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Abstract8

Synchrotron light sources, arguably among the most powerful tools of modern scientific discov-9

ery, are presently undergoing a major transformation to provide orders of magnitude higher bright-10

ness and transverse coherence enabling the most demanding experiments. In these experiments,11

overall source stability will soon be limited by achievable levels of electron beam size stability,12

presently on the order of several microns, which is still 1–2 orders of magnitude larger than already13

demonstrated stability of source position and current. Until now source size stabilization has been14

achieved through corrections based on a combination of static predetermined physics models and15

lengthy calibration measurements, periodically repeated to counteract drift in the accelerator and16

instrumentation. We now demonstrate for the first time how application of machine learning allows17

for a physics- and model-independent stabilization of source size relying only on previously existing18

instrumentation. Such feed-forward correction based on a neural network that can be continuously19

online-retrained achieves source size stability as low as 0.2 µm (0.4%) rms which results in overall20

source stability approaching the sub-percent noise floor of the most sensitive experiments.21

PACS numbers: 29.20.db, 29.27.Fh, 41.85.-p, 41.85.Lc22
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INTRODUCTION23

Synchrotron radiation sources, specifically 3rd-generation storage ring light sources, have24

been tremendously successful tools of scientific discovery since the early 1990s [1]. As these25

facilities mature, a new era of 4th-generation storage rings (4GSRs) based on diffraction-26

limited storage rings (DLSRs) [2–8] is being ushered in. These sources will increase average27

brightness by 2–3 orders of magnitude while also delivering high degrees of transverse coher-28

ence, for the first time even for x-rays. High coherent flux will enable scientists to understand29

material compositions and dynamics ranging in length from microns to nanometers and in30

time from minutes to nanoseconds. The most notable and direct result of the new beam31

properties will impact two techniques in particular. Ptychography [9] will take direct advan-32

tage of an increase in coherent flux to decrease measurement times by orders of magnitude.33

This will allow for the collection of complex 3D chemical maps with unprecedented resolu-34

tion and will lead to deeper understanding of electrochemical systems such as batteries and35

fuel cells. The measurement of dynamics and kinetics to study chemical systems is another36

category that will be directly impacted by the new sources. An emerging technique to study37

this is X-ray Photon Correlation Spectroscopy (XPCS) [10]. Ptychography as well as XPCS38

rely heavily on high beam stability over extended periods of time.39

To large extent the success of storage ring light sources lies in their stability, resulting in40

constant position, angle, and intensity of radiation delivered at a tunable wavelength with41

narrow width. In order to maintain constant intensity, a combination of top-off injection42

(maintaining constant beam current) [11, 12] and precise control over source position and size43

is required. In 3rd-generation light sources (3GLSs) the latter usually called for transverse44

beam size stability within 10% of the rms electron beam size [13, 14]. Now however, first45

experiments at these sources are starting to show limitations arising from such levels of46

source size control and it is evident that DLSRs, operating at much smaller source sizes, will47

call for significantly tighter control over source size stability in order to exploit ultra-high48

brightness and transverse coherence.49
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STATE-OF-THE-ART STABILIZATION EFFORT AND ITS LIMITATIONS50

A typical example for the above mentioned source size stabilization challenge is shown51

in Fig. 1. The vertical electron beam size as measured at diagnostic beamline 3.1 [15] of52
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FIG. 1. Left: Electron beam size as measured the ALS diagnostic beamline 3.1 during a user run

(top) showing > 2µm variation (4%) in the vertical caused by changes in the ID gaps (bottom).

