
UC Merced
UC Merced Electronic Theses and Dissertations

Title
Inferring gene regulatory networks using transcriptional profiles as attractors and its 
application on the white-opaque switch in Candida albicans

Permalink
https://escholarship.org/uc/item/48v4003j

Author
Li, Ruihao

Publication Date
2023

Supplemental Material
https://escholarship.org/uc/item/48v4003j#supplemental

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-ShareAlike License, available at https://creativecommons.org/licenses/by-
nc-sa/4.0/
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/48v4003j
https://escholarship.org/uc/item/48v4003j#supplemental
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://escholarship.org
http://www.cdlib.org/


Inferring gene regulatory networks using transcriptional profiles as attractors and
its application on the white-opaque switch in Candida albicans

By

RUIHAO LI

A dissertation submitted

in partial fulfillment of the

requirement for the degree of

Doctor of Philosophy

in

Quantitative and Systems Biology

Committee in charge:

Professor David Ardell, Chair

Professor Suzanne Sindi

Professor Clarissa Nobile

Professor Aaron Hernday, Advisor

2023



Inferring gene regulatory networks using transcriptional profiles as attractors and its

application on the white-opaque switch in Candida albicans

Copyright

by

Ruihao Li, 2023

All rights reserved.



iii

The dissertation of Ruihao Li, titled “Inferring gene regulatory networks using transcriptional

profiles as attractors and its application on the white-opaque switch in Candida albicans”,

is approved, and it is acceptable in quality and form for publication on microfilm and

electronically:

Date

Professor David Ardell, Chair

Date

Professor Suzanne Sindi

Date

Professor Clarissa Nobile

Date

Professor Aaron Hernday, Advisor

University of California, Merced

2023



Inferring gene regulatory networks using transcriptional profiles as attractors and its

application on the white-opaque switch in Candida albicans

by

Li, Ruihao

Doctor of Philosophy in Quantitative and Systems Biology

University of California, Merced

2023

Dissertation directed by Professor Aaron Hernday

ABSTRACT

Candida albicans is the most common cause of life-threatening disseminated fungal

infections. It is capable of undergoing phenotypic switching between two distinct cell

types, named ‘white’ and ‘opaque’. The white-opaque switch is controlled by a complex

genetic regulatory network (GRN) that consists of transcriptional regulators (TRs). The

advent of methodologies for profiling mRNA transcript levels and specific protein-DNA

interactions at a genome-wide level has greatly expanded our ability to determine the

structure and output of genetic regulatory networks, however uncovering the logic of how

these networks function remains a challenging endeavor. The field of genetic regulatory

network inference aims to meet this challenge by using computational modeling to derive

the structure and logic of GRNs based on the experimental data provided by these genome-

wide approaches. Boolean, probabilistic, ODE-based, and other models have been developed

to infer GRNs. However, most existing models do not incorporate dynamic transcriptional

data, since it has historically been less widely available in comparison to “static” transcriptional

data.

In this work, a novel evolutionary algorithm-based ODE model that integrates kinetic

data and considers “static” transcriptional profiles as attractors has been developed to infer

GRN structure. The model performed well on both in-silico and real-life datasets, and it

was able to predict unknown transcription profiles produced upon genetic perturbations of

the Candida albicans white-opaque GRN. Those genetic perturbations can be engineered

in vivo and the result can be utilized to either support or further refine the model. Therefore,

the model allows for an iterative refinement strategy to decipher GRN and verify its reliability:

the model facilitates GRN candidate selection for experimentation and the experimental

result in turn provides validation or improvement for the model.
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CHAPTER I
INTRODUCTION

1.1 A brief introduction to genetic regulatory network reverse engineering

It has been widely accepted that genetic regulatory networks (GRNs), which are

comprised of interactions between sequence-specific DNA-binding proteins, or transcription

factors (TFs), and their respective regulatory target genes ([1]), are one of the primary

underlying mechanisms by which unique cells respond to environmental variables ([2]),

maintain homeostasis ([3]), develop into multicellular organisms ([4]), and make cell fate

decisions ([5]). Inferring the architecture of GRNs based on experimental datasets, also

known as the “inverse problem” ([6]), is important to understanding these cellular processes

(see [7, 8] for examples). The advent of high-throughput “omics” techniques ([9]) has

dramatically accelerated the pace by which researchers can obtain these experimental datasets

for GRN reverse engineering ([10]). The most commonly used high-throughput approach

is RNA sequencing, which effectively and economically identifies and counts the number

of transcripts present for each RNA species, and thus generates a transcription profile of

the cell or tissue being assayed. With multiple bulk or single-cell transcription profiles

measured at different time points, or in different cell types, one can see which genes have

been up- or down-regulated and further infer the logic of the GRNs that underlie those

regulatory changes ([11]).

1.2 Existing GRN inference approaches and challenges remained

In the past twenty years, numerous modeling approaches have been developed

to infer GRN architectures using “omics” data and other prior knowledge ([12, 13, 9, 14]).

GRN inference models can be broadly categorized into four distinct categories, based on



2

the algorithms and hypotheses they employ (see reviews: [15, 16, 17, 18, 19, 20, 21, 22,

23]).

1.2.1 Data-driven models

The models of this type do not simulate the biological processes such as transcription

or translation, but hypothesize that interacting genes have correlated expression levels,

which may result from common regulators and shared biological characteristics. The

correlation in gene expression does not imply causality since indirect regulation common

exists in biology and can give rise to correlated gene clusters. Specifically, these models

apply the Pearson correlation, mutual information, and linear regression ([24]) to infer

GRNs. Pearson correlation is calculated by the ratio between the covariance of two genes’

expressions and the product of their standard deviations (Eq. I.1):

corr(X, Y ) =
cov(X, Y )

σX · σY

, (I.1)

where X and Y denotes the expressions of gene X and Y. cov(X, Y ) is the covariance

and the σX and σY are the standard deviations. For instance, a method called MTPCC and

built by [25] performs Hierarchical clustering using the Pearson correlation coefficients as

the metric of distance. MTPCC uses a threshold to establish the boundaries among gene

clusters and evaluates the significance of the relationships among the clusters.

Mutual information measures how much the certainty of a gene’s expression can

decrease the uncertainty of another gene’s expression. It is calculated by Eq. I.2:

MI(X, Y ) =
∑
x∈X

∑
y∈Y

P (x, y) log
P (x, y)

P (x)P (y)
, (I.2)

where MI(X, Y ) is the mutual information; P (x, y) is the joint probability mass function

of gene X and Y, and P (x) and P (y) are the marginal probability mass function for gene

X and Y respectively. A widely used example is a method called ARACNE ([26]). Briefly,

ARACNE obtains an adjacency matrix with MI values for each gene pair and removes the

non-significant and indirect interactions by a metric known as data processing inequality. A

limitation to the mutual information methods is that the estimation of the joint probability

can be highly sensitive to noise when the sample size is small.

Linear regression models assume that a gene’s expression can be explained by the

linear combination of other genes’ behaviors. Typically, a weight coefficient matrix is

applied to represent how significantly other genes can impact the target gene (Eq. I.3).
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Xg,i =
∑
j ̸=g

WjXj,i + εi, (I.3)

where Xg,i denotes the expression value of the gth gene in the ith sample. Wj is the weight

coefficient matrix for the jth gene and εi is the noise term. The weight coefficient matrix

can contain numbers with both signs. Positive and negative numbers represent activating

and inhibiting genes while zeros mean no regulation interaction. Normally, the weight

coefficient matrix is trained iteratively in order to minimize the difference between the

estimated gene expressions and the data. A method called KFLR, proposed by [27],

implemented both mutual information and linear regression to construct a directed GRN

and showed better performance compared with several well know methods. However,

real biological systems often exhibit non-linear behavior in gene regulation and enzymatic

catalysis due to saturation effect. A certain deviation may be introduced inevitably by linear

regression.

These data-driven models are often simple because they normally do not require prior

knowledge or expensive computation. They are powerful when dealing with large-scale

GRNs having hundreds or thousands of genes. However, they cannot determine if a gene is

a regulating gene or a target gene: their outcome GRNs are symmetric matrices. Additional

downstream analysis can be performed to further determine the roles of the players within

the GRN.

1.2.2 Probabilistic models

Probabilistic consider gene expression as a random process and infer GRN architecture

by maximizing the likelihood of a GRN reproducing the input transcription profiles using

heuristic algorithms ([28, 29]). Bayesian network approaches are an outstanding representative

of probabilistic models. In a Bayesian network, nodes represent gene expression as random

variables and edges are the conditional dependence. Since conditional dependence can

indicate direction, the outcome Bayesian network is a directed graph, or an asymmetric

adjacency matrix. Given a network structure, the joint probability distribution of all genes

is calculated by Eq. I.4:

P (x1, x2, ..., xn|Anet) =
n∏

i=1

P (xi|TFi), (I.4)
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where P (xi|TFi) denotes the conditional probability distribution and TFi are the transcription

factors regulating gene i. Typically, an (local) optimal network structure is searched by

maximizing the logarithm joint probability distribution. To guarantee that the joint probability

distributions are normalized to 1, the Bayesian network has to be acyclic, which means

a gene without any transcription factors must exist in the network. Bayesian network

approach is popular in the field of GRN inference since it regards the expressions of

genes as random variables and therefore can effectively deal with the noise within the

data. Bayesian network approach is also flexible and can incorporate different types of

data and prior knowledge. Many models have been developed using this approach, such as

ScanBMA ([30]), AR1MA1-VBEM ([31]), BGL ([32]), and SCOUP ([33]). However, the

Bayesian network approach is computationally expensive because searching for the optimal

network structure is a NP-complete problem ([34]). As a result, it usually cannot deal with

large-scale GRNs. In addition, self-regulating genes and feedback loops are important and

widely exist in biological networks but the Bayesian network cannot capture these features

since it does not allow for any loops.

Dynamical Bayesian network (DBN) is an extension of the Bayesian network and

it has an additional assumption that the network is subdivided into a sequence of time

steps, each containing the same number of genes ([35]). The expression of a gene at the

current time point could only affect the expression of other genes, or itself, at the next

time point. DBN can construct cyclic networks since a gene can regulate itself at the

next time point. Limitations for DBN still exist: the time complexity for DBN is even

higher than Bayesian network due to the implementation of time-series data. Moreover,

There can be multiple valid factorizations of a joint probability distribution, leading to

different networks encoding exactly the same probability distribution. This issue is known

as Markov equivalence in probability theory. A common way to resolve this problem is to

build an “essential graph” that can represent the equivalence class ([36]).

1.2.3 Boolean models

Boolean models are capable of simulating how GRNs control the expression of genes

over time (i.e. GRN dynamics) without prior knowledge of any kinetic parameters since

they use binary variables, 1 and 0, to define the state of a gene as “on” or “off” ([37]).

Therefore, a GRN comprised of n genes has 2n different states. A transition matrix, also

known as a truth matrix built by a combination of logic gates such as AND, OR, and

NOT, is used to decide how the system transits from one state to the next. Given an
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initial state and a transition matrix, a trajectory of subsequent states can be computed.

The recurring or steady states are referred to as attractors, towards which a kinetic system

tends to evolve and converge. Boolean models have the advantage of simulating GRN

dynamics without kinetic parameters and are able to apply attractor dynamics to infer

GRNs ([38, 39]). Numerous Boolean models, such as BoolNet ([40]) and SimBoolNet

([41]), have been developed and successfully applied in a variety of biological systems

([42, 43, 44]). Kauffman ([45]) has originally suggested that stable cell types (represented

by their transcriptional profiles) can act as attractors. This view provided a modeling basis

for Waddington’s epigenetic landscape ([46]) and has been supported by additional studies

([47, 48, 5, 2]). Additionally, it has been applied to GRN inference in Boolean models ([49,

50, 51, 52, 53]) and their result suggested that a biologically plausible GRN architecture

can be identified by matching Boolean network attractors to different cell types that are

characterized by their respective binary transcription profiles, and the output generated

by the inferred GRNs was in agreement with the experimentally observed data. The

application of attractor dynamics can compensate for “the curse of dimensionality” brought

by the complexity of GRN architecture ([54, 55, 50]); when the scale of a GRN increases,

the number of potential GRN architectures grows so fast that the available data points

become sparse in the state space (Fig. 1.1a and 1.1b), and the data sparsity can undermine

the significance and robustness of the model results. By employing binary transcription

profiles as attractors, the Boolean models can compensate the curse of dimensionality

since the data points become “basins of attraction”, which can cover significantly more

state space and provide more information on the system dynamics (Fig. 1.1c). Although

the simplicity of Boolean model allows the beneficial application of attractor dynamics,

it limits its faithfulness to real-life GRN system, where gene expression levels (commonly

represented by the number of transcripts for each RNA species) are most accurately described

as a continuous variable rather than binary “on” vs. “off” states ([56, 57]).
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Figure 1.1: (a) (b) Curse of dimensionality: when dimensionality increases (from 2 to
3), the state space volume grows dramatically, and the existing data points become sparse
passively. (c) When the data points become attractors, their basins of attraction can cover
more space and compensate the curse of dimensionality.

