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C A N C E R

DORGE: Discovery of Oncogenes and tumoR suppressor 
genes using Genetic and Epigenetic features
Jie Lyu1*, Jingyi Jessica Li2*†, Jianzhong Su3, Fanglue Peng3, Yiling Elaine Chen2,  
Xinzhou Ge2, Wei Li1†

 Data-driven discovery of cancer driver genes, including tumor suppressor genes (TSGs) and oncogenes (OGs), 
is imperative for cancer prevention, diagnosis, and treatment. Although epigenetic alterations are important 
for tumor initiation and progression, most known driver genes were identified based on genetic alterations 
alone. Here, we developed an algorithm, DORGE (Discovery of Oncogenes and tumor suppressoR genes using 
Genetic and Epigenetic features), to identify TSGs and OGs by integrating comprehensive genetic and epigen-
etic data. DORGE identified histone modifications as strong predictors for TSGs, and it found missense mutations, 
super enhancers, and methylation differences as strong predictors for OGs. We extensively validated DORGE- 
predicted cancer driver genes using independent functional genomics data. We also found that DORGE-predicted 
dual-functional genes (both TSGs and OGs) are enriched at hubs in protein-protein interaction and drug-gene 
networks. Overall, our study has deepened the understanding of epigenetic mechanisms in tumorigenesis 
and revealed previously undetected cancer driver genes.

INTRODUCTION
Cancer results from an accumulation of key genetic alterations that 
disrupt the balance between cell division and apoptosis (1). Genes 
with “driver” mutations that affect cancer progression are known as 
cancer driver genes (2), which can be classified as tumor suppressor 
genes (TSGs) and oncogenes (OGs) based on their roles in cancer 
progression (3). OGs are usually activated by gain-of-function 
mutations that stimulate cell growth and division, whereas TSGs 
are inactivated by loss-of-function (LoF) mutations (frameshift 
insertions/deletions and nonsense mutations) that block TSG func-
tions in inhibiting cell proliferation, promoting DNA repair, and 
activating cell cycle checkpoints.

CRISPR-Cas9 screens with libraries of single-guide RNAs are 
powerful tools for identifying genes essential for cancer cell fitness, 
such as cancer cell growth and viability. For example, recent CRISPR 
screens by the Wellcome Sanger Institute detected 628 priority 
targets in 324 human cell lines from 30 cancer types (4). However, 
the genes identified by CRISPR screens in cell lines, which differ 
vastly from primary cells, may not be physiologically relevant to hu-
man biology and disease. Many well-known cancer driver genes in 
the Cancer Gene Census (CGC) database (5) were missing in CRISPR- 
screening results. They might have phenotypic effects in animal 
models that are not included in the current CRISPR screens.

Hence, it is necessary to predict cancer driver genes based on 
patient genomics data. Cancer genome sequencing efforts, such as 
The Cancer Genome Atlas (TCGA) (6), have generated an unprec-
edentedly large data resource and enabled the development of bio-
informatics algorithms to discover cancer driver genes. Tokheim et al. 
(7) reviewed eight major algorithms, and Bailey et al. (8) integrated 
26 computational tools in a pan-cancer mutation study. These 

algorithms mainly look for cancer driver genes with greater than 
expected background mutational rates, and they output a ranked 
list of candidate genes based on a small collection of genetic features 
such as somatic mutations and copy number alterations (CNAs). 
Tumor Suppressor and OG Explorer (TUSON) (9) and the 20/20+ 
machine-learning method (7) are the two major algorithms that can 
distinguish between protein-coding TSGs and OGs based on dis-
tinct patterns of mutational signatures.

However, a recent meta-analysis indicated that, over the next 
10 years, even if all available tumor genomes were analyzed, many 
cancer driver genes would remain undetected because of the lack of 
distinction between driver mutations and background mutational 
load (10). In addition, emerging evidence suggests that genetic 
alterations alone are insufficient to explain all cancer driver genes, 
including some well-known ones. For example, sustained expres-
sion of estrogen receptor- (ESR1) drives two-thirds of breast can-
cers, but ESR1 mutations that alter transcription levels occur in only 
7% of ESR1-positive tumors (11). Furthermore, many pediatric tu-
mors have extremely low mutation rates; some even appear to have 
no substantial recurrent somatic mutations (12). Thus, it is likely 
that other mechanisms, such as epigenetic alterations, are responsi-
ble for the dysregulation of many cancer driver genes.

For example, trimethylation on histone H3 lysine 4 (H3K4me3) 
and DNA methylation are the most extensively studied epigenetic 
modifications that influence gene expression and cell fate. H3K4me3 
is a widely recognized marker of active promoters and regulates the 
preinitiation complex formation and gene activation (13). More 
than 80% of promoters containing H3K4me3 are transcribed (14), 
and H3K4me3 is also involved in pre-mRNA splicing, recombination, 
DNA repair, and enhancer function. DNA methylation occurs in 70 
to 80% of 5′—C—phosphate—G—3′ (CpG) sites in a normal genome 
(15). H3K4me3 and CpG methylation alteration are associated with 
disease initiation, including many types of cancer (16). In particular, 
promoter hypermethylation that silences TSGs is a key epigenetic 
event in tumorigenesis (17), whereas gene-body methylation is pos-
itively correlated with gene expression (18). Recently, the “broad 
epigenetic domain” has emerged as a new concept in the control of 
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cancer development. In an integrative analysis of 1134 genome-wide 
ChIP-seq datasets (19) from the Encyclopedia of DNA elements 
(ENCODE) project (20), we found that broad H3K4me3 is a unique 
epigenetic signature of TSGs. In contrast to the common sharp 
(e.g., <1-kb width) H3K4me3 peaks associated with increased tran-
scriptional initiation, broad H3K4me3 peaks are associated with in-
creased transcriptional elongation. In addition, we also found many 
wide gene-body regions that are lowly methylated in normal tissues 
(the regions called “gene-body methylation canyons”) as hyper-
methylated in cancer (21). Gene-body methylation canyons are 
unexpectedly enriched in OGs, and their hypermethylation di-
rectly induces OG activation (21).

Nevertheless, to the best of our knowledge, none of the existing 
bioinformatics algorithms sufficiently leveraged epigenetic features 
to predict cancer driver genes, despite the fact that epigenetic alter-
ations are known to be associated with cancer driver genes. There-
fore, these algorithms were not fully empowered, and there is a 
pressing need for a computational algorithm that integrates epigen-
etic data with genetic alterations to improve the prediction of can-
cer driver genes.

To address this need, we developed DORGE (Discovery of 
Oncogenes and tumor suppressoR genes using Genetic and Epigenetic 
features). DORGE includes two prediction algorithms: DORGE-
TSG for predicting TSGs and DORGE-OG for predicting OGs; 
both algorithms are elastic net–based logistic regression (LR) classi-
fiers trained on CGC genes and neutral genes (NGs). By evaluating 
DORGE-TSG and DORGE-OG, we found an unusually large 
contribution of histone modification to TSG prediction, as well as 
crucial roles of the features such as missense mutations, genomics, 
super enhancer percentages, and hypermethylation in predicting 
OGs. Cancer driver genes predicted by DORGE include known 
cancer driver genes and novel ones that have not been reported in 
the literature. We evaluated these novel cancer driver genes using 
multiple genomics and functional genomics datasets. In addition, 
we found that the novel dual-functional genes, which DORGE 
predicted as both TSGs and OGs, are highly enriched at hubs in protein- 
protein interaction (PPI) and drug/compound-gene networks.

RESULTS
DORGE predicts TSGs and OGs based on known cancer driver 
genes and NGs
We developed a computational tool DORGE, by integrating exten-
sive genomic and epigenomic datasets, for predicting cancer driver 
genes, i.e., TSGs and OGs. Briefly, we used CGC genes and 75 curat-
ed candidate features to train two binary classification algorithms: 
DORGE-TSG and DORGE-OG, which we subsequently applied to 
every gene to predict its probability of being a TSG and OG, re-
spectively. Last, we used the predicted probabilities to rank genes 
genome-wide and identified the top-ranked genes as candidate 
TSGs and OGs.

Prediction of cancer driver genes is a classification problem. It 
requires a high-quality training dataset that contains reliable TSGs, 
OGs, and the genes unlikely to be TSGs or OGs. Our two positive- 
training gene sets include 242 TSGs and 240 OGs (with dual- 
functional genes removed) from the CGC database v.87, which we 
refer to as CGC-TSGs and CGC-OGs hereafter. The negative-training 
gene set includes 4058 NGs reported to have no cancer relevance 
(9). To allow for the prediction of dual-functional genes that are 

both a TSG and an OG, we trained two classifiers for predicting 
TSGs and OGs, respectively.

To develop DORGE, we constructed 75 features that are likely 
predictive of cancer driver genes based on the literature. These 
features have either known roles in TSG/OG disruption (e.g., DNA 
methylation and somatic mutations) or potential links to TSG/OG 
functions (e.g., CRISPR-screening data; data file S1). We catego-
rized these features into four major types: (i) 33 mutational features 
from two well-known cancer driver gene prediction algorithms—
TUSON (9) and 20/20+ (7)—and Genome Aggregation Database 
(gnomAD); 28 of these 33 features were compiled by TCGA (6) and 
Catalogue of Somatic Mutations in Cancer (COSMIC) (5) from the 
mutation data of patient samples; (ii) 12 genomic features including 
3 from 20/20+ (7) and 9 features (e.g., gene lengths and genome 
evolution–related features) that have not been previously used to 
predict cancer driver genes (22); (iii) 27 epigenetic features, including 
histone modifications from the ENCODE project (20), promoter 
and gene-body methylation features from the COSMIC database, 
and super enhancer percentages from the dbSUPER database 
(23); and (iv) 3 phenotypic features, including CRISPR-screening 
data from the DepMap project (24), Variant Effect Scoring Tool 
(VEST) scores from 20/20+ (7), and gene expression Z scores 
from TCGA.

