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In order to provide a comprehensive theoretical description of MgSiO3 at extreme conditions, we combine
results from path integral Monte Carlo and density functional molecular dynamics simulations and generate a
consistent equation of state for this material. We consider a wide range of temperature and density conditions
from 104 to 108 K and from 0.321 to 64.2 g cm−3 (0.1- to 20-fold the ambient density). We study how the L
and K shell electrons are ionized with increasing temperature and pressure. We derive the shock Hugoniot curve
and compare with experimental results. Our Hugoniot curve is in good agreement with the experiments, and we
predict a broad compression maximum that is dominated by the K shell ionization of all three nuclei while the
peak compression ratio of 4.70 is obtained when the Si and Mg nuclei are ionized. Finally we analyze the heat
capacity and structural properties of the liquid.

DOI: 10.1103/PhysRevB.101.024107

I. INTRODUCTION

The equation of state (EOS) of materials in the regime
of warm dense matter is fundamental to model planetary
interiors [1–3], astrophysical processes [4,5], interpret shock-
wave experiments [6,7], and understand the physics of inertial
confinement fusion experiments [8–11]. Novel experiments
and computational techniques have allowed the study of the
properties of matter at extreme conditions and produce EOS
of materials in a wide range of temperatures and densities.
Among the computational techniques are path integral Monte
Carlo (PIMC) simulations [12–16], which have provided a
unique insight into the properties of matter at extreme temper-
ature and pressure conditions relevant to fusion experiments,
where a detailed description of dense plasmas is required to
understand the underlying physics. There has been a con-
siderable effort to study the properties of materials heavier
than hydrogen and helium in the warm dense matter regime
with these techniques, materials such as lithium fluoride [17],
boron [8], aluminum [18], hydrocarbons [19], and superionic
water [20,21]. However, the properties of triatomic materials,
such as MgSiO3, have not been studied.

Enstatite (MgSiO3) is key material for planetary science
and shock physics [7,22–25]. It is one of the few silicate
minerals that has been observed in crystalline form outside
the Solar System [26] and is assumed to be one fundamental
building block in planetary formation [27,28]. Along with
forsterite (Mg2SiO4), it is one of the most abundant materials
in the Earth’s mantle, and it is also expected to be present
in super-Earth planets [26,29]. The properties of silicates at
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conditions existing at planetary interiors are poorly known
because reaching Mbar pressures and 5000–10 000 K temper-
atures in the laboratory presents a serious challenge.

Recent ramp compression experiments at the National Ig-
nition Facility (NIF) and the Ligne d’Intégration Laser (LIL)
facility have explored the properties of silicates and iron at the
conditions encountered in planetary interiors, studying their
metallization and dissociation up to 15 Mbar [3,30,31]. Under
ramp compression, the system follows a thermodynamic path
that is quasi-isentropic [30,32–35], as the heat generated is
significantly lower than in shock compression. This is ideal to
reach the pressures and temperatures present at the interior of
super-Earth planets [2,36]. How close the compression path
follows an isentrope depends on the sample properties and on
the details of the experiments. It is therefore beneficial to com-
pute the isentropes with first-principles computer simulations
in order to guide interpretations of the experimental findings.
Isentropes are also of fundamental importance in planetary
science because planets cool convectively, thus, most of the
interiors are assumed to be adiabatic [2,29,36,37]. However,
there are known exceptions, such as the boundary layer in
the Earth mantle, where temperature rises superadiabatically
because of the high mantle viscosity, and the outermost atmo-
spheres of giant planets, where heat is carried radiatively.

In recent laser-shock experiments, the EOSs of enstatite
and forsterite on the principal Hugoniot curve have been mea-
sured up to 950 GPa and 30 000 K [28,38,39], suggesting a
metallic-like behavior in liquid MgSiO3 over a large pressure-
temperature regime. Finding signatures of melting along the
Hugoniot curves of silicates is fundamental to understand
the dynamics of the Earth’s lower mantle [31,40], as well
as understanding the rich phase diagram of MgSiO3, which
undergoes a series of phase transitions before partitioning
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into MgO and SiO2 [41,42]. However, the behavior of this
mineral at temperatures relevant to the conditions of shock
experiments where ionization of the electronic shells take
place, is unknown.

Recent ab initio simulations have shown that liquid sil-
icates can exhibit very high conductivity at high pressure,
which implies that super-Earths can generate magnetic fields
in their mantle [43]. Therefore, it is desirable to have a
first-principles EOS derived for much higher temperature and
density conditions that span regimes of condensed matter,
warm dense matter (WDM), and plasma physics in order to be
used as a reference for shock experiments and hydrodynamic
simulations. In recent works, a first-principles framework has
been developed to compute consistent EOS across a wide
range of density-temperature regimes relevant to WDM by
combining results from state-of-the-art path integral Monte
Carlo (PIMC) and DFT-MD simulation methods for first- [44]
and second-row [45,46] elements.

In this paper, we apply our PIMC and DFT-MD methods
to compute the EOS and plasma properties of MgSiO3 across
a wide density-temperature range. We study the evolution of
the plasma structure and ionization over the WDM regime.
Finally, we compare our PIMC/DFT-MD shock Hugoniot
curves with widely used models and experiments.

II. METHODS

We perform first-principles computer simulations of warm-
dense MgSiO3 using two different simulation methods: path
integral Monte Carlo (PIMC) and Kohn-Sham density func-
tional theory molecular dynamics (DFT-MD) simulations.
PIMC is a state-of-the-art first-principles technique for com-
puting the properties of interacting quantum systems at finite
temperature. The basic techniques for simulating bosonic sys-
tems were developed in Ref. [47] and reviewed in Ref. [48].
Subsequently the algorithm was generalized to fermion sys-
tems using the restricted path integral method. The first results
of this simulation method were reported in the seminal work
on liquid 3He [49] and dense hydrogen [14]. A review of the
algorithm is given in Ref. [50]. In subsequent articles, this
method was applied to study hydrogen [16,51–54], helium
[55–57], hydrogen-helium mixtures [58], and one-component
plasmas [59–61]. In recent years, the method was extended to
simulate plasmas of various first-row elements [8,17,62–65],
and with the development of Hartree-Fock nodes, the simula-
tions of second-row elements became possible [18,45,66,67].