1.2.4 Ordinary Differential/Difference equation (ODE) models

ODE-based models can simulate the dynamics of gene expression processes in a

quantitative manner based a set of ordinary differential/difference equations. Specifically,

the ordinary differential equations are established to describe how each gene is regulated

by other genes and how the gene expressions change over time (I.5).

dxi

dt
= fi(TFi, θ, ui), (I.5)

where fi(TFi, θ, ui) denotes the regulation function for the ith gene and ui is the external

perturbation added to the gene. The regulation function can be linear, such as a weighted

average of other genes’ expressions, or non-linear, such as a sigmoid function or Hill

function (see examples: [58, 59, 60, 61, 62, 63, 64, 65]). Differential equations can be

solved numerically or analytically. Numerical methods use finite numbers to compute

the integrals defined by the ODEs step by step, while analytical methods, also known

as symbolic computation, use mathematical symbols to calculate the solutions directly.

Therefore, an analytical solution is perfect because it has absolutely no error. However, it

has been proved that complex ODEs, such as Eq. I.5, cannot be solved analytically (i.e.

in closed-form expression) ([66]). Specifically, if one wants to write down the analytical

solution of the ODEs, if it exists, with normal operations and functions, such as plus,

minus, multiplication, exponent, logarithm, and trigonometric functions, infinite amount

of ink is needed. In fact, analytical solution is not practical for most complex non-linear

differential equations, and numerical solution is the only option to solve them. Therefore,
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ODE models are the most computationally expensive approach of all and commonly limited

to small-scale GRNs. On the other hand, ODE models can incorporate any types of data

and prior knowledge to faithfully represent the biological processes, such as transcription

and translation. The outcome of ODE models can provide detailed structural information

on the GRN including the direction and sign of the edges.

Since ODE models can quantitatively simulate GRN dynamics with discrete or continuous

gene expression levels, they are related to Boolean models ([67, 68, 69, 70, 71]) and also

have the potential to apply attractor dynamics ([72, 73]). For instance, FOS-GRN ([74])

and Netland ([75]) can reconstruct multi-attractor kinetic landscapes with ODEs and user-

defined parameters. In addition, Drs Jin, Liu, Mochizuki, Rozum, Wang, Zanudo and their

colleagues ([76, 77, 78, 79, 80, 81, 82]) have studied the controllability of GRNs (whose

topologies are known) and demonstrated how the GRNs can be steered from one attractor

state to another using ODE-based models. Typically, existing approaches to infer GRNs

in ODE-based models fall into two categories: gradient matching and trajectory matching

from time-series gene expression data ([83]). Gradient-matching approaches do not solve

the ODEs but directly compute the gradient of gene expression data using Gaussian process

regression and then optimize the parameters of the ODE system ([84, 85]). On the other

hand, trajectory matching aims at tuning parameters to minimize the discrepancy between a

computed trajectory and the corresponding observed one ([86, 83]). The attractor-matching

approach, which does not focus on specific trajectories or gradients, has not been applied

due to the lack of experimentally measured GRN kinetic data ([56, 22]), such as the rates

of transcription and mRNA degradation, which shape the kinetic landscape, or vector field,

of a GRN system and are essential for determining the attractors’ positions and “basins”

([87, 74]).

There are no absolute boundaries amongst these categories and not all GRN inference

models can be assigned to them ([88, 89, 90, 91, 92, 93, 94]). Nevertheless, the categorization

provides a board view of existing GRN inference models and their pros and cons. According

to the features of a biological system, a suitable GRN inference model can be chosen based

on its speed of analysis, amount of data needed, faithfulness of biological reality, and the

ability to perform prediction.

1.3 Challenges

Although transcription profiles are informative and have been widely used, it does not

directly reflect whether a gene is activated or repressed by its regulators ([95]), since some
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mRNAs are highly stable and can accumulate in cells, while others are actively degraded.

Transcription rate should be the fundamental criterion to determine how actively a gene

is being transcribed ([96]). Despite the importance of transcription rates in understanding

GRN dynamics ([97, 98]), they were much less available than expression-based data in

most organisms. For example, the yeast Saccharomyces cerevisiae is a well-studied model

eukaryote, but its mRNA transcription and degradation rates could not be measured without

cellular perturbation until 2011 when Miller et al. developed a method called “dynamic

transcriptome analysis”, which enables the acquisition of genome-wide transcriptional kinetics

by non-perturbing RNA labelling with the nucleoside analog 4-thiouridine ([99]). More

systematic and high-throughput measurement assays, including BRIC-seq ([100]), 4sU-seq

([101]), TT-seq ([102]), TUC-seq ([103]), SLAM-seq ([104]), TimeLapse-seq ([105]), and

csRNA-seq ([106]), were invented even later (see Table 1.1). In addition, incorporating

these kinetic parameters in GRN inference models can be difficult because they are also

cell-type specific and often vary in different cellular conditions, such as growth stages

([107, 96]). As a result, most ODE-based models did not have access to the measured

kinetic parameters and tried to estimate them while inferring GRN ([108, 109, 110, 111,

112]). This strategy largely varies from the application of attractor dynamics in which

measured kinetic parameters are already known and are used to find and match the attractors.

Table 1.1: Description of the methods for mRNA kinetics measurement

Method Description Reference
BRIC-seq BRIC-seq uses Bromo-urdine (BrU) to label

endogenous mRNA transcripts, which are later

pulled down by BrU antibody. The half-life of

each transcript is calculated from the difference

of labeled and unlabeled transcripts.

[100]

4sU-seq 4sU-seq uses 4-thiouridine (4sU) to label

endogenous mRNA transcripts. 4sU-labeled

RNAs are recovered by dithiothreitol, a

reducing agent. The mRNA half-life is

calculated from the ratio of 4sU-labeled

and total RNAs by assuming steady-state

conditions.

[101]

Continued on next page
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Table 1.1 – continued from previous page
Method Description Reference

TT-seq TT-seq includes a RNA fragmentation step

before purification of 4sU-containing RNAs.

This fragmentation allows the measurement of

only newly transcribed 4sU-labeled RNA.

[102]

TUC-seq In order to measure 4sU-labeled RNAs

without biochemical enrichment, TUC-seq

uses osmium tetroxide-mediated oxidation to

convert 4sU into cytosine. By identifying the

4sU-to-C mutations in RNA sequencing, the

initial 4sU-labeled RNAs can be recognized,

and the mRNA half-life can be calculated.

[103]

SLAM-seq SLAM-seq is similar to TUC-seq. The main

difference is that SLAM-seq uses a thiol-

reactive compound iodoacetamide to convert

4sU into cytosine.

[104]

TimeLapse-

seq

TimeLapse-seq is similar to TUC-seq and

SLAM-seq. The main difference is that

TimeLapse-seq uses oxidative-nucleophilic-

aromatic substitution to convert 4sU into

cytosine.

[105]

csRNA-seq csRNA-seq enriches short (∼20-60 nt)

and 5’-capped RNAs using denaturing

gel electrophoresis and enzymes (RNase,

phosphatase, and pyrophosphohydrolase). By

measuring these specific RNAs, csRNA-seq

can directly reveal the activity of transcription

for each gene.

[106]

Another classic challenge in GRN inference is that while a wealth of high-throughput

“omics” datasets are publicly available, or can be readily obtained through additional experimentation,

it is still extremely challenging to directly determine the complete and comprehensive
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composition and structure of “real-world” GRNs in living organisms ([113, 17]). Therefore,

the use of experimental data in GRN inference can be problematic when it comes to

validating the outcome of GRN model predictions, since one can rarely if ever be certain

that the experimental data provides a complete picture of the real-world GRN structure. For

this reason, it has become common practice in the field of GRN inference to utilize in silico

(i.e. computer generated) datasets, which can provide gene expression data that is directly

predicted based on a hypothetical “source” GRN model ([114, 115, 116, 117]). Essentially,

GRN inference models are typically judged based on their ability to infer a hypothetical

“source” GRN, which in turn has been used to generate the in silico datasets upon which the

GRN model has been deployed. This seemingly circular approach has a distinct advantage

over the use of experimental datasets, in that “true structure” of the “source” GRN is known.

However, this approach also suffers from necessary simplifications and the lack of true

biological complexity. In addition, while some in silico generators ([118]) allow user-

given parameters, most others ([116, 114, 115, 119, 120]) do not provide their randomly

sampled kinetic parameters along with their expression datasets.

These challenges call for a novel GRN inference model that can extend the application

of attractor-matching strategy from Boolean model to ODE-based model by incorporating

measurements of mRNA synthesis and degradation rates. For one thing, the newly developed

genome-wide transcriptional kinetics assays and data can compensate the essential information

missed in “static” RNA-seq data. For another, the ODE-based model can make full use

of its advantages and provide detailed insights and predictions on the GRN structure and

dynamics.

1.4 A simple testing GRN model

We intended to use a GRN in Candida albicans as a simple model system

for testing our GRN inference approach. Candida albicans can switch between white

and opaque cell types (Fig. 1.2), which significantly differ in virulence characteristics,

metabolic preferences, mating ability, and morphology ([121]). Each cell type can be

stably and heritably maintained for hundreds of generations, and yet switching between

the two cell types occurs stochastically and spontaneously about once out of a thousand

cell divisions in standard lab conditions ([122], [123]). In spite of the differentiation of the

white and opaque cells, the primary sequence of the genome doesn’t change and therefore

this switch fits the classical definition of an epigenetic switch. Environmental conditions

such as temperature, pH, and carbon source are able to affect the white-opaque switch. For
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example, shifting the temperature from 25°C to 37°C could trigger the opaque-to-white

switch ([122], [123]).

Figure 1.2: Cell and colony morphology of white and opaque Candida albicans and the
white-to-opaque sectoring. Scale bar indicates 1 mm. Figure modified from [124]

.

The white-opaque switch is controlled by a complex genetic regulatory network

(GRN) that consists of eight “core” transcriptional regulators (TRs). White opaque regulator1

(WOR1) is the master regulator of the opaque state ([125]). Wor1 expression is elevated

in opaque cells, relative to white cells, and is essential for the transition to, and heritable

maintenance of, the opaque cell type. The core switch has been extensively characterized

by numerous genomic techniques including Chromatin Immunoprecipitation sequencing

(ChIP-seq), RNA Sequencing (RNA-seq) and Assay for Transposase-Accessible Chromatin

using sequencing (ATAC-seq) assays on wild-type strains and various engineered gene

knockout or overexpression strains ([125], [126], [127]). Although a combination of direct

TR binding interactions, differential gene expression, and chromatin accessibility profiles

provides valuable insights into the white-opaque switching mechanics, the logic of the

GRNs formed by the white-opaque TRs, and how they function to control phenotypic

switching, remains largely unkown.

Molecular biology has been successful at identifying the functional components

of cells. Genomes of many organisms have been sequenced. A majority of genes, mRNA

transcripts, proteins, and metabolites, have been characterized and catalogued in dedicated

databases. However, these results are insufficient to gain a system-level insight since

they offer no convincing concepts for how the components interact simultaneously and

dynamically to generate systematic properties of a cell ([128]). These limitations give rise

to the field of systems biology. GRN reverse engineering has been a major challenge in

the field, since the expression of genes in a cell is controlled by its GRN. Over the last two



12

decade, many state-of-the-art models have been developed to infer GRN topology using

“omics” data and other prior knowledge ([129]). Even with these various models, the

GRN inference still remains an underdetermined problem since the number of variables

(i.e. uncertainty) in the GRN exceeds the number of implemented measurements ([130]).

Furthermore, since current technologies enable determination of only specific components

of a real-life GRN, it can be challenging to experimentally verify GRN topology inferred

by models. Specifically, the physical interactions between TRs and their downstream

genes can be relatively easily determined by ChIP-seq (Fig. 1.3), but the logic of these

binding remains non-determined. To deal with the underdetermination problem and the

lack of real-life network benchmarks, a majority of the existing models turn to in-silico

(i.e. computer generated) datasets. Although the in-silico network benchmark generators,

such as GNW ([114]), SynTReN ([115]), and DREAM ([131]), provide GRN structures

on different connection distributions and corresponding expression datasets, they don’t

necessarily capture or represent the accurate behavior of an underlying real-life GRN.

These barriers call for a more refined model, which could infer both the in-silico and real-

life GRNs and make experimentally testable predictions.

Figure 1.3: Physical binding map of the white and opaque core switch circuits, and the
resulting cell types. Scale bar indicates 5 µm. Figure modified from [132]

.