To train classifiers for TSG and OG prediction, we compared 
eight classification algorithms: LR, LR with the lasso penalty, LR 
with the ridge penalty, LR with the elastic net penalty, random 
forests, support vector machines (SVM) with the linear kernel, 
SVM with the Gaussian kernel, and XGBoost (https://github.com/
dmlc/xgboost). For each algorithm, we considered three class ratios 
(where a class ratio was defined as the number of NGs to the num-
ber of CGC-TSGs or CGC-OGs): the original ratio, 5:1, and 1:1; for 
the latter two ratios, we randomly divided NGs into partitions so 
that the number of NGs in each partition approximately met the 
ratio given the number of CGC-TSGs or CGC-OGs. Considering 
the imbalance between NGs and CGC-TSGs/CGC-OGs in sizes, we 
used the fivefold cross-validated (CV) area under the precision- 
recall curve (AUPRC), instead of the receiver operating characteristic 
curve, as the accuracy measure to compare these eight classification 
algorithms under the three class ratios. Our comparison result 
showed that downsampling the NGs to have more balanced class 
ratios as 5:1 and 1:1 did not improve the accuracy achieved by the 
original class ratio. Hence, we decided to keep the original class 
ratio and found that LR with the lasso, LR with the ridge, LR with 
the elastic net, and random forests performed the best with similar 
AUPRC values (data file S2). We chose LR with the elastic net as the 
classification algorithm for its good interpretability and its capacity 
for selecting correlated, informative features. Then, we trained LR 
with the elastic net separately for TSG and OG prediction and 
subsequently used the two trained algorithms to assign every gene a 
TSG score and an OG score, both ranging from 0 to 1, with a larger 
value indicating a higher chance of the corresponding gene being a 
TSG or an OG. To decide appropriate thresholds on the TSG scores 
and OG scores for final predictions, we weighted the severity of 
mispredicting NGs as TSGs/OGs (i.e., making false-positive predic-
tions) versus the other way around and set a target false-positive 
rate (FPR) of 1%. Last, we used the Neyman-Pearson classification 
algorithm (25) to set thresholds on the TSG scores and OG scores 
by respecting our target FPR and obtained two classifiers: DORGE-
TSG and DORGE-OG for predicting TSGs and OGs, respectively.

https://github.com/dmlc/xgboost
https://github.com/dmlc/xgboost


Lyu et al., Sci. Adv. 2020; 6 : eaba6784     11 November 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

3 of 17

Next, we identified the important features for TSG and OG 
prediction. Because many features are correlated (data file S1), the 
feature coefficients estimated by LR with the elastic net are not bio-
logically interpretable measures of feature importance. The reason 
is that if one adds to the training data a feature that is highly cor-
related with an existing feature, the estimated coefficient of the 
existing feature would become less significant. This phenomenon 
contradicts our biological interpretation of feature importance: If a 
feature is important, its importance should not be diluted by the 
addition of another feature. Yet, we are still interested in the impor-
tance of features in our final multifeature linear classifier, so 
marginal feature importance based on each feature alone does not 
suffice. To address this issue, we proposed a simple two-step proce-
dure: (i) we clustered features into feature groups that were approx-
imately uncorrelated with one another, and (ii) we evaluated the 
importance of each feature group by the reduction in the fivefold 
CV AUPRC when that feature group was left out, i.e., the contribu-
tion of that feature group to the fivefold CV AUPRC given all the 
other feature groups. Our simple but innovative approach is advan-
tageous in three aspects. First, by grouping correlated features, we 
can interpret a small number of feature groups, each of which has a 
distinct biological interpretation, instead of a large number of fea-
tures. Second, making feature groups approximately uncorrelated 
has a desirable consequence: if a new feature were added, it would 
either be added to an existing feature group or create a new feature 
group by itself (if it is approximately uncorrelated with any existing 
features); then, its addition would barely affect the importance of 
the feature groups it is not in, as uncorrelated features would not 
affect each other’s importance in a multifeature linear classifier. 
Third, the same criterion, fivefold CV AUPRC, was used to select a 
classification algorithm and define the importance of a feature 
group, making the analysis self-consistent. Using this approach, we 
first divided all 75 features into 20 feature groups by hierarchical 
clustering with complete linkage so that features within each group 
have pairwise absolute Pearson correlations of at least 0.1 (data file 
S2). Then, we ranked the 20 feature groups by their contributions to 
fivefold CV AUPRC and selected the top-ranked groups as those 
whose contributions exceeded 0.005. This gave us three and five 
feature groups for predicting TSGs and OGs, respectively.

Analyzing these top predictive feature groups, we found that 
multiple histone modification features stood out as the most predic-
tive group (whose contribution to 5-fold CV AUPRC was almost 
10-fold of that of the second most predictive group containing phe-
notype features) for TSGs and that missense mutations constituted 
the top feature group for predicting OGs (Fig. 1, A and B). Besides, 
epigenetic features including super enhancer and cancer–normal 
methylation differences in promoter and gene-body regions were 
among the top feature groups for predicting OGs (Fig. 1B). We also 
found histone modifications and missense mutations among the 
top predictive features for both TSGs and OGs (Fig. 1, A and B), 
suggesting that TSGs and OGs share certain features, whose pre-
dictive power for TSGs and OGs may be different though. For each 
feature within a top-ranked TSG (or OG) feature group, we com-
pared its values in the CGC-TSGs (or CGC-OGs) and the NGs 
by the two-sided Wilcoxon rank-sum test, and the resulting −log10P 
value was shown in Fig. 1 (A and B).

We further examined several features in terms of their individual, 
marginal power of distinguishing CGC-TSGs and CGC-OGs from 
NGs. Multiple features are marginally strong predictors of TSGs, as 

they have significantly higher values in CGC-TSGs than in NGs. 
They include epigenetic features such as H3K4me3 peak length and 
height (Fig. 1C and fig. S1A) and H3K79me2 peak length and height 
(fig. S1, B and C), missense mutational features such as nonsilent/
silent ratio (fig. S1D), and phenotype features such as VEST score 
(Fig. 1D). Many features also have significantly higher values in 
CGC-OGs than in NGs. They include missense mutational features 
such as missense damaging/benign ratio (Fig. 1E), missense entropy 
(Fig. 1F), probability of being LoF intolerant (pLI) score (Fig. 1G), 
and LoF o/e (observed/expected) constraint (fig. S1E); genomics 
features such as evolutionary conservation phastCons score and 
noncoding Genomic Evolutionary Rate Profiling (ncGERP) score 
(fig. S1, F and G); and epigenetic features such as super enhancer 
percentage in cell lines (Fig. 1H). In particular, our finding agrees 
with previous studies in that missense damaging/benign ratio (re-
flecting the functional impact of missense mutations) and missense 
entropy (representing the enrichment of mutations in few residues) 
(9) have significantly higher values in CGC-OGs than in CGC-TSGs 
and NGs (Fig. 1, E and F). VEST and PolyPhen-2 scores, both of 
which reflect functional effects of mutations, have significantly 
higher values in CGC-TSGs and CGC-OGs than in NGs, and they 
do not exhibit statistically significant differences between CGC-
TSGs and CGC-OGs (Fig. 1D and fig. S1H). We found super en-
hancer, a commonly regarded OG-specific feature (26), also charac-
teristic of TSGs, as it has significantly higher values in CGC-TSGs 
than in NGs (Fig. 1H).

We note that, besides H3K4me3 peak length, a readily known 
TSG predictor, peak lengths of four more histone marks (H3K79me2, 
H3K36me3, H4K20me1, and H3K9ac) are also significantly larger 
in CGC-TSGs than in CGC-OGs and NGs (fig. S1, B, I, J, and K), 
consistent with the fact that the activation of TSGs is associated 
with transcriptional elongation (19,  27–29). To further verify the 
enrichment of broad H3K4me3 peaks in CGC-TSGs, we performed 
the Fisher’s exact test on a two-by-two contingency table, whose 
two rows correspond to CGC-TSGs and all the other genes in the 
training data (CGC-OGs and NGs) and whose two columns corre-
spond to the genes with broad H3K4me3 peaks (whose mean 
lengths across ENCODE samples are >4 kb) and the rest of genes. 
We similarly performed two more Fisher’s exact tests to check the 
enrichment of broad H3K4me3 peaks in CGC-OGs and NGs but 
found much lower enrichment in these two gene groups than in 
CGC-TSGs, confirming that H3K4me3 is a distinctive feature of 
TSGs (fig. S1L). Together, we identified histone modifications as 
the top predictors for TSGs. We found missense mutations, super 
enhancer percentages, and methylation differences between cancer 
and normal samples as major predictors for OGs. It is worth noting 
that histone modifications and missense mutations are also import-
ant features for predicting OGs and TSGs, respectively, although to 
a lesser extent. In summary, DORGE can successfully leverage pub-
lic data to discover the genetic and epigenetic alterations that play 
significant roles in cancer driver gene dysregulation. Figure S2 pro-
vides an overview of the DORGE method and the evaluations in the 
following sections.