This method is based on the thermal density matrix of a
quantum system, ρ̂ = e−βĤ, that is expressed as a product of
higher-temperature matrices by means of the identity e−βĤ =
(e−τĤ)M , where τ ≡ β/M represents the time step of a path
integral in imaginary time. The path integral emerges when
the operator ρ̂ is evaluated in real space,

〈R|ρ̂|R′〉 = 1

N!

∑
P

(−1)P
∮

R→PR′
dRt e−S[Rt ]. (1)

Here we have already summed over all permutations, P , of
all N identical fermions in order project out all antisymmetric
states. For sufficiently small time steps, τ , all many-body cor-
relation effects vanish and the action, S[Rt ], can be computed

by solving a series of two-particle problems [47,68,69]. The
advantage of this path integral approach is that all many-body
quantum correlations are recovered through the integration
over all paths. The integration also enables one to compute
quantum mechanical expectation values of themodynamic ob-
servables, such as the kinetic and potential energies, pressure,
pair correlation functions, and the momentum distribution
[48,70]. Most practical implementations of the path integral
techniques rely on Monte Carlo sampling techniques due to
the high dimensionality of the integral, and, in addition, one
needs to sum over all permutations. The method becomes
increasingly efficient at high temperature because the path
the length of the paths scales like 1/T . In the limit of low
temperature, where few electronic excitations are present, the
PIMC method becomes computationally demanding and the
MC sampling can become inefficient. However, the PIMC
method avoids any exchange-correlation approximation and
the calculation of single-particle eigenstates, which are deeply
embedded in all Kohn-Sham DFT calculations.

The only uncontrolled approximation within fermionic
PIMC calculations is the use of the fixed-node approximation,
which restricts the paths in order to avoid the well-known
fermion sign problem [13,49,50]. Addressing this problem in
PIMC is crucial, as it causes large fluctuations in computed
averages due to the cancellation of positive and negative
permutations in Eq. (1). We solve the sign problem approxi-
mately by restricting the paths to stay within our Hartree-Fock
nodes [18,45,64]. We enforced the nodal constraint in small
imaginary time steps of τ = 1/8192 Ha, while the pair density
matrices were evaluated in steps of 1/1024 Ha. This results in
using between 1200 and 12 time slices for the temperature
range that studied with PIMC simulations here. These choices
converged the internal energy per atom to better than 1%. We
have shown the associated error is small for relevant systems
at sufficiently high temperatures [13,44,50].

On the other hand, Kohn-Sham DFT-MD [71–73] is a well-
established theory that has been widely applied to compute
the EOS of condensed matter as well as warm and hot,
dense plasmas [8,74–76]. It is a suitable option to derive the
EOS because it accounts for both the electronic shells and
bonding effects. The main approximation in DFT-MD is the
use of an approximate exchange-correlation (XC) functional.
Although at temperatures relevant to WDM, the error in the
XC functional is small relative to the total energy, which is
the most relevant quantity for the EOS and derivation of the
shock Hugoniot curve [77].

Still, standard Kohn-Sham DFT-MD simulations become
computationally inefficient at high temperatures (T > 106 K)
because it requires one to explicitly compute all fully and
partially occupied electronic orbitals, which becomes increas-
ingly demanding as temperature increases. The number of
occupied bands increases unfavorably with temperature, scal-
ing approximately as ∼T 3/2. Accuracy is also compromised
at high temperatures. The excitation of the inner electrons,
which are typically frozen by the pseudopotentials, may con-
tribute to the pressure and energy of the system as inner
electronic shells become partially ionized with increasing
temperature. In contrast, PIMC is an all-electrons method that
increases in efficiency with temperature (scaling as 1/T ) as
quantum paths become shorter and more classical in nature.

024107-2



PATH INTEGRAL MONTE CARLO AND DENSITY … PHYSICAL REVIEW B 101, 024107 (2020)

Consequently, our approach consist in performing sim-
ulations along different isochores of MgSiO3, using PIMC
at high temperatures (1.3 × 106 K � T � 5.2 × 108 K) and
DFT-MD at low temperatures (1.0 × 104 K � T � 1.0 ×
106 K). We show the two methods produce consistent results
at overlapping temperature regimes.

For PIMC simulations, we use the CUPID code [78] with
Hartree-Fock nodes. For DFT-MD simulations, we employ
Kohn-Sham DFT simulation techniques as implemented in
the Vienna Ab initio Simulation Package (VASP) [79] using
the projector augmented-wave (PAW) method [80,81], and
molecular dynamics is performed in the NVT ensemble, regu-
lated with a Nosé thermostat. Exchange-correlation effects are
described using the Perdew, Burke, and Ernzerhof [82] (PBE)
generalized gradient approximation (GGA). The pseudopo-
tentials used in our DFT-MD calculations freeze the electrons
of the 1s orbital, which leaves 10, 12, and six valence elec-
trons for Mg, Si, and O atoms, respectively. Electronic wave
functions are expanded in a plane-wave basis with a energy
cutoff as high as 7000 eV in order to converge total energy.
Size convergence tests with up to a 65-atom simulation cell at
temperatures of 10 000 K and above indicate that pressures
are converged to better than 0.6%, while internal energies
are converged to better than 0.1%. We find, at temperatures
above 500 000 K, that 15-atom supercells are sufficient to
obtain converged results for both energy and pressure, since
the kinetic energy far outweighs the interaction energy at
such high temperatures [18,83]. The number of bands in each
calculation was selected such that orbitals with occupation as
low as 10−4 were included, which requires up to 14 000 bands
in an 15-atom cell at 2 × 106 K and twofold compression. All
simulations are performed at the � point of the Brillouin zone,
which is sufficient for high-temperature fluids, converging
total energy to better than 0.01% compared to a grid of k
points.

III. EQUATION OF STATE RESULTS

In this section, we combine results from our PIMC and
DFT-MD simulations in order to provide a consistent EOS
table spanning the warm dense matter and plasma regimes.
Computations were performed for a series of densities and
temperatures ranging from 0.321–64.16 g cm−3 and 104 −
108 K. The full range of our EOS data points is shown
in temperature-density space in Fig. 1 and in temperature-
pressure space in Fig. 2.