1.5 Background of Problem

Although transcriptional profiles are informative and have been widely used,

they do not directly reflect the regulatory status of a gene (i.e. whether a gene is activated

or repressed) ([95]), since some mRNAs are highly stable and can accumulate in cells,

while others are actively degraded. The fundamental criterion of how actively a gene is

being transcribed should be the transcription rate ([96]). Specifically, Top-down high-

throughput sequencing methods, such as ChIP-seq and RNA-seq, cannot directly measure
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the regulatory interactions between TRs and DNA. In principle, RNA-seq only shows the

relative abundance of transcripts with no information on physical interactions, while ChIP-

seq captures the physical binding but does not reveal the regulatory effects. Alternatively,

bottom-up synthetic techniques can be applied to genetic circuit engineering. The logic

of the circuit can be designed by assembling well-characterized parts such as TR genes

and their corresponding promoters. Nevertheless, the synthetic methods have their own

weakness. For instance, the synthetic circuits are designed by human and therefore cannot

reveal the unknown complexity of existing GRNs in various organisms.

1.6 Statement of Problem

The objectives of my study are:

(1) Develop a scalable GRN reverse engineering model that incorporates kinetic

parameters and works on both in-silico and real-life datasets.

(2) Apply the model to the white-opaque switch core circuit in Candida albicans and

make testable predictions on its behavior.

(3) Test the predictions experimentally with genome-editing tools and RNA sequencing

and further refine the model.

1.7 Research Design

We first developed a scalable GRN inference model using a set of ordinary

differential equations to simulate the processes involved in gene expression and an evolutionary

algorithm to search for the GRN that best produces the target transcriptional profiles.

Second, we evaluated its performance on existing in-silico and real-life datasets. Next,

to decipher the GRN structure of the white-opaque switch circuit in Candida albicans, we

performed RNA-seq and ChIP-seq on 40 different Candida albicans homozygous knockout

strains, which were engineered by an efficient CRISPR-mediated genome-editing tool ([133]).

In addition, we used csRNA-seq ([106]) to measure genome-wide transcription rates and

mRNA degradation rates in Candida albicans wild types. Using the model and the data

generated above, we obtained an inferred structure for the white-opaque circuit. with

the inferred circuit topology, we used the model to introduce double knockouts and/or

targeted disruptions to the important TR-DNA regulatory interactions and predicted how

the steady-state transcriptional profiles were going to change. These predictions were tested

later on by experimentally making the same disruptions and measuring the consequential



transcriptional profiles. The model predictions facilitated candidate selection for experimentation

and the experimental results in turn provided validation or further improvement for the

model.
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CHAPTER II
MODEL FORMULATION

In this chapter, we built an ODE-based model to simulate the biological processes

of transcription, translation, and TF regulation. In our model, the architecture of the GRN

determines the ODE formulation and the ODEs derive the dynamics of gene expression. To

reversely infer a GRN from transcriptional profiles as dynamical stable states, we wrote an

evolutionary algorithm which can select a GRN from a population that can best reproduce

the anticipated stable states via the ODE-based model.

2.1 GRN architecture depiction

Drawing on the conventions of early work ([1]), we depict the GRN architecture as

a directed graph consisting of nodes representing genes and TFs, and edges representing

interactions among these nodes (Fig. 2.1). For example, a simple GRN architecture is

shown in Fig. 2a. In this graph, the nodes A, B, and C, represent the three genes in the

GRN and the TFs they encode, respectively. Three types of interactions exist between these

TFs and genes: activating, inhibitory, or neutral, and they are represented by pointed, blunt,

or no arrows in the graph. In addition to the TF-gene interactions, TF-TF ones also exist

in the GRN architecture, and they are represented by the combinatorial logic operators

(AND, OR, or NOT), which indicate how the TFs work together to regulate their target

gene. As shown in Fig. 2.1b and 2.1c, the TF-gene relations are denoted by an adjacency

matrix named AM , which uses 1, -1, and 0 to indicate the pointed, blunt, and no arrows

respectively in the directed graph. The TF-TF interactions are organized in another matrix

denoted by LG, whose Boolean values are assigned to decide whether the activators, or

repressors, of a gene work synergistically or independently. We use f0, which is bounded
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between 0 and 1, to represent the basal expression level of a gene when no TF acting on

it. The overall GRN architecture, or Anet, can be expressed by AMn×n LG2×n, and f0,

where n denotes the number of genes in the GRN. In this simplified GRN architecture,

the activators or repressors of a gene have to work either synergistically as a complex or

independently as monomers (Fig. 2.1c). This simplified network depiction preserves the

two typical ways of how multiple activators or repressors can work and largely reduces

complexity in network logic gates (22N potential values), while it leaves the GRN topology

a relatively large space to change (3N2 potential values).
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Figure 2.1: Depiction of a hypothetical GRN architecture. (a) Schematic of a simple GRN
in which A and B cooperatively activate B, C activates A and itself, and B represses
C in a manner that can override the self-activation of C. (b) The network topology
table represents the direct activating, inhibiting, and null connections by 1, -1, and
0, respectively. (c) The protein coordination parameters are assigned to each gene in
the genome and qualitatively describe the coordination between each gene’s regulatory
TFs. ‘ActivatorNmer’ decides whether the activators of a gene work independently (0)
or cooperatively (1); ‘RepressorNmer’ decides whether the repressors of a gene work
independently (0) or cooperatively (1). f0 determines the basal expression level of a gene
and whether its activators or repressors outcompete the other.

2.2 GRN dynamical system

A list of symbols and parameters used in the GRN dynamic system is given in Table

2.1.
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Table 2.1: Parameter table for the GRN dynamic system

Symbol Description Unit
[R]i Number of mRNA transcripts for each gene Dimensionless

[P ]i Number of protein copies encoded by each gene Dimensionless

Vi,max Maximal rate of transcription for each promoter Nucleotides/second

Vi,min Minimal rate of transcription for each promoter Nucleotides/second

f0,i Basal expression of a gene: a percentage of the
Vi,max

Percentage

Vi,trl Rate of translation for each proteins Amino
acids/second

Ti,j Also known as KA, the protein abundance
producing half occupation

Dimensionless

ki Hill coefficient Dimensionless

Anet The architecture of a GRN, including the
adjacency matrix and the logic gates matrix

Dimensionless

AM The adjacency matrix of a GRN Dimensionless

LG The logic gates matrix of a GRN Dimensionless

Di,mRNA Rate of degradation for each mRNA 1/second

Di,protein Rate of degradation for each protein 1/second

In×m The input matrix that contains m steady-state
transcription profiles in the length of n genes

Dimensionless

We assume that the diffusion and TF binding processes are instantaneous: they

happen much faster than transcription and translation and can be ignored. We assign a

Vmax and a Vmin to each gene, which represent the potential highest and lowest production

rates of mRNA transcripts, respectively. These two mRNA production rates are believed

to be intrinsic properties of the target genes’ promoters and independent to the regulatory

statuses (i.e. promoter states) of the genes. In other words, the TFs cannot change the Vmax
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and Vmin of the target gene. We believe that it is the (Vmax − Vmin) on which the TFs act

to control the activity of a promoter (Eq. II.1). The process of TF regulation is represented

by a function called the regulation function, which is denoted by fAnet . For example, when

the target gene is fully inhibited, the regulation function equals 0 and the production rate of

the gene will be its leakage rate. With these settings, we formulate the difference equations

of [R] and [P ] as Eq. II.1 and II.2. Given the initial state, we could perform numerical

solution to calculate the [R] and [P ] at the next time point.

∆[R]i
∆t

= Vi,min + (Vi,max − Vi,min) · fAnet([P ]∗,i,Θ)−DmRNA · [R]i

Θ = {f0, T, k}

Anet = {AM,LG},

(II.1)

∆[P ]i
∆t

= Vtrl · [R]i −Dprotein · [P ]i, (II.2)

where [P ]∗,i means the [P ] of all the TFs that regulate the ith gene in a GRN, and fAnet

is the regulation function which determines how TFs regulate a gene. Other symbols in

Eq. II.1 and II.2 have already been defined in Table 2.1. The regulation function fAnet is a

continuous function given in Eq. 7. Typically, Hill function ([2, 3, 4]) and sigmoid function

([5, 6]) have been applied in the regulation function. In this model we apply a modified

Hill function (Eq. II.3 and II.4) to formulate the regulation function fAnet .

Sact,i([P ]i) =
[P ]kii

[P ]kii + T ki
i

, (II.3)

Srep,i([P ]i) = 1− Sact,i([P ]i), (II.4)

where [P ] is the TF concentration; T , also known as KA, is the protein abundance producing

half occupation; k is the hill coefficient. Eq. II.3 is the Hill function for activators and Eq.

II.4 is for repressors. When the activators (or repressors) are present, or [P ] − T > 0,

the increment in their [P ] will increase (or decrease) the transcription rate of the target

gene. When a gene is regulated by multiple TFs, the interactions between TFs need to be

considered. Activators and repressors can form polymers or simply work as monomers.

Whether the activators and repressors work synergistically or independently for each gene

is defined by the LG. If a gene has both activator and repressor simultaneously, the binding
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competition between the two types of regulators have to be determined by an additional ,

f0.

Different function formulas, as listed in Table 2.2, are used according to how the TFs

work defined by LG. The combinatorial functions satisfy the following conditions:

(i) All four functions are bounded between 0 and 1 for positive TF values.

(ii) Synergistic activation requires more than none of the activators are absent.

(iii) Independent activators give a value close to one even if only one Sact,i([P ]i) is

close to one.

(iv) If a single repressor is absent, the synergistic repressor function is close to one.

(v) If even one repressor is high, then the independent repressor function is close to

one.

Table 2.2: Combinatorial Hill functions for multiple TF regulation

Multiple TF regulation Combinatorial Hill function

Independent activators CIA,i([P ]i) = 1−
numTF∏

i=1

(1− Sact,i([P ]i))

Independent repressors CIR,i([P ]i) =
numTF∏

i=1

(1− Sact,i([P ]i))

Synergistic activators CSA,i([P ]i) =
numTF∏

i=1

Sact,i([P ]i)

Synergistic repressors CSR,i([P ]i) = 1−
numTF∏

i=1

Sact,i([P ]i)

The effects of the combinatorial functions are shown in Fig. 2.2, where two activators,

or repressors, regulate a gene synergistically as dimers, or independently as monomers. It

can be seen that when the two TFs work synergistically as dimers (Fig. 2.2c and d), their

[P ] have to be both high to significantly change the value of fAnet . Contrarily, when they

work as monomers (Fig. 2.2a and b), either TF can change the value of fAnet without the

other.
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Figure 2.2: Demonstration of the effects of simulating multiple TFs regulation using the
formulas in Table 2.2. The x-axis and y-axis are the protein concentration of the two
activators or repressors, and the z-axis shows the outcome of the combinatorial functions.
(a) Two activators work independently as monomer to activate a target gene. (b) Two
repressors work independently as monomer to inhibit a target gene. (c) Two activators
work synergistically as dimer. (d) Two repressors work synergistically as dimer.

With the Anet and the abundances of the TFs, we define the regulation function fAnet

by Eq. II.5, which applies combinatorial Hill function formulas (Table 2.2) and f0 to

represent the gene regulations.

fAnet([P ]∗,i,Θ) = f0 + f0 · (CA − 1) · (1− CR) + (1− f0) · CA · CR, (II.5)

where [P ]∗,i denotes the effective abundance of the TFs regulating the ith gene. For notational

convenience, we define CA,i = CSA,i if activators are synergistic and CA,i = CIA,i if they
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are independent, and similarly for CR,i. How the parameters affect the shape of fAnet is

shown in Fig. 2.3.

Figure 2.3: Demonstration of the regulation function fAnet . The x-axis and y-axis are the
[P ] of the repressors and activators, and the z-axis shows the outcome of the fAnet . (a) fAnet

has two fixed points: (1,0,0) and (0,1,1): the target gene is fully activated/inhibited when it
has excess activators/repressors. (b) The Hill coefficient, k, determines the steepness of the
regulation function. (c) The basal expression level, f0, controls the position of the middle
plane and can slide between 0 and 1. (d) The threshold T decides the TF abundance that
will trigger the activation or repression.