Evaluation of the prediction accuracy of DORGE
As we described earlier, DORGE-TSG and DORGE-OG output 
TSG scores and OG scores for predicting TSGs and OGs, respec-
tively. Every gene received a TSG score and an OG score, both rang-
ing from 0 to 1, and a higher TSG score (or OG score) indicates a 
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higher probability of a gene being a TSG (or an OG; Materials and 
Methods). DORGE thresholded the TSG scores and OG scores by 
the Neyman-Pearson classification algorithm (25) with a target FPR 
of 1%, leading to 925 predicted TSGs, whose TSG scores exceeded 
0.6233374, and 683 predicted OGs, whose OG scores exceeded 
0.6761319. In total, DORGE predicted 1172 cancer driver genes, in-
cluding 436 dual-functional genes (Fig. 2A; the predicted genes are 
listed in data file S2). We note that these predicted TSGs and OGs 

are conservative predictions guided by the small FPR threshold 1%, 
as reflected by the fact that their numbers are smaller than the num-
bers of previously predicted cancer driver genes—1217 TSGs and 
803 OGs in databases TSGene (30) and ONGene (31) (by 18 June 
2020). If DORGE users would like to be less conservative and pre-
dict more TSGs and OGs, they can opt for a higher FPR threshold 
such as 5%. Next, we filtered out CGC genes from the DORGE- 
predicted cancer driver genes and defined the remaining 725 predicted 
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Fig. 2. Evaluation of the DORGE method and characterization of the DORGE-predicted novel TSGs and OGs. Venn diagrams showing the overlap (A) between 
DORGE-predicted novel TSGs/OGs and CGC-TSGs/OGs; (B) between DORGE-predicted novel TSGs, CGC-TSGs, CancerMine-TSGs, and TSGene database-TSGs; and (C) between 
DORGE-predicted novel OGs, CGC-OGs, CancerMine-OGs, and ONGene database-OGs. Precision-recall curves (PRCs) for (D) TSG and (E) OG prediction. Different lines 
represent different PRCs from DORGE or DORGE variants. (F) Stacked bar plots showing the number of rediscovered CGC-TSGs and CGC-OGs using all features compared 
to CRISPR-screening data only. Cumulative distribution function (CDF) plots of DORGE-predicted TSG scores (G) and OG scores (H) of 19,636 human genes. The x axis and 
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(right) that have no documented role in cancer based on the TSGene, ONGene, and CancerMine databases, along with representative feature heatmaps.



Lyu et al., Sci. Adv. 2020; 6 : eaba6784     11 November 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

6 of 17

TSGs and 515 predicted OGs as DORGE-predicted novel genes 
(data file S1), among which 537 novel TSGs were not included in 
the CancerMine (32) or TSGene database (Fig. 2B), and 306 novel 
OGs were not found in the CancerMine or ONGene database 
(Fig. 2C).

We evaluated DORGE-TSG and DORGE-OG by their overall 
prediction accuracy and found that they achieved high fivefold CV 
AUPRC of 0.821 and 0.766, respectively, when trained with all the 
75 features (Fig. 2, D and E). Considering that previous algorithms 
primarily relied on genetic features to predict cancer driver genes, 
we evaluated the accuracy gain of DORGE from including epigene-
tic and phenotypic features. To this end, we constructed variants of 
DORGE-TSG and DORGE-OG based on each of the following fea-
ture subsets: “Mutation,” “Genomics,” “Phenotype,” “Epigenetics,” 
and their complements (i.e., the subsets resulting from subtracting 
each of the four feature subsets from the 75 features), as well as 
TUSON and CRISPR screening–only features (Fig. 2, D and E, and 
data file S1). For each of these DORGE-TSG and DORGE-OG vari-
ants, we calculated its fivefold CV AUPRC.

On the basis of feature subsets Mutation, Genomics, Phenotype, 
and Epigenetics, the corresponding DORGE-TSG variants achieved 
fivefold CV AUPRC of 0.638, 0.314, 0.358, and 0.600, respectively. 
In parallel, on the basis of the complements of Mutation, Genomics, 
Phenotype, and Epigenetics (i.e., when features in each subset were 
excluded), the corresponding DORGE-TSG variants achieved five-
fold CV AUPRC of 0.692, 0.819, 0.820, or 0.715. These results con-
sistently show the large contributions of Mutation and Epigenetics 
features to TSG prediction (Fig. 2D). Furthermore, using the 
TUSON method’s features and the CRISPR screening–only 
feature, the corresponding DORGE-TSG variants only achieved 
fivefold CV AUPRC of 0.500 and 0.156, much lower than 0.821 
achieved by DORGE-TSG with all the 75 features. Similarly, we 
compared DORGE-OG with its variants trained on feature subsets. 
Specifically, DORGE-OG variants that only used Mutation, Genomics, 
Phenotype, or Epigenetics features achieved fivefold CV AUPRC of 
0.660, 0.299, 0.241, or 0.295, respectively; when each of these feature 
subsets was excluded, the AUPRC correspondingly became 0.453, 
0.752, 0.763, or 0.705. These results suggest that Mutation features 
have a large contribution to OG prediction (Fig. 2E). Similar to 
DORGE-TSG, the DORGE-OG variants trained with TUSON 
features or the CRISPR screening–only feature had much lower 
prediction accuracy (fivefold CV AUPRC of 0.534 or 0.089) than 
that of DORGE-OG trained with all the 75 features (fivefold CV 
AUPRC of 0.766). The fact that DORGE-TSG and DORGE-OG 
outperformed all their variants confirms that DORGE effectively 
leveraged the 75 features and did not suffer from overfitting in its 
TSG and OG prediction.

The above results also reveal that the CRISPR screening–only 
feature did not have a high predictive power on its own, as shown by 
its low fivefold CV AUPRC (0.156 and 0.089) in TSG and OG pre-
diction. Moreover, under the target FPR of 1%, the DORGE-TSG 
and DORGE-OG variants with the CRISPR screening–only feature 
identified only 16 (5.1%) CGC-TSGs and 3 (1.0%) CGC-OGs, 
whereas DORGE-TSG and DORGE-OG with all the 75 features 
recovered an additional 184 (58.8%) CGC-TSGs and 165 (53.1%) 
CGC-OGs (Fig. 2F). These results challenge a common belief that 
CRISPR screening using cell lines is powerful for discovering cancer 
driver genes. A possible reason for our results is that cell lines do 
not mimic in vivo cancer cells well. These additional cancer driver 

genes with all the 75 features might have phenotypic effects in animal 
models that have not been included in the current CRISPR screens.

We next evaluated the distinct predictive power provided by 
epigenetic features to cancer driver gene prediction. Inspecting the 
distributions of TSG scores and OG scores, we found that many 
top-ranked CGC genes were not predictable by DORGE without 
epigenetic features (Fig. 2, G and H). In detail, 52 (16.61%) CGC-
TSGs and 26 (8.36%) CGC-OGs would have been missed by 
DORGE-TSG and DORGE-OG, respectively, at the target FPR of 
1% if epigenetic features were not included. These results suggest 
that (i) epigenetic features empowered the discovery of cancer driv-
er genes and (ii) epigenetic features empowered DORGE-TSG more 
than DORGE-OG because the number of rescued CGC-TSGs (52) 
is twice the number of rescued CGC-OGs (26).

We then searched biomedical literature for the top 15 novel 
TSGs and OGs ranked by DORGE. Out of these top novel genes, 
10 TSGs and 12 OGs have reported tumor-suppressive and oncogenic 
functions, respectively (Fig. 2I). We also inspected these top novel 
genes for selected representative features and confirmed that they 
have high values in the top predictive TSG features (H3K4me3 
peak length, nonsilent/silent ratio, VEST score, and conservation 
phastCons score) and OG features (missense entropy, super enhancer 
percentage, pLI score, ncGERP score, and gene-body cancer– 
normal methylation difference) selected from the top feature groups 
(Fig. 2I). We further confirmed this result in the subset of top novel 
genes that are not in the CancerMine, TSGene, and ONGene data-
bases (Fig. 2J). In particular, nearly all of the top novel TSGs have 
broad H3K4me3 peaks, and most of the top novel OGs are hyper-
methylated in gene body (with positive cancer–normal methylation 
differences).

Benchmarking DORGE against existing algorithms
We further compared DORGE with 10 existing algorithms for cancer 
driver gene prediction using four accuracy measures—sensitivity 
(Sn), specificity (Sp), precision, and overall accuracy—all based on 
CGC genes (Table 1). We did not include the five-test model (RF5) 
because although it outputs TSG and OG probabilities, it does not 
have explicit cutoffs for defining TSGs and OGs (33). We found that 
DORGE performed the best in all these measures except Sp, for 
which DORGE was 0.997 and the best algorithm 20/20+ was 1.000. 
The superiority of DORGE was most obvious in Sn, where its top 
performance (0.611) was followed with a large gap by OncodriveFM 
(0.338) (34), MuSIC (0.331) (35), and MutPanning (0.318) (36) 
(Table 1). To further confirm that DORGE outperformed these 10 
algorithms, we performed a similar comparison based on 1056 OncoKB 
cancer genes (37), which had been widely used to benchmark can-
cer gene prediction. Consistent with the CGC gene evaluation re-
sults, DORGE achieved the best performance in Sn (almost 50% 
higher than that of the second best algorithm OncodriveFM) and 
overall accuracy, the third best performance in Sp (0.997 versus 
0.999 of the best method TUSON), and the second best perfor-
mance in precision (0.973 versus 0.993 of the best method 20/20+, 
whose Sn was only 32% of that of DORGE) (data file S2). Together, 
our benchmark results show that DORGE made a significant 
advance in improving cancer driver gene prediction from existing 
algorithms.

