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Abstract 

A causal illusion occurs when people perceive a causal 
relationship between two events that are not contingent on each 
other. This experiment explored how this illusion varies when 
people reason diagnostically (i.e., in an effect-to-cause 
direction). Participants learnt about an illusory cause-effect 
relationship in which the probability of the cause and the 
probability of the effect were orthogonally manipulated to be 
either high or low. Participants learnt either predictively (i.e., 
cause-to-effect) or diagnostically, and at test had to make two 
causal judgements that encouraged either predictive (cause-to-
effect) or diagnostic (effect-to-cause) reasoning. Diagnostic 
reasoning at test increased the strength of the cause density bias 
and decreased the strength of the effect density bias. It also 
decreased causal ratings, but only after predictive learning. 
Explaining these results requires an understanding of how the 
process of causal learning can impact later reasoning; 
something the current literature is yet to provide.  

Keywords: diagnostic reasoning; causal reasoning; causal 
illusion; cause density; effect density 

Introduction 

The contingency between two events is crucial for assessing 

causality. For instance, if a drug makes patient recovery more 

likely than when no treatment is administered, we have 

grounds to believe the drug causes recovery. Learners are 

usually good at detecting contingencies for causal 

judgements (Allan & Jenkins, 1983; Dickinson et al., 1984; 

Wasserman et al., 1993), and peoples’ opinions about 

common health beliefs correlate with their subjective 

perceptions about cause-effect contingencies (Chow et al., 

2021). However, people often report causal relationships 

when there is no contingency between a putative cause and 

its presumed effect (Alloy & Abramson, 1979; Jenkins & 

Ward, 1965); these are called causal illusions (Matute et al., 

2015). Causal illusions are linked to potentially harmful 

beliefs in pseudoscience and pseudomedicine (MacFarlane et 

al., 2020; Torres et al., 2020); thus, it is important to 

understand the different situations in which they emerge. 

Although causes must precede their effects, sometimes our 

reasoning about causal relationships occurs in the opposite 

direction; we first consider an outcome and then speculate 

what the responsible causal entity was. That is, rather than 

reasoning predictively – in a cause-to-effect direction – we 

reason diagnostically. For example, we may ponder the 

reason behind our spouse’s bad mood, or we may feel sick 

after a meal and consider which of the ingredients is most 

likely at fault. Although there is evidence that diagnostic 

reasoning changes our perception of causal relationships 

(Fernbach et al., 2011; Meder et al., 2014; Tversky & 

Kahneman, 1982), how it affects causal illusions has not been 

extensively explored. 

The goal of this study was to determine how diagnostic 

reasoning affects causal illusions. We first detail how causal 

illusions are assessed, and what causes them. We then explore 

how causal illusions may be affected by diagnostic reasoning, 

before introducing the current experiment. 

The Assessment and Causes of Causal Illusions  

In contingency learning experiments, participants observe a 

series of learning trials in which a potential cause and effect 

are either present or absent (although see Chow et al., 2019, 

for a causal illusion demonstration with continuous 

outcomes). This gives rise to four different trial types, 

depicted in table 1. 

 
Table 1: Contingency Table as a Function of Whether the 

Cause and Effect are Present or Absent 

 

 Effect present Effect absent 

Cause present a b 

Cause absent c d 

 

The frequencies of each trial type can be used to estimate 

contingency via the ΔP metric (Allan, 1980; see Cheng, 1997; 

Griffiths & Tenenbaum, 2005 for alternative normative 

standards). ΔP indexes the change in probability of the effect 

when the cause is present, relative to when the cause is 

absent: 

Equation 1. 

∆P = P(E|C) – P(E|~C) = [a/(a+b)] – [c/(c+d)] 

 

Here, a, b, c and d refer to the frequencies of the four trial 

types in table 1. A positive contingency (∆P > 0) indicates 

that the cause increases the probability of the effect. A 

negative ∆P indicates the cause makes the effect less likely. 

∆P = 0 indicates no relation between the two events. Thus, a 

causal illusion occurs when someone makes a non-zero 

causal judgement (usually positive) even though ΔP = 0.  
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Participants’ causal judgements are prone to deviating 

from ∆P under certain conditions. Causal judgements tend be 

higher when the effect is present on most trials (i.e., a and c 

trials; Allan & Jenkins, 1983; Alloy & Abramson, 1979). 