In order to put the VASP PBE pseudopotential energies
on the same scale as the all-electron PIMC calculations, we
shifted all VASP DFT-MD energies by �E = −713.777558
Ha/atom. This shift was derived by performing all-electron
calculations for the isolated non-spin-polarized Mg, Si, and O
atoms with the OPIUM code [84] and comparing the results
with corresponding VASP calculations.

In order to analyze the consistency of our EOS data sets,
Figs. 3 and 4 display the pressure and internal energy, re-
spectively, along three isochores from PIMC, DFT-MD, and
the classical Debye-Hückel plasma model [88] as a function
of temperature. The pressures, P, and internal energies, E ,
are plotted relative to a fully ionized Fermi gas of electrons
and ions with pressure P0 and internal energy E0 in order to

FIG. 1. Temperature-density conditions of our DFT-MD and
PIMC simulations along with computed isobars, isentropes, and
three principal shock Hugoniot curve that were derived for an initial
density of ρ0 = 3.207911 g cm−3 (V0 = 51.965073 Å/f.u.).

compare only the excess contributions that are the result from
the particle interactions.

With increasing temperature, these contributions gradu-
ally decrease from the strongly interacting condensed matter
regime, where chemical bonds and bound states dominate, to
the weakly interacting, fully ionized plasma regime. There,
the PIMC results converge to predictions from the classi-
cal Debye-Hückel model. As expected, the Debye-Hückel
model becomes inadequate for lower temperatures (T <

107 K) since it fails to treat bound electronic states. While
the temperature range over which PIMC EOS data are needed
to fill the gap between DFT-MD and Debye-Hückel model
(approximately from 2 × 106 to 1 × 107 K) is relatively small
compared to the entire temperature range under consideration,
this temperature interval encompasses significant portions of
K shell ionization regime, which is precisely where the full
rigor of PIMC simulations are needed to acquire an accurate
EOS table.

Figures 3 and 4 show a consistent EOS over a wide
density-temperature range, where PIMC and DFT-MD sim-
ulations provide consistent results in the overlapping range of
1–2 ×106 K. At these temperatures, the pressures predicted by
PIMC and DFT-MD differ by less than 3%, with the exception
of 106 K at sevenfold compression, where we obtained a
difference of 5.3% in the pressure. We attribute this difference
to the known loss of accuracy of PIMC at low temperature.
However, we do not observe this large difference at any other
density.

The total energies predicted by DFT-MD are also in good
agreement with those predicted by PIMC (see Fig. 4), with
differences generally between 1.5–6.5 Ha/atom (3%–6%).
Larger energy differences are observed at 2 × 106 K, where
DFT-MD seems unable to reproduce the energies predicted by
PIMC, within the error bars. At this temperature, we observe
a systematic energy offset of 6.5–8.5 Ha/atom (11%–23%)
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FIG. 2. Temperature-pressure conditions for the PIMC and
DFT-MD calculations along isochores corresponding to the den-
sities of 0.1-fold (0.321 g cm−3) to 20-fold (64.20 g cm−3).
The blue dash-dotted line shows the principal Hugoniot curve of
MgSiO3 obtained from our simulations, using an initial density of
ρ0 = 3.207911 g cm−3 (V0 = 51.965073 Å/f.u.). The red dashed
line corresponds to the Hugoniot curve from Ref. [85], calculated
from DFT-MD simulations. Experimental measurement of the prin-
cipal Hugoniot curve from Ref. [86], an isentrope derived from this
experiment (solid green line), and the Hugoniot curve for MgSiO3

glass [28] (orange region) are shown for reference. The melting line
of MgSiO3 derived from two-phase simulations [87] is shown in
the dashed gray line, while the melting curve derived from shock
experiments [86] is represented by the thick black line.

as the density increases. These errors are mostly due to the
use of pseudopotentials used in DFT simulations, where inner
electrons are bound to the nucleus and cannot be excited to
contribute to the energy, resulting in an underestimation of
the total energy of the system. We will come back to this point
when we discuss the ionization of the electronic shells (Fig. 8)
in the next section.

In Figs. 5 and 6 we show the total energy and pressure as
a function of density for a number of temperatures. While
pressure increases with density, we find that all the E (ρ)T

curves have a minimum. With increasing temperature, the
location of this minimum shifts towards high densities. At

(a)

(b)

(c)

(d)

FIG. 3. Excess pressure as a function of temperature relative to
the ideal Fermi gas, computed with PIMC, DFT-MD, and the Debye-
Hückel plasma model. The results are plotted for densities of (a) 6.4,
(b) 3.651, (c) 7.582, and (d) 15.701 g cm−3.

(a)

(b)

(c)

(d)

FIG. 4. Excess internal energy, relative to the ideal Fermi gas,
computed with PIMC, DFT-MD, and the Debye-Hückel plasma
model. As in the corresponding Fig. 3, the results are plotted for
densities of (a) 6.4, (b) 3.651, (c) 7.582, and (d) 15.701 g cm−3 as
a function of temperature.
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FIG. 5. Total internal energy as a function of density, computed
with PIMC and DFT-MD.

low density, the slope ( ∂E
∂ρ

)
T

is negative because the system
is more ionized, as we will discuss in Sec. IV. At high
density, the slope ( ∂E

∂ρ
)
T

is positive for two possible reasons.
First, there is the confinement effect, which increases the
kinetic energy of the free electrons and, second, the orbitals
of the bound electrons hybridize and may even be pushed into
the continuum of free electronic states, which is commonly
referred to as pressure ionization.

