
from GTA-LiDAR to the KITTI.

Car Pedestrian
SQSG trained on GTA [162] 29.0 -

SQSG trained on GTA-LiDAR 30.0 2.1
+LIR 42.0 16.7

+LIR+GCA 48.2 18.2
+LIR+GCA+PDC 50.3 18.6

+LIR+GCA+PDC+CAM 57.4 23.5

SQSG trained on KITTI w/o intensity [162] 57.1 -

SQSG denotes SqueezeSeg. +LIR denotes using learned intensity rendering. +GCA
denotes using geodesic correlation alignment. +PDC denotes using progressive domain
calibration. +CAM denotes using the CAM module.

our domain adaptation training pipeline. (5) Compared with our latest SqueezeSegV2 model
trained on the real KITTI dataset, there is still an obvious performance gap. Adapting the
segmentation model from synthetic LiDAR point clouds is still a challenging problem.

6.6 Conclusion

In this chapter, we present SqueezeSegV2 and show two improvement over SqueezeSegV1.
First, we improve the segmentation performance of SqueezeSegV1. We design a context
aggregation module to mitigate the impact of dropout noise. Together with other improve-
ments including focal loss, batch normalization and a LiDAR mask channel, SqueezeSegV2
sees accuracy improvements of 6.0% to 8.6% in various pixel categories over the original
SqueezeSegV1. In SqueezeSegV1, we proposed the idea of using simulated data to train the
model. However, experiments show that due to the severe domain shift, the model trained
with simulated data fails to generalize to the real-world. To solve this problem, we propose
a domain adaptation pipeline with three components: learned intensity rendering, geodesic
correlation alignment, and progressive domain calibration. The proposed pipeline signifi-
cantly improves the real-world accuracy of the model trained on synthetic data by 28.4%,
even out-performing a baseline model [162] trained on the real dataset. This is a significant
improvement, since collecting and annotating real data is extremely expensive, especially for
LiDAR data. Being able to leverage simulated data means we can bypass the data collec-
tion, therefore greatly improves the data e�ciency of neural networks. Compared with the
augmented SqueezeSegV2 model that is trained on real data, we still see a performance gap.
However, this result demonstrates the potential for further research on this topic.
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Chapter 7

Hardware E�ciency: Shift & Synetgy

In order to make a deep learning system run faster, consume less energy, achieve higher
accuracy, we not only need to design compact deep neural networks, we must also optimize
hardware processors that they run on. Ideally, this process should involve the co-design of
both deep neural networks and hardware processors. In reality, however, we found that the
two communities of model design and hardware design are divided. On the model design
side, most previous e↵orts on mainly focus on optimizing hardware-agnostic metrics such
as parameter size or FLOPs (or more strictly, the number of Multiply-and-Accumulate op-
erations). However, those proxies do not always reflect actual e�ciencies, such as latency
and energy. Some neural networks achieve lower FLOPs but also become slower due to
complicated network structures. Meanwhile, in the hardware design community, many im-
provements were solely focusing on the hardware side without leveraging the latest progress
of neural network design. In this chapter, we discuss the following key question:

Can we co-design neural networks and hardware accelerators to further improve
the e�ciency of deep learning systems?

We will first discuss a strategy to drastically reduce the parameters and FLOPs of neural
networks by simplifying spatial convolutions all the way to a novel and simple operator
named “Shift”. This not only significantly reduces parameter size and FLOPs of a network
but also allows us to build neural networks with only 1x1 convolutions, which enables to
build simplified and customized hardware accelerators to achieve significant speedup over
previous state-of-the-art.

7.1 Introduction and related work

Convolutional neural networks (CNNs) rely on spatial convolutions with kernel sizes of 3x3
or larger to aggregate spatial information within an image. However, both the FLOPs and
model size of spatial convolutions grow quadratically with respect to kernel sizes. In the
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Figure 7.1: Illustration of a shift operation followed by a 1x1 convolution. The shift operation
collect data spatially and the 1x1 convolution mixes information across channels.

VGG-16 model [132], 3x3 convolutions account for 15 million parameters, and the fc1 layer,
e↵ectively a 7x7 convolution, accounts for 102 million parameters and even more FLOPs.

Several strategies have been adopted to reduce the size of spatial convolutions, therefore
computations. ResNet[49] employs a “bottleneck module,” placing two 1x1 convolutions be-
fore and after a 3x3 convolution, reducing its number of input and output channels. Despite
this, 3x3 convolutional layers still account for 50% of all parameters in ResNet models with
bottleneck modules. SqueezeNet [66] adopts a “fire module,” where the outputs of a 3x3
convolution and a 1x1 convolution are concatenated along the channel dimension. Recent
networks such as ResNext [167], MobileNet [58], and Xception [17] adopt group convolutions
and depth-wise separable convolutions as alternatives to standard spatial convolutions. In
theory, depth-wise convolutions require less computation. However, it is di�cult to imple-
ment depth-wise convolutions e�ciently in practice, as their arithmetic intensity (ratio of
FLOPs to memory accesses) is too low to e�ciently utilize the hardware. Such a draw-
backs are also mentioned in [177, 17]. Shu✏eNet [177] integrates depth-wise convolutions,
point-wise group convolutions, and channel-wise shu✏ing to further reduce parameters and
complexity. Shu✏eNetV2[99] further develops this idea and proposes a more compact CNN,
where less than 10% of FLOPs are contributed by spatial convolutions. Another work, [74]
inherits the idea of a separable convolution to freeze spatial convolutions and learn only
point-wise convolutions. This does reduce the number of learnable parameters but falls
short of saving FLOPs or model size.

Our approach is a more radical one, which is to sidestep spatial convolutions entirely.
In this chapter, we present the shift operation (Figure 7.1) as an alternative to spatial
convolutions. The shift operation moves each channel of its input tensor in a di↵erent spatial
direction. A shift-based module interleaves shift operations with point-wise convolutions,
which further mixes spatial information across channels. Unlike spatial convolutions, the
shift operation itself requires zero FLOPs and zero parameters. As opposed to depth-wise
convolutions, shift operations can be easily and e�ciently implemented. More importantly,
with the shift operation, we can build a CNN with only 1x1 convolutions. This greatly
simplifies the hardware design since it allows us to build a dedicated compute unit customized
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Figure 7.2: Illustration of (a) spatial convolutions, (b) depth-wise convolutions and (c) shift.
In (c), the 3x3 grids denote a shift matrix with a kernel size of 3. The lighted cell denotes a
1 at that position and white cells denote 0s.

for 1x1 convolutions to achieve further speedup.
Our approach is orthogonal to model compression [46], tensor factorization [172] and

low-bit networks [117]. As a result, any of these techniques could be composed with our
proposed method to further reduce model size.

We demonstrate the e�cacy of the shift operator by building a family of network archi-
tectures called ShiftNet and evaluating them on a wide range of tasks including image classi-
fication, face verification, and style transfer. Using significantly fewer parameters, ShiftNet
attains competitive performance. Furthermore, we combine the idea of shift operator with
Shu✏eNetV2[99], and co-designed a hardware accelerator named Synetgy which achieved
significant speedup over the previous state-of-the-art.

7.2 The Shift module and network design

We first review the standard spatial and depth-wise convolutions illustrated in Figure 7.2.
Consider the spatial convolution in Figure 7.2(a), which takes a tensor F 2 RDF⇥DF⇥M as
input. Let DF denote the height and width and M denote the channel size. The kernel of
a spatial convolution is a tensor K 2 RDK⇥DK⇥M⇥N , where DK denotes the kernel’s spatial
height and width, and N is the number of filters. For simplicity, we assume the stride is 1
and that the input/output have identical spatial dimensions. Then, the spatial convolution
outputs a tensor G 2 RDF⇥DF⇥N , which can be computed as

Gk,l,n =
X

i,j,m

Ki,j,m,nFk+î,l+ĵ,m
, (7.1)

where î = i� bDK/2c, ĵ = j � bDK/2c are the re-centered spatial indices; k, l and i, j index
along spatial dimensions and n,m index into channels. The number of parameters required
by a spatial convolution is M ⇥N ⇥D

2
K
and the computational cost is M ⇥N ⇥D

2
K
⇥D

2
F
.

As the kernel size DK increases, we see the number of parameters and computational cost
grow quadratically.
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A popular variant of the spatial convolution is a depth-wise convolution [58, 17], which
is usually followed by a point-wise convolution (1x1 convolution). Altogether, the module
is called the depth-wise separable convolution. A depth-wise convolution, as shown in Fig-
ure 7.2(b), aggregates spatial information from a DK ⇥DK patch within each channel, and
can be described as

Ĝk,l,m =
X

i,j

K̂i,j,mFk+î,l+ĵ,m
, (7.2)

where K̂ 2 RDF⇥DF⇥M is the depth-wise convolution kernel. This convolution comprises
M ⇥D

2
K

parameters and M ⇥D
2
K
⇥D

2
F
FLOPs. As in standard spatial convolutions, the

number of parameters and computational cost grow quadratically with respect to the kernel
size DK . Finally, point-wise convolutions mix information across channels, giving us the
following output tensor

Gk,l,n =
X

m

Pm,nĜk,l,m, (7.3)

where P 2 RM⇥N is the point-wise convolution kernel.
In theory, depth-wise convolution requires less computation and fewer parameters. In

practice, however, this means memory access dominates computation, thereby limiting the
use of parallel hardware. For standard convolutions, the ratio between computation vs.

memory access is
M ⇥N ⇥D

2
F
⇥D

2
K

D
2
F
⇥ (M +N) +D

2
K
⇥M ⇥N

, (7.4)

while for depth-wise convolutions, the ratio is

M ⇥D
2
F
⇥D

2
K

D
2
F
⇥ 2M +D

2
K
⇥M

. (7.5)

A lower ratio here means that more time is spent on memory accesses, which are several
orders of magnitude slower and more energy-consuming than FLOPs. This drawback implies
an I/O-bound device will be unable to achieve maximum computational e�ciency.

The Shift Operation

The shift operation, as illustrated in Figure 7.2(c), can be viewed as a special case of depth-
wise convolutions. Specifically, it can be described logically as:

G̃k,l,m =
X

i,j

K̃i,j,mFk+î,l+ĵ,m
. (7.6)

The kernel of the shift operation is a tensor K̃ 2 RDF⇥DF⇥M such that

K̃i,j,m =

(
1, if i = im and j = jm,

0, otherwise.
(7.7)
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Here im, jm are channel-dependent indices that assign one of the values in K̃:,:,m 2 RDK⇥DK

to be 1 and the rest to be 0. We call K̃:,:,m a shift matrix.
For a shift operation with kernel size DK , there exist D

2
K

possible shift matrices, each
of them corresponding to a shift direction. If the channel size M is no smaller than D

2
K
,

we can construct a shift matrix that allows each output position (k, l) to access all values
within a DK ⇥DK window in the input. We can then apply another point-wise convolution
per Eq. (7.3) to exchange information across channels.

Unlike spatial and depth-wise convolutions, the shift operation itself does not require
parameters or floating-point operations (FLOPs). Instead, it is a series of memory opera-
tions that adjusts channels of the input tensor in certain directions. A more sophisticated
implementation can fuse the shift operation with the following 1x1 convolution, where the
1x1 convolution directly fetches data from the shifted address in memory. With such an
implementation, we can aggregate spatial information using shift operations, for free.

Constructing Shift Kernels

For a given kernel size DK and channel size M , there exists D
2
K

possible shift directions,
making (D2

K
)M possible shift kernels. An exhaustive search over this state space for the

optimal shift kernel is prohibitively expensive.
To reduce the state space, we use a simple heuristic: divide the M channels evenly into

D
2
K

groups, where each group of bM/D
2
K
c channels adopts one shift. We will refer to all

channels with the same shift as a shift group. The remaining channels are assigned to the
“center” group and are not shifted.

However, finding the optimal permutation, i.e., how to map each channel-m to a shift
group, requires searching a combinatorially large search space. To address this issue, we
introduce a modification to the shift operation that makes input and output invariant to
channel order: We denote a shift operation with channel permutation ⇡ as K⇡(·), so we can
express Eq. (7.6) as G̃ = K⇡(F ). We permute the input and output of the shift operation as

G̃ = P⇡2(K⇡(P⇡1(F ))) = (P⇡2 �K⇡ � P⇡1)(F ), (7.8)

where P⇡i are permutation operators and � denotes operator composition. However, per-
mutation operators are discrete and therefore di�cult to optimize. As a result, we process
the input F to Eq. (7.8) by a point-wise convolution P1(F ). We repeat the process for the
output G̃ using P2(G̃). The final expression can be written as

G = (P2 � P⇡2 �K⇡ � P⇡1 � P1)(F )

= ((P2 � P⇡2) �K⇡ � (P⇡1 � P1))(F )

= (P̂2 �K⇡ � P̂1)(F ),

(7.9)

where the final step holds, as there exists a bijection from the set of all Pi to the set of all
P̂i, since the permutation operator P⇡i is bijective by construction. As a result, it su�ces to
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learn P̂1 and P̂2 directly. Therefore, this augmented shift operation Eq. (7.9) can be trained
with stochastic gradient descent end-to-end, without regard for channel order. So long as the
shift operation is sandwiched between two point-wise convolutions, di↵erent permutations
of shifts are equivalent. Thus, we can choose an arbitrary permutation for the shift kernel,
after fixing the number of channels for each shift direction.

Shift-based Modules

First, we define amodule to be a collection of layers that perform a single function, e.g. ResNet’s
bottleneck module or SqueezeNet’s fire module. Then, we define a group to be a collection
of repeated modules.

1x1	Conv

Shift
Kernel	size
Dilation	rate

1x1	Conv
Stride:	S

Shift
Kernel	size
Dilation	rate

BN + ReLU

Input	

Output	

Add / Concat

Identity /
Avg Pooling

BN + ReLU

Figure 7.3: Illustration of the Conv-Shift-Conv CSC module and the Shift-Conv-Shift-Conv
(SC2) module.