Likewise, causal judgements tend to be higher when the 

cause is present on most trials (i.e., a and b trials Matute et 

al., 2011; Torres et al., 2020). Termed the effect density bias 

and the cause density bias, respectively (Perales et al., 2017), 

these effects suggest that a trials are important for driving 

causal illusions. When two independent events occur 

frequently, their inevitable co-occurrence leads to causal 

illusions (Matute et al., 2015). 

Blanco et al. (2013) compared the cause and effect density 

biases. In experiment 1, while holding ΔP = 0, they 

orthogonally manipulated the probability of the cause and the 

probability of the effect to be either high or low (see table 2). 

These factors interacted; when the density of one was already 

high, there was a heightened effect of increasing the other. 

 

Table 2: Experimental design and trial type frequencies 

used in Blanco et al. (2013, Experiment 1) 

 

Group Cause 

Density 

Effect 

Density 

Trial Type 

Frequencies 

HighC-

HighE 

High 

(.80) 

High 

(.80) 

64 a, 16 b, 16 c, 4 d 

HighC-

LowE 

High 

(.80) 

Low 

(.20) 

16 a, 64 b, 4 c, 16 d 

LowC-

HighE 

Low 

(.20) 

High 

(.80) 

16 a, 4 b, 64 c, 16 d 

LowC-

LowE 

Low 

(.20) 

Low 

(.20) 

4 a, 16 b, 16 c, 64 d 

Note. Group names refer to cause density (C) and effect 

density (E), whose values are shown in the second and third 

columns, respectively.  

 

Blanco et al. found that the probability of the effect was a 

stronger determinant of causal illusions; comparing HighC-

LowE and LowC-HighE groups, the LowC-HighE group 

gave higher causal judgements. These groups had the same 

number of a trials (see table 2), but the LowC-HighE group 

had more c trials, whereas the HighC-LowE group had more 

b trials. These findings indicate b trials influence judgements 

more heavily than c trials, suggesting people ascribe 

relatively little weight to trials where the cause is absent. The 

findings concur with broader literature suggesting that 

judgements follow the inequality a > b > c > d (Perales et al., 

2017; Perales & Shanks, 2007; Wasserman et al., 1993). 

Theoretical Accounts of Causal Illusions and 

Implications for Diagnostic Reasoning 

Theoretical accounts of causal illusions can be divided into 

associative accounts of causal learning, and 

statistical/inferential accounts of causal reasoning (Pineño & 

Miller, 2007; Vadillo & Matute, 2007).  

Associative accounts explain casual learning via the 

automatic development of an associative link between mental 

representations of the cause and effect, which strengthens 

each time the organism experiences a co-occurrence of the 

two events (Chapman & Robbins, 1990; Wasserman et al., 

1993). These accounts generally explain causal illusions as 

the result of a transient association that develops due to 

cause-effect co-incidences, and which disappears given 

enough experience.   

Statistical and inferential reasoning accounts explain causal 

reasoning in terms of statistical rules which describe the 

mental processes people use to form causal judgements 

(Perales et al., 2017). These accounts explain causal illusions 

either as the result of a rational or quasi-rational reasoning 

process when viewed within an alternative normative 

framework to ΔP (Cheng, 1997; Griffiths & Tenenbaum, 

2005; Hattori & Oaksford, 2007), or due to heuristics used to 

form causal judgements that lead to the a > b > c > d cell 

weighting bias (Mandel & Vartanian, 2009; White, 2003).  

Diagnostic reasoning presents a significant challenge to 

both approaches because they make no explicit attempt to 

explain why diagnostic causal judgements should differ from 

predictive causal judgements. Associative accounts are 

largely concerned with how covariation information 

concerning two events is acquired by the organism via 

associative link formation; less attention is paid to how these 

associations may be transformed into causal judgements 

(Shanks, 2007; although see Vadillo & Barberia, 2018; also 

see Vadillo & Matute, 2007), whether these judgements are 

diagnostic or otherwise. By appealing to higher-order 

reasoning processes used to form causal judgements, 

statistical and inferential reasoning accounts appear better 

poised to explain how diagnostic reasoning may affect causal 

illusions; yet there seems to be no account that explicitly 

addresses how diagnostic reasoning may alter the statistical 

rules used to form causal judgements. 