Using Maxwell relations, one can infer that this energy
minimum corresponds to the point where the thermal pressure
coefficient, βV ≡ ∂P

∂T |
V

, is equal to the ratio between pressure
and temperature, because(

∂E

∂V

)
T

= T

[(
∂P

∂T

)
V

− P

T

]
= T

[
βV − P

T

]
= 0. (2)

This derivative vanishes if(
∂ ln P

∂ ln T

)
V

= 1. (3)

This condition is trivially fulfilled for an ideal gas, that sat-
isfies ∂E

∂V |
T

= 0 everywhere. At very high temperature, where
ionization is complete, we find that MgSiO3 starts behaving
similar to an ideal gas and the isochores, that we show in
ln T − ln P space in Fig. 2, have a slope of approximately 1.
When Eq. (3) is satisfied, we obtain a minimum in the E (ρ)T

curve. For example, at T = 0.202 × 106, we find an energy
minimum in Fig. 5 around ρ ≈ 6.42 g cm−3, while ∂ ln P

∂ ln T |
V

becomes 1 in Fig. 2 for the same conditions.
We note that the overall agreement between PIMC and

DFT-MD provides validation for the use of zero-temperature
exchange correlation functionals in warm dense matter

FIG. 6. Pressure as a function of density, computed with PIMC
and DFT-MD.

applications and the use of the fixed-node approximation in
PIMC in the relevant temperature range. At temperatures
lower than the overlapping regime, PIMC results become
inconsistent with DFT-MD results because the nodal ap-
proximation in PIMC simulations is no longer appropriate.
Nevertheless, the validity of our EOS is not affected by these
discrepancies, as we are able to build a consistent interpola-
tion that spans across all temperatures.

The isochoric Grüneisen parameter,

γ = V

(
∂P

∂E

)
V

= V

CV

(
∂P

∂T

)
V

= −
(

∂ ln T

∂ ln V

)
S

, (4)

is a useful quantity to model material properties, since it
usually does not significantly depend on temperature. It is the
key parameter of the Mie-Grüneisen model, which is often
used in shock experiments to model the EOS of solids and
liquids [38,40,86,89] and obtain related properties, such as
the specific heat and melting temperature and, in general, to
infer how pressure depends on temperature along different
thermodynamic paths. The Grüneisen parameter can also be
inferred from the shock Hugoniot curve [86] and, by means
of Eq. (4), can be used to obtain isentropic paths, such as the
temperature profile in magma oceans and ramp compression
curves [30,33].

In Fig. 7 we show the Grüneisen parameter, calculated
from our EOS using Eq. (4), as a function of volume at
different temperatures. First principles simulations and ex-
periments report that in liquid MgSiO3, contrary to the usual
trend in solids, γ increases upon compression [40,90] for tem-
peratures up to 8000 K and volumes from 25.8–64.6 Å3/f.u.
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FIG. 7. Grüneisen parameter of MgSiO3 as a function of volume
for different temperatures. The horizontal, dashed line represents
the high-temperature limit (the Grüneisen parameter of the ideal
gas), γ0 = 2/3. Values of the Grüneisen parameter along the prin-
cipal Hugoniot from shock compression experiments [86] (shown
in gray circles with error bars) correspond to pressures between
230–380 GPa and temperatures between 6200–10 000 K.

We also observe this behavior in most of the temperatures
analyzed in our study, as shown in Fig. 7, with the exception
of 2 × 104 K, where we observe that γ decreases with upon
compression. However, this behavior changes dramatically at
higher temperatures. At 5 × 104 K, γ is almost independent of
volume, and above 7 × 104 K, it increases upon compression,
as was observed in experiments at much lower densities and
temperatures. Our results indicate that the Grüneisen param-
eter can decrease along an isentrope for temperatures below
3 × 104 K but increases along the isentropes with tempera-
tures between 4 × 104 and 4 × 105 K.

At even higher temperatures the dependence on volume
becomes weaker, and at 16 × 106 K, γ decreases upon com-
pression. If the temperature is high enough to ionize the K
shell of the atoms, as we will discuss in the next section, the
plasma behaves similarly to a gas of free particles, described
by the EOS E = 3

2 PV and the Grüneisen parameter γ0 = 2/3,
which is independent of both temperature and density.

IV. K SHELL IONIZATION

From PIMC simulations, a measure of the degree of ion-
ization can be obtained from the integrated nucleus-electron
pair correlation function, N (r), given by

N (r) =
〈

1

NI

∑
e,I

	(r − ‖
re − 
rI‖)

〉
, (5)

where N (r) represents the average number of electrons within
a sphere of radius r around a given nucleus of atom of
type I . The summation includes all electron-nucleus pairs
and 	 represents the Heaviside function. Figure 8 shows the
integrated nucleus-electron pair correlation function for tem-
peratures from 1 × 106 K to 65 × 106 K and densities from

0.321 g cm−3 (0.1-fold) to 64.20 g cm−3 (20-fold compres-
sion). For comparison, the N (r) functions of an isolated nu-
cleus with a doubly occupied 1s orbital were included. Unless
the 1s state is ionized, its contribution will dominate the
N (r) function at small radii of r < 0.2 Bohr radii. For larger
radii, contributions from other electronic shells and neighbor-
ing nuclei will enter. Still, this is the most direct approach
available to compare the degree of 1s ionization of the three
nuclei.

At 0.1-fold compression, the comparison with the corre-
sponding curves for the isolated nuclei shows that the ioniza-
tion of the 1s states of the Si and Mg nuclei occurs over the
temperature interval from 2.0 to 4.0 × 106 K. Conversely, the
ionization of 1s state of the oxygen nuclei starts already at
1.0 ×106 K, which reflects the difference in binding energy
that scales with the square of the nuclear charge, Z . Consistent
with this interpretation, one finds that for 4.0 ×106 K the
Mg nuclei are slightly more ionized than the heavier Si
nuclei, while the ionization of the oxygen nuclei is essentially
complete at this temperature.

When the density is increased from 0.1- to 1.0-fold com-
pression (second row of panels in Fig. 8), the degree of 1s
ionization is reduced. For all three nuclei, the N (r) functions
at small r are closer to doubly occupied 1s state than they
were before. This trend continues as we increase the density
to 4.0 and 20-fold compression. The degree of 1s ionization is
consistently reduced with increasing density when the results
are compared for the same temperature. Most notably we
find the silicon 1s state to be almost completely ionized at
0.1-fold compression and 8.1 ×106 K, while very little ioniza-
tion is observed at this temperature for 20-fold compression.
Similarly, we find almost no ionization of the oxygen 1s
state at 20-fold compression and 2.0 × 106 K, while this state
is significanly ionized for 0.1-fold compression at the same
temperature.