On the basis of CGC-TSGs and CGC-OGs, we further bench-
marked DORGE against 20/20+, TUSON, and Genes Under Selec-
tion in Tumors (GUST) for separate prediction of TSGs and OGs 
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(data file S2). We did not include the other seven algorithms because 
they could not predict TSGs and OGs separately. Consistent with 
our previous results, DORGE exhibited much higher Sn than the 
other three algorithms (DORGE had Sn of 0.639 and 0.54 for pre-
dicting TSGs and OGs, while the best Sn of the other three algorithms 
was only 0.252 and 0.116), and it also achieved the best precision 
and overall accuracy; all the four algorithms had close to perfect Sp. 
Although the high Sn of DORGE seemed to be due to the fact that 
20/20+, TUSON, and GUST by default predicted fewer TSGs and 
OGs than DORGE did, it was not the case. After we adjusted the 
thresholds of 20/20+ and TUSON so that they predicted the same 
numbers of TSGs and OGs as DORGE did (the GUST software does 
not allow such threshold adjustment), the Sn of 20/20+ and TUSON, 
though increased, remained almost onefold lower than that of 
DORGE. Collectively, our results suggest that DORGE outper-
formed 20/20+, TUSON, and GUST in both TSG and OG prediction.

We also compared DORGE with TUSON and 20/20+ in terms of 
their predicted ranking of CGC-TSGs and CGC-OGs. For example, 
if an algorithm predicted gene A more likely than gene B to be a 
TSG, we say that gene A received a higher TSG rank (smaller in rank 
number) than gene B did. Accordingly, we calculated a TSG rank 
and an OG rank for every CGC gene by each algorithm. Among 
the CGC genes, we define the core CGC-TSGs and core CGC-OGs 
as those that were annotated solely as TSGs and OGs, not both (dual- 
functional), in CGC v.77. Compared to the genes that were added 
later to CGC v.87, these core CGCs have been more extensively 
studied. Then, we examined the ranking consistency between 
DORGE and the other two algorithms for CGC genes and the core 
CGC genes. For CGC-TSGs, we found that their TSG ranks by 
DORGE had strong positive correlations with their TSG ranks by 

TUSON and 20/20+ (fig. S3, A and B), and overall, they were 
ranked higher by DORGE than by the other two algorithms (fig. 
S3E). We observed similar results for CGC-OGs (fig. S3, C, D, and 
G). The conclusions also held for core CGC genes (fig. S3, F and H). 
These results confirm that DORGE predictions are more biologically 
relevant than those of TUSON and 20/20+. For example, ELL (elon-
gation factor for RNA polymerase II), a CGC-TSG, was ranked 
190th by DORGE-TSG, 8144th by TUSON, and 3958th by 20/20+; 
PDGFB (platelet- derived growth factor subunit B), a CGC-OG, was 
ranked 207th by DORGE, 2753rd by TUSON, and 4982nd by 
20/20+. Also, DORGE ranked CGC dual-functional genes better than 
TUSON and 20/20+ did, as exemplified by the dual-functional 
gene IDH1 {isocitrate dehydrogenase [nicotinamide adenine di-
nucleotide phosphate (NADP+)] 1}, which was ranked first for 
TSG and 28th for OG by DORGE, 18,734th for TSG and 2092nd for 
OG by TUSON, and 14,936th for TSG and 13th for OG by 20/20+.

Functional evaluation of novel cancer driver genes 
and those unpredictable without epigenetics features
Even though DORGE predicted many more cancer driver genes 
than TUSON, 20/20+, and GUST did—DORGE, TUSON, 20/20+, 
and GUST predicted 1172, 243, 193, and 276 cancer driver genes, 
respectively—DORGE achieved the highest overall prediction accuracy 
based on CGC genes. After confirming this, we further character-
ized the novel cancer driver genes, defined as those predicted by 
DORGE but not included in the CGC database.

We performed the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway analysis on the novel TSGs and OGs, and we found, 
as expected, that the novel TSGs are enriched with TSG-related 
pathways such as “apoptosis” and “focal adhesion” and that the 

Table 1. Evaluation of cancer driver gene (TSGs + OGs) prediction based on the v.87 CGC genes.  

Method # Sn Sp Precision Accuracy Algorithms

DORGE 1172 0.611 0.997 0.966 0.948 Logistic regression 
with the elastic net 

model

OncodriveFM (34) 2600 0.338 0.915 0.367 0.841 Functional impact 
model

MuSIC (35) 1975 0.331 0.870 0.272 0.801 Mutational 
background model

MutPanning (36) 460 0.318 0.994 0.880 0.907 Nucleotide context 
model

TUSON (9) 243 0.222 0.999 0.961 0.900 P value 
combination

OncodriveFML (58) 680 0.212 0.983 0.646 0.885 Functional impact 
model

20/20+ (7) 193 0.208 1.000 0.991 0.899 Random Forest 
model

GUST (78) 276 0.206 0.994 0.838 0.894 Random Forest 
model

MutSigCV (57) 158 0.137 0.998 0.905 0.888 Mutational 
background model

OncodriveCLUST (59) 586 0.118 0.963 0.319 0.855 Mutational hotspot 
model

ActiveDriver (61) 417 0.098 0.996 0.771 0.881 Logistic regression 
model
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novel OGs are enriched with OG-related pathways such as “cell 
cycle” and “transforming growth factor– (TGF-) signaling pathway” 
(Fig. 3A). However, without epigenetic features, the novel TSGs 
and OGs predicted by the DORGE-TSG and DORGE-OG variants 
are no longer enriched with certain TSG-related and OG-related 
pathways such as TGF- signaling pathway (fig. S4A). These results 
again suggest that epigenetic features made unique contributions to 
discovering novel cancer driver genes. In addition, the degrees of 
enrichment (−log10 P values) of those shared enriched KEGG path-
ways, which were enriched in novel TSGs or OGs regardless of the 
inclusion of epigenetic features, are positively correlated, implying 
that the addition of epigenetic features did not prohibit the discov-
ery of meaningful cancer driver genes (fig. S4, B and C).

Given that histone modification features (e.g., H3K4me3 peak 
length) empowered DORGE-TSG prediction, we sought experimental 
evidence for the novel TSGs that have broad histone modification 
(e.g., H3K4me3) peaks. A previous cell proliferation experiment 
observed increased cell growth after knocking down multiple po-
tential TSGs whose H3K4me3 peaks have mean lengths (across 
ENCODE cell lines) greater than 2 kb (19), including two DORGE- 
predicted novel TSGs, CSRNP1 and NR3C1B. Another previous study 
found that Mll4 loss down-regulates potential TSG expression 
and weakens broad H3K4me3 peaks in mice (38). Examining the 
human orthologs of the six mouse potential TSGs that were down- 
regulated by Mll4 loss in that study, we found that four orthologs 
were ranked top by DORGE-TSG and have H3K4me3 peaks longer 
than 2 kb. These four human genes are DNMT3A (18th), BCL6 
(96th), FOXO3 (222nd), and CBFA2T3 (1012th).

Characterization of DORGE-predicted novel TSGs and OGs 
by independent functional genomics data
We first used a published Transposase Accessible Chromatin with 
high-throughput sequencing (ATAC-seq) dataset of TCGA pan- 
cancer samples (39) to characterize the DORGE-predicted novel 
cancer driver genes. ATAC-seq reveals gene accessibility and pro-
vides valuable information about the complex gene regulatory rela-
tionships. On the basis of this ATAC-seq dataset, we found that 
DORGE-predicted novel TSGs and OGs, consistent with CGC-TSGs 
and CGC-OGs, are significantly more accessible than NGs (all with 
P = 2.22 × 10−16 by the one-sided Wilcoxon rank-sum test; Fig. 3B). 
This result established a connection between cancer driver genes and 
chromatin accessibility; both TSGs and OGs are ubiquitously acces-
sible in cancer samples.

We then explored a possible relationship between cancer driver 
genes and epigenetic regulators (ERs), which are known to play 
fundamental roles in genome-wide gene regulation by reading or 
modifying chromatin states. A previous study suggested that most 
ERs are intolerant to LoF mutations (40), and our fig. S1E also 
shows that LoF mutations (reflected by the LoF o/e constraint fea-
ture) are significantly more abundant in TSGs and OGs than NGs, 
prompting us to explore whether ER genes have a significant over-
lap with cancer driver genes. By analyzing a curated list of 761 ERs, 
we found significant enrichment of CGC-TSGs and CGC-OGs 
(P = 3.14 × 10−20 and P = 9.36 × 10−8, respectively, by the Fisher’s 
exact test; in total, 94 CGC cancer driver genes are among the ERs, 
with P = 2.79 × 10−13 by the Fisher’s exact test; Fig. 3C). This result 
also shows the greater enrichment of CGC-TSGs than that of CGC-
OGs in ER genes, consistent with a previous study showing that the 
application of cancer gene classifiers to ER genes revealed more 

TSGs than OGs (41). Similar to CGC genes, DORGE-predicted 
novel TSGs (P = 1.15 × 10−6) are also more enriched than novel OGs 
(P = 2.65 × 10−3) in ER genes (Fig. 3C).