Nonetheless, literature comparing predictive inferences 

(i.e., estimating the likelihood an outcome has occurred, 

given a potential cause has occurred) with diagnostic 

inferences (i.e., estimating the likelihood a that a specific 

cause is present, given its effect has occurred) suggests that 

diagnostic reasoning may decrease causal illusions. 

Diagnostic inferences are thought to be less intuitive because 

mental models of causation run forward in time (Tversky & 

Kahneman, 1982). This disfluency could encourage people to 

think more analytically and deliberatively, such that they 

produce less biased judgements (Alter et al., 2007; Evans, 

2008; Sloman, 1996; Tversky & Kahneman, 1982). 

Additionally, diagnostic inferences are more sensitive to 

alternative causes than predictive inferences, such that the 

former often produce more normative causal inferences 

(Fernbach et al., 2010, 2011).  

Consequently, diagnostic reasoning could decrease causal 

illusions by encouraging participants to reason more 

deliberatively and attend to alternative causes (i.e., cause-

absent trials). However, empirical evidence for this is 

unclear. Moreno-Fernández and Matute (2020) did not find 
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any differences between a predictive and diagnostic causal 

judgement question when assessing causal illusions. 

Interestingly, White (2003) found that a diagnostic causal 

judgement (which he refers to as a ‘passive-wording’ causal 

question) decreased the weighting of b trials, and increased 

the weighting of d trials, such that the cell weighting was a > 

b ≈ c ≈ d. The equal weighting of b and c trials suggests that 

diagnostic reasoning may result in comparable cause density 

and effect density biases. Whether this would also decrease 

causal illusions, however, is unclear; although there were no 

differences in causal ratings on average across the questions, 

they were tested across a range of contingencies rather than 

focusing on ΔP = 0 specifically. 

Overall, previous research on causal inferences suggests 

that diagnostic reasoning may reduce causal illusions. 

However, the little research that has examined how 

diagnostic reasoning affects causal illusions and contingency 

judgements more broadly does not support this. Instead, it 

suggests that the weighting of the cause density and effect 

density bias may be modulated by diagnostic reasoning. Both 

issues are explored in the current study. 

Aims and Hypotheses 

The aim of the current study was to determine how diagnostic 

reasoning affects causal illusions in contingency learning. 

Participants determined if a fictitious drug caused patient 

recovery from an unspecified disease. We orthogonally 

manipulated the cause density and the effect density to either 

be high (.75) or low (.25) while holding ∆P = 0 across all 

groups (see table 3).  

 

Table 3: Experimental design and trial type frequencies in 

the current study 

Group Cause 

Density 

Effect 

Density 

Trial Type 

Frequencies 

HighC-

HighE 

High 

(.75) 

High 

(.80) 

27 a, 9 b, 9 c, 3 d 

HighC-

LowE 

High 

(.75) 

Low 

(.20) 

9 a, 27 b, 3 c, 9 d 

LowC-

HighE 

Low 

(.25) 

High 

(.80) 

9 a, 3 b, 27 c, 9 d 

LowC-

LowE 

Low 

(.25) 

Low 

(.20) 

3 a, 9 b, 9 c, 27 d 

Note. Group names refer to cause density (C) and effect 

density (E), whose values are shown in the second and third 

columns, respectively. Learning direction is omitted as a 

grouping factor as it did not change the trial type frequencies.  

 

At test, participants answered a standard causal judgement 

question used in many causal illusion experiments (Barberia 

et al., 2021; Matute et al., 2015). Specifically, participants 

were asked: “On a scale from -100 to 100, to what extent do 

you think the drug was effective for patient recovery?”. 