For temperatures higher than 32 × 106 K, thermal exci-
tations are enough to fully ionize all atomic species at any
of the densities explored, and the electrons become unbound
free particles. This picture is consistent with our Grüneisen
parameter calculations, which show (see Fig. 7) that the
system has already reached the limiting value of γ0 = 2/3 at
this temperature, consistent with the ideal gas. We consistently
find the degree of 1s ionization to decrease as we lower the
temperature or increase the density in our PIMC simulations.
The trend with density can be interpreted as an entropy-driven
1s ionization, which can be described by Saha ionization
equilibrium [91]. With decreasing density, more free-particle
states become available, and thus ionization equilibrium shifts
towards higher ionization.

One would expect to find the opposite trend at very high
density, where Pauli exclusion effects cause the 1s state energy
to rise, generating a higher degree of 1s ionization. However,
in our simulations the density is not sufficiently high for the 1s
states of the different nuclei to significantly overlap and cause
ionization by this mechanism. These results are compatible
with the ionization profile of pure oxygen [92], where no
pressure ionization of the K shell at 1 × 106 K was observed in
a similar range of densities. This analysis does not rule out the
possibility of pressure ionization to occur for higher-energy,
more delocalized electronic states.
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FIG. 8. Integrated nuclear-electron pair correlation, functions N (r), computed with PIMC simulations. The three columns correspond to
the Mg, Si, and O nuclei, while the four rows show results for the densities of 0.321 (0.1-fold compression), 3.21 (1.0-fold compression),
12.83 (4.0-fold compression), and 64.16 g cm−3 (20-fold compression). For given density, results are shown for the same set of temperatures
for all three nuclei. However, these temperatures adjusted with increasing density because the degree of ionization is density dependent. N (r)
represent the average of number of electrons contained within a sphere of radius, r, around a given nucleus. For comparison we show the
corresponding functions with thin dashed lines for isolated nuclei with double occupied 1s core states that we computed with the GAMESS
software [93].

We find no significant ionization of the 1s orbital at T =
106 K at any of the densities explored, which indicates that
these inner electrons do not contribute to the thermodynamic
properties of the system at this temperature. DFT pseudopo-
tentials with a helium core should, therefore, be sufficient to
represent MgSiO3 at these conditions accurately. This is not

the case for lighter materials, such as B and LiF [8,17], where
a temperature 106 K is enough to cause partial ionization
of the K shell due to the smaller number of electrons that
those ions have. Heavier elements such as aluminium, to the
contrary, require temperatures above 4 × 106 K to ionize the
1s electrons.
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V. PAIR CORRELATION FUNCTIONS

The radial pair correlation function gαβ (r) is a measure of
the atomic coordination, which depends on temperature and
density. It can be interpreted as the probability of finding an
particle of type α at distance r from a particle of type β. The
nuclear pair-correlation function is given by

gαβ (r) = V

4πr2NαNβ

〈
Nα∑
i=1

Nβ∑
j �=i

δ(r − ‖
ri j‖)

〉
, (6)

where Nα and Nβ are the total number of nuclei of type α

and β, respectively, V is the cell volume, and 
ri j = 
ri − 
r j the
separation between atoms i and j.

In Fig. 9 we compare the N (r) and g(r) functions that
we derived with DFT-MD simulations for one T − ρ point.
The purpose of this comparison is to analyze how many
nearest neighbors contribute to the various shells of neigh-
boring atoms that appear as maxima in the pair correlation
functions. The N (r) function can be derived by applying
Eq. (5) to different pairs of nuclei. When r is set to the first
g(r) minimum, the value of N (r) is commonly referred to
as coordination number. The six N (r) functions in Fig. 9 are
split into two groups. Functions that involve oxygen nuclei
are much higher because there are three times as many nuclei
that contribute. The Si-O N (r) function rises most quickly
with increasing r, reaching a value of N = 2.44 neighbors
for r = 1.18 Å, where the corresponding g(r) function reaches
its first maximum of 2.38. This is the most positive nuclear
correlation in this dense, hot fluid. It still carries a signature of
the strong Si-O attraction that leads to the formation of rigid
SiO4 tetrahedra that dominate the coordination in MgSiO3
liquids and solids at much lower temperature and pressure
[94]. Nevertheless MgSiO3 liquid is much more disordered
at the extreme conditions that we consider in this article. If
one splits the g(r) function into the contributions from the
nth nearest neighbor, one finds that the first maximum of total
g(r) functions at r = 1.18 Å falls between the peaks of the
contributions from the second and third neighbors, as one
would have expected for a value of N = 2.44. Less expected
was how much overlap there is between contributions from
various neighbors. At r = 1.18 Å there are contributions from
up to five oxygen atoms. Similar if one goes out to the first
g(r) minimum at r = 1.76 Å, one finds that contributions from
the ninth neighbor dominate but contributions from the sixth
through 12th are still relevant. At the second g(r) maxium,
located at r = 2.44 Å, contributions from the 21st neighbor
dominate.

As expected, we also find a positive correlation between
Mg and O nuclei, but it is not quite as strong as that be-
tween Si and O nuclei. The first gMg−O(r) = 2.28 maximum
occurs at slightly larger distance of r = 1.23 Å. It falls again
between peaks of the contributions from the second and third
neighbors.

The oxygen-oxygen pair correlation function is a bit dif-
ferent but still positive. Its first maximum is much lower,
gO−O(r) = 1.44, and occurs only at large separations of r =
1.33 Å. It coincides with the peak in the g(r) contribution
function from the third neighbor.

FIG. 9. N (r) and g(r) correlation functions for liquid MgSiO3 at
T = 50 523 K and ρ = 19.247 g cm−3 (sixfold compression). In the
three lower panels, the g(r) functions were split into the contributions
from the nth nearest neighbors. The functions of the third, ninth
and 21st neighbors were shaded because their locations respectively
correspond to first maximum, first minimum, and second maximum
of the Si-O g(r) function. Their locations are also marked by the
vertical dotted lines. To improve the readability, the scales of the Y
axes in the three lower panels were split into two separate linear parts,
one from 0 and 1, and a compressed region from 1 and 2.5.