2.3 Steadiness, stability, and attractor of a GRN system

Since we limit our simulation to the dynamics of transcription and translation processes,

we describe the state of a cell, or equivalently a GRN system, as the abundance of mRNA

transcripts and proteins: [R] and [P ] (Fig. 2.4). Similar to a single pendulum (Fig. 2.4a), a

GRN system could be at steady states (point Q), where the [R] and [P ] do not change over

time, or stable states (point P), where the system tends to approach and stabilize at (Fig.
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2.4c and S1d). The steady-state definition is given by Eq. II.6 and II.7:

d[R]ss
dt

= Vtrc − [R]ss ·DmRNA = 0, (II.6)

d[P ]ss
dt

= Vtrl − [P ]ss ·Dprotein = 0, (II.7)

where [R]ss and [P ]ss are mRNA and protein abundance at steady states; Vtrc and Vtrl

are rates of transcription and translation; DmRNA and Dprotein are degradation rates of

mRNA and protein. In a kinetic system, steadiness does not necessarily imply stability,

and vice versa. For instance, if a pendulum at steady state Q is slightly perturbed, it will

fall and never reach Q again if friction exists. A system state that is both steady and stable,

such as point P, is known as a fixed-point attractor. Supported by the previous studies

([7, 8, 9, 10]), we consider the input steady-state transcription profiles as fixed-point or

limit cycle attractors in the GRN dynamic space. When perturbed by temperature, pH, or

other environmental stimulus, a cellular state would be deviated from the stable state. If

the stimuli disappears, the cellular state, constrained by the GRN dynamic system, would

return to the original stable state, or fall into another stable state if the perturbation has

driven it out of the basin of the first attractor. Below is an experimental evidence supporting

the assumption that steady-state transcription profiles are attractors.
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Figure 2.4: Side-by-side comparison of a single pendulum system and a cellular system.
(a) Schematic of a simple pendulum model, which is a massive ball (m) connected to a
pivot by a massless rod (L). (b) Schematic of a GRN system, which is described by its
state variables: [R] and [P ]. (c) State X is an arbitrary unsteady and unstable state of the
pendulum system. State Q is steady but not stable. State P is both steady and stable, which
makes it a fixed-point attractor. (d) Like the single pendulum, cells at steady and stable
state (point P) can stay the same over time and resist mild perturbation.

In the experiment conducted by ([7]), the HL60 cells from a human leukemia cell

line, were treated with two chemical compounds, all-trans retinoid acid and dimethylsulfoxide,

at time 0 to induce differentiation towards neutrophil-like cells (Fig. 2.5). Selected gene

expression profile snapshots along the two differentiation trajectories are shown as the heat

maps. These heat maps show that after 168 hours, the two expression profiles, consisting

of approximately 3000 genes, converged to a very similar pattern. The result indicates

that the HL60 and the neutrophil-like cell type are like fixed-point attractors, towards

which the intermediate and unstable cells would evolve. Under all-trans retinoid acid and

dimethylsulfoxide, the cells were deviated out of the basin of the HL60 cell type attractor.

They finally fell into the neutrophil-like cell type attractor through two different paths.
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Figure 2.5: Experimental evidence that a cell type is a high-dimensional stable attractor
in gene expression state space. The HL60 cells were treated with all-trans retinoid acid
(ATRA) and dimethylsulfoxide (DMSO), respectively. They triggered cell differentiation
towards the neutrophil-like cell type in two different trajectories. Selected gene expression
profiles along the trajectories are shown in the heat maps. Modified from original paper
([7]).

2.4 GRN architecture inference: the evolutionary algorithm

With the deterministic GRN dynamic model constructed above, we propose to infer

the Anet using experimentally-derived transcriptional profiles and mRNA production rates.

Specifically, we consider transcriptional profiles of cells in the exponential growth phase

under defined and mixed culture conditions. We therefore assume that the resulting transcriptional

profiles represent a steady-state transcriptional output of the GRN. By incorporating experimentally

determined transcription, translation, and degradation rates, we simulate the GRN dynamics

and determine whether a given Anet can accurately reproduce the observed attractors.

To search for the optimal Anet for a particular GRN, we utilize a modified evolutionary

algorithm [11, 12, 13] to iteratively refine the Anet parameters until the predicted network

attractors converge upon the experimentally measured ones. The main step-by-step processes

of our iterative computational and experimental strategy are presented in Fig 2.6.

Due to the fact that the Anet and the values of some system parameters are often

unknown in practice, we are going to make use of the measurable kinetic parameters

(including Vmax, Vtrl, DmRNA, and Dprotein) and the steady-state transcription profiles to

estimate the unknown parameters, which are Vmin, T , f0, and k. Since the transcription
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Figure 2.6: A flowchart illustrating the step-by-step processes of our iterative
computational and experimental strategy to infer GRNs and predict novel attractors.
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profiles are assumed to be steady states, we apply Eq. II.6 and II.7 to all the gene expression

levels in the In×m. First, the Vmin of a gene is estimated by the minimal expression level of

the gene across all the samples, as shown in Eq. II.8 below.

Vi,min −min(Ii,∗) ·Di,mRNA = 0. (II.8)

Therefore, given the In×m and DmRNA, we can calculate the Vmin using Eq. II.9.

Vi,min = min(Ii,∗) ·Di,mRNA. (II.9)

Second, without other prior knowledge, we have to assume that when the genes are under

TF regulation, they have the same chance to be activated or inhibited. Hence, the T of the

TFs is calculated by their average expression levels using Eq. II.2, which leads to Eq. II.10.

T∗,i =
1
2
· (max(Ii,∗) +min(Ii,∗)) · Vi,trl

Di,protein

. (II.10)

Third, we assume that the number of input transcription profiles is sufficient and the expression

levels of fully activated, or inhibited genes were included in the observed data. When

[P ] = [P ]max, the outcome of Eq. II.11, denoted by q, should be close to 1. Therefore, we

can calculate the Hill coefficient using Eq. II.12.

[P ]k

[P ]k + T k
= q. (II.11)

k =
log 1−q

q

log Ti

[P ]

. (II.12)

[P ]max can be derived from Eq. II.6 and II.7 based on the steady-state hypothesis.

[P ]max =
Vtrl ·max(Ii,∗)

Dprotein

. (II.13)

We have estimated the Vmin, T , and k by In×m and other known parameters. The last

unknown parameter, f0, is inferred along with the Anet. Under the steady-state hypothesis,

the derivative ∆[R]
∆t

in Eq. II.1 equals 0. We can rewrite Eq. II.1 to calculate the f0:

f0 =

Di,mRNA·Ii,j−Vi,min

Vi,max−Vi,min
− CA · CR

CA + CR − 2 · CA · CR

. (II.14)
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In order to efficiently search through the extremely large GRN architecture space

looking for the one that leads to the expected attractors (i.e. attractor matching), we propose

a modified evolutionary algorithm as illustrated in Algorithm 1. First, we randomly create

a population of Anet, each of which has the same initial fitness score. Second, we add

a mild perturbation to each input transcription profile, or attractor, in the In×m. We set

them as initial states and run the deterministic GRN dynamic system by Runge-Kutta 4th

order ([14]) numerical solution to find the final steady states. See appendix A for detailed

information about numerical solutions. Since we consider the transcription profiles in In×m

as attractors, when the GRN system state is initiated nearby, it should be attracted to the

attractors’ positions. If the system state ends up being far away from the attractors, the

current Anet cannot generate the attractors in the In×m. We use a distance between the

attractors and the final states as a metric:

AttractorDistancej =
1

n
·

n∑
i=1

|statei,j − Ii,j|
max(Ii,∗)

, (II.15)

where statei,j is the ith gene expression level of the jth final state obtained by running

the GRN dynamic system, and Ii,j is the ith value of the jth attractor in the In×m. m is

the total number of attractors and n is the total number of genes. We define the best Anet

in the current population by the overall minimal “AttractorDistance”. Third, we create

the next generation population by mutating each Anet (by a certain Hamming distance, see

appendix), and obtain the new minimal “AttractorDistance”. If the new minimal “AttractorDistance”

is less, we keep the mutated population. Otherwise, the mutated population will be abandoned

and we will return to the former population. Next, we update the fitness of each Anet

according to their “AttractorDistance”. We sort the population by fitness in descending

order and eliminate the last 20% individuals and we duplicate the first, or the fittest, individual

to fill up the vacancy in population. By iteratively running the algorithm, we can obtain the

fittest Anet in the last generation as the output.
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Algorithm 1 Evolutionary Algorithm

Randomly initiate a population A0
net : {A1

net, A
2
net, ..., A

N
net};

Each individual has an initial fitness : 1
N

Calculate f0 for each Anet

for i in 1 : m do
initial system state← In,i
update f0 for each Anet and add penalty when f0 /∈ [0, 1]
if Anet has an independent self activating edge & the initial system state in

which the self activating gene has been set to its maximal expression /∈ In,m
then

append the modified state described above to In,m
end if
initial system state← initial system state +mild random perturbation
for each Aj

net do
integrate GRN ODEs with Aj

net : {AMj, LGj, f0j}
end for
record last statesi,j

end for
Calculate min(AttractorDistanceA0

net
)
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for generation from 1 to x do
for each Aj

net in A0
net do

AM t
j ←mutate AMj by x Hamming distance

LGt
j ←mutate LGj by x Hamming distance

end for
for i in 1 : m do

initial system state← In,i
update f0 for each Anet and add penalty when f0 /∈ [0, 1]
if Anet has an independent self activating edge &

the initial system state in
which the self activating gene has been set to its maximal expression /∈ In,m
then

append the modified state described above to In,m
end if
initial system state← initial system state +mild random perturbation
for each Aj

net in At
net do

integrate GRN ODEs with Aj
net : {AM t

j , LG
t
j, f

t
oj}

end for
record last statesi,j
if last statesi,j is a fixed point attractor then

record Attractori,j
else

add a penalty to Aj
net

end if
end for
Calculate min(AttractorDistanceAt

net
)

if min(AttractorDistanceAt
net

) < min(AttractorDistanceA0
net

) then
A0

net ← At
net

else
A0

net remains
end if
for each Aj

net in A0
net do

fitnessAj
net

= fitnessAj
net

+ 1
AttractorDistance

A
j
net

end for
Sort A0

net by fitness in descending order : {A(1)
net, A

(2)
net, ..., A

(N)
net }

A0
net ← {A

(1)
net, A

(2)
net, ..., A

(0.8N)
net , A

(1)
net, ..., A

(1)
net}

end for
Return the A

(1)
net in A0

net

Due to the fact that the sampling and mutating steps in the algorithm are stochastic,

the output Anet can be different each time. We propose to draw a consensus GRN architecture

with the assumption that a particular regulatory connection (i.e. an entry in Anet) occurring
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at a high frequency among a group of inferred GRN architectures would be more important.

In this case, we conduct 30 independent and identical GRN inference processes and obtain

a consensus GRN architecture by recombining the most frequent connections.

In addition to regular transcriptional profiles, our model also can incorporate data

from genetically engineered strains including knockouts and overexpressions. For instance,

if the input transcription profiles were from knockout strains, we can set the [R] of the

inoperative genes to zero during the numerical integration. If an exogenous gene copy

was imported to the biological system, we can add a constant to the derivative of the

gene. If a regulatory connection was snapped by genetic engineering (e.g. disrupting

a TF binding site in a promoter), we can fix the corresponding entry in Anet as zero

to eliminate the effect of the disrupted regulatory connection. Furthermore, we can use

chromatin immunoprecipitation (ChIP) data to guide the mutation of Anet during inference:

if a physical binding interaction exists between a gene and a TF, they are likely to have a

regulatory connection. Therefore, we can lower the probability of the corresponding entry

being mutated to zero. The accommodation of different data types allows the model to

integrate more available data and perform better.

Given a known GRN architecture and kinetic parameters, we have two straightforward

approaches to explore the GRN state space searching for attractors. The first approach is

called the global searching strategy, which generates evenly distributed starting points in the

GRN state space and loops through them (Fig. 2.7a). Due to the high dimensions of GRN

state spaces, this strategy is very inefficient and time consuming. Attractors in the gaps

between searching areas could be missed. The second approach, called the local searching

strategy, works much faster but it is only applicable when there is an expected attractor in

an approximate location (Fig. 2.7b). This approach generates starting points around the

expected attractor to examine the basin of attraction. If the systems were attracted to the

anticipated spot and stabilized there, the attractor can be verified.



Figure 2.7: Two approaches to search for attractors given a known GRN system. (a)
Global searching strategy: the GRN dynamic system will be initiated at each of the starting
points (grey circles), which are evenly distributed in the state space. (b) Local searching
strategy: starting points will be generated around an expected attractor (red circle). The
GRN dynamic system must go from these starting points to the anticipated location to
confirm the attractor.
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CHAPTER III
THEORETICAL VALIDATION

3.1 Model networks for validation

It is extremely challenging to directly determine the complete and comprehensive

composition and structure of “real-world” GRNs in living organisms ([1, 2]). Therefore, the

use of experimental data in GRN inference can be problematic when it comes to validating

the outcome of GRN model predictions, since one can rarely if ever be certain that the

experimental data provides a complete picture of the real-world GRN structure. For this

reason, it has become common practice in the field of GRN inference to utilize in silico (i.e.

computer generated) datasets for method validation, which can provide gene expression

data that is directly predicted based on a hypothetical “source” GRN model ([3, 4, 5, 6]).

Both in silico and biologically observed GRN instances have been used to evaluate

our approach. The in silico instance consists of five arbitrarily generated Anet, each of

which has at least 9 different fixed-point attractors (Fig. 3.1). These Anet are regarded as

the reference GRN architectures, which will be used as answer keys to examine the inferred

GRN architectures. The in silico fixed-point attractors for each Anet are generated by

SynTReN, a commonly used benchmark generator for GRN inference ([4]). Considering

that noise generally exists in the experimentally-derived transcription profiles, we added a

Gaussian distributed noise to the in silico input transcription profiles. The kinetic parameters

of the model were assigned by the values experimentally measured in E. coli ([7, 8, 9, 10])

(See Table 3.1).
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Table 3.1: Kinetic parameters used in in silico and real-life tests

Kinetic parameter Derived values Reference
mRNA elongation rate 4.8 nt./s [7]

Ribosome elongation
rate

8 aa./s [9]

mRNA degradation rate 0.0067/s [8]

Protein degradation rate 0.00796/s [10]

Figure 3.1: Five GRN architectures were arbitrarily generated as references in the in silico
test. They have 5-9 (a-e) genes and at least 9 different fixed-point attractors. The pointed
(or blunt) arrows represent activation (or repression) regulation.