Right: STXM image from ALS beamline 5.3.2.2 showing banding (3.2% rms intensity variation)

as a consequence of various ID configuration changes over the course of the scan.
53

54

Lawrence Berkeley National Laboratory’s Advanced Light Source (ALS) is displayed during55

a typical user run. While the horizontal beam size is maintained constant (spikes observed56

in both planes at the same time are perturbations from top-off injection occurring roughly57

twice a minute), the vertical beam size fluctuates due to changes in the magnetic field con-58

figuration of the various insertion devices (IDs), e.g. variable field undulators and wigglers.59

Although such vertical beam size fluctuations are below typical stability requirements of60

3GLSs, already today, at experiments that are highly sensitive to intensity fluctuations,61

such as scanning transmission x-ray microscopy (STXM) [16–19], scans that typically take62

several minutes at a single energy, will show both banding and pattern noise. The former,63

clearly visible in Fig. 1 (right), is caused by low-frequency variations in intensity (due to64

electron beam size changes at the source point) while the latter is the consequence of high65

frequency perturbations (e.g. vibrations of optical elements in the beamline). A typical66

STXM experiment involves quantifying contrast changes across several images acquired at67

different x-ray energies, but without a concurrent source intensity measurement, normal-68
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ization within a single image is not possible and normalization across several images is less69

precise. Likewise, since data acquisition time per pixel (≈ 1 ms) is very short compared to70

typical perturbations from ID configuration changes, such effects cannot be averaged out71

during the scan. Thus, banding will effectively determine the noise floor of the experiment.72

While tight control over the beamline and end station equipment along with advances in73

detector technology enable a noise floor below 1%, the data shown here indicates substan-74

tially larger noise caused by low-frequency electron beam size variations resulting from ID75

gap/phase motion which changes the magnetic field configuration in the ID.76

Common practice in state-of-the-art 3GLSs is to counteract ID gap/phase motion-induced77

perturbations on the electron beam through a two-pronged approach involving both local78

and global corrections: orbit correction (e.g. [20–22]) and optics correction whereby the lat-79

ter usually comprises linear optics correction (e.g. [21, 23–25]), correction of the coupling80

between horizontal and vertical planes (e.g. [24, 26–29]), and in some cases also nonlinear81

correction (e.g. [24, 30, 31]). Orbit and linear optics corrections are often implemented82

as both feedbacks (FBs) and feed-forwards (FFs) because static model based FF correc-83

tions alone are usually not capable of sufficiently correcting transient behavior arising from84

comparably fast ID gap/phase motion. Feed-forward corrections usually rely on a physics85

model (for which linear approximations are used and linear superposition is assumed) and/or86

beam-based measurements rendering look-up tables that describe required corrections for a87

specific ID gap and phase setting. Recording a look-up table has to be performed for each88

ID individually, requires ample dedicated machine time, and, because it is usually a lengthy89

measurement, is also susceptible to drift. Because of the large number of IDs in most 3GLSs90

and the scarcity of dedicated machine time, these look-up tables cannot be frequently re-91

measured. Hence, as the machine drifts (temperature, ground motion, tidal effects, etc.) the92

fidelity of the look-up table and thus of the FF correction tends to deteriorate. Feedback93

corrections attempt to counteract such drift, but often do not offer sufficient closed-loop94

bandwidth to remove perturbations over the entire desired range.95

In spite of the above mentioned correction schemes, residual ID-induced skew quadrupole96

errors (spurious focusing fields that render undesired coupling of motion in the transverse97

planes) result in vertical beam size variations in the storage ring (cf. Fig. 1, left). Low98

and medium energy light sources are especially susceptible to these errors due to the low99

beam rigidity and the prevalence of strong elliptically polarizing undulators (EPUs) [32].100
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As in most 3GLSs, the ALS performs coupling corrections for ID-induced skew quadrupole101

fields in a FF configuration whereby a large number of skew quadrupole coils can be excited102

to compensate for ID-induced skew components [33]. Look-up tables are on average re-103

recorded at most twice a year and for a typical EPU require an entire 8-hour machine shift.104

Furthermore, as DLSRs come online source beam sizes will shrink dramatically, while ID105

technology is advancing at comparably slower pace. We can assume that residual errors106

will remain comparable to present-day levels and therefore, size stability will deteriorate107

dramatically if a new approach to minimizing residual errors is not developed.108