Based on the analysis in previous sections, we propose a module using shift operations
as shown in Figure 7.3. The input tensor is first processed by point-wise convolutions.
Then, we perform a shift operation to redistribute spatial information. Finally, we apply
another set of point-wise convolutions to mix information across channels. Both sets of
point-wise convolutions are preceded by batch normalization and a non-linear activation
function (ReLU). Following Shu✏eNet [177], we use an additive residual connection when
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input and output are of the same shape and use average pooling with concatenation when
we down-sample the input spatially and double the output channels. We refer to this as a
Conv-Shift-Conv or CSC module. A variant of this module includes another shift operation
before the first point-wise convolution; we refer to this as the Shift-Conv-Shift-Conv or SC2

module. This allows the designer to further increase the receptive field of the module.
As with spatial convolutions, shift modules are parameterized by several factors that

control their behavior. We use the kernel size of the shift operation to control the receptive
field of the CSC module. Akin to the dilated convolution, the “dilated shift” samples data at
a spatial interval, which we define to be the dilation rate D. The stride of the CSC module
is defined to be the stride of the second point-wise convolution so that spatial information is
mixed in the shift operation before down-sampling. Similar to the bottleneck module used
in ResNet, we use the “expansion rate” E to control the intermediate tensor’s channel size.
With bottleneck modules, 3x3 convolutions in the middle are expensive computationally,
forcing small intermediate channel sizes. However, the shift operation allows kernel size DF

adjustments without a↵ecting parameter size and FLOPs. As a consequence, we can employ
a shift module to allow larger intermediate channel sizes, where su�cient information can
be gathered from nearby positions.

7.3 Experiments for shift

We first assess the shift module’s ability to replace convolutional layers and then adjust
hyperparameter E to observe tradeo↵s between model accuracy, model size, and computation.
We then construct a range of shift-based networks and investigate their performance for a
number of di↵erent applications.

Operation choice and hyperparameters

Using ResNet, we juxtapose the use of 3x3 convolutional layers with the use of CSC modules,
by replacing all of ResNet’s basic modules (two 3x3 convolutional layers) with CSCs to
make “ShiftResNet”. To compare with the depth-wise convolution, we replace shift in the
CSC module with a depthwise convolution to make Depthwise-ResNet, or DWResNet. For
ResNet, ShiftResNet, and DWResNet, we use two Tesla K80 GPUs with batch size 128
and a starting learning rate of 0.1, decaying by a factor of 10 after 32k and 48k iterations,
as in [49]. In these experiments, we use the CIFAR10 version of ResNet: a convolutional
layer with 16 3x3 filters; 3 groups of basic modules with output channels 16, 32, 64; and a
final fully-connected layer. A basic module contains two 3x3 convolutional layers followed
by batchnorm and ReLU in parallel with a residual connection. With ShiftResNet, each
group contains several CSC modules. We use three ResNet models: in ResNet20, each
group contains 3 basic modules. For ResNet56, each contains 9, and for ResNet110, each
contains 18. By toggling the hyperparameter E , the number of filters in the CSC module’s
first set of 1x1 convolutions, we can reduce the number of parameters in “ShiftResNet” by
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nearly 3 times without any loss in accuracy, as shown in Table 7.1. Table 7.5 and Table 7.6
summarize CIFAR10 and CIFAR100 results across all E and ResNet models.

We next compare di↵erent strategies for parameter reduction. We reduce ResNet’s pa-
rameters to match that of ShiftResNet for some E , denoted ResNet-E and ShiftResNet-E ,
respectively. We use two separate approaches: 1) module-wise: decrease the number of filters
in each module’s first 3x3 convolutional layer; 2) net-wise: decrease every module’s input
and output channels by the same factor. As Table 7.2 shows, convolutional layers are less
resilient to parameter reduction, with the shift module preserving accuracy 8% better than
both reduced ResNet models of the same size, on CIFAR100. In Table 7.3, we likewise find
improved resilience on ImageNet as ShiftResNet achieve better accuracy with millions fewer
parameters.

Table 7.4 shows that ShiftResNet consistently outperforms ResNet, when both are con-
strained to use 1.5x fewer parameters. Figure 7.4 shows the tradeo↵ between CIFAR100
accuracy and number of parameters for the hyperparameter E 2 {1, 3, 6, 9} across both
{ResNet, ShiftResNet} models using varying numbers of layers ` 2 {20, 56, 110}. Figure 7.5
examines the same set of possible models and hyperparameters but between CIFAR100 accu-
racy and the number of FLOPs. Both figures show that ShiftResNet models provide superior
trade-o↵ between accuracy and parameters/FLOPs.

Table 7.1: Parameters for shift vs convolution, with fixed accuracy on CIFAR-100.

Model Top1 Acc FLOPs Params

ShiftResNet56-3 69.77% 44.9M 0.29M
ResNet56 69.27% 126M 0.86M

Table 7.2: Reduction resilience for shift vs convolution, with fixed parameters.

Model CIFAR-100 Acc FLOPs Params

ShiftResNet110-1 67.84% 29M 203K
ResNet110-1 60.44% 28M 211K

Table 7.3: Reduction resilience for shift vs convolution on ImageNet.

ShiftResNet50
Top1 / Top5 Acc

ResNet50
Top1 / Top5 Acc

Parameters
Shift50 / ResNet50

75.6 / 92.8 75.1 / 92.5 22M / 26M
73.7 / 91.8 73.2 / 91.6 11M / 13M
70.6 / 89.9 70.1 / 89.9 6.0M / 6.9M
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Table 7.4: Performance across ResNet models, with 1.5 fewer parameters

No. Layers ShiftResNet-6
CIFAR100 Top 1

ResNet
CIFAR100 Top 1

20 68.64% 66.25%
56 72.13% 69.27%
110 72.56% 72.11%

0 0.5 1 1.5 2
50

60

70

80

Parameters (Millions)

A
cc
u
ra
cy

(T
op

1
C
IF
A
R
10
0)

Accuracy vs parameters tradeo↵

ShiftResNet20
ShiftResNet56
ShiftResNet110

ResNet20
ResNet56
ResNet110

Figure 7.4: This figure shows that ShiftResNet family members are significantly more e�cient
than their corresponding ResNet family members. Tradeo↵ curves further to the top left are
more e�cient, with higher accuracy per parameter. For ResNet, we take the larger of two
accuracies between module-wise and net-wise reduction results.

ShiftNet

Even though ImageNet classification is not our primary goal, to further investigate the
e↵ectiveness of the shift operation, we use the proposed CSC module shown in Figure 7.3
to design a class of e�cient models called ShiftNet and present its classification performance
on standard benchmarks to compare with state-of-the-art small models.

Since an external memory access consumes orders-of-magnitudes more energy than a
single arithmetic operation [109]1, our primary goal in designing ShiftNet is to optimize
the number of parameters and thereby to reduce memory footprint. In addition to the
general desirability of energy e�ciency, the main targets of ShiftNet are mobile and IOT
applications, where memory footprint, even more so than FLOPs, are a primary constraint.

1According to [109], under 45nm technology, an o↵-chipt DRAM access consumes 3556x more energy
than an addition operation for 16-bit integers.
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Table 7.5: Shift operator analysis on CIFAR10

Model E
ShiftResNet

Acc (%)

ResNet
(Module)
Acc (%)

Params
(million)

FLOPs
(million)

20 1 86.66 85.54 0.03 6
20 3 90.08 88.33 0.10 17
20 6 90.59 90.09 0.19 32
20 9 91.69 91.35 0.28 48
56 1 89.71 87.46 0.10 16
56 3 92.11 89.40 0.29 45
56 6 92.69 89.89 0.58 89
56 9 92.74 92.01 0.87 133
110 1 90.34 76.82 0.20 29
110 3 91.98 74.30 0.59 87
110 6 93.17 79.02 1.18 174
110 9 92.79 92.46 1.76 260

ResNet (Module) denotes the module-level reduction on the original ResNet models.

Table 7.6: Shift operator analysis on CIFAR100

Model E
ShiftResNet

Acc (%)

ResNet
(Module)
Acc (%)

ResNet
(Net)

Acc (%)

DWResNet
Acc (%)

Params
(million)

FLOPs
(million)

20 1 55.63 52.40 49.58 61.32 0.03 6
20 3 62.32 60.61 58.16 64.51 0.10 17
20 6 68.64 64.27 63.22 65.38 0.19 32
20 9 69.82 66.25 66.25 65.59 0.28 48
56 1 65.21 56.78 56.62 65.30 0.10 16
56 3 69.77 62.53 64.49 66.49 0.29 45
56 6 72.13 61.99 67.45 67.46 0.58 89
56 9 73.64 69.27 69.27 67.75 0.87 133
110 1 67.84 39.90 60.44 65.80 0.20 29
110 3 71.83 40.52 66.61 67.22 0.59 87
110 6 72.56 40.23 68.87 68.11 1.18 174
110 9 74.10 72.11 72.11 68.39 1.76 260

ResNet (Module) and ResNet (Net) denote module-level and net-level reduction on the
original ResNet models. DWResNet denotes the result of Depthwise-ResNet.
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Figure 7.5: Tradeo↵ curves further to the top left are more e�cient, with higher accuracy
per FLOP. This figure shows ShiftResNet is more e�cient than ResNet, in FLOPs.

In these application domains, small models can be packaged in mobile and IoT applications
that are delivered within the 100-150MB limit for mobile over-the-air updates. In short, our
design goal for ShiftNets is to attain competitive accuracy with fewer parameters.

The ShiftNet architecture is described in Table 7.7. Since parameter size does not grow
with shift kernel size, we use a larger kernel size of 5 in earlier modules. We adjust the
expansion parameter E to scale the parameter size in each CSC module. We refer to the
architecture described in Table 7.7 as ShiftNet-A. We shrink the number of channels in all
CSC modules by 2 for ShiftNet-B. We then build a smaller and shallower network, with
{1, 4, 4, 3} CSC modules in groups {1, 2, 3, 4} with channel sizes of {32, 64, 128, 256}, E = 1
and kernel size is 3 for all modules. We name this shallow model ShiftNet-C. We train the
three ShiftNet variants on the ImageNet 2012 classification dataset [124] with 1.28 million
images and evaluate on the validation set of 50K images. We adopt data augmentations
suggested by [17] and weight initializations suggested by [49]. We train our models for 90
epochs on 64 Intel KNL instances using Intel Ca↵e [69] with a batch size of 2048, an initial
learning rate of 0.8, and learning rate decay by 10 every 30 epochs.

In Table 7.8, we show classification accuracy and parameters size for ShiftNet and other
state-of-the-art models. Especially, MobileNet is considered as a strong baseline for e�cient
models, but its training protocol is not clearly explained in [58]. Therefore, we trained
MobileNet with the same training protocol as ShiftNet, and report both the accuracy repro-
duced by ourselves and the accuracy reported in [58], with the reported accuracy in brackets.
We compare ShiftNet-{A, B, C} with 3 groups of models with similar levels of accuracy. In
the first group, ShiftNet-A is 34X smaller than VGG-16, while the top-1 accuracy drop is
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Table 7.7: ShiftNet architecture

Group
Type/
Stride

Kernel E
Output
Channel

Repeat

- Conv /s2 7⇥7 - 32 1
1 CSC / s2 5⇥5 4 64 1

CSC / s1 5⇥5 4 4
2 CSC / s2 5⇥5 4 128 1

CSC / s1 5⇥5 3 5
3 CSC / s2 3⇥3 3 256 1

CSC / s1 3⇥3 2 6
4 CSC / s2 3⇥3 2 512 1

CSC / s1 3⇥3 1 2
- Avg Pool 7⇥7 - 512 1
- FC - - 1k 1

Table 7.8: ShiftNet results on Imagenet

Model Accuracy
Top-1 / Top-5

Parameters
(Millions)

VGG-16 [132] 71.5 / 90.1 138
GoogleNet [139] 69.8 / - 6.8

ShiftResNet-0.25 (ours) 70.6 / 89.9 6.0
Shu✏eNet-2⇥ [177] 70.9 / - 5.4

1.0 MobileNet-224 [58]* 67.5 (70.6) / 86.6 4.2
Compact DNN [164] 68.9 / 89.0 4.1
ShiftNet-A (ours) 70.1 / 89.7 4.1

0.5 MobileNet-224 [58]* 63.5 (63.7) / 84.3 1.3
ShiftNet-B (ours) 61.2 / 83.6 1.1

AlexNet [80] 57.2 / 80.3 60
SqueezeNet [66] 57.5 / 80.3 1.2
ShiftNet-C (ours) 58.8 / 82.0 0.78

* We list both our reproduced accuracy and reported accuracy from [58]. The reported
accuracy is in brackets.

only 1.4%. 1.0-MobileNet-224 has similar parameter size as ShiftNet-A. Under the same
training protocol, MobileNet has worse accuracy than ShiftNet-A, while the reported accu-
racy is better. In the second group, ShiftNet-B’s top-1, top-5 accuracy is 2.3% and 0.7%
worse than its MobileNet counterpart, but it uses fewer parameters. We compare ShiftNet-C
with SqueezeNet and AlexNet, and we can achieve better accuracy with 2/3 the number of
SqueezeNet’s parameters, and 77X smaller than AlexNet.
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Table 7.9: Face verification accuracy for ShiftFaceNet vs FaceNet [128]

Accuracy± STD (%) Area under curve (%)
FaceNet ShiftFaceNet FaceNet ShiftFaceNet

LFW 97.1±1.3 96.0±1.4 99.5 99.4
YTF 92.0±1.1 90.1±0.9 97.3 96.1
MSC 79.2±1.7 77.6±1.7 85.6 84.4

Face embedding

We continue to investigate the shift operation for di↵erent applications. Face verification and
recognition are becoming increasingly popular on mobile devices. Both functionalities rely
on face embedding, which aims to learn a mapping from face images to a compact embedding
in Euclidean space, where face similarity can be directly measured by embedding distances.
Once the space has been generated, various face-learning tasks, such as facial recognition
and verification, can be easily accomplished by standard machine learning methods with
feature embedding. Mobile devices have limited computation resources, therefore creating
small neural networks for face embedding is a necessary step for mobile deployment.

FaceNet [128] is one state-of-the-art face embedding approach. The original FaceNet
is based on Inception-Resnet-v1 [140], which contains 28.5 million parameters, making it
di�cult to be deployed on mobile devices. We propose a new model ShiftFaceNet based on
ShiftNet-C from the previous section, which only contains 0.78 million parameters.

Following [106], we train FaceNet and ShiftFaceNet by combining the softmax loss with
center loss [153]. We evaluate the proposed method on three datasets for face verification:
given a pair of face images, a distance threshold is selected to classify the two images belong-
ing to the same or di↵erent entities. The LFW dataset [62] consists of 13,323 web photos
with 6,000 face pairs. The YTF dataset [155] includes 3,425 with 5,000 video pairs for video-
level face verification. The MS-Celeb-1M dataset (MSC) [43] comprises 8,456,240 images
for 99,892 entities. In our experiments, we randomly select 10,000 entities from MSC as
our training set, to learn the embedding space. We test on 6,000 pairs from LFW, 5,000
pairs from YTF, and 100,000 pairs randomly generated from MSC, excluding the training
set. In the pre-processing step, we detect and align all faces using a multi-task CNN [175].
Following [128], the similarity between two videos is computed as the average similarity of
100 random pairs of frames, one from each video. Results are shown in Table 7.9. The
original FaceNet contains 28.5 million parameters, while the ShiftFaceNet only contains 0.78
million parameters. With ShiftFaceNet, we are able to reduce the parameter size by 35X,
with at most 2% drop of accuracy in the above three verification benchmarks.