We next evaluated DORGE-predicted novel TSGs using Sleeping 
Beauty (SB) screening data. The SB transposon is a type of synthetic 
DNA element that can disrupt the expression of genes near its 
insertion sites, a process called insertional mutagenesis. Hence, the 
SB transposon is a screening tool for TSGs, whose expression dis-
ruption leads to carcinogenesis. To verify the novel TSGs, we down-
loaded the list of inactivating pattern genes from the SB Cancer 
Driver Database (SBCDDB) (42). As expected, we found that both 
CGC-TSGs (P = 5.41 × 10−19) and DORGE-predicted novel TSGs 
(P = 5.11 × 10−24) are enriched in the list. In contrast, NGs have no 
enrichment. This result is consistent with our expectation that 
TSGs are inactivated in SB screens (Fig. 3D).

We further evaluated DORGE-predicted novel cancer driver 
genes using an shRNA screening dataset from the Achilles project 
(43), as shRNA screens for gene essentiality for cell proliferation 
in cell lines. On the basis of the dataset, the knockdown of DORGE- 
predicted novel OGs and CGC-OGs shows a greater decrease in cell 
proliferation rates compared to NGs (fig. S4D). In contrast, the 
knockdown of DORGE-predicted novel TSGs and CGC-TSGs 
shows nearly no decrease in cell proliferation rates compared to 
NGs (fig. S4D). This result is consistent with the prior knowledge 
that the proliferation of cell lines is dependent upon OGs (24).

Last, we evaluated DORGE-predicted novel cancer driver genes 
using patient survival data. In the precomputed survival data down-
loaded from the OncoRank website (44), every gene has a hazard 
ratio (HR; whose value >, =, or <1 indicates that the gene’s expres-
sion reduces, does not affect, or increases patients’ survival time, 
respectively). We found that CGC-TSGs and DORGE-predicted 
novel TSGs have significantly lower HRs than OGs (CGC-OGs and 
DORGE-predicted novel OGs) and NGs in three representative 
cancer types: rectum adenocarcinoma, colon adenocarcinoma, and 
uterine corpus endometrial carcinoma (Fig. 3E and fig. S4, E and F). 
These results are consistent with the fact that TSG expression 
prohibits cancer occurrence and prolongs survival, while OG ex-
pression has the opposite effects. The complete HRs and P values of 
DORGE-predicted novel TSGs and OGs in 21 cancer types are 
available in data file S1.

TSGs and OGs are conserved at both exons and  
noncoding regions
Previous studies have suggested that evolutionarily conserved genes 
are enriched with cancer driver candidates and drug targets (45). 
Consistent with these studies, we observed statistically significant 
differences in exonic sequence conservation (phastCons and phyloP 
scores) between CGC-TSGs/OGs and NGs, and the same conclu-
sion holds for DORGE-predicted TSGs and OGs (Fig. 3F and fig. 
S4G). Compared to OGs, TSGs have slightly higher exonic sequence 
conservation (Fig. 3F and fig. S4G).

We next explored the conservation of noncoding regions in can-
cer driver genes. Noncoding regions are characterized by positive 
ncGERP values and negative noncoding Residual Variation Intoler-
ance Score (ncRVIS) values. The reason is that ncGERP is a mea-
sure of nucleotide constraints and reflects conservation across the 
mammalian lineage (fig. S1G) (46), while ncRVIS measures human- 
specific constraints (46). On the basis of these two measures, 
we found that TSGs (CGC-TSGs and DORGE-predicted novel 
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TSGs) are slightly more conserved than OGs (CGC-OGs and 
DORGE-predicted novel OGs) at noncoding regions (figs. S1G 
and S4H).

In summary, we found that cancer driver genes are more con-
served than NGs at both exonic and noncoding regions. Between 
TSGs and OGs, we found that TSGs are more conserved at exons, 
while OGs are more conserved at non-coding regions.

TSGs and OGs are overrepresented in ancient genes
Motivated by our conservation results, we investigated the phyletic 
ages (i.e., evolutionary origins) of cancer driver genes. Although 

cancer driver genes are believed to have originated from Metazoa 
(multicellular animals) (47), the possibility of their origination from 
Eukaryota, an earlier evolutionary origin, has not been explicitly in-
vestigated. On the basis of the phyletic-age gene lists (from early to 
late: Eukaryota, Metazoa, Chordata, and Mammalia) from the 
Online GEne Essentiality (OGEE) database (48), we found signifi-
cant enrichment of cancer driver genes in the Eukaryota gene list 
(Fig. 3G; P values by the Fisher’s exact test: P = 1.05 × 10−3 for 
CGC-TSGs, P = 3.25 × 10−13 for DORGE-predicted novel TSGs, 
P = 1.41 × 10−5 for CGC-OGs, and P = 2.77 × 10−5 for DORGE- 
predicted novel OGs), in contrast to NGs. Our results indicate that 
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cancer driver genes may have originated earlier in the evolutionary 
history than previously thought. In addition, we found that cancer 
driver genes were not enriched in young phyletic ages (Chordata 
and Mammalia; Fig. 3G), consistent with a recent paper (49).

Dual-functional cancer driver genes act as backbones  
in PPI networks
Previous studies have shown high interactivity of cancer driver 
genes in the BioGRID PPI network (9), and accordingly, PPI data 
have been used to identify cancer driver genes (50, 51). We, there-
fore, explored the extent to which DORGE-predicted TSGs and 
OGs are connected to other genes/proteins. When analyzing the 
whole BioGRID PPI network (Fig. 4A), we found that TSGs and 
OGs, including CGC genes and DORGE-predicted novel genes, 
exhibit significantly higher degrees, betweenness, and closeness 
centrality than NGs do (fig. S5, A to C). This result suggested that 
the removal or knockdown of cancer driver genes, as expected, will 
exert a critical impact on the whole PPI network, in particular, 
dual-functional driver genes, as both TSGs and OGs, display even 
higher interactivity than sole TSGs and OGs do (fig. S5, A to 
C). Densely connected genes tend to form modules, and cancer 
driver gene modules can trigger the hallmarks of cancer and con-
fer the proliferation advantages displayed on cancer cells (52). 
Here, we used the Molecular Complex Detection (MCODE) algo-
rithm to identify six densely connected network modules/backbones 
(Fig. 4B) from the PPI subnetwork of the 1172 DORGE-predicted 
cancer driver genes. The 64 genes that comprise the six identified 
modules are all dual-functional genes (8 CGC dual-functional genes 
and 56 DORGE-predicted novel dual-functional genes). This over-
representation of dual-functional driver genes in network modules 
is unusual, as it is highly unlikely to obtain a 64-gene subnetwork 
composed of all dual-functional genes (P = 6.66 × 10−27 by the bino-
mial test).

It was previously shown that somatic alterations often occur at 
PPI network hub genes in cancer (53), and these hub genes are typ-
ically essential genes. We therefore investigated the enrichment of 
cancer driver genes in the hub genes, the 978 genes (top 5%) with 
the highest degrees in the BioGRID PPI network. We found that all 
TSGs, OGs, and dual-functional genes (including CGC genes and 
DORGE-predicted novel genes) are enriched in the hub genes 
(Fig. 4C). The CGC and novel dual-functional genes are the most 
enriched (Fig. 4C). We also analyzed the enrichment of 10 func-
tional gene sets. Among these gene sets, we found that the genes 
with high missense o/e constraints (highest top 5%), the essential 
genes from the OGEE database, and the ER genes are most enriched 
in the hub genes (Fig. 4D). Previous literature has not reported 
any connection between ERs and PPI hub genes, and our finding 
strengthens the critical roles of ERs. We also found that the genes 
with broad H3K4me3 peaks are significantly enriched, to a similar 
degree to the housekeeping genes (HKGs), in the hub genes (Fig. 4D).

ER genes act as backbones in gene-drug networks
Cancer driver gene prediction is the basis for the development of 
anticancer drugs and personalized cancer treatments. We therefore 
explored possible gene-drug relationships of DORGE-predicted 
cancer driver genes using the PharmacoDB, a gene-drug network 
constructed from comprehensive high-throughput cancer pharma-
cogenomic datasets. In the subnetwork containing CGC genes and 
DORGE-predicted novel genes, we found that these cancer driver 

genes are densely connected to anticancer drugs (fig. S5D). Similar 
to our observation from the PPI network, we found that TSGs and 
OGs, including CGC genes and DORGE-predicted novel genes, exhibit 
significantly denser connections to drugs than NGs do (fig. S5E).

We then identified the top 10 drugs with the largest numbers of 
connected genes in the PharmacoDB gene-drug network. Among 
these 10 drugs, the top one is doxorubicin, a well-known chemo-
therapeutic agent, and the other nine drugs are also known antican-
cer drugs (fig. S5F). We next identified 979 genes (top 5%) with the 
highest degrees in the gene-drug network as hub genes and found 
that DORGE-predicted novel driver genes are enriched in these hub 
genes (Fig. 4E). We also analyzed the enrichment of 10 functional 
gene sets in these hub genes. Unlike their enrichment in our previ-
ously defined PPI network hub genes (Fig. 4D), the essential genes 
and the HKGs are not enriched in these gene-drug network hub 
genes (Fig. 4F), an expected result as their expression is required for 
normal cells and they are unlikely to be viable drug targets for can-
cer treatment. In contrast, we still observed the enrichment of three 
functional gene sets—the genes with high missense o/e constraints 
(highest top 5%), the ER genes, and the genes with broad H3K4me3 
peaks—in the gene-drug network hub genes (Fig.  4F). Together 
with our PPI analysis, we conclude that the genes in these three 
functional gene sets may be potential actionable drug targets. To the 
best of our knowledge, there has been no report on the enrichment 
of the ER genes in gene-drug network hub genes. Our results from 
PPI and gene-drug network analysis emphasize the importance of 
studying the ER genes as potential drug targets.