3.2 Consensus GRNs converge upon attractors of reference GRNs

We used the attractors generated by the 5 in silico GRNs in Fig. 3.1 as input

and performed 30 independent and identical inferences. When running the evolutionary

algorithm, the attractor distance of the GRN instances gradually decreased, and eventually

converged at a low level (Fig. 3.2). Although the velocities of convergence differ, none

of the inferences was trapped in a local optimal in this case. We then drew a consensus

GRN by selecting the most frequent edges in the adjacency matrices, fixing the logic gate
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parameters, and taking the average of the f0s. Since the consensus GRNs were inferred

from the attractors of the reference GRNs, they should reproduce the same attractors in

the input. We initiated a consensus GRN and a reference GRN randomly around their

attractor position and the result showed that their expression levels converged upon the

same attractor (Fig. 3.3).

Figure 3.2: Convergence of GRN architecture on attractor distance. The x-axis represents
the iteration numbers and the y-axis is the attractor distance between the input and the
ones produced by the current GRN in training. Data obtained from the inference of the in
silico GRNs. (a-e) 5-gene to 9-gene in silico GRNs. The evolutionary algorithm effectively
searched for the GRNs that fit the input attractors in all 5 tests.
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Figure 3.3: GRN dynamics when initiated around the attractor position. The consensus
GRN (a) was inferred by the attractors of the 5-gene in silico reference GRN (b). The
initial states were obtained by the attractor position plus a Gaussian distributed random
variable.

3.3 GRN architecture and its attractor profiles are strongly coupled

One key hypothesis of our model is that a GRN architecture can be revealed by

its attractors. In order to ensure that this hypothesis holds true under normal circumstances,

we arbitrarily generated 5 in silico GRN architectures as test subjects (Fig. 3.1) to examine

the correlation between their Anet and attractor profiles. Specifically, we randomly mutated

the Anet of the 5 reference GRN architectures and observed how their attractor profiles

change accordingly. The difference between the mutant GRN architecture (Amut
net = {AMmut, LGmut})

and the reference ones (Aref
net = {AM ref , LGref}) is measured by the Hamming distance,

and the difference between their attractor profiles is measured by the attractor distance

given by Eq. II.15. As shown in Fig. 3.4, when the Amut
net becomes more different from Aref

net ,

its attractor profiles tend to be further away from the reference ones. This general trend

between Anet and attractor profiles justifies the search strategy of our algorithm, whereby

the Aref
net is inferred by gradually mutating Anet and improving the distance between the

population’s attractor profiles and those of the reference GRN. Based on our observations,

network mutations tend to be more efficient when considering the slopes between the

Hamming distance and the attractor distance of these five in silico GRNs, whereas crossover

operations appear to be more suitable for cases with smaller slopes. The significant fluctuation

in the y-axis (attractor distance) was anticipated to have a minimal effect on the inference
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process as the evolutionary algorithm gives precedence to identifying networks with smaller

attractor distances. We performed sensitivity tests on key kinetic parameters and perturbed

them by 50% to evaluate their impact on the correspondence between network structure and

attractors. The results, depicted in Fig 3.5, showed that perturbations in Vmax and DmRNA

had a more significant effect compared to Vtrl and Dprotein, potentially due to violations

of the steady-state assumption. Consequently, we identified Vmax and the attractors as

essential inputs for the model, while other parameters can be estimated based on the steady-

state assumption.

H(S1, S2) =
1

N

N∑
i=1

|S1
i − S2

i |. (III.1)

Figure 3.4: Positive correlation between Anet similarity (Hamming distance on x-axis) and
attractor profiles similarity (attractor distance on y-axis). Each column in the box plots
(A-E) contains 1000 random Amut

net mutated from the 5 Aref
net consisting of 5-9 genes.
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Figure 3.5: Sensitivity tests for the kinetic parameters, (A) rates of transcription, (B) mRNA
degradation, (C) translation, and (D) protein degradation. Each of these parameters was
perturbed by 50% of their original values and used to generate the correlation between
Anet similarity (Hamming distance on the horizontal axis) and attractor profiles similarity
(attractor distance on the vertical axis).

In addition, Fig. 3.4 shows that the attractor distance can reach zero before the

Hamming distance goes to zero. It indicates that the same set of attractors can be generated

by different GRNs, or in another word, more than one GRN architectures can satisfy the

need for an organism to produce environment-fitting transcriptional profiles. We speculate

that an organism’s GRN can be mutated during DNA replication, since nucleotide mismatch

can occur in TF coding genes and TF binding sites. As a result, multiple GRN architectures

can simultaneously exist in a population of an organism.

3.4 Comparison against six other GRN inference methods on in silico

test

We tested our model and other existing models using the 5 in silico reference

GRNs. To avoid biasing the results in favor of our algorithm, we generated ODEs for these
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five topologies using SynTReN ([4]). We generated simulated transcription profile inputs

from the attractors of these ODEs. For each instance, we used the attractors as input and

ran 600 iterations in algorithm 1. We performed 30 independent and identical inference

processes and obtained a consensus Anet by weighted averaging edge frequencies. We

compared the inferred consensus Anet to reference Anet in terms of F1 score, area under

Receiver Operating Characteristic (ROC) and Precision and Recall (PR) curves, metrics

that are commonly used in machine learning. We compared our model, named evolutionary

algorithm (EA), to 6 other widely-used benchmark models, including ARACNE ([11]),

CLR ([12]), GENIE3 ([13]), MRNET ([14]), MRNETB ([15]) and SIMONE ([16])). Amongst

these models, only EA and GENIE3 can infer directed networks with asymmetric adjacency

matrices (Table 3.2). Therefore, we symmetrized the inferred networks of EA and GENIE3

as EA SYM and GENIE3 SYM by making all edges undirected. In addition, these models,

except for EA, cannot infer the self-regulatory edges. The diagonal in their inferred adjacency

matrix has only zeros. To bridge this discrepancy, we used the original reference GRNs to

evaluate EA while treating all self-regulation as correctly identified for all other models;

this disadvantages our algorithm in the benchmarks we present. Despite this, as presented

by Fig. 3.6, the EA performed generally better than the other algorithms. The protein

coordination parameters and f0s of EA were also well converged on the ground truth

(Table 3.3 and 3.4). Additionally, When the scale of the in silico GRN increases from

5 to 9 genes, it becomes harder to infer the AM . We believe that more attractor profiles are

needed to reveal additional stable states of large-scale GRNs and to compensate the curse

of dimensionality brought by its bigger state space volume.

We tested the ability of our model, and several other existing models, to infer GRN

architectures using the attractor profiles generated by the 5 in silico reference GRNs depicted

in Fig. 3. To avoid biasing the results in favor of our algorithm, we generated ODEs for

these five topologies using SynTReN ([4]). We generated simulated transcription profiles

from the attractors of these ODEs by global searching strategy and utilized them as the

input for the in silico test. For each instance, we used the attractors as input and ran 600

iterations in algorithm 1. We performed 30 independent and identical inference processes

and obtained a consensus Anet by weighted averaging edge frequencies. We compared

the inferred consensus Anet to reference Anet using common machine learning metrics,

including the F1 score, area under Receiver Operating Characteristic (ROC) and Precision

and Recall (PR) curves. We compared our evolutionary algorithm (EA) method, to 6

widely used benchmark methods, including ARACNE ([11]), CLR ([12]), GENIE3 ([13]),
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MRNET ([14]), MRNETB ([15]) and SIMONE ([16])). Amongst these methods, only EA

and GENIE3 can infer directed networks with asymmetric adjacency matrices, which can

differentiate the regulating gene and the target gene (Table 3.2). Therefore, we symmetrized

the inferred networks of EA and GENIE3 as EA SYM and GENIE3 SYM by making

all edges undirected. As presented by Fig. 3.6, the EA performed generally better than

the other algorithms. The protein coordination parameters and f0s of EA were also well

converged on the ground truth ((Table 3.3 and 3.4)). With the exception of EA, none

of the methods examined can infer self-regulatory edges; therefore the diagonal in their

inferred adjacency matrix was set to zero. To bridge this discrepancy, we created another

set of reference GRNs that contain no self-regulatory edges (Fig. S2). We conducted

the same comparison on this set of GRNs and fixed the diagonal in inferred adjacency

matrices as zeros. This disadvantages our algorithm in the benchmark we present because

other methods are not capable of generating false positives for autoregulation. The result

indicates that in the absence of auto-regulation, GENIE3 outperformed the other method

and our method was among the most competent ones (Fig. S3). Additionally, when the

scale of the in silico GRN increases from 5 to 9 genes, it becomes harder to infer the AM .

We believe that more attractor profiles are needed to reveal additional stable states of large-

scale GRNs and to compensate the curse of dimensionality brought by its bigger state space

volume.

Table 3.2: Comparison of inference software features

Ability to infer ARACNE CLR MRNET MRNETBSIMONE GENIE3 EA
Directed GRN No No No No No Yes Yes

Sign of regulation No No No No No No Yes

Self-regulation No No No No No No Yes

Characterization
of protein-protein
coordination

No No No No No No Yes
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Table 3.3: The in silico test result for protein coordination matrix

in silico GRN
instances

Hamming
distance

Percentile Accuracy Precision Recall

5-gene GRN 1.00(5.00) 1.08%(62.37%) 0.90(0.50) 1.00(0.82) 0.90(0.50)

6-gene GRN 3.00(6.00) 7.30 %(61.29%) 0.75(0.50) 1.00(1.00) 0.75(0.50)

7-gene GRN 3.00(7.00) 2.87%(60.47%) 0.79(0.50) 0.73(0.76) 0.79(0.50)

8-gene GRN 1.5(8.00) 0.12%(59.82%) 0.88(0.50) 0.88(0.88) 0.88(0.50)

9-gene GRN 4.00(9.00) 1.54%(59.27%) 0.78(0.50) 0.60(0.65) 0.78(0.50)
Values in parenthesis show the results of random LG. Accuracy, precision, and recall are
calculated by weighted average (averaging the support-weighted mean per label).

Table 3.4: The in silico test result for f0

in silico GRN
instances

Average f0 Std f0

5-gene GRN [0.001, 0.016, 0.013, 0.042, 0.001] 8.28e-2

6-gene GRN [0.023, 0.043, 0.018, 0.07, 0.004, 0.028] 1.42e-1

7-gene GRN [0.039, 0.045, 0.046, 0.052, 0.045, 0.015, 0.019] 1.28e-1

8-gene GRN [0.028, 0.029, 0.031, 0.228, 0.021, 0.036, 0.074, 0.3] 1.84e-1

9-gene GRN [0.006, 0.021, 0.031, 0.27, 0.098, 0.054, 0.086, 0.095,
0.035]

1.14e-1

The f0s are 0 for all in silico reference GRNs.
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Figure 3.6: The in silico test comparison result in F1 score (upper panel), AUROC (middle
panel), and AUPRC (bottom panel). The F1 scores are calculated using a threshold cutoff
of 0.5 for all models. Best marked by a star for symmetric and asymmetric methods.

3.5 Our model can predict novel attractors produced by single-knockout
GRNs

Since the inferred GRNs are similar to the true GRNs on both structure and

capability to produce attractors, we anticipated that the inferred GRNs should be able

to predict the dynamics of the true ones even when they are mutated. To examine this

ability, we knocked out the genes one by one in the five in silico reference GRNs and

found their new attractors by global searching strategy. These new attractors are unknown



to the inferred GRNs because they had not been used in the GRN inference process. We

performed the same knockouts in the inferred GRNs to see if they could accurately predict

the new attractors of the mutated reference GRNs. The attractors of the mutated reference

GRNs were generated by SynTReN, while the attractors of the mutated inferred GRNs

were predicted by our model. We applied systematic global searching to find attractors and

used a random GRN as control. We found that the single-knockout reference GRNs had

altogether 384 attractors (combining attractors from all knockouts across all five reference

GRNs) and the single-knockout inferred GRNs had a combined total of 385 attractors. Of

these attractors, 273 (71.1% of the reference GRN attractors and 70.9% of the inferred GRN

attractors) were matched. The random GRN showed 32 attractors and none was matched

(Table 3.5). See full report in the supplemental material.