Above the text was the stimulus image used during training 

for drug administration; below the question was a visual 

analogue scale ranging from -100 (effectively worsens 

recovery) to +100 (effectively improves recovery). Since the 

drug was the focus of this question, we will refer to this as 

the cause-framed question. Importantly, participants 

answered a second question: “on a scale from -100 to 100, to 

what extent do you think patient recovery was due to the 

effectiveness of the drug?”. Above the question was the 

stimulus image for patient recovery used during training; 

below was a visual analogue scale ranging from -100 

(recovery much worse with drug) to 100 (recovery much 

better with drug). This was intended to encourage diagnostic 

reasoning (i.e., from effect-to-cause) by making recovery the 

focus of the question, which appeared underneath the cue for 

recovery; we refer to this as the effect-framed question.  

We expected lower causal ratings for the effect-framed 

question. Additionally, White’s (2003) findings would 

suggest that the effect-framed question might decrease the 

strength of the effect density bias relative to the cause density 

bias. This could manifest as 1) an interaction of question 

framing with cause density, such that the cause density bias 

is more pronounced with the effect-framed question relative 

to the cause-framed question, and/or 2) an interaction with 

effect density, such that the effect density bias is less 

pronounced with the effect-framed question relative to the 

cause framed question.  

Additionally, the order in which participants learnt about 

the putative cause-effect relationship was varied between-

subjects. Half learnt predictively: On each trial, they first 

observed whether the patient received the drug and then 

predicted whether the patient recovered. Half learnt 

diagnostically: They predicted whether a patient had been 

administered the drug based on recovery information. This 

was done to determine whether diagnostic learning affected 

causal judgements; however, the focus of this paper is on the 

effect of diagnostic reasoning at test. Although we report all 

analyses for completeness, the effects of learning direction on 

causal judgements will not be interpreted unless such effects 

involve an interaction with reasoning direction. 

Method 

Participants 

The sample was 270 (Mage = 19.69, SD = 3.47) undergraduate 

psychology students from the University of Sydney. They 

were randomly allocated to one of eight conditions according 

to time of arrival (n = 33-35 each group). 

Stimuli and Apparatus  

The experiment was programmed using the Psychophysics 

Toolbox extension for MATLAB (Brainard, 1997; Pelli, 

1997). On cause-present trials, drug administration was 

represented as an orange pill bottle with the drug name 

‘Serizone’ underneath; on cause-absent trials this image was 

greyed out, and ‘no Serizone’ was written underneath. On 

effect-present trials, patient recovery was represented as a 

man standing next to a wheelchair with their arms extended 
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triumphantly with ‘patient recovered’ written underneath; on 

effect-absent trials, a greyed-out image of the same man in a 

wheelchair was presented with ‘patient did not recover’ 

written underneath. 

Design 

The experiment was a 2 (cause density) x 2 (effect density) x 

2 (learning direction) design. Cause density and effect density 

were orthogonally manipulated to be either high (.75) or low 

(.25) by varying the number of a, b, c and d trials, while 

holding ∆P = 0 across all groups (see table 3). The two 

dependent variables were the ratings for the cause-framed 

and effect-framed questions, which we used to investigate the 

influence of reasoning direction at test. These formed a 

within-subjects variable that we will refer to as framing. 

Procedure  

Participants were asked to imagine they were a medical 

researcher investigating the use of a fictitious drug Serizone 

for treating a new, unspecified disease caused by a virus. 

Their job was to determine the effectiveness of Serizone by 

viewing medical records of patients suffering the disease, 

some of which were treated with Serizone. They completed 

48 learning trials, each representing a medical record from a 

different patient. On each trial they were either presented 

with information about Serizone administration and asked to 

predict whether the patient recovered (predictive learning); or 

presented with information about patient recovery and asked 

to predict whether the patient was administered Serizone 

(diagnostic learning). They then answered the cause-framed 

and effect-framed questions in randomized order. 

After causal judgements, participants estimated the 

frequency of a, b, c and d trials and rated how important each 

trial type was for causal judgements. These were included to 

assess the impact of learning direction and were unrelated to 

our hypotheses about question framing; consequently, they 

are not discussed further in this proceeding. 

Results 

 Figure 1A and 1B present causal ratings for the predictive 

and diagnostic learning groups, respectively. From these 

panels the density biases and their interaction are apparent: 

causal judgements are highest when both cause density and 

effect density is high and are much lower when even one of 

these densities is low. Panels 1C-E present the difference in 

causal ratings between the cause-frame and effect-framed 

question as a function of either learning direction (1C), cause 

density (1D), or effect density (1E). Positive scores in these 

panels indicate lower causal ratings for the effect-framed 

question relative to the cause-framed question. From these 

panels, it appears that the effect-framed question elicits lower 

causal ratings after predictive learning, when cause density is 

low, and when effect density is high. 