Identification of candidate anticancer drugs from public 
transcriptomic data
A bottleneck in novel anticancer drug discovery is an efficient selec-
tion of potential molecular targets for a drug/compound or its 
derivatives. Ideal anticancer drugs are those that up-regulate TSGs 
and/or down-regulate OGs. We used the CRowd Extracted Expres-
sion of Differential Signatures (CREEDS) data (54) to explore the 
relationship between CGC and DORGE-predicted genes and anti-
cancer drugs (data file S1). We identified 68 proven or potential 
anticancer drugs/compounds that were associated with 68 target 
genes meeting the filtering criteria (limma Q value < 0.05 and fold 
change > 2) from the CREEDS data (fig. S6). Fifty-four (79.41%) of 
the 68 genes are DORGE-predicted novel TSG or OG genes.

Recent pharmacological efforts suggested that drugs/compounds 
actionable toward more than one gene or molecular pathway are 
preferable for repurposing (55), and it is common for existing drugs 
to be later repurposed as anticancer drugs. For example, dexamethasone 
was previously classified as a corticosteroid but later repurposed for 
cancer treatment. Among the 68 drugs/compounds we identified, 
30 are anticancer and chemotherapy drugs (fig. S6, bottom), 23 
have only been tested in laboratories and are not yet in clinical tri-
als, and 15 have not been tested in cell lines (fig. S6, bottom). Of the 
38 drugs/compounds not yet confirmed in anticancer clinical trials, 
many have been proven to treat other diseases. Overall, our results 
indicate that they are potential drugs for cancer treatment.

DISCUSSION
In this paper, we developed a machine-learning tool DORGE for 
identifying cancer driver genes by integrating genetic and epigene-
tic features. Our development is the first effort that goes beyond the 
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use of tumor genetic alterations for cancer driver prediction, and it 
was motivated by our previous studies that found specific epigenetic 
patterns associated with TSGs or OGs (19, 21). Although experi-
mental validation is needed for further studies, our computational 
evaluation verifies that the novel cancer driver genes predicted by 
DORGE resemble known cancer drivers in multiple aspects and 
show promise as potential therapeutic targets. In particular, the top- 
ranked novel cancer driver genes, especially those regulated by epi-
genetic mechanisms, warrant further detailed investigation.

Cancer driver genes that are infrequently mutated in cancer are 
often indistinguishable from passenger genes with random muta-

tions in genome sequencing data. Such random mutations may re-
sult from technical reasons including tumor DNA contamination, 
sequencing depth, and mutation calling failure (56). Therefore, in-
frequently mutated cancer driver genes are hardly detectable by the 
methods based on the mutational background model [MutSigCV 
(57)] or the functional impact model [OncodriveFML (58), On-
codriveFM (34), and OncodriveCLUST (59)]. However, these genes 
may be identified through the integration of epigenetic, phenotypic, 
and genomic data.

In previous studies, various nonmutational datasets have been 
used in cancer driver gene identification; however, unlike DORGE, 
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Fig. 4. Dual-functional cancer driver genes act as backbones in BioGRID PPI and characterization of hub genes in PPI and PharmacoDB gene-drug networks. 
(A) Complete BioGRID PPI network. (B) The Molecular Complex Detection (MCODE) algorithm was applied to DORGE-predicted novel TSGs/OGs to identify densely 
connected network modules (or backbones). All genes in the identified network are CGC dual-functional genes or novel dual-functional genes. Gene categories are 
represented as pie charts, with the colors coded based on gene categories. (C) Enrichment of CGC-TSGs/OGs and DORGE-predicted novel TSGs/OGs in hub genes in the 
BioGRID network. (D) Enrichment of various gene sets or epigenetic and mutational patterns in hub genes in the BioGRID network. (E) Enrichment of CGC-TSGs/OGs and 
DORGE-predicted novel TSGs/OGs in hub genes in the PharmacoDB gene-drug network. (F) Enrichment of various gene sets or epigenetic and mutational features in hub 
genes in the PharmacoDB gene-drug network. Hub genes are defined as the genes with the top 5% highest degree in the BioGRID or PharmacoDB network. To generate 
comparable P values, the gene numbers in different gene categories were normalized to 200. Broad H3K4me3: Genes with H3K4me3 length > 4000. P values for the differences 
between indicated gene categories were calculated by the right-sided Wilcoxon rank-sum test.
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existing work only used few or several nonmutational features 
extracted from these datasets (7, 50, 51, 57, 60, 61). For example, 
MutSigCV used DNA replication timing and cell line expression 
data (57); ActiveDriver used phosphorylation site information (61); 
and 20/20+ used multispecies conservation, mutation pathogenicity 
scores, and replication timing (7). PPI networks and pathway knowl-
edge have also been used to identify cancer driver genes (50, 51); 
however, these studies were biased toward well-studied genes/
pathways and thus may overlook quite many genuine cancer driver 
genes. In contrast to all these studies, DORGE leverages epigenetic 
information without any bias toward gene selection to predict cancer 
driver genes, and this innovation results in DORGE overpowering 
these existing studies in discovering novel cancer driver genes.

We further note that the capacity of DORGE in predicting TSGs 
and OGs separately allows DORGE to identify novel dual-functional 
cancer driver genes. This is advantageous given that more and more 
dual-functional cancer driver genes have been identified in the liter-
ature. In this study, we found a unique property of dual-functional 
cancer driver genes: They have more connecting partners in PPI 
and drug-gene networks than other driver genes have. This proper-
ty, to our knowledge, was not previously reported. Several novel 
dual-functional genes predicted by DORGE drew our attention. 
For example, PTEN (phosphatase and tensin homolog), a protein 
phosphatase, is commonly regarded as a TSG; however, DORGE 
predicted it as an OG as well. We found that oncogenic roles were 
reported for PTEN in a few studies. One explanation for the dual- 
functional roles of PTEN is that its oncogenic effect depends on the 
positions of mutations (62). We confirmed this by analyzing the 
mutation patterns of PTEN and found one pattern as the classic OG 
mutation pattern with most substitutions in p.R130 (63). In DORGE, 
further updates can quantify the dual-functional roles (i.e., the rela-
tive chance of being TSGs or OGs) of dual-functional genes.

While we have already found dozens of nonmutational features 
that contribute significantly to the predictive power of DORGE, 
many CGC genes remain undetected by DORGE (Fig. 2, G and H). 
A possible reason is the missingness of other factors or mechanisms 
that regulate cancer driver genes. Fortunately, the continuing increase 
in functional genetic and epigenetic data will provide a lasting op-
portunity to improve and fine-tune cancer driver gene prediction 
methods. In future studies, we can perform lineage-specific rather 
than pan-cancer prediction and extend DORGE to predicting long 
noncoding genes, as many features used in DORGE are not restricted 
to protein-coding genes. In addition, further work is needed for a 
better understanding of phenomena such as ancient phyletic ages 
of cancer driver genes and enrichment of cancer driver genes at PPI 
and gene-drug network hubs.

In summary, this study highlights the integration of epigenetic 
data to achieve a more comprehensive prediction of cancer driver 
genes. DORGE will serve as an essential resource for cancer biology, 
particularly in the development of targeted therapeutics and per-
sonalized medicine for cancer treatment.

MATERIALS AND METHODS
Experimental design
In this paper, we propose DORGE, a machine-learning framework 
incorporating a large number of features to discover TSGs/OGs 
(fig. S2). First, we used CGC v.87 genes and NGs as the training 
genes to predict TSGs and OGs separately from 75 candidate features 

by LR with the elastic net penalty, and the resulting two classifiers 
are DORGE-TSG and DORGE-OG. Next, we used fivefold cross- 
validation to evaluate DORGE. We also analyzed the benefit of 
introducing epigenetic features based on KEGG enrichment and 
evaluated DORGE based on several genomic and functional ge-
nomic datasets. Last, we showed the enrichment of dual-functional 
genes predicted by DORGE in hub genes in PPI and gene-compound 
networks.

Gene annotation
All gene annotations, genomic, and functional genomic datasets 
were downloaded from hg19 genome version or processed to hg19 
if they were from other genome versions. Genome version conver-
sion was done using the LiftOver program (https://genome.ucsc.
edu/cgi-bin/hgLiftOver). HUGO Gene Nomenclature Committee 
annotation (www.genenames.org/) was used for gene annotation. 
The gene annotation can be found in data file S1. Promoters were 
defined as the regions from the upstream 1000 base pairs (bp) to 
downstream 500 bp of transcription start sites (TSSs), while gene-
body regions were defined as the regions from downstream 500 bp 
of TSSs to transcription termination sites (TTSs).