A NEW APPROACH: MACHINE LEARNING AND NEURAL NETWORKS109

Recently, data driven methods have been applied to many different research areas. Specif-110

ically, neural networks (NNs) have proved to be most effective for nonlinear function fitting,111

both theoretically and empirically [37, 38]. Here, we propose a NN approach to predicting112

electron beam size as a function of arbitrary ID gap/phase configurations and employing this113

prediction to correct for perturbations thereby suppressing source size fluctuations. The NN114

can learn complex nonlinear relationships between ID settings and vertical beam size using115

large amounts of training data and advanced optimization techniques, which is a substantial116

improvement compared to the current approach based on linear optics and superposition.117

Control of the electron beam size exploits the fact that commonly 3GLSs use skew118

quadrupoles to correct betatron coupling and spurious vertical dispersion first, and then119

to excite a vertical dispersion wave which improves beam lifetime within the boundaries120

of the diffraction limit [26, 34–36]. Such a dispersion wave generates vertical emittance (a121

global and conserved quantity) which results in a dominating contribution to the vertical122

source size at most source points. For these studies we can therefore slightly adjust the exci-123

tation of this vertical dispersion wave to control the vertical emittance and thus the vertical124

size at the source points1. At the ALS, 32 skew quadrupoles are included in the generation125

of the dispersion wave. We shall refer here to the dispersion wave parameter (DWP) as the126

scaling parameter describing our small relative adjustment of the standard skew quadrupole127

excitation pattern (≤ 15% of the overall vertical dispersion wave amplitude).128

1 As an example, Fig. 5 in [33] shows various vertical beam size contributions in a typical ALS ID source

point. The contribution from ID-induced betatron coupling (canceled by skews) is smaller than that

generated by the dispersion wave (excited by skews).
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We demonstrate here that, given the ID gap/phase settings and DWP, the vertical source129

size can be predicted to within 0.4% rms (0.2µm at the diagnostic beamline) with NNs. To130

train the NN model, high quality input data needs to be collected. For this purpose, beam131

sizes (as measured at e.g. a diagnostic beamline) along with all relevant beam parameters132

and ID settings have to be captured at high data rates. At the ALS we have so far chosen133

an acquisition rate of 10Hz (faster than beam size measurement update rates and typical134

ID gap/phase variations) at which we collect data for roughly 35 independent channels.135

Input and output data is normalized with mean 0 and standard deviation 1. The NNs are136

implemented using Keras with Tensorflow backend [39] using mean squared error as the137

loss function. The models are trained using the back-propagation method [40] employing138

the Adam optimizer [41] for 50 epochs. The learning rate is set to 10−3 with a decay139

multiplier of 0.8 after each epoch for convergence. We screened a variety of NN architectures,140

regularization methods and activation functions. Deeper (i.e. more hidden layers) and wider141

(i.e. more nodes per layer) neural networks can generally provide better fitting on training142

data; however, a larger model is prone to overfitting and requires larger computational143

resources for both training and correction stages. We choose a NN containing three hidden144

layers with sizes 128, 64, 32, respectively, with the ReLU activation function [42]. A small L2145

regularization with λ = 10−4 and a dropout with rate 0.2 was also used. The L2 regularizer146

penalizes the large weights in neural networks and the dropout reduces the “co-adapting”147

between the weights [43], which is helpful to improve the generalizability of the model.148

These parameters are optimized through cross-validation [44], which is commonly used for149

model selection. The training takes 20 minutes on a single desktop-class CPU. The root150

mean squared error (RMSE) for training data is 0.16µm while the validation RMSE is151

0.20µm. We also implemented a conventional linear and quadratic regression model by152

assuming that beam size can be approximated by linear or quadratic functions of the ID153

settings. The best training and validation RMSEs are 0.57µm and 0.62µm, respectively.154

The RMSEs appear to saturate towards orders 5–6 indicating further increase of polynomial155

order cannot improve the prediction. Figure 2 shows a visualization of the prediction on a156

segment of the validation dataset. The NN approach clearly outperforms the polynomial157158

regressions. One of the possible reasons is that the NN can capture the interactions between159

IDs much more flexibly compared to the conventional regression method. The NN model has160

been proven to be effective for beam size prediction with RMSE 0.2µm. Given a target beam161
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FIG. 2. Measured vertical beam size and predictions from polynomial regression and NN (top).