Style transfer

Artistic style transfer is another popular application on mobile devices. It is an image
transformation task where the goal is to combine the content of one image with the style

of another. Although this is an ill-posed problem without definite quantitative metrics, a
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Figure 7.6: Style transfer results using shift operators

successful style transfer requires that networks capture both minute textures and holistic
semantics, for content and style images.

Following [32, 71], we use perceptual loss functions to train a style transformer. In our
experiment, we use a VGG-16 network pretrained on ImageNet to generate the perceptual
loss. The original network trained by Johnson et al. [71] consists of three downsampling
convolutional layers, five residual modules, and three upsampling convolutional layers. All
non-residual convolutions are followed by an instance normalization layer [145]. In our
experiments, we replace all but the first and last convolution layers with shifts followed by 1x1
convolutions. We train the network on the COCO [91] dataset using the previously reported
hyperparameter settings �s 2 {1e10, 5e10, 1e11},�c = 1e5. By replacing convolutions with
shifts, we achieve an overall 6X reduction in the number of parameters from 1.9 million to 0.3
million, with minimal degradation in image quality. Examples of stylized images generated
by original and shift based transformer networks can be found in Figure 7.6.

7.4 DiracDeltaNet: Co-designing a hardware friendly
CNN using shift

The shift operator not only reduces the parameter size and FLOPs, more importantly, it
eliminates the need for spatial convolution, which makes hardware design much easier. In
this section, we discuss the design of DiracDeltaNet, a hardware friendly neural network
enabled by the shift operator.

An ideal CNN for embedded FPGA acceleration should satisfy the following aspects: 1)
The network should not contain too many parameters or FLOPs but should still maintain a
competitive accuracy. 2) The network structure should be hardware friendly such mapping
to hardware is easy. 3) The network’s operation set should be simplified for e�cient FPGA
implementation. 4) The network’s weights and activations should be quantized to low-
precision fixed-point numbers without much accuracy loss.
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Shu✏eNetV2

Shu✏eNetV2-1.0x [99] is one of the state-of-the-art e�cient models. It has a top-1 accuracy
of 69.4% on ImageNet (2% lower than VGG16) but contains only 2.3M parameters (60x
smaller than VGG16) and 146M FLOPs (109x smaller than VGG16).

The block-level structure of Shu✏eNetV2 is illustrated in Fig. 7.7a. The input feature
map of the block is first split into two parts along the channel dimension. The first branch
of the network does nothing to the input data and directly feeds the input to the output.
The second branch performs a series of 1⇥1 convolutions, 3⇥3 depth-wise convolutions
and another 1⇥1 convolution operations on the input. Outputs of two branches are then
concatenated along the channel dimension. Channel shu✏e [179] is then applied to exchange
information between branches. In down-sampling blocks, depth-wise 3⇥3 convolutions with
a stride of 2 are applied to both branches of the block to reduce the spatial resolution.
1⇥1 convolutions are used to double the channel size of input feature maps. These blocks
are cascaded to build a deep ConvNet. We refer readers to [99] for the macro-structure
description of the Shu✏eNetV2.

We select Shu✏eNetV2-1.0x not only because of its small model size and low FLOP count
but also because it uses concatenative skip connections instead of additive skip connections.
Additive skip connections, as illustrated in Fig. 7.8(a), were first proposed in [50]. It
e↵ectively alleviates the di�culty of training deep neural networks and therefore improves
accuracy. It is widely used in many ConvNet designs. However, additive skip connections are
not e�cient on FPGAs. As illustrated in Fig. 7.8(a), both the skip and the residual branches’
data need to be fetched on-chip to conduct the addition. Though additions do not cost too
much computation, the data movement is expensive. Concatenative skip connections, as
illustrated in Fig. 7.8(b), were first proposed in [61]. It has a similar positive impact on
network training and accuracy. With concatenative skip connections, data from skip branch
is already in o↵-chip DRAMs. So we can concatenate the two branches simply by writing
the residual branch data next to the skip branch data. This avoids the extra memory access
in additive skip connections and alleviates the memory bandwidth pressure.

DiracDeltaNet

Based on Shu✏eNetV2, we build DiracDeltaNet through the following modifications: 1) we
replace all the 3⇥3 convolutions with shift and 1⇥1 convolutions; 2) we reduce the kernel
size of max-pooling from 3⇥3 to 2⇥2; 3) we modify the order of channel shu✏e.

Fig. 7.9 shows di↵erent types of operators in Shu✏eNetV2 and their FLOP contributions.
Note that due to heavy adoption of depthwise convolutions, spatial convolutions, including
regular 3x3 and depthwise 3x3 account for less than 10% of the total FLOPs. However,
this introduces a dilemma for hardware design. Since we need to support both spatial and
1x1 convolutions, we need to either build a general compute unit that supports both, or
build dedicated compute unites for each of the operators. The first strategy sacrifices the
performance for generality. The second strategy, however, wastes hardware resources on
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(a) Shu✏eNetV2 blocks [99].
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(b) Our modified DiracDeltaNet blocks. We replace depth-wise convolutions
with shift operations. In the downsampling blocks, we use stride-2 max-pooling
and shift operations to replace stride-2 depth-wise convolutions. We also double
the filter number of the 1st 1⇥1 convolution on the non-skip branch in each
module.

Figure 7.7: Shu✏eNetV2 blocks vs. DiracDeltaNet blocks

spatial convolutions that are not frequently used. To avoid this dilemma, we use the shift
operator to get rid of all the spatial convolutions, which enables us to simplify the hardware
and only build a compute unit for 1x1 convolutions.

For 3⇥3 depth-wise convolutions in Shu✏eNetV2, we directly replace them with shift
operations, as shown in Fig. 7.7b. This direct replacement can lead to some accuracy loss.
To mitigate this, we double the output filter number of the first 1⇥1 convolution on the
non-skip branch from Fig. 7.7b. Nominally, doubling the output channel size increases
both FLOP count and parameter size by a factor of 2. However, this is mitigated by the
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Figure 7.8: Additive Skip Connections vs. Concatenative Skip Connections. Rectangles
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Figure 7.9: Types of operators and their FLOPs in Shu✏eNetV2.

performance improvement of the customization for 1⇥1 convolutions. In the downsample
block, we directly replace the stridden 3⇥3 depth-wise convolutions with a stride-2 2⇥2
max-pooling. Unlike [158], our shift operation only uses 4 cardinal directions (up, down,
left, right) in addition to the identity mapping (no-shift). This simplifies our hardware
implementation of the shift operation without hurting accuracy.

The first stage of Shu✏eNetV2 consists of a 3⇥3 convolution with a stride of 2 and filter
number of 24. It is then followed by a 3⇥3 max-pooling with a stride of 2. We replace
these two layers to a module consisting of a series of 1⇥1 convolution, 2⇥2 max-pooling,
and shift operations, as shown in Table 7.10. Compared with the original 3⇥3 convolutions,
our proposed module has more parameters (2144 vs 648) and FLOPs (30.5M vs 8.1M). But
the implementation and execution cost of the proposed first stage is negligible compared
to a 3⇥3 convolution layer. After training the network, we find that this module gives
near equal accuracy than the original 3⇥3 convolution module. With our new module, we
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(a) Transpose based channel shuffle

(b) Our channel shuffle

Figure 7.10: Transpose based shu✏e (Shu✏eNetV2) vs. our HW e�cient shu✏e
(DiracDeltaNet)

can eliminate the remaining 3⇥3 convolutions from our network, enabling us to allocate
more computational resources to 1⇥1 convolutions and thereby increasing parallelism and
throughput.

In addition to replacing all 3⇥3 convolutions, we also reduce the max-pooling kernel
size from 3⇥3 to 2⇥2. By using the same pooling kernel size as the stride, we eliminate
the need to bu↵er extra data on the pooling kernel boundaries, thereby achieving better
e�ciency. Our experiments also show that reducing the max-pooling kernel size does not
impact accuracy.

We also modify the channel shu✏e’s order to make it more hardware e�cient. Shuf-
fleNetV2 uses transpose operation to mix channels from two branches. This is illustrated
in Fig. 7.10(a), where blue and red rectangles represent channels from di↵erent branches.
The transpose based shu✏ing is not hardware friendly since it breaks the contiguous data
layout. Performing channel shu✏e in this manner will require multiple passes of memory
read and write. We propose a more e�cient channel shu✏e showed in Fig. 7.10(b). We
perform a circular shift to the feature map along the channel dimension. We can have the
same number of channels exchanged between two branches while preserving the contiguity
of the feature map and minimizing the memory accesses.

We name the modified Shu✏eNetV2-1.0x model as DiracDeltaNet. The name comes from
the fact that our network only contains 1⇥1 convolutions. With a kernel size of 1, the kernel
functions can be seen as discrete 2D Dirac Delta functions. DiracDeltaNet’s macro-structure
is summarized in Table 7.10. Stage 2,3,4 consist of chained DiracDeltaNet blocks depicted
in Fig. 7.7 with di↵erent feature map size, channel size and stride. We adopt the training
recipe and hyperparameters described in [99]. We train DiracDeltaNet for 90 epoch with
linear learning rate decay, the initial learning rate of 0.5, 1024 batch size and 4e-5 weight
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Table 7.10: Macro-structure of DiracDeltaNet

Layer
Output
size

Kernel
size

Stride #Repeat
Output
channel

Image 224 3
Conv1

Maxpool
shift
Conv2

Maxpool
shift

224
112
112
112
56
56

1
2
3
1
2
3

1
2
1
1
2
1

1
1
1
1
1
1

32

64

Stage 2
28
28

2
1

1
3

128

Stage 3
14
14

2
1

1
7

256

Stage 4
7
7

2
1

1
3

512

Conv5 7 1 1 1 1024
GlobalPool 1 7 1 1024

FC 1 1000

Table 7.11: Shu✏eNetV2-1.0x vs. DiracDeltaNet

MACs #Params Top-1 acc Top-5 acc
Shu✏eNetV2-1.0x 146M 2.3M 69.4% -
DiracDeltaNet 330M 3.3M 68.9% 88.7%

decay. A comparison between Shu✏eNetV2-1.0x and our DiracDeltaNet is summarized in
Table 7.11.

Quantization

To further reduce the cost of DiracDeltaNet, we apply quantization to convert floating-
point weights and activations to low-precision integer values. For network weights, we follow
DoReFa-Net [182] to quantize full-precision weights as

wk = 2Qk(
tanh(w)

2max(| tanh(w)|)
+ 0.5)� 1. (7.10)

Here, w denotes the latent full-precision weight of the convolution kernel. Qk(·) is a function
that quantizes its input in the range of [0, 1] to its nearest neighbor in {

i

2k�1 |i = 0, · · · 2k�1
}.
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We follow PACT [16] to quantize each layer’s activation as

y
l = PACT
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(7.11)

x
l is the activation of layer-l. PACT (·) is a function that clips the activation x

l to the range
between [0,↵l]. ↵l is a layer-wise trainable upper bound, determined by the training of the
network. y

l is the clipped activation from layer-l and it is further quantized to y
l

k
, a k-bit

activation tensor. Note that activations from the same layer share the same floating-point
coe�cient ↵

l, but activations from di↵erent layers can have di↵erent coe�cients. This is
problematic for the concatenative skip connection, since if the coe�cients ↵

l and ↵
l�1 are

di↵erent, we need to first cast yl�1
k

and y
l

k
from fixed-point to floating-point, re-calculate a

coe�cient for the merged activation, and quantize it again to new fixed-point numbers. This
process is very ine�cient.

In our experiment, we notice that most of the layers in the DiracDeltaNet have similar
coe�cients with values. Therefore, we rewrite equation (8.11) as

y
l = Qk

�
y
l
/↵

l
�

· s. (7.12)

where s is a coe�cient shared by the entire network. This step ensures that activations
from di↵erent layers of the network are quantized and normalized to the same scale of
[0, s]. As a result, we can concatenate activations from di↵erent layers directly without extra
computation. Moreover, by using the same coe�cient of s across the entire network, the
convolution can be computed completely via fixed-point operations. The coe�cient s can
be fixed before or leave it as trainable. A general rule is that we should let s have similar
values of ↵l from di↵erent layers. Otherwise, if s/↵l is either too small or too large, it can
cause gradient vanishing or exploding problems in training, which leads to a worse accuracy
of the network.

In our network, we merge the PACT function and activation quantization into one module
and name it ActQuant. The input to ActQuant is the output of 1⇥1 convolutions. Since the
input and weight of the convolution are both quantized into fixed-point integers, the output
is also integers. Then, ActQuant is implemented as a look-up-table whose parameters are
determined during training and fixed during inference.

We follow [185] to quantize the network progressively from full-precision to the desired
low-precision numbers. The process is illustrated in Fig. 7.11, where x-axis denotes bit-
width of weights and y-axis denotes the bit-width of activations. We start from the full-
precision network, train the network to convergence, and follow a path to progressively
reduce the precision for weights or activations. At each point, we fine-tune the network
for 50 epochs with step learning rate decay. Formally, we denote each point in the grid
as a quantization configuration Cw,a (Nw). Here w represents the bitwidth of weight. a is
the bitwidth of activation. Nw is the network containing the quantized parameters. The
starting configuration would be the full precision network C32,32 (N32). Starting from this
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Figure 7.11: Progressive quantization schedule.

Table 7.12: Quantization result on DiracDeltaNet

full w4a4
Top-1 Acc 68.9% 68.3%
Top-5 Acc 88.7% 88.1%

configuration, one can either go down to quantize the activation or go right to reduce the
bitwidth of weight. More aggressive steps can be taken diagonally or even across several grids.
The two-stage and progressive optimization methods proposed in [185] can be represented
as two paths in Fig. 7.11.

In our work, we start from C32,32 (N32). Then we use N32 to initialize N16 and obtain
C16,16 (N16). And we apply step lr decay fine-tuning onto N16 to recover the accuracy loss
due to the quantization. After several epochs of fine-tuning, we get the desired low-precision
configuration C16,16 (N 0

16) with no accuracy loss. Following the same procedures, we are able
to first go diagonally in the quantization grid to C4,4 (N4) with less than 1% top-5 accuracy
loss compared to its full precision counterpart.

We use a pre-trained ResNet50 label-refinery [4] to boost the accuracy of the quantized
model. Even with such low-precision quantization, our quantized model still preserves a very
competitive top-5 accuracy of 88.1%. Most of the previous quantization works [16, 185, 182]
are only e↵ective on large models such as VGG16, AlexNet or ResNet50. Our quantization
result is summarized in Table 7.12.
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7.5 Synetgy: co-designing a hardware accelerator for
DiracDeltaNet

Synetgy

We aggressively simplified Shu✏eNetV2’s operator set. Our modified network is composed of
the following operators: 1⇥1 convolution, 2⇥2 max-pooling, shift, shu✏e, and concatenation.
1x1 convolution is the only computational operator.