A four-way mixed model ANOVA was run using cause 

density, effect density, learning direction and framing as 

factors. There was a significant effect of cause density, 

F(1,262) = 26.94, p < .001, 𝜂𝑝
2 = .093, and a significant effect 

of effect density, F(1,262) = 18.87, p < .001, 𝜂𝑝
2 = .067; in 

both instances, ratings were higher when the density was high 

rather than low. These factors interacted, F(1,262) = 36.49, p 

< .001, 𝜂𝑝
2 = .122. Simple effects analysis showed that when 

cause density was low, mean ratings did not significantly 

differ with effect density, F(1,262) = 1.44, p = .231, 𝜂𝑝
2 = 

.005; but when cause density was high, mean causal 
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Figure 1:  Mean Causal Ratings. Panel A shows 

ratings for the cause-framed and effect-framed question 

as a function of each predictive learning group. Panel B 

shows the same information for the diagnostic learning 

groups. Group names refer to cause density (C) and 

effect density (E), and whether it was set to high (.75) or 

low (.25). The bottom three panels plot the decrease in 

causal ratings elicited by the effect-framed question as a 

function of C) learning direction, D) cause density, and 

E) effect density. Cause ratings and effect ratings refer 

to ratings for the cause-framed and effect-framed 

question, respectively. ‘Pred’ and ‘Diag’ in panel C 

refer to predictive and diagnostic learning, respectively. 
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judgements were higher when effect density was high rather 

than low, eliciting a simple main effect of effect density 

F(1262) = 53.93, p < .001, 𝜂𝑝
2 = .171.  

As expected, the main effect of framing was significant, 

F(1,262) = 7.96, p = .005, 𝜂𝑝
2  = .029, such that average 

ratings were lower for the effect-framed question than the 

cause-framed question; however, this was qualified by an 

interaction with learning direction, F(1,262) = 6.17, p = .014, 

𝜂𝑝
2 = .023. Simple effects analysis revealed a significant 

simple main effect of framing for the predictive learning 

group, F(1,262) = 14.29, p < .001, 𝜂𝑝
2 = .052, such that ratings 

were lower for the effect-framed question relative to the 

cause-framed question (see figure 1C); but ratings did not 

significantly differ after diagnostic learning, F(1,262) = .06, 

p = .814, 𝜂𝑝
2 = .000. Framing also significantly interacted with 

effect density, F(1,262) = 10.61, p = .002, 𝜂𝑝
2  = .039, such 

that the effect density bias was less pronounced with the 

effect-framed question relative to the cause-framed question; 

and framing significantly interacted with cause density, 

F(1,262) = 3.985, p = .047, 𝜂𝑝
2  = .015, such that the cause-

density bias was more pronounced with the effect-framed 

question relative to the cause-framed question. Notably, the 

larger cause density bias appears to be due to a difference in 

ratings for the two questions in the low cause density groups 

(see figure 1D); whereas the smaller effect density bias 

appears to be driven by a difference in ratings for the high 

effect density groups (see figure 1E).  

There were no other significant effects: the main effect of 

learning direction was not significant, and did not 

significantly interact with cause or effect density; there were 

no significant three-way interactions; and the four-way 

interaction was not significant (largest F = 1.65, p = .201, 𝜂𝑝
2 

= .006). 

Discussion 

The aim of this study was to investigate the effect of 

diagnostic reasoning on causal illusions. As expected, 

encouraging diagnostic reasoning at test via an effect-framed 

question led to a decrease in causal ratings; however, this 

only occurred after predictive learning. Relative to the cause-

framed question, the effect-framed question increased the 

magnitude of the cause density bias and decreased the 

strength of the effect density bias. We will now explore the 

implications of each of these findings. 