Difference between predicted and measured vertical beam sizes (bottom). In terms of RMSE, the

NN outperforms the regression models by roughly a factor 3.

size and the current combination of ID settings, we pre-screen 100 possible DWPs between162

−0.06 to 0.06 uniformly using the NN. Evaluating 100 DWPs takes only milliseconds on a163

single CPU, which enables us to implement this control at > 10Hz. We select the DWP164

which renders the beam size closest to the target. The selected DWP value is used in a165

FF manner to adjust the skew quadrupole excitation pattern that generates the vertical166

dispersion wave. The experimental result is shown in Fig. 3. We turned FF control on167168

and off repeatedly to verify the effectiveness of our beam size stabilization approach. In this169

example, when the FF is off, the variation of vertical beam size as measured at the diagnostic170

beamline is 1.5µm rms (3%) and 7.5µm peak-to-peak (15%). When the NN-based FF is171

turned on, this variation decreases to 0.2µm rms (0.4%) and 1.9µm peak-to-peak (4%). For172

comparison with the NN-based FF, we also implemented a simple FB loop relying solely on173

beam size measurement as an input and returning a DWP requested for beam size correction.174

During calm periods with only very slow ID configuration changes, the FB performance was175
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capable of delivering similar rms stabilization as the NN-based FF. However, as soon as ID176

configurations changed at rates typically observed during experiments (e.g. 4mm/s vertical177

gap motion and 16.7mm/s horizontal shifts), the FB failed. Depending on PID tuning178

it was either not capable of stabilizing against transients (leading to 3µm peak-to-peak179

vertical beam size variation, i.e. 6%) or it became unstable. The NN-based FF approach180

outperforms the FB method primarily for two reasons. First, the FF approach is agnostic to181

the current beam size. Implementing this FF does not require beam size as an input, hence182

adjusting beam size ahead of the measurement and avoiding measurement delay. Second,183

the NN-based FF does not have to adjust the DWP in a continuous fashion employing a184

series of small steps. It can instantaneously adjust the DWP by any large amount required185

to maintain stable beam size without overshoot.186

So far, these experiments have revealed that the NN-based FF can stabilize the vertical187

beam size at the diagnostic beamline. It is, however, a priori not at all evident that stabilizing188

the source size at one point in the storage ring is equivalent to stabilizing the beam at the189

relevant source points. We originally chose to act on the beam size by means of the vertical190

dispersion wave, since it adjusts the vertical emittance, a global and conserved property, and191
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we can therefore expect it to stabilize globally in spite of training the NN using a localized192

measurement. In order to demonstrate that this interpretation is correct, we conducted193

experiments at ALS beamline 5.3.2.2, which is the most sensitive ALS beamline in terms194

of vertical beam size [18, 19]. Figure 4 shows STXM scan data taken at 5.3.2.2 while195

ID configurations in the rest of the ALS were continuously changing. The measurement196
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FIG. 4. STXM images from ALS beamline 5.3.2.2 at 390 eV. Left: scan performed while the NN-

based FF was on (0.8% rms intensity variation). Right: scan performed without any ID motion in

ALS (0.5% rms intensity variation).
197

198

data reveals that the stabilization observed at the diagnostic beamline can indeed also be199

observed in the STXM scans at this sensitive beamline. A comparison of Fig. 4 (left) to200

Fig. 1 (right) demonstrates a 4-fold reduction in noise at the STXM beamline from the201

NN-based FF. These STXM measurements have also revealed that this stabilization of low-202

frequency perturbations does not occur at the expense of exciting any high-frequency noise.203