In Fig. 10 we compare the nuclear pair correlation func-
tion for two-, five-, six-, and 10-fold compression and two
temperatures of 50 × 103 and T = 202 × 103 K. At twofold
compression, the g(r) function shows the profile of a typical
liquid. The Mg-O and Si-O bond lengths are approximately
equal as the location of respective first peaks indicate. As
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FIG. 10. Nuclear radial distribution functions computed with DFT-MD simulations of liquid MgSiO3 at a fixed temperatures of 50 523 K
and 202 095 K. Functions are calculated in 65-atom cells and compared for densities of (from top to bottom) 6.41 (twofold, top), 16.04
(fivefold), 19.25 (sixfold), and 32.08 g cm−3 (10-fold).

density increases, the atoms get closer together and these
two peaks shift, leading to a stronger shortening for the Si-O
bond than for Mg-O bond. For the other pairs of species,
the first peak of the radial distribution function localizes at
smaller distances, becoming more pronounced as the density
increases. This is evidence for stronger correlations at high
density. This trend is also seen for the Mg-Mg, Si-Si, and O-O
pair correlation functions.

When the temperature is increased from 50 × 103 K to
202 × 103 K, the correlation effects are reduced. Most notably
one finds that the Mg-Si, Mg-O, and Si-O pair correlation
functions become fairly similar to each other, while they were
rather different at 50 × 103 K.

VI. SHOCK HUGONIOT CURVES

Dynamic shock compression experiments are a direct way
to determine the EOS of hot, dense fluids by only measuring
the shock and particle velocities. Such experiments are often
used to determine the principal Hugoniot curve, which is the
locus of all final states that can be obtained from different
shock velocities [86].

Initially, the sample material has the internal energy,
pressure, and volume, {E0, P0,V0}. Under shock compres-
sion, the material changes to a final state denoted by
{E (ρ, T ), P(ρ, T ),V }. The conservation of mass, momen-
tum, and energy across the shock front leads to the Rankine-
Hugoniot relation [95],

[E (ρ, T ) − E0] + 1
2 [P(ρ, T ) + P0][V − V0] = 0. (7)

Here we solve this equation using our computed EOS table
that we provide as Supplemental Material [96]. We obtain
a continuous Hugoniot curve by interpolating E (ρ, T ) and
P(ρ, T ) with 2D spline functions of ρ and T . We have com-
pared several different interpolation algorithms and find the
differences are negligible because our EOS table is reasonably
dense. For the principal Hugoniot curve of solid enstatite,
we used P0 = 0, the ambient density ρ0 = 3.207911 g cm−3

(V0 = 51.965073 Å3/f.u.), and initial internal energy E0 =
−35.914 eV/f.u. + �E [85], where �E is the shift applied to
DFT-MD energies defined in Sec. III. The resulting Hugoniot
curve has been added to Figs. 1, 2, 11, and 12.

The principal Hugoniot curve in Fig. 11 exhibits a wide
pressure interval where the compression ratio exceeds 4.0,
the value for an ideal gas. Such high compression values
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FIG. 11. Comparison of the principal shock Hugoniot curves
of MgSiO3 with those of carbon [44], oxygen [92], neon [83],
aluminum [18], and silicon [19,45]. The two dash-dotted curves
and shaded regions show Hugoniot curves without any electronic
excitations and just without K shell ionization. Electronic excitations
increase the shock compression. Without them, a maximum com-
pression ratio of 4.7 could not be attained.

are the result of excitations of internal degrees of freedom
[55,56], which increase the internal energy term in Eq. (7).
Consequently, the second term in this equation becomes more
negative, which reduces the volume V and thus increases the
compression ratio. At a pressure of 15 956 GPa and a tem-
perature of 512 000 K, the shock compression ratio starts to
exceed 4, which are conditions where the L shell electrons are
ionized. The bulk of the high compression region is dominated
by the ionization of the K shell (1s) electrons of the three
nuclei. We see one broad region of increased compression

FIG. 12. Comparison of principal and secondary shock Hugoniot
curves with isotherms and isentropes in pressure-density space.

instead of three separate peaks, one for each nucleus. We
conclude that the ionization peaks are merged.

The highest compression ratio of 4.70 is reached for 5.14 ×
107 K and 299 000 GPa, which coincides in pressure with the
upper compression maximum of the shock Hugoniot curve
of pure silicon, which has also been attributed to K shell
ionization [45]. Based on this comparison and the K shell
ionization analysis of MgSiO3 in Fig. 8 we conclude that
the upper part of the high compression region in Fig. 11 is
dominated by the ionization of the K shell electrons of the Si
and also the Mg nuclei, because their N (r) curves in Fig. 8 are
fairly similar. The lower end of the broad compression peak
in Fig. 11, around 6 × 104 GPa and 1.4 × 106 K, marks the
beginning of the K shell ionization of the oxygen ions as Fig. 8
confirms. However, in shock-compressed pure oxygen, the K
shell ionization peak occurs for lower P and T. We attribute
this difference to interaction effects in hot, dense MgSiO3
that can shift the compression peaks along the Hugoniot
curve to higher temperatures and pressures and reduce the
peak compression [55,56]. It should also be noted that the
highest compression ratio of 4.70 is reached when the K shell
electrons of the Si and Mg nuclei are ionized, not for the
lower temperature at which the K shell electrons of oxygen
are ionized, even though three out of five nuclei are of that
type and one could have predicted that their ionization leads
to the largest compression.