This allows us to co-design a simplified hardware accelerator, Synetgy, and we tailor it to
support the operators above and improve hardware e�ciency. Since DiracDeltaNet does not
contain spatial convolutions, we built a dedicated compute unit only for 1x1 convolution.
The compute of the fully-connected layer can also be mapped onto our convolution unit.
Shu✏e operation is not fully supported on FPGA. CPU-based memory copy is needed to
maintain the memory layout. And the remaining average-pooling layer is o✏oaded to the
ARM processor on the SoC platform.

Fig. 7.12 shows the overall accelerator architecture design. Our accelerator, highlighted
in light yellow, can be invoked by the CPU for computing one 1 ⇥ 1 Conv-Pooling-Shift-
Shu✏e subgraph at a time. The CPU provides supplementary support to the accelerator.
Due to its simplicity, the accelerator implementation only took two people one month to
finish. For more details about the hardware design, we refer readers to [169].

Experimental Results

We implement our accelerator, Synetgy, on an Ultra96 development board with Xilinx Zynq
UltraScale+ MPSoC targeted at embedded applications. Our implementation runs at 250
MHz. Power measurements are obtained via a power monitor. We measured 5.3W with no
workload running on the programming logic side and 5.5W max power on the Ultra96 power
supply line when running our network.

Table 7.13: Performance comparison of Synetgy and previous works

[115] [88] [136] [42] [70] [6] Ours

Model VGG-SVD AlexNet VGG16 VGG16 DoReFa DoReFa Dirac-
-DeltaNet

Platform Zynq
XC7Z045

Stratix
V

Stratix
V

Zynq
7Z020

Zynq
7Z020

Zynq
ZU3EG

Zynq
ZU3EG

Speed (fps) 4.5 864.7 3.8 5.7 106.0 200.0 66.3
Top-1 Acc 64.64 42.90 66.58 67.72 46.10 50.3 68.30
Top-5 Acc 86.66 66.80 87.48 88.06 73.10 N/A 88.12
Precision 16b 16b 8-16b 8b 2b 1-2b 4-4b
Power (W) 3.0 26.2 19.1 3.0 2.3 10.2 5.5
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Figure 7.12: Accelerator architecture of synetgy.

Table 7.14: Frame rate with di↵erent batch sizes

Batch Size 1 2 4 8 10 16
Frame Rate (fps) 58.7 72.9 84.1 94.4 95.9 96.5

We compare our accelerator against previous work in Table 7.13. ConvNets for ImageNet
classification are usually orders of magnitude more complex than CIFAR10 classification.
Therefore, we only compare accelerators targeting ConvNets for ImageNet classification with
reasonable accuracy. Our work focuses on achieving competitive accuracy while improving
the actual inference speed in terms of frames per second. Our experiments show that we
successfully achieve those two goals. From the table, we can make the following observations:
1) Synetgy achieves the highest top-1 and top-5 accuracy on ImageNet. The only previous
work that comes close to our accuracy is [42], but its frame rate is 11.6⇥ slower than ours.
2) Among the embedded accelerators whose top-1 accuracy is higher than 60%, which is a
loose constraint, our model achieves the fastest inference speed. 3) Without the accuracy
constraint, the speed of [88, 70, 6] can go as fast as 864.7 frames per second. But their
accuracy is rather low. 4) The peak attainable throughput of our accelerator is 418 GOPs,
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which is close to the theoretical compute roofline. Our average throughput (47.09 GOPs)
is currently limited by the low hardware utilization. The ine�ciency is mainly from the
software shu✏e operations and the first convolution layer whose input dimension is 3, which
is much less than the hardware tiling factor IC. However, Synetgy still achieves competitive
frame rate, demonstrating the e�cacy of our co-design methodology. We see the opportunity
of significant frame rate improvement through further algorithm-hardware co-design.

7.6 Conclusion

In this chapter, we discuss the hardware e�ciency of deep neural networks.We show that
we can achieve significant improvement of e�ciency by of co-designing e�cient neural net-
works and hardware processors. We started from designing e�cient neural networks by
replacing spatial convolutions. Spatial convolution was regarded as an irreplaceable part in
convolution neural networks, since CNNs rely on spatial convolutions to aggregate spatial
information. However, spatial convolutions are also computationally expensive and the cost
grows quadratically with the kernel size. In this chaper, we show that spatial convolution
is not the only operator to aggregate spatial information. We present the shift operator,
a zero-FLOP, zero-parameter operator to achieve the same goal as spatial convolutions. It
not only reduces parameters and FLOPs of a neural network significantly in a wide range of
applications, more importantly, it greatly simplifies the operators involved in a CNN. This
opens a new opportunity of for developing highly customized hardware accelerators opti-
mized for 1x1 convolutions. Applying this philosophy into reality, we design a new network
called DiracDeltaNet, and an embedded FPGA-based accelerator called Synetgy. Due to
the operator simplification, hardware designers can devote all the resources on the board to
1x1 convolutions. Such optimized implementation leads to 11.2x speedup over the previous
state-of-the-art while achieving higher accuracy. The idea of the shift operator is further
improved by later works to achieve better e�ciency [12, 53], enable new software-hardware
co-design [82], and is extended to process temporal information [89].
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Chapter 8

Design e�ciency: Di↵erentiable
Neural Architecture Search

In this Chapter, we discuss the design e�ciency of deep neural networks. The performance
of a neural network is highly dependent on its model architecture. However, finding the
optimal architecture is a di�cult problem, since the design space for neural architectures is
typically combinatorially large. The conventional approach for neural network design is to
manually and iteratively modify neural architectures, which can take weeks or months since
we typically need to explore hundreds or even thousands of variants and training each of
them takes a long time. This motivates us to consider the following key question:

Can we reduce the cost of designing neural networks by automatically exploring
the design space?

In this chapter, we discuss a new algorithm called Di↵erentiable Neural Architecture Search
(DNAS) for automatic and fast neural network design. When applied to two di↵erent prob-
lems, mixed-precision quantization and e�cient ConvNet search, DNAS discovers neural
architectures that surpass the previous state-of-the-art models designed manually and au-
tomatically, while the design process is hundreds of times faster than previous automatic
design pipelines.

8.1 Introduction

In many computer vision tasks, a better neural network architecture design usually leads
to a significant accuracy improvement. In previous works accuracy improvement came at
the cost of higher computational complexity, making it more challenging to deploy neural
networks to mobile devices, where computing capacity is limited. Instead of solely focusing
on accuracy, recent work also aims to optimize for e�ciency, especially latency. However,
designing e�cient and accurate neural networks is a challenging task due to the following
reasons.
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Intractable design space: The design space of a neural network is combinatorially
large. Using VGG16 [134] as a motivating example: VGG16 contains 16 layers. Assume
for each layer of the network, we can choose a di↵erent kernel size from {1, 3, 5} and a
di↵erent filter number from {32, 64, 128, 256, 512}. Even with such simplified design choices
and shallow layers, the design space contains (3 ⇥ 5)16 ⇡ 6 ⇥ 1018 possible architectures.
However, training a neural network is very time-consuming, typically taking days or even
weeks. As a result, previous neural network design rarely explores the design space in a
comprehensive way. A typical flow of manual design is illustrated in Figure 8.1a. Designers
propose initial architectures and train them on the target dataset. Based on the performance,
designers evolve the architectures accordingly. Limited by the time cost of training, the
design flow has to stop after a few iterations, which is far too few to su�ciently explore the
design space.

Starting from [187], recent works adopt neural architecture search (NAS) to explore the
design space automatically. Many previous works [187, 188, 141] use reinforcement learning
(RL) to guide the search and a typical flow is illustrated in Figure 8.1b. A controller samples
architectures from the search space to be trained. To reduce the training cost, sampled
architectures are trained on a smaller proxy dataset such as CIFAR-10 or trained for fewer
epochs on ImageNet. The performance of the trained networks is then used to train and
improve the controller. Previous works [187, 188, 141] have demonstrated the e↵ectiveness of
such methods in finding accurate and e�cient networks. However, training each architecture
is still time-consuming, and it usually takes thousands of architectures to train the controller.
As a result, the computational cost of such methods is prohibitively high.

Nontransferable optimality: the optimality of neural architectures is conditioned on
many factors such as input resolutions and target devices. Once these factors change, the
optimal architecture is likely to be di↵erent. A common practice to reduce the FLOP count of
a network is to shrink the input resolution. A smaller input resolution may require a smaller
receptive field of the network and therefore shallower layers. On a di↵erent device, the same
operator can have a di↵erent latency, so we need to adjust the architecture to achieve the best
accuracy-e�ciency trade-o↵. Ideally, we should design di↵erent architectures case-by-case.
In practice, however, limited by the computational cost of previous manual and automated
approaches, we can only realistically design one architecture and use it for all conditions.

Inconsistent e�ciency metrics: Most of the e�ciency metrics we care about are
dependent on not only the architecture but also the hardware and software configurations on
the target device. Such metrics include latency, power, and energy - in this work, we mainly
focus on latency. To simplify the problem, most of the previous works adopt hardware-
agnostic metrics such as FLOPs (more strictly, the number of multiply-add operations) to
evaluate e�ciency. However, a network with lower FLOP count is not necessarily faster. For
example, NasNet-A [188] has a similar FLOP count to MobileNetV1 [57], but its complicated
and fragmented cell-level structure is not hardware friendly, so the actual latency is higher
[125]. The inconsistency between hardware agnostic metrics and actual e�ciency makes the
design more di�cult.

To address the above problems, we propose to use di↵erentiable neural architecture search
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(b) A typical flow of reinforcement learning based neural architecture search.

Figure 8.1: Illustration of manual design and reinforcement learning based neural architec-
ture search.

(DNAS) to discover hardware-aware e�cient ConvNets for computer vision problems. The
flow of our algorithm is illustrated in Figure 8.2. DNAS allows us to explore a layer-wise
search space where we can choose a di↵erent block for each layer of the network. Following
[146], DNAS represents the search space by a super net whose operators execute stochasti-
cally. We relax the problem of finding the optimal architecture to find a distribution that
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yields the optimal architecture. By using the Gumbel Softmax technique [68], we can di-
rectly train the architecture distribution using gradient-based optimization such as SGD. The
search process is extremely fast compared with previous reinforcement learning (RL) based
methods. The loss used to train the stochastic super net consists of both the cross-entropy
loss that leads to better accuracy and the latency loss that penalizes the network’s latency on
a target device. To estimate the latency of an architecture, we measure the latency of each
operator in the search space and use a lookup table model to compute the overall latency
by adding up the latency of each operator. Using this model allows us to quickly estimate
the latency of architectures in this enormous search space. More importantly, it makes the
latency di↵erentiable with respect to layer-wise block choices.

… …
Stochastic	super	net

Distribution

Operators

Probability

Training	
super	net	

Proxy
dataset

Sampling

Operator
Latency
LUT

Deploy

Target	
device

Benchmark

…
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Neural	Architectures

Figure 8.2: Di↵erentiable neural architecture search (DNAS) for ConvNet design. DNAS
explores a layer-wise space where each layer of a ConvNet can choose a di↵erent block. The
search space is represented by a stochastic super net. The search process trains the stochastic
super net using SGD to optimize the architecture distribution. Optimal architectures are
sampled from the trained distribution. The latency of each operator is measured on target
devices and used to compute the loss for the super net.

We applied DNAS to solve two di↵erent problems. The first one is mixed-precision
quantization. For a deep neural network with N layers and M candidate precisions in each
layer, we want to find an optimal assignment of precisions to minimize the cost in terms of
model size, memory footprint or computation, while keeping the accuracy. An exhaustive
combinatorial search has exponential complexity (O(MN)). Using DNAS to search for layer-
wise quantization strategies for ResNet on CIFAR10 and ImageNet, we surpass the state-of-
the-art compression. Our quantized models with 21.1x smaller model size or 103.9x smaller
computational cost can still outperform baseline quantized or even full precision models.

In the second problem, we apply DNAS to search for e�cient ConvNet architectures.
We name the models discovered by DNAS as FBNets (Facebook-Berkeley-Nets). FBNets
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surpass the state-of-the-art e�cient ConvNets designed manually and automatically. FBNet-
B achieves 74.1% top-1 accuracy with 295M FLOPs and 23.1 ms latency on an Samsung
S8 phone, 2.4x smaller and 1.5x faster than MobileNetV2-1.3. Being better than MnasNet,
FBNet-B’s search cost is 216 GPU-hours, 421x lower than the cost for MnasNet estimated
based on [141]. Such a low search cost enables us to re-design ConvNets case-by-case. For
di↵erent resolution and channel scaling, FBNets achieve 1.5% to 6.4% absolute gain in top-1
accuracy compared with MobileNetV2 models. The smallest FBNet achieves 50.2% accuracy
and 2.9 ms latency (345 frames per second) with a batch size of 1 on Samsung S8. Using
DNAS to search for device-specific ConvNet, an iPhone-X-optimized model achieves 1.4x
speedup on an iPhone X compared with a Samsung-optimized model.

8.2 Related work

E�cient ConvNet models: Designing e�cient ConvNet has attracted much research
attention in recent years. SqueezeNet [65] is one of the early works focusing on reduc-
ing the parameter size of ConvNet models. It is originally designed for classification, but
later extended to object detection [159] and LiDAR point-cloud segmentation [161, 163].
Following SqueezeNet, SqueezeNext [37] and ShiftNet [158] achieve further parameter size
reduction. Recent works change the focus from parameter size to FLOPs. MobileNetV1
and MobileNetV2 [57, 125] use depthwise convolutions to replace the more expensive spatial
convolutions. Shu✏eNet [179] uses group convolution and shu✏e operations to reduce the
FLOP count further. More recent works incorporate the fact that FLOP count does not
always reflect the actual hardware e�ciency. To improve actual latency, Shu✏eNetV2 [99]
proposes a series of practical guidelines for e�cient ConvNet design. Synetgy [169] combines
ideas from Shu✏eNetV2 and ShiftNet to co-design hardware friendly ConvNets and FPGA
accelerators.

Network quantization received a lot of research attention in recent years. Early works
such as [47, 183, 84] mainly focus on quantizing neural network weights while still using 32-
bit activations. Quantizing weights can reduce the model size of the network and therefore
reduce storage space and over-the-air communication cost. More recent works such as [118,
182, 16, 75, 184] quantize both weights and activations to reduce the computational cost on
CPUs and dedicated hardware accelerators. Most of the works use the same precision for
all or most of the layers of a network. The problem of mixed-precision quantization is rarely
explored.