Table 3.5: Attractor prediction result summary by global searching strategy

in silico GRN
instances

Attractors in single-
knockout (reference)

Attractors in single-
knockout (inferred)

Matched attractors

5-gene GRN 33 36 33

6-gene GRN 42 61 42

7-gene GRN 57 60 54

8-gene GRN 88 116 79

9-gene GRN 164 112 65

Total number 384 385 273
Values in parenthesis show the results of random a GRN. Two attractors considered matched have
an attractor distance less than 0.15. No attractors were matched in a random GRN.

From this result, we can conclude that the attractors generated by a GRN are tied

together to an extend. If a subset of the attractors were successfully reproduced by the

inferred GRN, it is likely that more attractors can be discovered using the inferred GRN.

The success rate of such “attractor discovery” can indicate how close the inferred GRN is

to the real one. Under the real-life biological condition in which we cannot tell the full

picture of the in vivo GRN by experiments, it would be a considerable approach to estimate

how well the in vivo GRN is perceived.
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CHAPTER IV
APPLICATIONS ON IN VIVO REGULATORY NETWORKS

4.1 Materials used in in vivo tests

To test our model against an in vivo GRN instance, we used experimental data

derived from a synthetic GRN engineered in Saccharomyces cerevisiae by Cantone et al.

([1]). Consisting of 5 genes and a variety of regulatory interactions (Fig. 4.1 a), the GRN

can switch amongst 10 distinct stable states in response to the overexpression of each

individual gene in two different carbon sources, galactose and glucose. These stable states

were measured by quantitative PCR (qPCR) and converted to absolute expression levels.

The promoter strengths, which indicate the rates of transcription initiation for each gene

in the GRN, have been estimated by a stochastic optimization algorithm from steady-state

gene expression data measured by qPCR ([1]). Other kinetic parameters used in the in vivo

test are provided by Table 3.1. The Anet, transcription profiles, and kinetic parameters for

the in silico and in vivo tests can be found in the supplemental material.

We also tested our model using transcriptional profiles derived from a set of 12

wild-type and targeted TF deletion strains of Candida albicans. All strains used in this

study are described in Table S3 and are derived from SN156, which is a commonly used

derivative of the SC5314 strain that is used widely in C. albicans studies ([2], [3]). All

of the C. albicans single TF deletion strains used in this study were reported previously

([3]). TF double deletion strains were generated using CRISPR-mediated genome editing

to delete the WOR1 coding sequence as described by Nguyen et al ([4]). Steady-state

transcript levels were determined using the 3’ quant seq RNA sequencing methodology as

described by Moll et al ([5]). Briefly, C. albicans cells were harvested from mid to late-log

cultures and total RNA was isolated using the RiboPure™ RNA Purification kit. cDNA
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libraries were prepared using the QuantSeq 3’ mRNA-Seq Library Prep kit from Lexogen

and multiplexed in pools of 96 libraries. Single-end 100bp reads were obtained using

an Illumina HiSeq4000 instrument. The resulting de-multiplexed sequencing reads were

trimmed and aligned using STAR Aligner ([6]) to obtain raw read counts for each transcript

genome-wide. The promoter strengths of each gene in the network were determined using

capped small RNA (csRNA) sequencing ([7]). This method enables the isolation of short

nascent mRNA transcripts, rather than full-length mRNAs, and thus provides an instantaneous

snapshot of the level of transcriptional activity at each transcriptional start site, genome-

wide. Briefly, we enriched for nascent small, capped, RNA molecules from total RNA

extracted from mid-log phase C. albicans cultures and prepared sequencing ready libraries

using the small RNA library preparation kit from New England Biolabs. The resulting

libraries were multiplexed and 16 indexed libraries were pooled prior to sequencing on an

Illumina HiSeq4000 instrument. Sequencing data were analyzed using HOMER ([7]). The

mRNA and csRNA sequencing data can be accessed on GEO (GSE217461 and GSE217383),

and our algorithm is available at GitHub (https://github.com/UCM-RuihaoLi/

GeneRegulatoryNetworkInference.git).

To account for noise in the experimentally derived transcriptional profiles we measured

the “average replicate distance” which describes the average pairwise attractor distance

between each of the three biological replicates for each genotypic/phenotypic combination.

This metric was then used to determine whether a given GRN model prediction was considered

successful, with the basic premise that a successful GRN prediction should yield a transcriptional

profile that lies within the average noise range of 60% (Table 4.2 and 4.3) in the experimentally

derived transcriptional profiles. Since some of the experimental replicates had high variance,

we also included an attractor distance threshold of 0.16. This threshold was selected based

on the performance of a null model, which samples from a uniform distribution with the

upper and lower limits as the maximal and minimal expression levels for each gene. For

transcriptional profiles with five genes or more, the null model has a 5% chance or less to

generate a profile below this cutoff of 0.16 (See Table S2).

4.2 Our algorithm revealed unintended edges in an engineered S. cerevisiae

GRN

To examine how well the GRN dynamic model produced by our algorithm

simulates experimentally derived gene expression and to what extent it is robust to measurement

https://github.com/UCM-RuihaoLi/GeneRegulatoryNetworkInference.git
https://github.com/UCM-RuihaoLi/GeneRegulatoryNetworkInference.git
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noise, we tested our approach using experimental data derived from an engineered synthetic

GRN in S. cerevisiae ([1]). This engineered GRN consists of seven activating or inhibitory

edges and five genes, some of which are under control of non-native promoters (Fig. 4.1

a). Using the experimentally measured promoter strengths and ten distinct steady state

gene expression profiles, derived from strains which individually overexpress each of the

five genes in galactose and glucose, our model inferred the GRN shown in Fig. 4.1 b. In

glucose, Gal80 blocks Gal4 from activating SWI5, while galactose can inactivate Gal80 and

Gal4 is free to activate SWI5.

Figure 4.1: (a) The schematic diagram of the S. cerevisiae synthetic circuit. Solid lines
represent direct transcriptional regulation and dotted lines indicate indirect transcriptional
regulation mediated by a protein-level activation or inhibition of a transcription factor.
Gal80 protein can inhibit SWI5 transcription by preventing Gal4-mediated activation of
target genes in the absence of galactose. Modified from the original paper ([1]). (b) The
schematic diagram of the inferred circuit. Correctly inferred edges are labeled in green;
additional edges not present in the original design of the circuit are labeled in orange and
have support from the literature; edges labeled in red accurately describe the protein-level
inhibitory effect of Gal80 on SWI5, as described in the text.

Our algorithm correctly identified five of the six transcriptional regulatory edges

present in the original design of the engineered GRN (see comparison result in the supplemental

material). In addition, our algorithm predicted two additional edges related to protein-

protein interactions and four that were not intended in the original design of the engineered

GRN, but for which there is experimental evidence in the literature (see Table 4.1). We
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believe the missing transcriptional regulation of SWI5 by Gal4 can be explained as follows.

First, as shown in Fig. 3.4, the same set of attractors can be produced by different GRNs.

In this case, the activation of SWI5 by a feedback loop via CBF1 and GAL4 is replaced by

a more direct activation by CBF1 only. Second, the difference in the regulatory effects of

Gal80 is related to how protein-protein interactions are encoded in our ODE framework.

Special care must be taken in interpreting protein-protein interactions in the context of the

inferred network produced by our algorithm. Our algorithm does not incorporate explicit

protein-protein interactions, such as the interaction between Gal80 and Gal4, which leads

to the downregulation of SWI5 and furthermore ASH1 and CBF1. Thus, in our inferred

network, the inhibitory edge from GAL80 to SWI5 is not present. Instead, this protein

inhibition is incorporated into the regulatory function for the targets of Swi5. Specifically,

the Swi5 protein activates CBF1 and ASH1 transcription, but the protein Gal80 interferes

with this activation. Therefore, at the mRNA level, increased GAL80 transcription does not

directly decrease SWI5 mRNA production; rather it decreases ASH1 and CBF1 transcription.

Thus, the inhibitory effect of Gal80 on the Swi5 protein is represented as the two inhibitory

edges from GAL80 to ASH1 and CBF1. With this consideration in mind, only the self-

activation of ASH1, the inhibition of GAL4 by ASH1, the activation of SWI5 by CBF1,

and the inhibition of GAL80 by CBF1 represent regulatory effects that are not present

in the intended synthetic system. We found previous experimental evidence for all these

interactions in the literature (see Table 4.1).

Furthermore, while investigating the source of these additional edges, we observed

that certain elements of the experimentally derived transcriptional profiles did not appear

to be consistent with the intended design of the engineered GRN as described by Cantone

et al. ([1]). Specifically, Cbf1 was intended to serve as the sole activator of GAL4, which

in turn was meant to serve as the sole activator of SWI5. This would imply that, at steady

state, SWI5 should be expressed if and only if Cbf1 is elevated and GAL4 is expressed.

The experimentally derived transcriptional profiles contradict this. They indicated that at

steady state, SWI5 was activated even when GAL4 was not expressed. Cantone et al. argued

that GAL4 is transiently expressed during an early phase of the experimental protocol, and

that the Gal4 protein could persist to activate SWI5 even after GAL4 mRNA levels drop.

However, this argument contradicts the steady state assumption of the transcriptional data

and furthermore does not explain why GAL4 mRNA levels were low when CBF1, which

was intended to activate GAL4, was overexpressed.
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We speculate that these discrepancies between the intended engineered GRN and the

experimentally derived data may be explained by unintended regulatory interactions that

modify the GRN structure and dynamics. By performing a systematic search on each TF-

promoter pair in the intended engineered GRN using YEASTRACT+ ([8]), we uncovered

support for this hypothesis. Specifically, we found experimental evidence from microarray,

Northern blot, ChIP, and electrophoretic mobility shift assay (EMSA) experiments, supporting

the idea that Cbf1 and Ash1 proteins regulate more than their intended target genes in the

circuit. In fact, all four promoters within the circuit can be responsive to Cbf1 and Ash1

(Table 4.1).

Table 4.1: Experimental evidence for regulatory associations in the synthetic circuit

Cbf1 Ash1 Gal4 Gal80 Swi5
pHO CBF1 Inhibition

[9]
Inhibition
[10, 11]

Activation
[12, 13]

pGAL10 SWI5 Activation
[9]

[8] Activation
[14, 15]

Inhibition
[16]

pMET16 GAL4 Activation
[17, 9]

[8]

pASH1 GAL80 Activation
[9]

[8] Activation
[10]

pASH1 ASH1 Activation
[9]

[8] Activation
[10]

Column names are the TF proteins and row names are the promoters followed by their
open reading frames. Orange shaded boxes indicate potential regulatory associations
found in YEASTRACT+; blue shaded boxes are experimental evidence found by
microarray and/or Northern blot experiments; pink shaded boxes are experimental
evidence found by both microarray/Northern blot and ChIP/EMSA experiments.

Our inferred GRN predicted additional regulatory interactions beyond those that

were intended in the synthetic regulatory network ([1]), and we identified experimental

support for these putative regulatory interactions (Table 4.1). We conclude that the inferred

GRN may have identified actual regulatory associations that impacted the experimentally

derived transcriptional profiles, thus allowing our inferred GRN to accurately reproduce

the experimentally measured attractor states and resolve the conflict between the intended

GRN and the experimentally derived transcriptional profiles. This conclusion is supported

by the observation that the attractors reproduced by our inferred GRN have 25.8% of

the attractor distance of the mathematical model built by Cantone et al. (supplemental

material). Furthermore, the experimental transcriptional profiles showed that SWI5 was
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repressed during overexpression of GAL80 in both galactose and glucose, which was inconsistent

with the intended GRN. The attractors produced by our model showed a consistent result:

SWI5 was suppressed when GAL80 was overexpressed in glucose media, and it was expressed

when galactose inactivated Gal80. Our model also explains the low expression of GAL4

under CBF1 overexpression: when CBF1 was overexpressed, ASH1 was activated by Cbf1

by two feed-forward loops (one via SWI5 and the other via GAL80), and Ash1 in turn

inhibited GAL4, lowering its expression. Together these results strongly suggest that our

evolutionary algorithm approach to model construction can provide significant insight into

the structure and regulatory dynamics of “real world” in vivo GRNs.

4.3 Modeling the white-opaque switch GRN in C. albicans

To expand beyond our model testing using data derived from “known” in silico

and engineered in vivo GRNs, we next applied our algorithm to infer and simulate the

dynamics of a naturally occurring GRN which controls reversible differentiation between

two distinct cell types—white and opaque—in the human fungal pathogen C. albicans. The

white and opaque cell types are heritably maintained for hundreds of generations and the

frequency of stochastic switching between these two cell types is controlled by a complex,

highly interwoven series of transcriptional regulatory interactions ([2]). The white and

opaque cell types differ in the expression of approximately 18% of all genes in the C.

albicans genome, thus providing two very distinct attractor states for the underlying GRN.