Diagnostic Reasoning and the Density Biases 

Although our results indicate that the effect-framed question 

increased the cause density bias and weakened the effect 

density bias, Moreno-Fernández and Matute (2020) found no 

influence of reasoning direction on the density biases. In their 

experiment, participants could choose which data they 

sampled based on whether a drug was administered (cause 

group) or whether an allergic reaction occurred (effect 

group). As such, participants controlled the frequency of one 

event; the other was set to 75%. Since participants in both 

groups chose positive instances of the event (i.e., cause 

present or effect present) more than 50% of the time on 

average, participants in both groups were exposed to 

relatively high densities of both events. Such high densities 

could have obscured variation in these biases with diagnostic 

reasoning. Alternatively, when orthogonally manipulating 

each trial type, White (2003) found the cell weight bias a > b 

≈ c ≈ d for diagnostic causal judgements. The relative 

equality of b and c trial weighting is reflective of the current 

study, as it indicates an increase in the weighting of the cause 

density bias relative to the effect density bias. This suggests 

that modulation of the density biases can be observed when 

there is sufficient variation in cause and effect density. 

Given the distinct pattern of causal ratings elicited by the 

effect-framed question, it is an interesting issue as to whether 

current theory on causal reasoning can account for these 

findings. As mentioned earlier, associative accounts do not 

speak directly to our results since they do not focus on how 

reasoning demands at test affect causal judgements (Pineño 

& Miller, 2007). Instead, we consider how statistical and 

inferential reasoning approaches may accommodate our 

results. We consider two approaches; one which assumes 

normative causal reasoning, and one which assumes that 

heuristics are used to generate causal judgements. 

From a normative perspective, one possibility is that the 

effect-framed question requires participants to make a causal 

attribution judgement (Cheng & Novick, 2005, equation 4). 

Specifically, the question asks how responsible the cause was 

for the observed probability of the effect. The prevalence of 

the cause and effect normatively influence judgements 

according to the following formula: 

Equation 2. 

P(C − alone → E|E) =
P(C) ∗ ∆P

P(E)
 

 

Where P(C-alone→E|E) is the probability that the effect is 

due to the focal cause alone, given the effect’s presence. If 

we assume that participants have a biased method for 

estimating contingency in place of ∆P, then this equation may 

be compatible with the current study’s findings: for a given 

estimate of contingency, ratings for the effect-framed 

question should be higher when cause density is high and 

effect density is low. Nonetheless, one would still need an 

account as to why the participants failed to accurately 

estimate ∆P. A variation of this measure uses the causal 

power metric (Cheng, 1997) instead of ∆P (Cheng and 

Novick 2005, equation 3). Since a discussion of causal power 

is beyond the scope of this study, we have used this formula 

instead. 

A heuristic reasoning approach to causal illusions can also 

accommodate the modulation of the density biases by the 

effect-framed question. Specifically, the weighted positive 

test strategy (WPS; Mandel & Vartanian, 2009) model could 

provide an explanation. It assumes that people have a 

positive-test bias – that is, a preference to test hypotheses by 

searching for data consistent with it (Leventhal et al., 1994) 

– in relation to two tests for causality. The first is that the 

cause brings about the effect – a hypothesis test – which leads 
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to weighing a and b trials and requires predictive reasoning. 

The second test is that the effect is due to the cause – a target 

test – which leads to weighing a and c trials and requires 

diagnostic reasoning. The combination of these tests leads to 

a > b = c > d trial weighting. Crucially, the b > c inequality is 

obtained by assuming the hypothesis test is weighted more 

due to people’s preference for predictive reasoning (Tversky 

& Kahneman, 1982). Thus, this model could be extended to 

account for our current results by assuming that the weighting 

of these tests varies with the demands imposed by the 

wording of causal judgement questions. Specifically, the shift 

towards a c > b trial weighting for the effect-framed question 

could be because people perceive the target test as more 

relevant when answering it. An interesting avenue for future 

research would be to determine whether the modified WPS 

model or the causal attribution equation better account for 

causal ratings elicited by the effect-framed question.  