Neural Architecture Search: [187, 188] first propose to use reinforcement learning
(RL) to search for neural architectures to achieve competitive accuracy with low FLOPs.
Early NAS methods are computationally expensive. Recent works try to reduce the compu-
tational cost by weight sharing [110] or using gradient-based optimization [93]. Early works
on NAS [188, 110, 93] focus on the cell level architecture search, and the same cell structure
is repeated in all layers of a network. However, such fragmented and complicated cell-level
structures are not hardware friendly, and the actual e�ciency is low. Most recently, [141]
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explores a stage-level hierarchical search space, allowing di↵erent blocks for di↵erent stages
of a network, while blocks inside a stage are still the same. Instead of focusing on FLOPs,
[141] aims to optimize the latency on target devices. Besides searching for new architectures,
works such as [168, 54] focus on adapting existing models to improve e�ciency. Such meth-
ods finetune neural architectures around a given design instead of searching from a larger
design space, so the performance is limited. In comparison to prior works, our work searches
a combinatorially large design space in a significantly faster speed and optimizes for actual
latency for di↵erent given target devices.

8.3 Di↵erentiable neural architecture search

Neural architecture search

Formally, the problem of neural architecture search (NAS) can be formulated as

min
a2A

min
wa

L(a,wa) (8.1)

Here, a denotes a neural architecture, A denotes the architecture space. wa denotes the
weights of architecture a. L(·, ·) represents the loss function on a target dataset given the
architecture a and its parameter wa. The loss function is di↵erentiable with respect to wa,
but not to a. As a consequence, the computational cost of solving the problem in (8.1)
is prohibitively high. To solve the inner optimization problem requires training a neural
network a to convergence, which can take days. The outer problem has a discrete search
space with combinatorial complexity. To solve the problem e�ciently, the key is to avoid
enumerating the search space and evaluating each candidate architecture one-by-one.

Di↵erentiable neural architecture search

We discuss the idea of di↵erentiable neural architecture search (DNAS). The idea is illus-
trated in Fig. 8.3. We start by constructing a super net to represent the architecture space
A. The super net is essentially a computational DAG (directed acyclic graph) that is de-
noted as G = (V,E). Each node vi 2 V of the super net represents a data tensor. Between
two nodes vi and vj, there can be K

ij edges connecting them, indexed as e
ij

k
. Each edge

represents an operator parameterized by its trainable weight w
ij

k
. The operator takes the

data tensor at vi as its input and computes its output as eij
k
(vi;w

ij

k
). To compute the data

tensor at vj, we sum the output of all incoming edges as

vj =
X

i,k

e
ij

k
(vi;w

ij

k
). (8.2)

With this representation, any neural net architecture a 2 A can be represented by a subgraph
Ga(Va, Ea) with Va ✓ V,Ea ✓ E. For simplicity, in a candidate architecture, we keep all
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the nodes of the graph, so Va = V . And for a pair of nodes vi, vj that are connected by
K

ij candidate edges, we only select one edge. Formally, in a candidate architecture a, we
re-write Equation (8.2) as

vj =
X

i,k

m
ij

k
e
ij

k
(vi;w

ij

k
), (8.3)

where m
ij

k
2 {0, 1} is an “edge-mask” and

P
k
m

ij

k
= 1. Note that though the value of mij

k

is discrete, we can still compute the gradient to m
ij

k
. Let m be a vector that consists of mij

k

for all eij
k
2 E. For any architecture a 2 A, we can encode it using an “edge-mask” vector

ma. So we re-write the loss function in Equation (8.1) to an equivalent form as L(ma,wa).
We next convert the super net to a stochastic super net whose edges are executed stochas-

tically. For each edge e
ij

k
, we let mij

k
2 {0, 1} be a random variable and we execute edge e

ij

k

when mij

k
is sampled to be 1. We assign each edge a parameter ✓ij

k
such that the probability

of executing e
ij

k
is

P✓ij(mij

k
= 1) = softmax(✓ij

k
,✓ij) =

exp(✓ij
k
)

P
Kij

k=1 exp(✓
ij

k
)
. (8.4)

The stochastic super net is now parameterized by ✓, a vector whose elements are ✓
ij

k
for all

e
ij

k
2 E. From the distribution P✓, we can sample a mask vector ma that corresponds to a

candidate architecture a 2 A. We can further compute the expected loss of the stochastic
super net as Ea⇠P✓

[L(ma,wa)]. The expectation of the loss function is di↵erentiable with
respect to wa, but not directly to ✓, since we cannot directly back-propagate the gradient to
✓ through the discrete random variable ma. To estimate the gradient, we can use Straight-
Through estimation [5] or REINFORCE [154]. Our final choice is to use the Gumbel Softmax
technique [68], which will be explained in the next section. Now that the expectation of the
loss function becomes fully di↵erentiable, we re-write the problem in Equation (8.1) as

min
✓

min
wa

Ea⇠P✓
[L(ma,wa)] (8.5)

The combinatorial optimization problem of solving for the optimal architecture a 2 A is
relaxed to solving for the optimal architecture-distribution parameter ✓ that minimizes the
expected loss. Once we obtain the optimal ✓, we acquire the optimal architecture by sampling
from P✓.

DNAS with Gumbel Softmax

We use stochastic gradient descent (SGD) to solve Equation (8.5). The optimization process
is also denoted as training the stochastic super net. We compute the Monte Carlo estimation
of the gradient

r✓,waEa⇠P✓
[L(ma,wa)] ⇡

1

B

BX

i=1

r✓,wai
L(mai ,wai), (8.6)
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Figure 8.3: Illustration of a stochastic super net. Nodes represent data tensors and edges
represent operators. Edges are executed stochastically following the distribution P✓. ✓
denotes the architecture parameter and w denotes network weights. The stochastic super
net is fully di↵erentiable.

where ai is an architecture sampled from distribution P✓ and B is the batch size. Equation
(8.6) provides an unbiased estimation of the gradient, but it has high variance, since the size
of the architecture space is orders of magnitude larger than any feasible batch size B. Such
high variance for gradient estimation makes it di�cult for SGD to converge.

To address this issue, we use Gumbel Softmax proposed by [68, 100] to control the edge
selection. For a node pair (vi, vj), instead of applying a “hard” sampling and execute only
one edge, we use Gumbel Softmax to apply a “soft” sampling. We compute mij

k
as

mij

k
= GumbelSoftmax(✓ij

k
|✓ij) =

exp((✓ij
k
+ gij

k
)/⌧)

P
k
exp((✓ij

k
+ gij

k
)/⌧)

, g
ij

k
⇠ Gumbel(0, 1). (8.7)

gij
k
is a random variable drawn from the Gumbel distribution. Note that under this relaxation,

mij

k
becomes a continuous random variable. It is directly di↵erentiable with respect to ✓

ij

k

and we don’t need to pass gradient through the random variable gij
k
. Therefore, the gradient

of the loss function with respect to ✓ can be computed as

r✓Ea⇠P✓
[L(ma,wa)] = Eg⇠Gumbel(0,1)


@L(ma,wa)

@ma

·
@ma(✓,g)

@✓

�
. (8.8)

A temperature coe�cient ⌧ is used to control the behavior of the Gumbel Softmax. As ⌧ !
1, mij becomes a continuous random variable following a uniform distribution. Therefore,
in Equation (8.3), all edges are executed and their outputs are averaged. The gradient
estimation in Equation (8.6) are biased but the variance is low, which is favorable during the
initial stage of the training. As ⌧ ! 0, mij gradually becomes a discrete random variable
following the categorical distribution of P✓ij . When computing Equation (8.3), only one edge
is sampled to be executed. The gradient estimation then becomes unbiased but the variance
is high. This is favorable towards the end of the training. In our experiment, we use an
exponential decaying schedule to anneal the temperature as

⌧ = T0 exp(�⌘ ⇥ epoch), (8.9)
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where T0 is the initial temperature when training begins. We decay the temperature expo-
nentially after every epoch. Using the Gumbel Softmax trick e↵ectively stabilizes the super
net training.

In some sense, our work is in the middle ground of two previous works: ENAS by [110]
and DARTS by [93]. ENAS samples child networks from the super net to be trained indepen-
dently while DARTS trains the entire super net together without decoupling child networks
from the super net. By using Gumbel Softmax with an annealing temperature, our DNAS
pipeline behaves more like DARTS at the beginning of the search and behaves more like
ENAS at the end.

The DNAS pipeline

Based on the analysis above, we propose a di↵erentiable neural architecture search pipeline,
summarized in Algorithm 3. We first construct a stochastic super net G with architecture
parameter ✓ and weight w. We train G with respect to w and ✓ separately and alternately.
Training the weight w optimizes all candidate edges (operators). However, di↵erent edges
can have di↵erent impact on the overall performance. Therefore, we train the architecture
parameter ✓, to increase the probability to sample those edges with better performance, and
to suppress those with worse performance. To ensure generalization, we split the dataset for
architecture search into Xw, which is used specifically to train w, and X✓, which is used to
train ✓. The idea is illustrated in Fig. 8.3.

In each epoch, we anneal the temperature ⌧ for gumbel softmax with the schedule in
Equation (8.9). To ensure w is su�ciently trained before updating ✓, we postpone the
training of ✓ for Nwarmup epochs. At the end of the training, we draw samples a ⇠ P✓.
These sampled architectures are then trained on the training dataset Xtrain and evaluated
on the test set Xtest.

The formulation of DNAS is general. The stochastic super net can represent any network
architectures, as long as it can be represented by a DAG. Edges of the graph can represent
any types of operators, as long as their input and output nodes have the same data shape.
Such flexibility allows us to apply DNAS to search for di↵erent neural architectures for
di↵erent problems, as we will show in the following sections.
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Algorithm 3: The DNAS pipeline.

Input: Stochastic super net G = (V,E) with parameter ✓ and w, searching dataset
Xw and X✓, training dataset Xtrain, test dataset Xtest;

QA  ; ;
for epoch = 0, · · ·N do

⌧  T0 exp(�⌘ ⇥ epoch);
Train G with respect to w for one epoch;
if epoch > Nwarmup then

Train G with respect to ✓ for one epoch;
end

end
Sample architectures a ⇠ P✓; Push a to QA;
for a 2 QA do

Train a on Xtrain to convergence;
Test a on Xtest;

end
Output: Trained architectures QA.

8.4 DNAS for mixed-precision quantization

Conventionally, 32-bit (full-precision) floating point numbers are used to represent weights
and activations of neural nets. For resource constrained applications, low precision numbers
can be used to represent neural networks to reduce the computational cost e↵ectively. This
technique is called quantization. Most of the existing quantization methods often represent
all weights and activations using the same precision (bit-width). However, if we are allowed
to compress di↵erent layers of a network to di↵erent precisions, can we further compress the
network?

Mixed-precision computation is widely supported by hardware platforms such as CPUs,
FPGAs, and dedicated accelerators. To leverage this, we need to study how should we
decide the precision for each layer such that we can maintain the accuracy of the network
while minimizing the cost in terms of model size or computation. This is the problem of
mixed-precision quantization. For an N -layer network where each layer can choose from M

candidate precisions, exhaustive search yields O(MN) complexity.
We use the DNAS framework to solve the mixed-precision quantization problem. For

a ConvNet, we first construct a super net that has the same “macro-structure” (number
of layers, number of filters each layer, etc.) as the given network. As shown in Fig. 8.4.
Each node vi in the super net corresponds to the output tensor (feature map) of layer-i.
Each candidate edge ei,i+1

k
represents a convolution operator whose weights or activation are

quantized to a lower precision.
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Figure 8.4: One layer of a super net for mixed-precision quantization of a ConvNet. Nodes
in the super net represent feature maps, edges represent convolution operators with di↵erent
bit-widths.

Quantization method

To quantize the network, we adopt conventional strategies, DoReFa-Net [182] to quantize
weights, and PACT [16] to quantize activations.

wk = 2Qk(
tanh(w)

2max(| tanh(w)|)
+ 0.5). (8.10)

w denotes the latent full-precision weight of a network. Qk(·) denotes a k-bit quantization
function that quantizes a continuous value w 2 [0, 1] to its nearest neighbor in {

i

2k�1 |i =
0, · · · , 2k � 1}. To quantize activations, we follow [16] to use a bounded activation function
followed by a quantization function as

y = PACT (x) = 0.5(|x|� |x� ↵| + ↵),

yk = Qk(y/↵) · ↵.
(8.11)

Here, x is the full precision activation, yk is the quantized activation. PACT (·) is a function
that bounds the output between [0,↵]. ↵ is a learnable upper bound of the activation
function.

Loss function

In order to encourage using lower-precision weights and activations, we define the loss func-
tion as

L(a,wa) = CrossEntropy(a)⇥ C(Cost(a)). (8.12)

Cost(a) denotes the cost of a candidate architecture and C(·) is a weighting function to
balance the cross entropy term and the cost term. To compress the model size, we define
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the cost as
Cost(a) =

X

e
ij
k 2E

m
ij

k
⇥#PARAM(eij

k
)⇥ weight-bit(eij

k
), (8.13)

where #PARAM(·) denotes the number of parameters of a convolution operator and weight-bit(·)
denotes the bit-width of the weight. m

ij

k
is the edge selection mask described in Equation

(8.3). Alternatively, to reduce the computational cost by jointly compressing both weights
and activations, we use the cost function

Cost(a) =
X

e
ij
k 2E

m
ij

k
⇥#FLOP(eij

k
)⇥ weight-bit(eij

k
)⇥ act-bit(eij

k
), (8.14)

where #FLOP(·) denotes the number of floating point operations of the convolution operator,
weight-bit(·) denotes the bit-width of the weight and act-bit(·) denotes the bit-width of the
activation. Note that in a candidate architecture, mij

k
have binary values {0, 1}. In the super

net, we allow m
ij

k
to be continuous so we can compute the expected cost of the super net..

To balance the cost term with the cross entropy term in Equation (8.12), we define

C(Cost(a)) = �(log(Cost(a)))�. (8.15)

where � is a coe�cient to adjust the initial value of C(Cost(a)) to be around 1. � is a
coe�cient to adjust the relative importance of the cost term vs. the cross-entropy term.
A larger � leads to a stronger cost term in the loss function, which favors e�ciency over
accuracy.