To model the white-opaque GRN, we utilized transcriptional profiles derived from wildtype

white and opaque cells, along with a series of strains that lack one or more of the TFs

controling the switch (See Table S3). These additional TF deletion strains serve to provide

additional steady-state attractors to further constrain the GRN structures. The majority of

these strains can switch reversibly between the white and opaque cell types, thus providing

two distinct attractor states per strain, with the exception of those TF deletion strains that

are “locked” in one cell type or the other. In total, we obtained RNAseq data for seventeen

distinct genotypic/phenotypic combinations including two wildtype strains, thirteen single

TF deletion strains, and two double TF deletion strains. Each of the deleted TFs is known to

impact the frequency of switching between the white and opaque cell types, and is known

or predicted to impact the transcriptional profile of the resulting white and/or opaque cell

types.

We first tested the ability of our evolutionary algorithm to predict the “unknown”

transcriptional profiles produced by the GRNs of the wildtype and single TF deletion strains
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by omitting the transcriptional profile(s) of a specific genotype from the training dataset

and allowing the model to predict the omitted transcriptional profile(s). Transcriptional

profiles from the two double TF deletion strains were excluded from all training sets and

were reserved as final test subjects for a “fully trained” version of the model developed

using the full complement of fifteen wildtype and single TF deletion strain transcriptional

profiles as the training dataset. If the attractor distance between the predicted and omitted

transcriptional profile(s) was below the average replicate distance, or a cutoff of 0.16, the

prediction would be considered successful. The cutoff of 0.16 was selected by the null

model, which has less than a 2% chance of generating a result below this cutoff for eight

and nine gene networks (See Table S2). Since the null model produces transcriptional

profiles by simply picking a value between the maximal and minimal expression levels,

while the GRN dynamic system generates transcriptional profiles by numerically solving

the differential equations, potential discrepancies may exist between the two. To rule out

potential discrepancies due to the GRN dynamic system, we also generated 10,000 random

GRNs as a control group and performed the same predictions on the omitted transcriptional

profiles. Generally, half of the random GRNs produced fixed-point attractors, while the

other half did not reach a steady state. Both the null model and the control GRNs showed

similar distribution on their attractor distances and had an average of approximately 0.3.

Overall, nine out of the fifteen omitted wildtype and single TF deletion strain transcriptional

profiles were successfully predicted by our model (Table 4.2). Of these nine successful

predictions, eight had an average attractor distance of less than 0.16, and the last one

(∆/∆efg1; Table 4.2) had an attractor distance above 0.16 but below the average replicate

distance, meaning that the predicted transcriptional profiles were within the range of noise

in the experimentally derived transcriptional profiles for the EFG1 deletion strain. The six

remaining prediction results showed either attractors exceeding the cutoff, or no attractor at

all (indicated by dashes). We note that several of the experimentally derived transcriptional

profiles had unusually high variability, as indicated by high average replicate distance

values (∆/∆wor3 opaque, ∆/∆czf1 opaque, and ∆/∆rbf1 opaque; Table 4.2). This high

variability suggests excessive noise in the RNAseq libraries, or multiple states/oscillations

existing in these specific cell types, either of which would violate the model assumption of a

single stable-state transcriptional profile and make it challenging to evaluate the prediction.

If we exclude these highly variable samples, the success rate of the model predictions

increases to 66.7%.
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Table 4.2: C. albicans wildtype and single TF deletion strains transcriptional profiles
prediction results

Genotypes Phenotype Prediction
trial 1

Prediction
trial 2

Average replicate
distance (noise
range)

Control

Wildtype and single TF deletion strains
wildtype White 0.087 0.084 0.130 (42%) 0.329(57%)
wildtype Opaque − 0.506 0.231 (107%) 0.352(59%)
∆/∆wor1 White 0.119 0.131 0.156 (58%) 0.281(50%)
∆/∆wor2 White 0.114 0.093 0.252 (89%) 0.295(60%)
∆/∆wor3 White 0.146 0.144 0.152 (49%) 0.310(47%)
∆/∆wor3 Opaque − 0.319 0.463 (144%) 0.286(54%)
∆/∆wor4 White 0.128 0.120 0.107 (42%) 0.310(53%)
∆/∆efg1 White 0.198 0.182 0.227 (78%) 0.314(56%)
∆/∆efg1 Opaque − − 0.120 (42%) 0.303(57%)
∆/∆ahr1 White 0.153 0.164 0.229 (72%) 0.319(62%)
∆/∆ahr1 Opaque 0.269 0.254 0.204 (94%) 0.279(55%)
∆/∆czf1 White 0.150 0.166 0.237 (81%) 0.340(45%)
∆/∆czf1 Opaque 0.327 0.353 0.282 (100%) 0.287(60%)
∆/∆ssn6 Opaque 0.254 0.366 0.182 (89%) 0.314(98%)
∆/∆rbf1 Opaque 0.136 0.139 0.334 (168%) 0.295(46%)

The transcriptional profile(s) of a specific genotype was left out in each prediction.
Predictions whose attractor distances are no greater than 0.16 or the average replicates
distance of the experimental data are indicated by green shaded boxes. Predictions that
show no attractor (represented by dashes) or attractors exceeding the cutoff are indicated
by unshaded boxes. Highly variable samples are indicated by gray shaded boxes. For the
control, the average attractor distances of random GRNs that produced fixed-point
attractors are indicated by the decimal values, while the percentage of random GRNs that
produced fixed-point attractors is indicated in parentheses.

Next, we applied all fifteen of the wildtype and single TF deletion strain transcriptional

profiles as training data to infer a consensus “fully trained” GRN. This consensus fully

trained GRN was derived from thirty inferred GRN architectures and then used to predict

the transcriptional profiles for two distinct double TF deletion strains. Since more attractors

were used in the input, we anticipated that this consensus fully trained GRN should have a

higher predictive power than the partially trained model. Both double TF deletion predictions

were successful (Table 4.3), indicating that the transcriptional profiles produced by the

consensus fully trained GRN closely mirror the experimentally derived transcriptional profiles

for these two strains. Given the predictive accuracy of the consensus fully trained GRN,

we next asked whether the underlying architecture, or adjacency matrix, of the inferred
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GRN also closely resembled the experimentally determined binding interactions between

these regulators and their respective coding genes, as previously reported ([2, 18, 19]).

The GRN architectures inferred by the fully trained model are relatively diverse, with an

average success rate of approximately 50% in predicting the experimentally determined

TF-gene binding interactions observed in the ChIP data (Fig. 4.2). This discrepancy is not

entirely unexpected given that our in silico testing demonstrated that multiple distinct GRN

structures, covering a wide range of hamming distances, are capable of producing virtually

identical transcriptional profiles, or attractor distances (Fig. 3.4).

Table 4.3: C. albicans double TF deletion transcriptional profiles prediction results

Genotypes Phenotype Prediction
trial 1

Prediction
trial 2

Average replicate
distance (noise
range)

Control

∆/∆ssn6
∆/∆wor1

White 0.094 0.097 0.051 (20%) 0.263(99%)

∆/∆rbf1
∆/∆wor1

White 0.154 0.155 0.118 (49%) 0.282(54%)

The transcriptional profile(s) of a specific genotype was left out in each prediction.
Predictions whose attractor distances are no greater than 0.16 or the average replicate
distance of the experimental data are indicated by green shaded boxes. Predictions that
show no attractor (represented by dashes) or attractors exceeding the cutoff are indicated
by unshaded boxes. Highly variable samples are indicated by gray shaded boxes (none
present for these results). For the control, the average attractor distances of random GRNs
that produced fixed-point attractors are indicated by the decimal values, while the
percentage of random GRNs that produced fixed-point attractors is indicated in
parentheses.

Given the enormous number of potential GRN architectures in the search space, and

the fact that distinct GRNs, which produce identical attractors cannot be differentiated

based purely on transcriptional profiles, we asked whether incorporating TF binding constraints

could enable the model to converge upon an architecture that more closely resembles the

experimental ChIP data while simultaneously reproducing accurate transcriptional profiles.

To bias the model toward the GRN architecture observed in the experimental data, we

included a TF binding probability function in our evolutionary algorithm. Briefly, this

function alters the probability of an edge being created or removed in the adjacency matrix,

thus biasing the inferred GRNs towards the experimentally determined architecture. However,

if the resulting GRNs fail to converge upon the experimental attractors, the evolutionary

algorithm would ultimately converge upon a distinct GRN structure if needed to fit the
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transcriptional profiling data. We applied all seventeen of the transcriptional profiles used

above, plus the previously published in vivo TF-DNA binding data, to infer “directed”

GRNs. On average, the individual directed GRNs retained approximately 90% of the

experimentally determined TF binding interactions while also reproducing most of the

experimentally derived transcriptional profiles (Fig. 4.2). The consensus directed GRN,

constructed by the high-frequency edges of the individual directed GRNs, accurately reproduced

thirteen out of the seventeen experimentally observed transcriptional profiles and eighty

out of the eighty-one physical binding interactions between each of the regulatory TFs

and their respective coding genes. The transcriptional profiles that the consensus directed

GRN failed to incorporate were wildtype opaque, ∆/∆wor3 opaque, ∆/∆ahr1 opaque, and

∆/∆ssn6 opaque, most of which had relatively high variability in their biological replicates

(see full report for both in silico and in vivo prediction tests and inferred GRNs in the

supplemental material). Together these results indicate that it is indeed possible to converge

upon a GRN structure that closely mirrors the experimentally determined TF-DNA binding

data for the white-opaque switch, while accurately producing many of the same attractor

states observed via RNAseq. However, this data also suggests a high degree of redundancy

or potential for plasticity within the white-opaque GRN, thus compromising the ability of

our model to infer the observed GRN structure based solely on transcriptional profiling

data.



Figure 4.2: Accuracy distributions of the fully trained and directed GRNs determined
by the ChIP data in C.albicans. Each distribution contains 30 GRN samples. The fully
trained GRNs were solely inferred by the transcriptional profiles while the directed GRNs
also had been constrained by the ChIP data. Performing equally well on reproducing the
transcriptional profiles, the direct GRNs showed a significant increase compared to the
fully trained GRNs.
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CHAPTER V
DISCUSSION AND CONCLUSION

5.1 Conclusion

In this work, we extended the attractor-matching strategy from a Boolean model

to an ODE-based model by incorporating transcriptional kinetic parameters. We consider

transcriptional profiles of stable cell types as fixed-point attractors ([1]) in the mRNA state

space, and search for the GRN architecture that produces these attractors. We found in the

in silico simulation that GRN architectures are significantly correlated with the attractors

they produce. This correlation supports the logic of applying the attractor-matching approach

to GRN inference. The ability of our approach to infer “unknown” GRNs has been validated

using both simulated datasets derived from “known” in silico GRNs and in vivo test datasets

from an engineered GRN in S. cerevisiae. Our approach outperformed six other leading

GRN inference methods when applied to the in silico attractors generated by SynTReN

ODEs. In the in vivo test, our approach not only successfully identified five of the six

intended transcriptional edges, but also revealed some unintended edges that might account

for the inconsistency between the designed GRN and experimentally derived transcriptional

profiles. In addition to inferring GRN architecture based on transcriptional profiles, our

approach can also predict the effects of genetic perturbation on the inferred GRN. As a

proof of principle, we used the inferred GRNs generated during our in silico model testing

to then predict the unknown attractors that would be produced upon genetic perturbation

of the original reference GRN (i.e., by deletion of each TF). The inferred in silico GRNs

successfully predicted 71.1% of the attractors produced by the reference GRNs using the

identical knockout strains (Table 3.5), indicating that our approach can effectively capture

GRN behavior based on transcriptional profiles. This result further suggests that our approach
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can be used to generate testable predictions on the behavior of in vivo GRNs. Specifically,

we envision the application of this approach to a hybrid computational and in vivo experimental

process whereby GRNs are inferred based on in vivo transcriptional profiles, the inferred

GRNs are perturbed in silico to generate “mutant” transcriptional profiles, and the accuracy

of inferred GRNs are ultimately assessed by comparing predicted versus observed transcriptional

profiles generated using in silico versus in vivo mutant strains. The accuracy of the inferred

GRN could thus be supported if the predicted and experimentally measured transcriptional

profiles converge. If not, the in vivo mutant strain and the resulting experimentally derived

attractors could reveal a new pattern of GRN dynamics that had not been covered by

the initial input attractors, and would thus complement the original wildtype attractors to

further refine the inferred GRN. In this manner, it should be possible to iteratively refine

predicted GRNs until they approximate the in vivo results.