Diagnostic Reasoning and Learning Direction 

The effect-framed question was hypothesised to decrease 

causal ratings on the basis that diagnostic reasoning is 

considered less intuitive (Fenker et al., 2005; Tversky & 

Kahneman, 1982) and more sensitive to the presence of 

alternative causes (Fernbach et al., 2011). It seems unlikely 

that the current results are due to the effect-framed question 

encouraging the consideration of alternative causes. This is 

because the effect-framed question only elicited lower causal 

ratings after predictive learning. If anything, a diagnostic 

learning phase would make alternative causes of recovery 

more salient; yet cause-framed and effect-framed ratings did 

not significantly differ for this group.  

Rather, we believe our results are reflective of the fact that 

diagnostic reasoning is less intuitive, with the proviso that 

learning experience may change whether diagnostic causal 

judgements are considered unintuitive. Specifically, having 

half the participants learn the putative cause-effect 

relationship diagnostically may have familiarised them with 

diagnostic reasoning about the relationship, such that they did 

not find the effect-framed question unintuitive. This would 

explain why diagnostic learners did not give decreased 

ratings for the effect-framed question, while the predictive 

learners did. As such, these results may reflect a disfluency 

effect, whereby participants give lower causal ratings when 

reasoning in an unfamiliar direction. 

 Although a disfluency effect in causal reasoning is 

generally consistent with the notion that causal illusions are 

due to higher-order reasoning processes, there appears to be 

no statistical or inferential reasoning account that explicitly 

captures this phenomenon. The WPS model, for example, 

cannot account for this finding, even if we assume that the 

weighting of the target and hypothesis test change based on 

the direction of learning and/or reasoning. Since event 

densities were counter-balanced across conditions, weighing 

one test over another should not change mean causal ratings 

when averaged across cause and effect density; any increase 

in one condition would be cancelled out by a decrease in the 

other. Likewise, assuming that participants responded to the 

effect-framed question by providing a causal attribution 

judgement also does not explain this interaction. Producing a 

causal judgement according to equation 2 would yield the 

same output irrespective of learning direction. More broadly, 

statistical and inferential reasoning accounts do not address 

how covariation information is acquired by organisms; 

rather, these accounts simply specify how such information 

is transformed into causal judgements (Perales et al., 2017). 

Consequently, these accounts struggle to explain why the 

direction of learning would impact the reasoning process that 

transforms the acquired information into causal judgements. 

Considerations for Future Research 

The current study manipulated question framing within-

subjects. Similar within-subject manipulations have been 

used to explore the effect of test question phrasing since 

having participants answer both questions encourages them 

to interpret the meaning of each question in its intended 

manner (Matute et al., 1996). Nonetheless, it would be 

interesting to determine if the effects of question framing 

persist when manipulated between-subjects. 

Disfluency manipulations are thought to debias reasoners 

by triggering analytic reasoning (Alter et al., 2007; Gervais 

& Norenzayan, 2012). Nonetheless, it is possible that 

predictive learners gave lower ratings for the effect-framed 

questions due to uncertainty associated with the disfluency of 

the question, rather than due to more normative reasoning. 

Future research could resolve this issue by including a 

condition in which there is a contingency between the 

putative cause and outcome. Contingency overestimations 

are most pronounced at null contingency (Blanco et al., 

2015); otherwise, causal judgements tend to approximate ∆P 

reasonably well (Dickinson et al., 1984; Wasserman et al., 

1993). Therefore, if the decrease in causal ratings is due to a 

debiasing effect, then this decrease should be less pronounced 

at positive contingencies since causal ratings for the cause-

framed question should already approximate the actual 

contingency. Indeed, this manipulation has been used to 

explore other debiasing measures for causal illusions (Díaz-

Lago & Matute, 2019a, 2019b). 

Conclusion 

Causal illusions have been linked to potentially harmful 

beliefs, such as belief in pseudoscience and pseudomedicine 

(MacFarlane et al., 2020; Torres et al., 2020). Consequently, 

this study fills an important gap by investigating how the 

illusion varies when people are required to reason 

diagnostically. Our results reveal that the impact of 

diagnostic reasoning on causal judgements varies depending 

on how frequently the cause and effect occur, and the 

temporal order in which the putative cause-effect relationship 

was learnt. Although these effects are broadly consistent with 

statistical and inferential reasoning approaches to causal 

judgements, explaining the full pattern of results requires an 

understanding of how the process of causal learning can later 

impact reasoning processes; something which the current 

literature is yet to provide. 
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