We performed additional DFT-MD calculations without
any electronic excitations in order to determine their effect
on the shock Hugoniot curve. In Ref. [55] it was shown
that electronic excitations increase to shock compression ratio
of helium to 5.24 while the shock Hugoniot curve without
electronic excitations never exceed fourfold compression. In
Fig. 11 we show a very similar behavior for shock-compressed
MgSiO3. Electronic excitations start to matter at approxi-
mately 30 000 K, 2.3-fold compression, and 850 GPa. With
increasing temperature, electronic excitations become more
importance and the gap between the Hugoniot curves with and
without excitations widens. At 106 K, a shock Hugoniot curve
without excitations would yield a pressure of 7700 GPa, up =
40.9 km/s, us = 58.7 km/s and compression ratio of only
3.3, while with excitations, the compression ratio is 4.3 and
thus the pressure reaches a much higher value of 38 000 GPa
while the particle and shock velocities attain much higher
values of up = 95 km/s, us = 124 km/s. These differences
are a bit smaller if one compares the predictions for given
particle velocity of up = 40.9 km/s, rather than for constant
temperature. With electronic excitations, an increased com-
pression ratio of 3.6 is predicted while one obtains slightly
reduced values of pressure (7420 GPa) and the shock speed
(us = 56.6 km/s). However, the temperature is much lower
(280 000 K) than is predicted without excitation (106 K).
This underlines that electronic excitation significantly affect
the final state in shock compression experiments of dense
silicates.

In Fig. 11 we also show a shock Hugoniot curve that
includes L shell but no K shell ionization. This curve was
derived from VASP DFT-MD simulations that relied on pseu-
dopotentials with a frozen K shell electrons. At 4.26-fold
compression, 37 700 GPa, and 1.01 ×106 K, this curve starts
to deviate from our original Hugoniot curve that included
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the K shell ionization. It is the ionization of this shell that
introduces a shoulder into the Hugoniot curve and increases
the compression to a maximum value of 4.7.

Very approximately, we added relativistic and radiation
effects to the Hugoniot curves in Fig. 11. Under the assump-
tion of complete ionization, the relativistic corrections were
derived for an ideal gas of electrons. This increases the shock
compression ratio for P > 4 × 106 GPa and T > 7 × 107 K.
Considering an ideal black body scenario, we derived the
photon contribution to the EOS using Pradiation = (4σ/3c)T 4

and Eradiation = 3PradiationV , where σ is the Stefan-Boltzman
constant and c is the speed of light in vacuum. We find
that radiation effects are important only for temperatures
above 3 × 107 K, which are well above the temperature nec-
essary to completely ionize the 1s orbitals of all atomic
species.

In Fig. 2 we can observe how our calculated Hugoniot over-
laps with the experimental data from Fratanduono et al. [86]
who performed laser-driven shock experiments on enstatite to
obtain a continuous measurement of the principal Hugoniot
curve. In these experiments, enstatite was shocked up to
600 GPa reaching temperatures as high as 2 × 104 K. Using a
Grüneisen parameter model coupled to an EOS, Fratanduono
et al. derive isentropic profiles for liquid MgSiO3 close to
the melting curve. Their findings show that the melting curve
and the isentropic temperature profiles, shown in Fig. 2, are
shallower than previous DFT-MD predictions [97] and nearly
parallel to each other, which can have substantial implications
for the interior of rocky exoplanets, such as the possible
crystallization of a deep silicate mantle over a wide range of
temperatures.

To provide a guide for future ramp compression exper-
iments, we also plot different isentropes, derived from the
relationship dT

dV |
S

= −T dP
dT |

V
/ dE

dT |
V

and added them to Figs. 1,
2, and 12. We find that the slope of the isentropes does not
strongly depend on temperature, even though we compare
conditions with differing degrees of ionization. Our results
imply that the temperature rise with pressure along the isen-
tropes approximately follows a power law, T ∝ Pα , with an
exponent α = 0.309 below 106 K, increasing only up to α =
0.399 for temperatures above 107 K. This provides simple rule
for obtaining isentropic profiles in MgSiO3 with wide-range
validity, without the need of relying in approximate models.

In Fig. 12 we show a number of double-shock Hugoniot
curves. Various points on the principal Hugoniot curve were
chosen as initial conditions for a second shock that com-
presses the material again, reaching densities that are much
higher than those that can probed with single shocks. If one
starts from the high compression point on the principal Hugo-
niot curve, one can reach densities of 60 g cm−3. However, the
compression ratio is typically not as high because the strength
of the interaction effects increases and this lowers the com-
pression ratio. For the secondary shock Hugoniot curves that
we show in Fig. 12, the maximum compression ratio varied
between 4.44 and 4.01 while the maximum compression ratio
of the principal Hugoniot curve was 4.70.

Figure 12 also compares our secondary Hugoniot curves
with our isentropes and isotherms. For weak second shocks,
the secondary Hugoniot curves and isentropes almost co-
incide, which implies that the second shock produces very

FIG. 13. Left: particle velocity up is shown as a function of
compression ratio. Right: The deviations from a linear up − us fit.
The coefficients are A = 1.2764 and B = 8.2315 km/s.

little nonreversible heat. As the strength of the second shock
increases, more and more nonreversible heat is generated.

To provide a direct comparison with experiments, we also
derived the particle velocity, up, and shock velocity, us, along
the principal Hugoniot curve. The left panel of Fig. 13 shows
the particle velocity as a function of compression ratio, which
allows on to related the prediction to Fig. 11. It is often found
that up and us follow an approximately linear relationship
over a wide range of conditions [86,98]. However, one does
not expect a linear relationship to hold perfectly when elec-
tronic excitations introduce distinct increases in compression
at well-defined temperature/pressure intervals. Therefore we
first fit a linear up − us relation for our computed Hugoniot
curve and then plot the deviation from it in the right panel
of Fig. 13. The comparison of both panels allows us to cor-
relate deviations from linear up − us relation with changes in
compression. For example, the onset of the K shell ionization
that introduces a bump into the Hugoniot curve at 4.3-fold
compression also leads to a bump in us for up = 90 km/s.
Similarly, when the K shell ionization of the oxygen atom
increase the compression ratio to 4.6, we see a reduction in
us for up = 140 km/s. Finally, the ionization of the Mg and Si
K shell electrons that leads to the compression maximum of
4.7 ×ρ0 also leads to a reduction in us for up = 270 km/s.
For even higher particle velocities, the system approaches
the states of a completely ionized plasma where the shock
compression ratio is gradually reduced to 4 and our linear
up − us relation does no longer hold.