8.5 Mixed-precision quantization experiments

CIFAR10 experiments

In the first experiment, we focus on quantizing ResNet20, ResNet56, and ResNet110 [50] on
CIFAR10 [79] dataset. We start by focusing on reducing model size, since smaller models
require less storage and communication cost, which is important for mobile and embedded
devices. We only perform quantization on weights and use full-precision activations. We
conduct mixed-precision search at the block level – all layers in one block use the same
precision. Following the convention, we do not quantize the first or the last layer. We
construct a super net whose macro architecture is exactly the same as our target network.
For each block, we can choose a precision from {0, 1, 2, 3, 4, 8, 32}. If the precision is 0, we
simply skip this block so the input and output are identical. If the precision is 32, we use the
full-precision floating point weights. For all other precisions with k-bit, we quantize weights
to k-bit fixed-point numbers.

Our experiment result is summarized in Table 8.1. For each quantized model, we report
its accuracy and model size compression rate compared with 32-bit full precision models. The
model size is computed by Equation (8.13). Among all the models we searched, we report
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DNAS (ours) TTQ [183]
Full Most Accurate Most E�cient Full 2bit

ResNet20
Acc 92.35 92.72 (+0.37) 92.00 (-0.35) 91.77 91.13 (-0.64)
Comp 1.0 11.6 16.6 1.0 16.0

ResNet56
Acc 94.42 94.57 (+0.15) 94.12 (-0.30) 93.20 93.56 (+0.36)
Comp 1.0 14.6 18.93 1.0 16.0

ResNet110
Acc 94.78 95.07 (+0.29) 94.39 (-0.39) - -
Comp 1.0 12.5 20.3 - -

Table 8.1: Mixed-Precision Quantization for ResNet on CIFAR10 dataset. We report results
on ResNet{20, 56, 110}. In the table, we abbreviate accuracy as “Acc” and compression as
“Comp”.

g1b1 g1b2 g1b3 g2b1 g2b2 g2b3 g3b1 g3b2 g3b3
Most Accurate 4 4 3 3 3 4 4 3 1
Most E�cient 2 3 0 2 4 2 3 2 1

Table 8.2: Layer-wise bit-widths for the most accurate vs. the most e�cient architecture of
ResNet20.

the one with the highest test accuracy (top) and the one with the highest compression rate
(bottom). We compare our method with [183], where they use 2-bit (ternary) weights for all
the layers of the network, except the first convolution and the last fully connect layer. From
the table, we have the following observations: 1) All of our most accurate models out-perform
their full-precision counterparts by up to 0.37% while still achieves 11.6 - 12.5X model size
reduction. 2) Our most e�cient models can achieve 16.6 - 20.3X model size compression with
accuracy drop less than 0.39%. 3) Compared with [183], our model achieves up to 1.59%
better accuracy. This is partially due to our improved training recipe as our full-precision
model’s accuracy is also higher. But it still demonstrates that our models with searched
mixed-precision assignment can very well preserve the accuracy.

Table 8.2 compares the precision assignment for the most accurate and the most e�cient
models for ResNet20. Note that for the most e�cient model, it directly skips the 3rd block in
group-1. In Fig. 8.5, we plot the accuracy vs. compression rate of searched architectures of
ResNet110. We observe that models with random precision assignment (from epoch 0) have
significantly worse compression while searched precision assignments generally have higher
compression rate and accuracy.

ImageNet experiments

We quantize ResNet18 and ResNet34 on the ImageNet ILSVRC2012 [21] dataset. In contrast
with the original ResNet [50], we use the “ReLU-only preactivation” ResNet from [51].
Similar to the CIFAR10 experiments, we conduct mixed-precision search at the block level.
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Figure 8.5: Visualization of all searched architectures for ResNet110 on CIFAR10 dataset.
x-axis is the compression rate of each model. y-axis is the accuracy.

DNAS (ours) TTQ ADMM
Full MA ME Full 2bit 3bit

ResNet18
Acc 71.03 71.21 (+0.18 ) 69.58 (-1.45) 69.6 66.6 (-3.0) 68.0 (-1.6)
Comp 1.0 11.2 21.1 1.0 16.0 10.7

ResNet34
Acc 74.12 74.61 (+0.49) 73.37 (-0.75)

-
Comp 1.0 10.6 19.0

Table 8.3: Mixed-precision quantization for ResNet on ImageNet for model size compression.
In the table, we abbreviate accuracy as “Acc” and compression as “Comp”. “MA” denotes
the most accurate model from architecture search and “ME” denotes the most e�cient model.

We do not quanitze the first and the last layer.
We conduct two sets of experiments. In the first set, we aim at compressing the model size,

so we only quantize weights and use the cost function from Equation (8.13). Each block con-
tains convolution operators with weights quantized to {1, 2, 4, 8, 32}-bit. In the second set, we
aim at compressing computational cost. So we quantize both weights and activations and use
the cost function from Equation (8.14). Each block in the super net contains convolution op-
erators with weights and activations quantized to {(1, 4), (2, 4), (3, 3), (4, 4), (8, 8), (32, 32)}-
bit. The first number in the tuple denotes the weight precision and the second denotes the
activation precision. The DNAS search is very e�cient, taking less than 5 hours on 8 V100
GPUs to finish the search on ResNet18.

Our model size compression experiment is reported in Table 8.3. We report two searched
results for each model. “MA” denotes the searched architecture with the highest accuracy,
and “ME” denotes the most e�cient. We compare our results with TTQ [183] and ADMM
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DNAS (ours) PACT DoReFA QIP GroupNet
arch-1 arch-2 arch-3 W4A4 W4A4 W4A4 W1A2G5

ResNet18

Acc 71.01 70.64 68.65 69.2 68.1 69.3 67.6
Full Acc 71.03 71.03 71.03 70.2 70.2 69.2 69.7
Acc � -0.02 -0.39 -2.38 -1.0 -2.1 +0.1 -2.1
Comp 33.2 62.9 103.5 64 64 64 102.4

ResNet34

Acc 74.21 73.98 73.23

-
Full Acc 74.12 74.12 74.12
Acc � +0.09 -0.14 -0.89
Comp 40.8 59.0 87.4

Table 8.4: Mixed-precision quantization for ResNet on ImageNet for computational cost
compression. We abbreviate accuracy as “Acc” and compression rate as “Comp”. “arch-{1,
2, 3}” are three searched architectures ranked by accuracy.

[84]. TTQ uses ternary weights (stored by 2 bits) to quantize a network. For ADMM, we
cite the result with {�4, 4} configuration where weights can have 7 values and are stored
by 3 bits. We report the accuracy and model size compression rate of each model. From
Table 8.3, we have the following observations: 1) All of our most accurate models out-
perform full-precision models by up to 0.5% while achieving 10.6-11.2X reduction of model
size. 2) Our most e�cient models can achieve 19.0 to 21.1X reduction of model size, still
preserving competitive accuracy. 3) Compared with previous works, even our less accurate
model has almost the same accuracy as the full-precision model with 21.1X smaller model
size. This is partially because we use label-refinery [4] to e↵ectively boost the accuracy of
quantized models. But it still demonstrate that our searched models can very well preserve
the accuracy, despite its high compression rate.

Our experiment on computational cost compression is reported in Table 8.4. We report
three searched architectures for each model. We report the accuracy and the compression
rate of the computational cost of each architecture. We compute the computational cost
of each model using Equation (8.14). We compare our results with PACT [16], DoReFA
[182], QIP [75], and GroupNet [184]. The first three use 4-bit weights and activations. We
compute their compression rate as (32/4)⇥ (32/4) = 64. GroupNet uses binary weights and
2-bit activations, but its blocks contain 5 parallel branches. We compute its compression
rate as (32/1) ⇥ (32/2)/5 ⇡ 102.4 The DoReFA result is cited from [16]. From table 8.4,
we have the following observations: 1) Our most accurate architectures (arch-1) have almost
the same accuracy (-0.02% or +0.09%) as the full-precision models with compression rates
of 33.2x and 40.8X. 2) Comparing arch-2 with PACT, DoReFa, and QIP, we have a similar
compression rate (62.9 vs 64), but the accuracy is 0.71-1.91% higher. 3) Comparing arch-3
with GroupNet, we have slightly higher compression rate (103.5 vs. 102.4), but 1.05% higher
accuracy.
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8.6 DNAS for e�cient ConvNet search

For the second application, we apply DNAS to search for new e�cient ConvNet architectures
for target hardware devices. DNAS allows us to define search space with high flexibility.
However, to optimize the actual latency of a network, it is important to choose a design
space that is intrinsically hardware friendly. We will discuss this in the search space section.
In addition, to optimize the actual latency rather than the theoretical e�ciency, we need
to re-design the loss function to reflect the actual latency. We will discuss this in the loss
function section.

The Search space

Most of the previous works [187, 188, 110, 92, 93] search for cell level architectures. The
same cell level structure is used in all the layers across the network. However, many searched
cell structures are very complicated and fragmented and are therefore slow when deployed
to mobile CPUs [125, 99]. Besides, at di↵erent layers, the same cell structure can have a
di↵erent impact on the accuracy and latency of the overall network. As shown in [141] and in
our experiments, allowing di↵erent layers to choose di↵erent blocks leads to better accuracy
and e�ciency.

In this work, we construct a layer-wise search space with a fixed macro-architecture, and
each layer can choose a di↵erent block. Formally, for each layer of the super net, we have

xl+1 =
X

i

ml,i · bl,i(xl), (8.16)

where bl,i(·) is the i-th candidate block at layer l. ml,i is a random variable in {0, 1} and
is evaluated to 1 if block bl,i is sampled. xl+1 and xl are feature maps of layer-l and l + 1.
This is an instantiation of Equation (8.3). Similarly, we can use relax ml,i to a continuous
random variable controlled by Gumbel Softmax function as

ml,i = GumbelSoftmax(✓l,i|✓l)

=
exp[(✓l,i + gl,i)/⌧ ]P
i
exp[(✓l,i + gl,i)/⌧ ]

,
(8.17)

where gl,i ⇠ Gumbel(0, 1) is a random noise following the Gumbel distribution, ✓l,i is a
trainable variable that controls the sampling probability of block-i at layer-l.

The macro-architecture is described in Table 8.5. The macro architecture defines the
number of layers and the input/output dimensions of each layer. The first and the last
three layers of the network have fixed operators. For the rest of the layers, their block type
needs to be searched. The filter numbers for each layer are hand-picked empirically. We
use relatively small channel sizes for early layers, since the input resolution at early layers is
large, and the computational cost (FLOP count) is quadratic to input size.

Each searchable layer in the network can choose a di↵erent block from the layer-wise
search space. The block structure is inspired by MobileNetV2 [125] and ShiftNet [158], and



CHAPTER 8. DESIGN EFFICIENCY: DIFFERENTIABLE NEURAL
ARCHITECTURE SEARCH 119

Input shape Block f n s
2242 ⇥ 3 3x3 conv 16 1 2
1122 ⇥ 16 TBS 16 1 1
1122 ⇥ 16 TBS 24 4 2
562 ⇥ 24 TBS 32 4 2
282 ⇥ 32 TBS 64 4 2
142 ⇥ 64 TBS 112 4 1
142 ⇥ 112 TBS 184 4 2
72 ⇥ 184 TBS 352 1 1
72 ⇥ 352 1x1 conv 1504 (1984) 1 1

72 ⇥ 1504 (1984) 7x7 avgpool - 1 1
1504 fc 1000 1 -

Table 8.5: Macro-architecture of the search space. Column-“Block” denotes the block type.
“TBS” means layer type needs to be searched. Column-f denotes the filter number of a
block. Column-n denotes the number of blocks. Column-s denotes the stride of the first
block in a stage. The filter size of the last 1x1 conv is 1504 for FBNet-A and 1984 for
FBNet-{B, C}.

is illustrated in Figure 8.6. It contains a point-wise (1x1) convolution, a K-by-K depthwise
convolution where K denotes the kernel size, and another 1x1 convolution. “ReLU” acti-
vation functions follow the first 1x1 convolution and the depthwise convolution, but there
are no activation functions following the last 1x1 convolution. If the output dimension stays
the same as the input dimension, we use a skip connection to add the input to the output.
Following [125, 158], we use a hyperparameter, the expansion ratio e, to control the block.
It determines how much do we expand the output channel size of the first 1x1 convolution
compared with its input channel size. Following [141], we also allow choosing a kernel size of
3 or 5 for the depthwise convolution. In addition, we can choose to use group convolution for
the first and the last 1x1 convolution to reduce the computation complexity. When we use
group convolution, we follow [179] to add a channel shu✏e operation to mix the information
between channel groups.

In our experiments, our layer-wise search space contains 9 candidate blocks, with their
configurations listed in Table 8.6. Note we also have a block called “skip”, which directly
feed the input feature map to the output without actual computations. This candidate block
essentially allows us to reduce the depth of the network.

In summary, our overall search space contains 22 layers. The layer number is chosen
empirically. Each layer can choose from 9 candidate blocks from Table 8.6, so it contains
922 ⇡ 1021 possible architectures.

Finding the optimal layer-wise block assignment from such enormous search space is
non-trivial.
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1x1	(group)	Conv,	ReLU

K	x	K	DWConv,	ReLU

H	x	W	x	Cin

H	x	W	x	(e	x	Cin)

(H/s)	x	(W/s)	x	(e	x	Cin)

(H/s)	x	(W/s)	x	Cout

+

1x1	(group)	Conv

Figure 8.6: The block structure of the micro-architecture search space. Each candidate block
in the search space can choose a di↵erent expansion rate, kernel size, and number of groups
for group convolution.

Latency-aware loss function

To optimize for actual latency, we re-design the loss function from (8.1) to reflect not only
the accuracy of an architecture but also the latency of it on the target hardware. Following
Equation (8.12), the loss function is defined as:

L(a, wa) = CE(a, wa) · ↵ log(LAT(a))�. (8.18)

The first term CE(a, wa) denotes the cross-entropy loss of architecture a with parameter
wa. The second term LAT(a) denotes the latency of the architecture on the target hardware
measured in micro-second. The coe�cient ↵ controls the overall magnitude of the loss
function. The exponent coe�cient � modulates the magnitude of the latency term.

The cross-entropy term can be easily computed. However, the latency term is more
di�cult, since we need to measure the actual runtime of an architecture on a target device.
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Block type expansion Kernel Group
k3 e1 1 3 1

k3 e1 g2 1 3 2
k3 e3 3 3 1
k3 e6 6 3 1
k5 e1 1 5 1

k5 e1 g2 1 5 2
k5 e3 3 5 1
k5 e6 6 5 1
skip - - -

Table 8.6: Configurations of candidate blocks in the search space.

To cover the entire search space, we need to measure about 1021 architectures, which is an
impossible task.

To solve this problem, we use a latency lookup table model to estimate the overall latency
of a network based on the runtime of each operator. More formally, we assume

LAT(a) =
X

l

LAT(b(a)
l
), (8.19)

where b
(a)
l

denotes the block at layer-l from architecture a. This assumes that on the target
processor, the runtime of each operator is independent of other operators. The assumption
is valid for many mobile CPUs and DSPs, where operators are computed sequentially one
by one. In case that inter-layer optimization can be applied, for example, two layers can be
merged into one, the lookup table model can still be applied after such optimization. Using
the lookup table model, by benchmarking the latency of a few hundred unique operators
used in the search space, we can easily estimate the actual runtime of the 1021 architectures
in the entire search space.