Finally, Fig. 4 also reveals that the residual noise from ID configuration changes now lies204

only 60% above the noise floor of the beam line. We expect to further reduce this residual205

by increasing the beam size measurement refresh rate and consequently the NN-based FF206

update rate.207

ONLINE STABILIZATION & RETRAINING208

With the above determined performance at the most sensitive experiments, the NN-209

based FF can be put into operation during regular user experiment runs. Several user runs210
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employing the NN-based FF so far have demonstrated that the vertical beam size can be211

stabilized to the sub-micron (< 2%) rms level over the course of many days. One key212

advantage of this NN-based stabilization approach lies in the fact that data acquisition for213

retraining of the NN can be continuously carried out even while the NN-based FF is active214

during a regular user run. Under online retraining we understand continuous retraining215

of the NN (with machine data affected by the online NN) effectively allowing the NN to216

constantly adapt to a drifting machine, but also to changes in the ID configuration space217

occupied by experimenters during run periods.218

Here, we demonstrate online retraining by combining data collected during a dedicated219

machine shift (for which the initial NN had been trained) with data collected during a 3-220

day user period with NN-based FF running. For online retraining, the user run data was221

randomly down-sampled to 1/15 of its original size to balance sample sizes. Retraining the222

NN using both data sets requires just 15 minutes on a desktop-class CPU. After verifying223

that predictions of the online-retrained NN better matched measured beam sizes than those224

coming from the original static NN, the FF was reconfigured to thenceforth rely on the225

online-retrained NN. An example of such a run is shown in Fig. 5. The observed level of226
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FIG. 5. Left: Beam sizes as measured at ALS diagnostic beamline 3.1 during user operations using

a FF based on an online-retrained NN (0.4% rms variation in the vertical). Right: STXM scan

from ALS beamline 5.3.2.2 (0.6% rms intensity variation) recorded during the same period.
227

228

vertical source size stability at diagnostic beamline 3.1 over the course of several days using229

the online-retrained NN is <0.3µm rms (<0.5%). This indicates a factor two improvement230

over the originally applied static NN. In this case again, STXM scans confirm that this also231
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leads to a global stabilization of source points (cf. Fig. 5 right). From these experiments232

we conclude that online retraining ensures that source size can be stabilized over prolonged233

periods of time without requiring dedicated machine time to retrain the NN or manual inter-234

vention by an expert. Furthermore, we recently demonstrated that even after a several-day235

interruption (e.g. scheduled maintenance) the previously employed online-retrained NN can236

upon startup again be put into FF operation without observing a reduction in performance.237

Online retraining thereafter can continue to ensure the employed NN stays up-to-date. For238

future operation, we expect to online retrain on-the-fly whenever indicated by a sustained239

increase in error between NN-based beam size prediction and online measurement beyond a240

predefined threshold.241

CONCLUSION & OUTLOOK242

We have demonstrated that machine learning can be employed to render NNs that en-243

able vertical source size stabilization at storage ring light sources without requiring any244

new instrumentation. This model-independent method ensures levels of stability roughly245

one order of magnitude better than previously observed using model-based FFs and FB246

schemes. We have also demonstrated that such a NN-based FF remains effective over pro-247

longed periods of time, including shutdown intervals, by employing online retraining. The248

achieved level of source size stability results in perturbations at the most sensitive experi-249

ments quickly approaching the noise level of the end station. Furthermore, the demonstrated250

sub-micron/sub-percent level of source size stability already today fulfills requirements for251

future 4GSRs thereby allowing experiments at these new sources to fully exploit the ultra-252

high brightness and transverse coherence provided by DLSRs. In the future, we plan to253

investigate if a NN-based FF can replace model-based FFs entirely, thus freeing up on the254

order of one hundred hours of dedicated machine time a year, which are nowadays still re-255

quired to re-record look-up tables. First proof of principle experiments have been carried256

out and show promising results, including the exciting possibility to extract physics model257

information from a NN, eg. deriving ID perturbations from a NN trained on a machine258

without ID FFs.259
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