Datasets used in this study
Somatic mutation datasets
The somatic mutation dataset used in this study was derived from 
the TCGA (6) website (https://portal.gdc.cancer.gov/) and COSMIC, 
v86 (5). These two datasets were combined to help increase the 
mutational information of infrequently mutated genes. Duplicate 
tumor samples present in more than one dataset were excluded. 
The final dataset used for the calculation of mutation-related fea-
tures contained 5,700,484 mutations from more than 30 tumor 
types. Hypermutated tumor samples with >2000 mutations were 
excluded from this dataset. The population genetic dataset (pLoF 
Metrics by Gene TSV file) for evaluating features, such as LoF 
intolerance, was downloaded from gnomAD v2 (https://gnomad.
broadinstitute.org/downloads/) (64). Additional details regarding 
features calculation can be found in data file S1.
Epigenetic datasets
We downloaded all peak BED files (hg19) for H3K4me3 and other 
representative histone modifications from the ENCODE project 
(www.encodeproject.org/). The full file names and download links 
are listed in data file S1. The gene-body canyon annotation file (65), 
including DNA methylation information, was obtained from a 
previous study (21), which were based on TCGA whole-genome 
bisulfite sequencing (WGBS) data. The data for calculating promoter 
and gene-body cancer–normal methylation difference were also down-
loaded from the level 3 methylation data from the COSMIC website 
(v.90). Repli-seq Binary Alignment Map (BAM) datasets were down-
loaded from the ENCODE project website, and the featureCounts 
program (http://subread.sourceforge.net/) was used to assign BAM 
reads to gene bodies. Read counts were normalized on the basis of 
the sequencing depth of the BAM files, and the normalized read num-
bers were used to calculate the replication timing S50 score (66). This 
score, which determines the median replication timing, was calcu-
lated by a tool available from a previous study (66). The super en-
hancer annotation was downloaded from the dbSUPER database (23).
Other datasets
The level 3 TCGA data, which include the processed somatic 
CNA and gene expression data, were downloaded from the COSMIC 
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website (v.90) and used without processing. The processed cell 
proliferation (dependency) scores from 436 CRISPR-treated cell 
line samples were obtained from the DepMap website (Avana- 
17Q2-Public_v2) (24). For each gene, gene expression was aggre-
gated across samples to obtain the median Z score. The phastCons 
scores were downloaded from the University of California, Santa 
Cruz (UCSC) (http://hgdownload.cse.ucsc.edu/goldenPath/hg19/
phastCons46way/). The dataset including the gene damage index 
(GDI), Primate dN/dS score, RVIS percentile, ncRVIS, ncGERP, 
family member count, and gene age features were downloaded 
from https://github.com/RausellLab/NCBoost (22). The dataset is 
gene-centric, and no further processing was done.

Curation of TSG, OG, and NG training sets
The training set contained 242 high-confidence TSGs and 240 
high-confidence OGs without overlapping from the v.87 CGC data-
base on the COSMIC website, as well as 4058 NGs obtained as 
follows. The initial set of NGs was obtained from Davoli et al. (9). 
However, this initial set is likely to include mislabeled genes. To 
address this, those that overlap with the following gene lists (18 June 
2020) were excluded from this initial NG set: (i) Candidate Cancer 
Gene Database (67), (ii) CancerMine (32), (iii) a cancer gene list 
compiled by Chiu et al. (68), (iv) the genes (OncoScore > 21.09) in 
the OncoScore database (69), and (v) allOnco Cancer Gene List 
(v3 February 2017; http://www.bushmanlab.org/links/genelists). 
The final training gene sets are available in data file S2.

Candidate mutational features
The candidate mutational features were previously defined by 
Davoli et al. (9) and Tokheim et al. (7). In addition to these features, 
other gene-centric features were also collected. Features were cate-
gorized into the following classes: Genomics, Mutation, Epigenetics, 
and Phenotype, and additional details regarding these features 
can be found in data file S1. The feature IDs mentioned below cor-
respond to data file S1.

Features 1 to 20 were quantified on the basis of the combined 
mutation data using the script provided by Davoli et al. (9). Further 
information for these features can be found in their paper (9). For 
features 1, 5, and 6 in data file S1 that quantify the density of differ-
ent categories of mutations within genes, only the coding sequence 
(CDS) length (per kilobase) of each gene is considered. For mu-
tational features 8 to 15 and 28 that include ratios, a pseudocount 
estimated as the median of each feature across all genes was added, 
as described by Davoli et al. (9).

Features 11 to 15 rely on the functional effects of missense muta-
tions, including high functional impact (HiFI) or low functional 
impact (LoFI) (9). The PolyPhen-2 Hum-Var prediction model was 
used to estimate the functional effects of missense mutations and to 
classify them as either HiFI or LoFI (9), based on the probability of 
functional damage as estimated by the PolyPhen-2 HumVar algo-
rithm. Features based on HiFI and LoFI include the following: (i) 
benign mutations: silent and LoFI missense mutations; (ii) LoF mu-
tations: nonsense and frameshift mutations; and (iii) HiFI missense 
mutations (damaging missense mutations). PolyPhen-2 scores 
(feature 16) were calculated by the PolyPhen-2 web server (http://
genetics.bwh.harvard.edu/pph2/) (70). The missense MGAentropy 
scores (feature 33), which also measure the multispecies conservation 
of missense mutation sites, were also calculated by the Cancer- 
Related Analysis of Variants Toolkit (CRAVAT) tool (71).

Other mutation types include splicing/total mutations (feature 
19) and inactivating fraction (feature 27). Splicing mutations are 
those that affect splicing sites; >95% of splicing mutations are in the 
first two positions at donor or acceptor sites. Inactivating mutations 
include indel frameshift, splice site, translation start site, and non-
stop mutations. Features 21 to 29 that were introduced in Tokheim 
et al.’s paper were quantified based on our revised version of the 
script provided by Davoli et al. (9), given that these features can be 
quantified in a similar way to that for features 1 to 20. The lost start 
and stop fraction (feature 26) was defined as the fraction of the 
translation start site and nonstop mutations in total mutations. The 
recurrent missense fraction (feature 23) was defined by missense 
mutations occurring in more than one patient sample.

Features 42 to 46 are population genetics-based mutational 
features. For LoF constraints, three categories of tolerance to LoF 
mutations were defined by gnomAD: null (LoF mutations are fully 
tolerant), recessive (heterozygous LoF mutations are tolerant), and 
haploinsufficient (heterozygous LoF mutations are intolerant). The 
probability of the three types of mutations can also be obtained 
from the dataset (features 42 and 43) or be derived based on simple 
calculation (sum of the probability of three categories of intolerance 
equals 1). A pLI score was initially introduced to determine the 
likelihood that a given gene is intolerant of LoF mutations. The 
difference between LoF o/e and pLI is explained at https://blog.
limbus-medtec.com/how-to-use-gnomad-v2–1-for-variant-filtering- 
d7d2a7ee710a. For synonymous, missense, and LoF mutations 
(features 44 to 46), a signed Z score to describe the o/e was obtained 
from the gnomAD dataset. Higher Z scores indicate intolerance to 
variation or increased constraint, whereas lower Z scores indicate 
tolerance to variants.

Candidate epigenetic features
In addition to genetic data, epigenetic data have been shown to be 
associated with cancer driver genes. Here, we used the peak length 
and height to characterize histone modifications. We also used can-
cer–normal methylation difference to characterize gene promoter 
and gene-body methylation in cancer and normal samples. These 
potentially useful features (features 39 and 40 and 54 to 75) were 
previously used in epigenetics studies, but to what extent these fea-
tures are useful in predicting cancer driver genes is not systemati-
cally evaluated. The histone modification BED files were processed 
based on our previously published procedures (19). Briefly, adja-
cent peaks were merged when peaks are within 3 kb by the merge 
command from bedtools (https://bedtools.readthedocs.io/). Peaks 
overlapping with the longest transcript of a gene with at least 50% of 
peak length were assigned to that gene by bedmap function in the 
BEDOPS tool (https://bedops.readthedocs.io/) with the following 
parameters: --max-element --echo --fraction-map 0.5 --delim '\t' 
--skip-unmapped. Features of “mean peak length” were calculated 
based on the merged peaks. For features of “height of peaks,” the 
maximum signal values (seventh column in BED 6 + 4 narrow peak 
files used in ENCODE) were used. Promoter and gene-body can-
cer–normal methylation difference features (features 39 and 40) 
were defined by the mean methylation level in cancer samples (Beta 
Value column in the dataset) minus that in normal samples (Avg 
Beta Value Normal column in the dataset) based on COSMIC 450 K 
methylation data. 450K probes were mapped to genes according to 
genomic coordinates (hg19). The gene-body canyon cancer/normal 
methylation ratio feature (feature 41) was inspired from a previous 
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study (21). The ratio value was determined by the mean methyla-
tion level in cancer samples divided by that in normal samples in 
TCGA WGBS methylation data. To make “gene-body cancer– 
normal methylation difference” (feature 40) and “gene-body canyon 
cancer/normal methylation ratio” (feature 41) available to all genes, 
genes without applicable feature values were imputed as 0. Genes 
were linked to gene-body canyons by BEDOPS with the same pa-
rameters as shown above. The difference between features 40 and 
41 is that feature 41 is only available to genes with gene-body meth-
ylation canyons defined by a previous study using TCGA WGBS 
data (21), while feature 40 is available for all genes with 450K probes. 
We previously used TCGA WGBS data to define feature 41 because 
WGBS methylation data have a significantly higher resolution than 
450K methylation data, while we were unable to identify large DNA 
methylation canyons using COSMIC 450K data. For feature 34, 
Repli-seq BAM datasets were quantified by the featureCounts pro-
gram (http://subread.sourceforge.net/) to assign BAM reads to gene 
bodies. Read counts were normalized on the basis of the sequencing 
depth of the BAM files, and the normalized read numbers were used 
to calculate the S50 score (66). Early replication timing (feature 34) 
was quantified by the S50 score. All bam data are assigned to different 
cell cycle stages (G1, S1, S2, S3, and S4) for the S50 score calculation. 
This score, which determines the median replication timing (from 
0 to 1), was calculated based on the algorithm proposed by a previ-
ous study (66). An S50 score that closes to 0 means early replication 
timing, whereas an S50 score that closes to 1 means late replication 
timing. Super enhancer percentage (feature 38) was calculated as 
the percentage of cell lines in which super enhancers are associated 
with any transcripts of genes.