As explained in Equation (8.5), the architecture search problem is equivalent to using
SGD to optimize the loss function with respect to parameter ✓l,i. It is clear that the cross-
entropy term from the loss function (8.18) is di↵erentiable with respect to the mask ml,i and
therefore ✓l,i. For the latency term, since we use the lookup table based model for e�ciency
estimation, Equation (8.19) can be written as

LAT(a) =
X

l

X

i

ml,i · LAT(bl,i). (8.20)

The latency of each operator LAT(bl,i) is a constant coe�cient, so the overall latency of
architecture-a is di↵erentiable with respect to the mask ml,i, therefore ✓l,i. Now it is obvious
that the loss function (8.18) is fully di↵erentiable with respect to both weights wa and the
architecture distribution parameter ✓. This allows us to use SGD to e�ciently solve problem
(8.1).



CHAPTER 8. DESIGN EFFICIENCY: DIFFERENTIABLE NEURAL
ARCHITECTURE SEARCH 122

8.7 E�cient ConvNet search experiments

ImageNet classification

To demonstrate the e�cacy of our proposed method, we use DNAS to search for ConvNet
models on ImageNet 2012 classification dataset [21], and we name the discovered models
FBNets. We aim to discover models with high accuracy and low latency on target devices.
In our first experiment, we target Samsung Galaxy S8 with a Qualcomm Snapdragon 835
platform. The model is deployed with Ca↵e2 with int8 inference engine for mobile devices.

Before the search starts, we first build a latency lookup table on the target device. Next,
we train a stochastic super net. We set the input resolution of the network to 224-by-
224. To reduce the training time, we randomly choose 100 classes from the original 1000
classes to train the stochastic super net. We train the stochastic super net for 90 epochs.
In each epoch, we first train the operator weights wa and then the architecture probability
parameter ✓. wa is trained on 80% of ImageNet training set using SGD with momentum.
The architecture distribution parameter ✓ is trained on the rest 20% of ImageNet training
set with Adam optimizer [76]. To control the temperature of the Gumbel Softmax from
Equation (8.7), we use an exponentially decaying temperature. After the search finishes, we
sample several architectures from the trained distribution P✓, and train them from scratch.
Our architecture search framework is implemented in pytorch [107] and searched models are
trained in Ca↵e2. More training details will be provided in the supplementary materials.

Our experimental results are summarized in Table 8.7. We compare our searched mod-
els with state-of-the-art e�cient models both designed automatically and manually. The
primary metrics we care about are top-1 accuracy on the ImageNet validation set and the
latency. If the latency is not available, we use FLOP as the secondary e�ciency metric.
For baseline models, we directly cite the parameter size, FLOP count, and top-1 accuracy
from the original paper. Since our network is deployed with ca↵e2 with a highly e�cient in8
implementation, we have an unfair latency advantage against other baselines. Therefore, we
implement the baseline models ourselves and measure their latency under the same environ-
ment for a fair comparison. For automatically designed models, we also compare the search
method, search space, and search cost.

Table 8.7 divides the models into three categories according to their accuracy level. In
the first group, FBNet-A achieves 73.0% accuracy, better than 1.0-MobileNetV2 (+1.0%),
1.5-Shu✏eNet V2 (+0.4%), and CondenseNet (+2%), and are on par with DARTS and
MnasNet-65. Regarding latency, FBNet-A is 1.9 ms (relative 9.6%), 2.2 ms (relative 11%),
and 8.6 ms (relative 43%) better than the MobileNetV2, Shu✏eNetV2, and CondenseNet
counterparts. Although we did not optimize for FLOP count directly, FBNet-A’s FLOP
count is only 249M, 50M smaller (relative 20%) than MobileNetV2 and Shu✏eNetV2, 20M
(relative 8%) smaller than MnasNet, and 2.4X smaller than DARTS. In the second group,
FBNet-B achieves comparable accuracy with 1.3-MobileNetV2, but the latency is 1.46x
lower, and the FLOP count is 1.73x smaller, even smaller than 1.0-MobileNetV2 and 1.5-
Shu✏eNet V2. Compared with MnasNet, FBNet-B’s accuracy is 0.1% higher, latency is
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Model
Search
method

Search
space

Search cost
(GPU hours
/ relative)

Params FLOPs
CPU

Latency
(ms)

Top-1
acc
(%)

1.0-MNV2 [125] manual - - 3.4M 300M 21.7 72.0
1.5-SNV2 [99] manual - - 3.5M 299M 22.0 72.6

MnasNet-65 [99] RL stage 91K⇤ / 421x 3.6M 270M - 73.0
DARTS [93] gradient cell 288 / 1.33x 4.9M 595M - 73.1

FBNet-A (ours) gradient layer 216 / 1.0x 4.3M 249M 19.8 73.0
1.3-MNV2 [125] manual - - 5.3M 509M 33.8 74.4
MnasNet [141] RL stage 91K⇤ / 421x 4.2M 317M 23.7 74.0
NASNet-A [188] RL cell 48K / 222x 5.3M 564M - 74.0
PNASNet [92] SMBO cell 6K† / 27.8x 5.1M 588M - 74.2
FBNet-B (ours) gradient layer 216 / 1.0x 4.5M 295M 23.1 74.1
1.4-MNV2 [125] manual - - 6.9M 585M 37.4 74.7
2.0-SNV2 [99] manual - - 7.4M 591M 33.3 74.9

MnasNet-92 [141] RL stage 91K⇤ / 421x 4.4M 388M - 74.8
FBNet-C (ours) gradient layer 216 / 1.0x 5.5M 375M 28.1 74.9

Table 8.7: ImageNet classification performance compared with baselines. MNV2 denotes
MobileNetV2. SNV2 denotes Shu✏eNetV2. For baseline models, we directly cite the pa-
rameter size, FLOP count and top-1 accuracy on the ImageNet validation set from their
original papers. For CPU latency, we deploy and benchmark the models on the same Sam-
sung Galaxy S8 phone with Ca↵e2 int8 implementation. The details of MnasNet-{64, 92}
are not disclosed from [141] so we cannot measure the latency. *The search cost for MnasNet
is estimated according to the description in [141]. † The search cost is estimated based on
the claim from [92] that PNAS [92] is 8x lower than NAS[188]. ‡ The inference engine is
faster than other models.

0.6ms lower, and FLOP count is 22M (relative 7%) smaller. We do not have the latency of
NASNet-A and PNASNet, but the accuracy is comparable, and the FLOP count is 1.9x and
2.0x smaller. In the third group, FBNet-C achieves 74.9% accuracy, same as 2.0-Shu✏eNetV2
and better than all others. The latency is 28.1 ms, 1.33x and 1.19x faster than MobileNet and
Shu✏eNet. The FLOP count is 1.56x, 1.58x, and 1.03x smaller than MobileNet, Shu✏eNet,
and MnasNet-92.

Among all the automatically searched models, FBNet’s performance is much stronger
than DARTS, PNAS, and NAS, and better than MnasNet. However, the search cost is
orders of magnitude lower. MnasNet [141] does not disclose the exact search cost (in terms
of GPU-hours). However, it mentions that the controller samples 8,000 models during the
search and each model is trained for five epochs. According to our experiments, training of
MNasNet for one epoch takes 17 minutes using 8 GPUs. So the estimated cost for training
8,000 models for 5 epochs is about 17/60 ⇥ 5 ⇥ 8 ⇥ 8, 000 ⇡ 91 ⇥ 103 GPU hours. In
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comparison, the FBNet search takes 8 GPUs for only 27 hours, so the computational cost is
only 216 GPU hours, or 421x faster than MnasNet, 222x faster than NAS, 27.8x faster than
PNAS, and 1.33x faster than DARTS.

We visualize some of our searched FBNets, MobileNetV2, and MnasNet in Figure 8.7.

FBNet-A

FBNet-96-0.35-1

FBNet-s8

FBNet-iPhoneX

MobileNetV2

MnasNet

SkipK=3
E=6

K=3
E=3

K=3
E=1

K=3
E=1
G=2

K=5
E=6

K=5
E=3

K=5
E=1

K=5
E=1
G=2

FBNet-B

FBNet-C

Figure 8.7: Visualization of searched architectures. We use colored boxes to denote blocks
for each layer. We use di↵erent colors to denote the kernel size of the depthwise convolution,
blue for kernel size of 3, green for kernel size of 5, and empty for skipping. We use height to
denote the expansion rate of the block: 6, 3, 1, and 1 with group-2 convolution.

Di↵erent resolution and channel size scaling

A common technique to reduce the computational cost of a ConvNet is to reduce the input
resolution or channel size without changing the ConvNet structure. This approach is likely
to be sub-optimal. We hypothesize that with a di↵erent input resolution and channel size
scaling, the optimal ConvNet structure will be di↵erent. To test this, we use DNAS to search
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Input &
Channel
Scaling

Model Params FLOPs
CPU

Latency
Top-1 acc (%)

(224, 0.35)
MNV2-224-0.35 1.7M 59M 9.3 ms 60.3

MNas-scale-224-0.35 1.9M 76M 10.7 ms 62.4 (+2.1)
FB-224-0.35 2.0M 72M 10.7 ms 65.3 (+5.0)

(192, 0.50)
MNV2 2.0M 71M 8.4 ms 63.9

Mnas-search-192-0.5 - - - 65.6 (+1.7)
FB-192-0.5 (ours) 2.6M 73M 9.9 ms 65.9 (+2.0)

(128, 1.0)
MNV2 3.5M 99M 8.4 ms 65.3

Mnas-scale-128-1.0 4.2M 103M 9.2 ms 67.3 (+2.0)
FB-128-1.0 (ours) 4.2M 92M 9.0 ms 67.0 (+1.7)

(128, 0.50)
MNV2 2.0M 32M 4.8 ms 57.7

FB-128-0.5 (ours) 2.4M 32M 5.1 ms 60.0 (+2.3)

(96, 0.35)
MNV2 1.7M 11M 3.8 ms 45.5

FB-96-0.35-1 (ours) 1.8M 12.9M 2.9 ms 50.2 (+4.7)
FB-96-0.35-2 (ours) 1.9M 13.7M 3.6 ms 51.9 (+6.4)

Table 8.8: FBNets searched for di↵erent input resolution and channel scaling. “MNV2” is
for MobileNetV2. “FB” is for FBNet. “Mnas” is for MnasNet. Mnas-scale is the MnasNet
model with input and channel size scaling. Mnas-search-192-0.5 is a model searched with an
input size of 192 and channel scaling of 0.5. Details of it are not disclosed in [141], so we
only cite the accuracy.

for several di↵erent combinations of input resolution and channel size scaling. Thanks to the
superior e�ciency of DNAS, we can finish the search very quickly. The result is summarized
in Table 8.8. Compared with MobileNetV2 under the same input size and channel size
scaling, our searched models achieve 1.5% to 6.4% better accuracy with similar latency.
Especially the FBNet-96-0.35-1 model achieves 50.2% (+4.7%) accuracy and 2.9 ms latency
(345 frames per second) on a Samsung Galaxy S8.

Model #Parameters #FLOPs
Latency on
iPhone X

Latency on
Samsung S8

Top-1 acc (%)

FBNet-iPhoneX 4.47M 322M 19.84 ms 23.33 ms 73.20
FBNet-S8 4.43M 293M 27.53 ms 22.12 ms 73.27

Table 8.9: FBNets searched for di↵erent devices.

We visualize the architecture of FBNet-96-0.35-1 in Figure 8.7, we can see that many
layers are skipped, and the network is much shallower than FBNet-{A, B, C}, whose input
size is 224. We conjecture that this is because with smaller input size, the receptive field
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needed to parse the image also becomes smaller, so having more layers will not e↵ectively
increase the accuracy.

Di↵erent Target Devices

In previous ConvNet design practices, the same ConvNet model is deployed to many di↵er-
ent devices. However, this is sub-optimal since di↵erent computing platforms and software
implementation can have di↵erent characteristics. To validate this, we conduct search tar-
geting two mobile devices: Samsung Galaxy S8 with Qualcomm Snapdragon 835 platforms,
and iPhone X with A11 Bionic processors. We use the same architecture search space, but
di↵erent latency lookup tables collected from two target devices. All the architecture search
and training protocols are the same. After we searched and trained two models, we deploy
them to both Samsung Galaxy S8 and iPhone X to benchmark the overall latency. The
result is summarized in Table. 8.9.

As we can see, the two models reach similar accuracy (73.20% vs. 73.27%). FBNet-
iphoneX model’s latency is 19.84 ms on its target device, but when deployed to a Samsung
S8, its latency increases to 23.33 ms. On the other hand, FBNet-S8 reaches a latency of
22.12 ms on a Samsung S8, but when deployed to an iPhone X, the latency hikes to 27.53
ms, 7.69 ms (relatively 39%) higher than FBNet-iPhone X. This demonstrates the necessity
of re-designing ConvNets for di↵erent target devices.

Two models are visualized in Figure 8.7. Note that FBNet-S8 uses many blocks with
5x5 depthwise convolution while FBNet-iPhoneX only uses them in the last two stages. We
examine the depthwise convolution operators used in the two models and compare their
runtime on both devices. As shown in Figure 8.8, the upper three operators are faster
on iPhone X, therefore they are automatically used in FBNet-iPhoneX. The lower three
operators are significantly faster on Samsung S8, and they are also automatically used in
FBNet-S8. Notice the drastic runtime di↵erences of the lower three operators on two target
devices. It explains why the Samsung-S8-optimized model performs poorly on an iPhone X.
This shows DNAS can automatically optimize the operator adoptions and generate di↵erent
ConvNets optimized for di↵erent devices.

8.8 Conclusion

In this chapter, we discuss the design e�ciency of deep neural networks. Designing optimal
deep neural networks for given applications and hardware accelerators is a di�cult task,
due to the challenges of huge design space, conditional optimality, and inaccurate e�ciency
metrics. To solve these problems, we present DNAS, a di↵erentiable neural architecture
search framework. It is a general neural architecture search algorithm that can be applied
to di↵erent problems. It relaxed the combinatorial optimization problem to one that can be
solved using stochastic gradient descent, and achieved two-orders of magnitudes of speedup.
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Figure 8.8: Comparison of operator runtime on two devices. Runtime is in micro-second (us).
Orange bar denotes the runtime on iPhone X and blue bar denotes the runtime on Samsung
S8. The upper three operators are faster on iPhone X, therefore they are automatically used
in FBNet-iPhoneX. The lower three operators are faster on Samsung S8, and they are also
automatically used in FBNet-S8.