VII. SPECIFIC HEAT

The specific heat, Cv = ∂E
∂T |

V
is shown in Fig. 14 as a

function of temperature for various densities. For tempera-
tures below 105 K, our calculations show that the value of Cv

approaches 21 kB/f.u. (4.2 kB/atom) at twofold compression
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FIG. 14. Heat capacity and Grüneisen parameter temperature de-
pendence, derived from DFT-MD and PIMC calculations at various
densities. The horizontal dashed line in the upper panel represents
the high-temperature limit of CV = 3

2 NkB where N = 55 is the total
number of free particles per MgSiO3 formula unit, with five ions and
50 electrons. Values above this line mark the temperature region of
ionization where the internal energy increases significantly. In the
lower panel, the Grüneisen parameter of the ideal gas, γ0 = 2/3, also
represents the high-temperature limit.

(6.42 g cm−3), which is in agreement with previous DFT
calculations [90] and recent experimental measurements [86]
along the Hugoniot at similar conditions. At very high temper-
atures, where the all atomic species are completely ionized,
we recover the expected nonrelativistic limit of 3

2 Nkb, where
N = 55 is the total number of free particles of the MgSiO3
system (five nuclei and 50 electrons).

As electrons become free with increasing temperature, the
specific heat increases, reaching a local maximum at around
T ≈ 2 × 106 K for the density range of 0.1 − 2ρ0, which
reflects the ionization of K shell electrons of the oxygen
atoms. This peak dissapears almost completely at 4ρ0 because
this compression prevents the oxygen K shell electrons from
becoming ionized, as we discussed in the previous section. A
second maximum appears around T ≈ 7 × 106 K, which can
be associated with the almost simultaneous ionization of Mg
and Si K shell electrons, as we showed in Fig. 8.

In the bottom panel of Fig. 14, we observe that the
Grüneisen parameter, γ , decreases with temperature up to
approximately 2 × 106 K for all densities considered, due to
the increasing value of Cv [see Eq. (4)]. Above 2 × 106 K,
where ionization of the K shells takes place, γ increases with
temperature due to the decrease in Cv and tends to the ideal
gas limit of γ0 = 2/3, as we have shown in Fig. 7.

A discontinuity in the principal Hugoniot of liquid MgSiO3
has been observed around 15 000 K and 500 GPa [38], which
was interpreted as a liquid-liquid phase transition that could

lead to an unusually large increase of the specific heat. Ac-
cording to this study, Cv could be as large as 90 kB/f.u. (18
kB/atom) at these conditions, a value that is expected only
at temperatures beyond 106 K, according to our calculations.
However, this transition has not been confirmed in previous
DFT-MD simulations [85], and recent experiments [86,99]
show no anomalies in the principal Hugoniot that could sup-
port this hypothesis. Therefore, we should expect CV to be at
most 30 kB/f.u. (6 kB/atom) below 100 000 K.

VIII. CONCLUSIONS

We have constructed a consistent EOS of MgSiO3 over
a wide temperature-density range using DFT-MD and PIMC
that bridges the WDM and plasma regimes. Our results pro-
vide the first detailed characterization of K shell ionization
in a triatomic material. We quantify the degree of ioniza-
tion and the contribution from each atomic species to the
thermodynamic properties, which, at the present time, cannot
be inferred from the laboratory experiments. We predict that
the maximum compression ratio for enstatite is 4.7, which is
attained for 5.13 × 106 K and 3.01 × 105 GPa in the WDM
regime. By performing additional calculations without any
electronic excitations or only without K shell excitations, we
are able to determine the conditions where these excitations
start to increase the shock compression. We show that without
electronic excitations the shock compression ratio of MgSiO3
would not exceed 4.0. Excitations of L shell electrons start
increase the shock compression from 30 000 K, 847 GPa,
ρ/ρ0 = 2.28, up = 12.2 km/s, and us = 21.7 km/s onwards,
which is within the reach of current laboratory experiments.
It is also interesting to note that we do not see a separate L
shell ionization peak. We conclude that this shell is ionized
gradually, as it occurs in dense carbon and boron materi-
als [8,64,65,100]. Excitations of K shell electrons set in at
1.01 ×106 K, 37 700 GPa, ρ/ρ0 = 4.26, up = 94.8 km/s and
us = 124 km/s.

We find good agreement between results from PIMC
and DFT-MD simulations, which provides evidence that the
combination of these two different formulations of quantum
mechanics can be used to accurately describe WDM. The
precision of first-principles computer simulations will guide
the design of inertial confinement fusion (ICF) experiments
under conditions where the K and L shell electrons are grad-
ually ionized, which is challenging to predict accurately with
analytical EOS models.

We showed that PIMC and DFT-MD simulations produce
consistent EOS data in the 1−2 × 106 K temperature range,
validating the use of the fixed-node approximation in PIMC
and zero-temperature XC functionals in DFT-MD for warm
dense MgSiO3. We obtain a shock Hugoniot curve that is
consistent with experiments and includes the K shell ion-
ization regime of the three atomic species. Their ionization
leads a one broad peak of high compression ratios between
4.5 and 4.7. The maximum compression is reached for higher
temperatures, where the Mg and Si atoms are ionized, even
though there are more oxygen atoms present and their 1s
ionization occurs at slightly lower temperatures.

Subsequently, we analyzed how close a secondary shock
Hugoniont curves can stay to an isentrope, providing a guide
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for future ramp compression experiments. We also showed
that the Grüneisen parameter increases upon compression for
most of the temperatures analyzed in this study, and converges
to the ideal gas limit when temperature reaches ∼2 × 107,
consistent with a full K shell ionization of all atomic species.

Finally, we then studied heat capacity and pair-correlation
functions to reveal the evolution of the fluid structure and
ionization behavior. Overall, we demonstrate that PIMC is an
predictive tool to determine the EOS in the WDM regime.
We demonstrated that He-core PBE functional can accurately
describe MgSiO3 up to temperatures of ∼106 K. For higher
temperature, the ionization of K shell electrons significantly
affect the thermodynamic properties and the shock Hugoniot
curve of MgSiO3 and the frozen-core approximation in the
pseudopotential no longer valid.
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