Other candidate features
Feature 29 (log gene length) was defined as the log2-transformed 
length of the maximum transcript of a specific gene based on the 
ENSEMBL GTF annotation file. Feature 30 (log CDS length) was 
obtained from the COSMIC mutation files supplemented by the 
ENSEMBL GTF annotation file and then log2-transformed. Features 
31 is CNA deletion percentage that was calculated based on column 
17 (Mut type: gain or loss) in the original dataset (CNA amplifica-
tion percentage can be calculated by 1 − CNA deletion percentage). The 
VEST scores (feature 35), which indicate missense pathogenicity 
for each mutation, were calculated by CRAVAT. Gene expression Z 
score (feature 36) was used to quantify the gene expression based on 
the “regulation” column in the original data. The exon conservation 
(phastCons) score (feature 32) that is based on the average phast-
Cons score for maximum transcripts of genes was also calculated by 
CRAVAT. Feature 37 (increase of cell proliferation by CRISPR 
knockdown) was calculated on the basis of the cell proliferation 
scores in the CRISPR-screening data. A lower cell proliferation for 
a gene in a cell line means that the gene is more likely to be essential 
to the cell line. A score of 0 means nonessential, whereas a score 
of −1 means essential.

Features 47 to 53 are evolution-based features, including GDI 
(mutational damage that has accumulated in the general population), 
Primate dN/dS score (ratio between the number of nonsynonymous 
substitutions and the number of synonymous substitutions), RVIS 
percentile (high RVIS percentiles reflect genes highly tolerant to 
variation), ncRVIS, ncGERP, family member count (number of hu-
man paralogs for each gene), and the gene age (time of evolutionary 
origin based on the presence/absence of orthologs in vertebrates). 

Genes with higher GERP scores are more constrained. ncRVIS is a 
measure of deviation from the genome-wide variants found in non-
CDSs of genes (46). A negative ncRVIS score indicates less common 
noncoding variation than predicted. In ncRVIS and ncGERP, the 
non-coding regions were defined as the untranslated regions as well 
as nonexonic 250 bp upstream of TSSs.

Training of DORGE-TSG and DORGE-OG
The elastic net is a penalized regression method that can select a 
limited number of features that contribute to the response. Similar 
to the lasso, the elastic net selects features by shrinking some of the 
coefficients to be zero; the remaining features with nonzero coeffi-
cients are considered to have larger effects on the response and thus 
are selected and kept in the model. The main advantage of the elastic 
net over the lasso is that, in case of collinearity, the elastic net 
simultaneously selects a group of collinear features whereas the lasso 
tends to select only one feature from the group. (The simultaneous 
selection of collinear features is desired because, in the extreme 
situation where these collinear features are exactly identical, the re-
gression method should assign equal coefficients to these features.) 
Therefore, we chose the elastic net over the lasso because we ob-
served high collinearity among the original list of 75 features.

Specific to DORGE, we used LR with the elastic net penalty to 
train two binary classifiers for predicting TSGs and OGs, and these 
classifiers were referred to as DORGE-TSG and DORGE-OG. We 
used the R function glmnet from the R package glmnet (https://
cran.r-project.org/web/packages/glmnet/index.html). The  tuning 
parameter was selected by fivefold cross-validation using the func-
tion cv.glmnet from the same R package, while the  parameter, 
which balances the lasso and ridge penalties, was set to the default 
value 0.5.

For every gene, DORGE-TSG predicted it with a probability of 
being a TSG, and this probability is defined as the gene’s TSG score. 
The OG scores are defined similarly by DORGE-OG for all genes. 
Having two separate binary classifiers, one for detecting TSG and the 
other for detecting OG, DORGE is able to detect dual-functional genes.

The codes for training DORGE-TSG and DORGE-OG and 
obtaining predicted TSGs and OGs are available at https://github.
com/biocq/DORGE. An online video that explains the code is avail-
able at www.youtube.com/watch?v=Pk8ZqoHK8zk.

PRC analyses
PRC analyses were performed using the R PRROC. The AUPRCs 
were calculated using TSG scores and OG scores by the pr.curve 
function in the package.

Thresholds on TSG scores and OG scores
We used the in-house code available in our DORGE GitHub repos-
itory to find the cutoffs on TSG scores and OG scores such that the 
population FPRs (type I errors; for TSG prediction, the FPR is the 
conditional probability of misclassifying an NG as a TSG) were 
controlled under 1%. The code was an implementation of the 
Neyman-Pearson classification umbrella algorithm (25).

Gene sets and genomic and functional genomic datasets 
used for characterization and evaluation of  
DORGE-predicted novel TSGs and OGs
The gene lists and datasets that we used to evaluate our DORGE- 
predicted novel TSGs/OGs are as follows: (i) CGC gold-standard 
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gene list: The CGC is a widely used gold-standard list of cancer- 
related genes. We used the CGC v.87 gene list as the testing gene set 
while excluding those in the CGC v.77 gene list to evaluate the 
performance of our prediction. (ii) ATAC-seq data: ATAC-seq data 
were taken from pan-cancer peak calls from data file S2 in Corces 
et al.’s paper (39). (iii) ERs: The ER gene list comes from a recent 
study focused on the characterization of ERs (40) and the EpiFactors 
database (72), after removing the genes that function only as TFs. 
(iv) Candidate TSGs identified by SB insertional mutagenesis. The 
inactivating pattern gene list was downloaded from the SBCDDB 
(42). This database contains cancer driver genes that were identified 
by SB insertional mutagenesis in tumor models. For the evaluation 
of DORGE-predicted novel TSGs, only genes with an inactivating 
pattern in the SBCDDB were kept, resulting in 1211 genes. (v) 
Survival data: Survival data were downloaded from the OncoLnc 
website (44). (vi) shRNA screening data. The gene-centric shRNA 
screening data were taken from the Achilles project (43). (vii) 
Evolutionary conservation data: For evolutionary conservation, we 
used phyloP scores that measure nonneutral substitution rates 
based on multispecies alignments. The phyloP data were download-
ed from the UCSC (http://hgdownload.cse.ucsc.edu/goldenPath/
hg19/phyloP46way). We computed the average −log(phyloP) and 
phastCons score for each gene by averaging the base pair–level con-
servation values for every position in each gene. (viii) Phyletic age: 
We downloaded the precomputed phyletic age gene lists in human 
and measured enrichment of our predicted genes within the gene 
sets from different phyletic ages (i.e., Eukaryota, Metazoa, Chordata, 
and Mammalia) from the OGEE database (48). (ix) The BioGRID 
v3.5.183 data were downloaded from the website https://thebiogrid.org/. 
Biological network-related metrics can be calculated by the Cytos-
cape software (73). Additional information on the network metrics 
can be found in the Supplementary Text. (x) The PharmacoDB (74) 
gene-drug network data were downloaded from https://pharmacodb.
pmgenomics.ca/. (xi) HKGs: We downloaded an HKG gene list from 
www.tau.ac.il/~elieis/HKG/, which includes 3804 HKGs. (xii) Essen-
tial genes: The essential and nonessential gene lists were also down-
loaded from the OGEE database. To shorten this list, we limited our 
essential gene set to those with >2 in entries of the OGEE database, 
resulting in 2340 definitive essential genes. Nonessential genes that 
overlap with essential genes were removed, resulting in 11,990 nones-
sential genes. (xiii) The drug response data were downloaded from 
Drug Gene Budger (54). Only significant drug-gene relationships 
(Q value < 0.05 and fold change > 2) were selected from the CREEDS 
data collections downloaded from the Drug Gene Budger database (54).

Gene set enrichment analysis
KEGG enrichment analyses were performed using Enrichr (75) for 
DORGE and DORGE variant predicted novel genes.

PPI network module analysis
For DORGE-predicted novel genes and CGC genes, PPI module anal-
ysis was performed by Metascape (76). Networks contain proteins that 
display physical interactions with at least one other protein in the 
list. For networks containing 3 to 500 proteins, the MCODE algorithm 
(77) was applied to identify densely connected network modules.

Statistical analysis
One-sided Wilcoxon rank-sum test was used when comparing 
different categories of genes. Gene enrichment analyses were per-

formed in R, using one-sided Fisher’s exact test (fisher.test function 
in R). P values of Spearman correlation were calculated by test for 
association/correlation between paired samples (cor.test function in 
R). Binomial test was used to test the enrichment of dual-functional 
genes in network hub genes.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/46/eaba6784/DC1

View/request a protocol for this paper from Bio-protocol.
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