We applied DNAS to two problems. For mixed-precision quantization, we use DNAS
to search for layer-wise precision assignment for ResNet on CIFAR10 and ImageNet. Our
quantized models with 21.1x smaller model size or 103.9x smaller computational cost can
still outperform baseline quantized or even full precision models.

For hardware-e�cient ConvNet search, we use DNAS to discover FBNets, a family of
models that surpass state-of-the-art models, both manually and automatically designed:
FBNet-B achieves 74.1% top-1 accuracy with 295M FLOPs and 23.1 ms latency, 2.4x smaller
and 1.5x faster than MobileNetV2-1.3 with the same accuracy. It also achieves better ac-
curacy and lower latency than MnasNet, the state-of-the-art e�cient model designed auto-
matically; we estimate the search cost of DNAS is 420x smaller. Such e�ciency allows us
to conduct searches for di↵erent input resolutions and channel scaling. Discovered models
achieve 1.5% to 6.4% accuracy gains. The smallest FBNet achieves 50.2% accuracy with a
latency of 2.9 ms (345 frames/sec) with batch size 1. Over the Samsung-optimized FBNet,
the improved FBNet achieves 1.4x speed up on an iPhone X, showing DNAS is able to adapt
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to di↵erent target devices automatically.
After the publication of DNAS, the search for smaller neural networks continued. For

example, [44] further developed the idea of the stochastic super net and combined it with
evolution-based search algorithms. [59] combined manual design with architecture search
and finetuning to find more e�cient neural architectures. [14] applied neural architecture
search methods to solve object detection problems and conquered the limitation of two-stage
training pipeline. For future research, we hope to see both design space innovation and search
algorithm improvement. We also expect to see wider adoption of neural architecture search
for more applications.
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Chapter 9

Conclusions

9.1 Review

The success of deep neural networks is attributable to three factors: increased compute
capacity, more complex models, and more data. However, in order to adopt deep neural
networks to solve more practical problems, especially edge-based applications, we need to
conquer the challenges of limited compute, limited model complexity, and limited data. In
this thesis, we discussed our work on improving the e�ciency of deep neural networks at
four di↵erent levels.

Model e�ciency: It was believed that neural networks with higher computational
complexity (FLOPs or parameter size) could achieve higher performance. However, the
increased complexity makes it di�cult to run neural networks on edge devices where compute
capacity is limited. To address this problem, we focus on improving the model e�ciency of
neural networks by designing compact models that reach the same level of performance
(accuracy) with significantly lower complexity (FLOPs and parameter size) and higher real-
world e�ciency (speed and energy).

In Chapter 2, we discussed e�ciency metrics of deep neural networks. We discussed the
background of computer architectures and compute characteristics of neural networks and
introduced hardware-agnostic metrics (MACs, parameter size, activation size, and arithmetic
intensity) and actual metrics (latency, throughput, power, and energy) for measuring the
e�ciency (complexity) of neural networks.

In Chapter 3, we discussed the design of SqueezeDet, a convolutional neural network
model for image-based object detection. SqueezeDet was designed to satisfy the need for
autonomous driving to achieve high accuracy, fast inference speed, small model size, and
low energy. By carefully designing the detection pipeline, network structure, and training
protocol, we are able to train SqueezeDet to match the accuracy of our previous Faster-
RCNN baselines while achieving 35.2x energy reduction, 30.4x model size reduction, and
19.7x inference speedup.

In Chapter 4, we discussed the design of SqueezeSeg for LiDAR-based semantic segmen-
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tation. LiDAR is an essential sensor for autonomous vehicles, especially level 4 & 5 urban
taxis. It can sense accurate distance measurements from obstacles, which can be used for
downstream planning and control. To parse semantic information from LiDAR point clouds,
such as locating cars, pedestrians, and cyclists, traditional methods rely on hand-crafted fea-
tures and multi-stage detection pipelines, which are slow and inaccurate. Instead, we present
a convolution neural network-based model called SqueezeSeg. The network uses SqueezeNet
as the backbone. It accepts a 2D LiDAR image transformed from a 3D point cloud, and
predicts a point-wise label map, which is used to segment objects of interest. Thanks to the
simplified pipeline and compact model design, SqueezeSeg is extremely fast, with the fastest
version reaching 115 frames per second, while delivering good accuracy.

Data e�ciency: Deep neural networks require a massive amount of data to train, and
it is observed [138] that the performance of deep neural networks improves logarithmically
with the volume of the dataset. However, in many applications, collecting and annotating
large datasets is a challenging task. This is especially true for LiDAR-based detection. In
this thesis, we discuss two strategies to improve the data e�ciency of deep neural networks
and demonstrate them on the task of LiDAR segmentation. The first is to build advanced
tools to make the annotation easier. The second is to leverage simulated data to train neural
networks and transfer the model to the real world, thereby bypassing the need to collect and
annotate real data.

In Chapter 5, we discuss LATTE, a semi-automated LiDAR annotation tool. Compared
with images, LiDAR point clouds are significantly more challenging to annotate. LiDAR
sensors have much lower resolution compared with cameras, making it di�cult even for
a human to recognize objects. Moreover, annotating 3D objects requires more complex
operations. Furthermore, most of the LiDAR point clouds are collected in sequences, and
consecutive frames are highly correlated. In order to solve these problems, we built LATTE
with three features: 1) With sensor fusion, we use image-based perception algorithms to
detect objects and transform the prediction to a 3D point cloud. 2) We built a one-click
annotation feature that simplifies the 3D bounding box annotation to simply one click on
each target object. 3) We use tracking to transfer labels from one frame to subsequent frames
automatically. With these three features, the LiDAR annotation process becomes 6.2x faster
than the baseline without these features.

In Chapter 6, we discuss our sim2real strategy to leverage synthetic data to train Squeeze-
Seg. Using GTA-V, we are able to synthesize a large amount of labeled LiDAR point cloud
for training neural networks. However, due to the domain shift problem, a model trained on
the simulation failed to transfer to the real world. We analyzed the source of domain shift,
and discovered that 1) by improving the model to make it less sensitive to dropout noise in
the LiDAR data and 2) by adopting a three-stage domain adaptation training pipeline, we
are able to significantly boost the performance of SqueezeSeg trained on synthetic data from
30% to 57.4%. This result even out-performs an older version of SqueezeSeg trained on the
real data.

Hardware e�ciency: We discuss the neural network model and hardware co-design
in Chapter 7. In practical applications, merely reducing the hardware-agnostic complexity
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of neural networks, including FLOPs and parameter size, is not enough, since the essential
metrics that people care about are speed and energy. To optimize for actual e�ciency, we
need to consider not only software design but also hardware design. In reality, however,
we observed a gap between the neural network design community and the hardware design
community. Most neural network designs only care about reducing FLOPs and parameter
size, while the complicated structure of the model makes it challenging to map to hardware.
On the other hand, most of the hardware design did not leverage the latest progress of e�cient
neural networks. To close this gap, we first presented shift, a zero-FLOP, zero-parameter
operator that replaces spatial convolutions. In a wide range of computer vision applications,
using the shift operator not only significantly reduces the theoretical model complexity but
more importantly, it simplifies the operator set of neural networks and allows us to build a
ConvNet with only 1x1 convolutions. This, in turn, simplifies hardware design and allows us
to build a customized compute unit optimized for 1x1 convolutions. Using the shift operator,
we designed DiracDeltaNet and co-design an embedded FPGA based hardware accelerator
named Synetgy. Compared with the previous state-of-the-art, Synetgy achieves 11.2x faster
inference speed.

Design e�ciency: In Chapter 8, we discuss the design e�ciency of neural networks. For
a given application and an underlying hardware processor, it is a very challenging task to find
the optimal neural network architecture. The challenges result from the facts that 1) neural
networks typically have combinatorially large design spaces that are intractable. 2) The
optimality of a neural network depends on many factors, including the hardware processors
on which it will be run, but in reality, people can only a↵ord to design one and fit to all
conditions. 3) While people care about latency and energy, they are not always aligned with
FLOPs and parameter size, and optimizing directly for latency and energy is very di�cult.
To address these problems, we present an automated neural architecture search algorithm
named DNAS (Di↵erentiable Neural Architecture Search). DNAS converts the combinatorial
optimization problem of neural architecture search into a relaxed version such that we can
use gradient-based methods to solve it. As a result, it is significantly faster than previous
neural architecture search methods that rely on training neural architectures one by one.
By designing a latency-aware loss function, we are able to directly optimize the latency of a
network on a target hardware device. We applied DNAS to solve two problems. For mixed-
precision quantization, we were able to compress a ResNet model trained on ImageNet by
21.1x without accuracy loss, surpassing the previous state-of-the-art. We also applied DNAS
to search for models that would run on given mobile CPUs. The searched models named
FBNets achieved better accuracy than previous searched and manually designed models,
while the search cost is 421x lower than previous state-of-the-art NAS methods.

9.2 Impact of our work

This thesis is a compilation of my research that has been previously published in eight papers
[160, 161, 163, 148, 158, 169, 157, 156] since I started working in this area in 2016. Despite



CHAPTER 9. CONCLUSIONS 132

the fact that we released these publications not long ago, they have begun to make impact
on the e�cient deep learning community. In this section, we summarize some of the impact
of those works.

We first released SqueezeDet[159] in December 2016 and o�cially published the paper
in June 2017. In less than three years, it has received 128 citations so far. Together with
the paper, we also open-sourced the code to train, evaluate, and run SqueezeDet models
on KITTI [33] and new datasets. Since its release, SqueezeDet has become a baseline for
subsequent embedded object detectors [87]. The codebase of SqueezeDet was used by the
research and industry community to develop new models for other perception tasks, such as
SqueezeSeg [161, 163]. It was used to study formal verification techniques for deep neural
networks [30]. On the other hand, since SqueezeDet was mainly tuned for autonomous
driving while contemporary object detectors such as YOLO [119] and SSD [95] were applied
to more general applications, SqueezeDet attracted less attention and did not became the
mainstream method for subsequent object detection research.

SqueezeSeg [161, 163] was one of the first solution to apply deep neural networks to solve
LiDAR-based perception problems. It proposed a novel problem formulation and established
a new pipeline including data collection, training, and evaluation. Since its initial release
in September 2017 and publication at ICRA in May 2018, it has received 59 citations.
Many subsequent works followed this problem formulation and continued to improve the
segmentation performance [176, 149]. The idea proposed in SqueezeSeg of using simulated
data to train neural networks was further developed by us in SqueezeSegV2 [163] (published
at ICRA 2019) and [173] (published at ICMR 2018). In addition, SqueezeSeg [161] presented
an idea for e�ciently annotating LiDAR point clouds for pointwise labels. This idea is
realized and extended in our later work LATTE [148], which was accepted for publication
at ITSC 2019.

The shift operator [158] was first published on arxiv in December 2017 and was o�cially
published at CVPR in June 2018 as a spotlight oral paper. Following our paper, [53] proposed
a more e�cient implementation of the shift operator and tested its e↵ectiveness on GPUs.
The operator is further improved by [12] and is extended to process videos in the temporal
domain by [89]. Moreover, the shift operator is used as a critical component for neural
network and hardware co-design for further e�ciency optimization in [169, 82].

DNAS [157, 156] was first published on arxiv in December 2018 and was o�cially pub-
lished at CVPR in June 2019 as an oral paper. By the time of this thesis’ publication,
in less than one year, this work has attracted much research attention and has received at
least 30 citations. It has become the new state-of-the-art baseline for other manually and
automatically designed neural networks [59, 135, 96]. Subsequent neural architecture search
research continued to improve its search e�ciency [44, 135], and extended the search to
object detection problems [14]. The mixed-precision application of DNAS has also inspired
other researchers to solve this problem [22] using other techniques.
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9.3 Future work

At the end of this thesis, we discuss potential future extensions to research discussed in this
thesis.

What is the limit of e�cient neural networks?

One of the fundamental questions for an e�cient neural network is, what is the smallest
network that can achieve a particular accuracy? SqueezeNet [66] was a pioneer in e�cient
neural networks and it “easily” achieved a 50x parameter size reduction over AlexNet. This
work made people realize that there exists redundancy in neural networks and inspired
people to continue to shrink it as much as possible. From SqueezeNet to ShiftNet and
DiractDeltaNet, the redundancy of spatial convolutions has been completely eliminated since
the two networks only contain 1x1 convolutions. To further reduce the 1x1 convolutions,
Shu✏eNet[177] and Shu✏eNetV2[99] introduced point-wise group convolution and shu✏e
operations. After that, NAS was used to push the limit of the design space to find the
optimal neural architecture. However, recent work also observed a slowing trend of FLOPs
and parameter size reduction. So the question is, are we close to the limit? Are there other
redundancies we can explore?

We believe that there is still redundancy in current neural networks, especially ConvNets.
A ConvNet is, by design, translation equivariant. However, ConvNets do not possess the
property of scaling or rotation equivariance. As a result, to deal with feature scaling and
rotation, ConvNets need to memorize the features in their convolution filters. By carefully
re-designing the convolution filters, we may be able to reduce the redundancy further and
make the network more stable towards variations.

More fundamentally, can we address this problem using more theoretical approaches?
Can we formally define concepts such as “redundancy” and “capacity” for neural networks?
Can we adopt ideas such as VapnikChervonenkis dimension [1] and Kolmogorov complexity
[127] to analyze neural networks and guide us to design e�cient neural networks?

Automated co-design of neural networks & hardware

In this thesis, we discussed automated neural architecture search: DNAS and model-hardware
co-design: Shift & Synetgy. However, a natural question is: can we automate the co-design
of neural networks and hardware processors. Currently, the DNAS framework considers the
operator costs on the target hardware to be fixed. However, if given the flexibility of tuning
hardware design parameters, such as dataflow design, or the number of MAC units, can
we e�ciently find the optimal neural network architecture and hardware configurations at
the same time? In such a significantly larger search space, can we find significantly better
solutions? What will be the best algorithm to explore this hybrid search space?
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On-device training and neural network adaptation

Today’s AI development pipeline separates the training and deployment of neural networks.
The deployed neural networks are expected to perform well in all conditions. However, due
to ubiquitous domain shifts, neural network models can quickly fail if they are not adapted
properly to the new domain. In order to solve this problem, one solution is to break the
division of training and deployment, and allow neural networks to be continuously trained
with new data. To achieve this, we need to 1) develop a new software and hardware stack that
supports on-device training, 2) develop better optimization techniques to drastically reduce
the FLOP and memory cost of neural network training and 3) develop new algorithms, such
as few-shot learning, meta learning, continual learning, and self-supervised learning to allow
adapting and training neural networks with significantly less new data.
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