As a proof of principle, we applied this iterative computational and experimental

strategy to infer the GRN governing the white-opaque switch in C. albicans. We first used

a dropout strategy to infer GRNs based on a subset of available data and tested the ability of

the inferred GRNs to predict the transcriptional profiles that were omitted from the training

data. This approach led to an overall success rate of 66.7%, which approaches the 71.1%

success rate observed in our in silico testing. Next, we demonstrated that a “fully trained”

GRN inferred from all fifteen of the wildtype and single gene deletion strain profiles was

successful in predicting the transcriptional profiles of two distinct “unknown” double TF

knockout strains that were omitted from our training data. This result demonstrates that the

inference of a GRN using a set of known attractors can bring insight into attractors that exist

biologically but have not yet been measured in the lab. Although the inferred white-opaque

GRNs accurately predicted most if not all of the dropped-out transcriptional profiles, they

did not fully converge upon the TF localization patterns that we have observed in in vivo

genome-wide TF localization experiments. To further constrain the white-opaque GRN,

we inferred the “directed” GRNs with all seventeen available experimentally measured

transcriptional profiles and included ChIP data that biases the GRN architecture towards

the TF localization pattern observed in vivo. This consensus directed GRN accurately

reproduced 76% of the RNAseq-derived transcriptional profiles and converged upon 99%

of the ChIP-derived TF binding interactions. This directed GRN model can be iteratively

tested and refined in the future and to provide further insight into the transcriptional regulatory

dynamics of this highly intertwined and complex GRN that controls cellular differentiation

in C. albicans.
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5.2 Limitations and challenges

There are potential pitfalls that can impact our approach. First, regulatory

elements other than TFs, such as non-coding RNA molecules, post-translational modifications,

and chromatin modifiers/remodelers, can also influence the behavior of a GRN of interest.

Their regulatory effects can lead to false compensatory TF regulations and make the inferred

network converge less often. Second, as observed in our C. albicans GRN modeling,

noise in the experimental data can lead to a “fuzzy” target for prediction and compromise

the ability of the approach to fit the transcriptional profiles into a GRN. Furthermore,

while RNAseq data derived from a particular genotypic/phenotypic state is assumed to

represent a fixed-point attractor, this is not necessarily the case. Multiple stable states or

oscillatory transcriptional outputs could exist within a population of cells that appear to

be phenotypically homogeneous, thus bulk RNA sequencing could average out single-cell

heterogeneity and underlying GRN dynamics. These limitations could lead to inferred

GRNs that simulate biased or non-existent targets. Third, our approach assumes that the

highest expression levels for each gene have been observed in the input transcriptional

profiles and utilizes them to estimate the unknown parameters. Potential bias in parameter

estimation can occur if this assumption is not satisfied. Moreover, our approach has simplified

the way that multiple activators or inhibitors regulate a target gene, either independently as

monomers or cooperatively as a polymer, but in vivo TFs could have more complex and

sophisticated forms of incorporation than modeled in our approach. These and likely other

confounding factors have the potential to adversely impact the process of GRN inference

and can cause reduced accuracy in predicting unknown transcriptional profiles.

The most significant challenge in GRN inference is perhaps the inherent functional

redundancy and plasticity of real-world GRNs. This was apparent in our in silico testing

where we observed that GRNs differing in as many as ten regulatory interactions can

produce qualitatively similar transcriptional profiles (Fig. 3.4). Similarly, we observed that

most of the attractors produced by the C. albicans white-opaque GRN could be reproduced,

and “unknown” attractors predicted, even when the inferred GRN does not closely match

the experimentally determined GRN architecture (Fig. 4.2). These results are consistent

with the idea that GRN structures can evolve while maintaining the same overall output,

which is also supported by experimental evidence ([2]). For example, Tsong et al. ([3])

identified a set of sexual differentiation genes that are negatively regulated in S. cerevisiae,

but are believed to have been positively regulated in an ancestral fungal species. In this

example, the overall output of the transcriptional circuit remains the same, despite significant



changes in GRN architecture. Our work provides a mathematical foundation for the idea

that GRN architecture has plasticity and evolves ([4, 5, 6]) under selective pressure ([7]).

Thus, experiments performed under a specific set of experimental conditions may fail to

reveal some of the evolutionary pressures that have constrained the behavior of real-world

GRNs under distinct environmental conditions. While the impact of these unobserved

evolutionary pressures on GRN architecture and logic could be revealed by extensive measurements

of GRN output in an array of different environmental conditions, we hypothesize that

the iterative model refinement strategy that we propose here may represent an efficient

alternative strategy.

5.3 Future work

In future iterations of our GRN inference approach, we can incorporate other types

of interactions between TFs that are not independent as assumed by default. For instance,

to consider the fact that Gal80 can only perform gene regulation by binding to Gal4, we

can add the following rule to the algorithm: if a target gene is regulated by Gal80 but not by

Gal4, the regulation of Gal80 on this gene will be voided. Interactions between metabolites

and TFs, such as IPTG deactivating the lac repressor, can also be incorporated into the

approach by adding similar rules. In this manner, our approach can flexibly integrate

more detailed biological information beyond sequencing data and better simulate complex

biological systems.

Another future attempt would be to apply our approach to the full GRN governing

the white-opaque switch in C. albicans. We aim to select all the genes that impact the

frequency of the white-opaque switch and create a set of mutant strains accordingly, such

as gene knock-out mutants and transcription factor binding site knock-out mutants. We

will apply our approach and the iterative refinement strategy to infer a GRN that matches

the behavior of these mutant strains and agrees with the ChIP and csRNA sequencing data.

This inferred GRN can shed light on the full picture of the regulatory interactions amongst

the white-opaque specific transcriptional regulators.
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Appendix
I Numerical solution and dynamical errors

In order to articulately describe the notions of numerical solution and dynamical

error, we take a single pendulum system as an example. As shown in Fig. 2.4 a, a pendulum

is a massive ball connected to a pivot by a massless rod. Descriptions and units for the

symbols used in the pendulum model are listed in Table S1. The state variables of the

pendulum model would be the amplitude θ, which indicates the current location of the ball,

and the angular velocity ω, which tells how fast the ball is moving. We know that the

pendulum is pulled by gravity and the rod at the same time. When the pendulum moves, it

will also receive a resistance if friction exists (µ ̸= 0). With this information, we can write

down the equation below.

mL2d
2θ

dt2
+mgL sin θ +mL2µ

dθ

dt
= 0, (S1)

where the first term is the total torque of the pendulum, the second term is the torque created

by gravity, and the last term is the torque created by resistance.

Differential equations can be solved numerically or analytically. Numerical methods

use finite numbers to compute the integrals defined by the ODEs step by step. While

analytical methods, also known as symbolic computation, use symbols, such as x and y, to

compute the solutions. Therefore, an analytical solution is perfect because it has absolutely

no error. However, it has been proved that Eq. S1 cannot be solved analytically (i.e. in

closed-form expression) when µ ̸= 0 ([1]). Specifically, if a person wants to write down

the analytical solution of Eq. S1, if it exists, with normal operations and functions, such

as plus, minus, multiplication, exponent, logarithm, and trigonometric functions, he must

need infinite amount of ink. In fact, analytical solution is not practical for most complex
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non-linear differential equations, and numerical solution is the only option to solve them.

For example, given an initial state of the pendulum (θ0, ω0) at time t0, we can apply the

Eq. S2 to calculate the value of ωt the at time t = t0 + δt, where δt cannot be infinitesimal

since computers do not have infinite memories to store or calculate it. Knowing the values

of θ0, ωt, and δt, we can use Eq. S2 to calculate the value of θt.

θt = θ0 + ωt · δt. (S2)

By calculating the values of ωt and θt step by step, we can obtain a numerical solution

of Eq. S1, or a trajectory as shown in Fig. S1b, with respect to the initial condition (θ0,

ω0), and this method (Eq. S2) is called forward Euler. However, error is inevitable when

using numerical methods to solve ODEs. As shown in Fig. S1a, since we assumed that the

values of the derivative, which is ωt in this case, do not change over the time interval δt,

integrating θt using Eq. S2 will lead to a deviation from the correct trajectory, and this is

called the dynamical error. What’s worse, the dynamical error can, and will, snowball as

the integration goes on. Generally speaking, as the value of δt and the times of integration

increase, the dynamical error will become larger, and it can create or break the attractors of

a dynamic system. As shown in Fig. S1b, by analytically solving the Eq. S1 when µ = 0,

we know that there is a periodic attractor, also known as a limit cycle, in the phase space.

However, when we solve the same equation using numerical methods, in this case forward

Euler (Eq. S2), the periodic attractor disappears. Therefore, it is important to make sure

that the dynamical error caused by the numerical method does not significantly affect our

result.
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Figure S1: (a) Schematic of how dynamical error leads to a deviation from the true
trajectory. The cycle represents the true trajectory solved by analytical method. The dashed
arrows indicate the integration steps in numerical methods. (b) An example in the case of
a single pendulum model, whose parameters are g = 9.8 m/s2, µ = 0 kg/s, m = 1 kg and
L = 1 m. The initial state is (θ0 = 3π/4, ω0 = 0). The solid line is calculated by analytical
method while the dashed line is by numerical method (forward Euler). The dynamical error
caused by numerical methods can lead to divergence and break the periodic attractor (i.e.
the limit cycle).

Table S1: Parameter table for the pendulum dynamic system

Symbol Description Unit
m mass of the ball kilogram

L length of the rod meter

θ the angle between the pendulum and the
vertical line

radian

ω the angular velocity of the ball radian/second

µ the damping coefficient kilogram/second

g the gravitational acceleration meter/second2
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Table S2: Probabilities of cumulative attractor distance by the null model

Attractor distances
Number of
genes

≤ 0.1 ≤ 0.15 ≤ 0.2 ≤ 0.3 ≤ 0.4

5 genes 0.61% 3.81% 12.50% 45.10% 73.39%

6 genes 0.29 % 2.58 % 10.53% 44.77% 74.11%

7 genes 0.14 % 1.79 % 9.00% 44.55 % 74.68%

8 genes 0.07% 1.25% 7.77% 44.36% 75.08%

9 genes 0.03% 0.89% 6.75% 44.23% 75.42%

Table S2 shows the probabilities of cumulative attractor distances produced by a

null model. For each gene, the null model randomly picks a value in a continuous uniform

distribution U([R]i,min, [R]i,max), where [R]i,min and [R]i,max are the minimal and maximal

expression levels of the ith gene.

Table S3: C. albicans strains used in this study

Description AHY TF Genotype Reference

a/∆

wildtype

304 WT a/∆MTLalpha::ARG4 C.m.LEU2/∆leu2

C.d.HIS1/∆his1 URA3/ura3D::imm434

IRO1/iro1∆::imm434 arg4::hisG/arg4::hisG

[2]

∆/∆wor1 856 Wor1 a/∆MTLalpha::ARG4 C.m.LEU2/∆leu2

C.d.HIS1/∆his1 URA3/ura3D::imm434

IRO1/iro1∆::imm434 arg4::hisG/arg4::hisG

∆orf19.4884(wor1)::C.a.HIS1/∆orf19.4884(wor1)::C.a.LEU2

[2]

∆/∆wor2 736 Wor2 a/∆MTLalpha::ARG4 C.m.LEU2/∆leu2

C.d.HIS1/∆his1 URA3/ura3D::imm434

IRO1/iro1∆::imm434 arg4::hisG/arg4::hisG

∆orf19.5992(wor2)::C.a.HIS1/∆orf19.5992(wor2)::C.a.LEU2

[2]



85

∆/∆wor3 850 Wor3 a/∆MTLalpha::ARG4 C.m.LEU2/∆leu2

C.d.HIS1/∆his1 URA3/ura3D::imm434

IRO1/iro1∆::imm434 arg4::hisG/arg4::hisG

∆orf19.467(wor3)::C.a.HIS1/∆orf19.467(wor3)::C.a.LEU2

[2]

∆/∆wor4 861 Wor4 a/∆MTLalpha::ARG4 C.m.LEU2/∆leu2

C.d.HIS1/∆his1 URA3/ura3D::imm434

IRO1/iro1∆::imm434 arg4::hisG/arg4::hisG

∆orf19.6713(wor4)::C.a.HIS1/∆orf19.6713(wor4)::C.a.LEU2

[2]

∆/∆efg1 836 Efg1 a/∆MTLalpha::ARG4 C.m.LEU2/∆leu2

C.d.HIS1/∆his1 URA3/ura3D::imm434

IRO1/iro1∆::imm434 arg4::hisG/arg4::hisG

∆orf19.610(efg1)::C.a.HIS1/∆orf19.610(efg1)::C.a.LEU2

[2]

∆/∆ahr1 812 Ahr1 a/∆MTLalpha::ARG4 C.m.LEU2/∆leu2

C.d.HIS1/∆his1 URA3/ura3D::imm434

IRO1/iro1∆::imm434 arg4::hisG/arg4::hisG

∆orf19.7381(ahr1)::C.a.HIS1/∆orf19.7381(ahr1)::C.a.LEU2

[2]

∆/∆czf1 784 Czf1 a/∆MTLalpha::ARG4 C.m.LEU2/∆leu2

C.d.HIS1/∆his1 URA3/ura3D::imm434

IRO1/iro1∆::imm434 arg4::hisG/arg4::hisG

∆orf19.3127(czf1)::C.a.HIS1/∆orf19.3127(czf1)::C.a.LEU2

[2]

∆/∆ssn6 801 Ssn6 a/∆MTLalpha::ARG4 C.m.LEU2/∆leu2

C.d.HIS1/∆his1 URA3/ura3D::imm434

IRO1/iro1∆::imm434 arg4::hisG/arg4::hisG

∆orf19.6798(ssn6)::C.a.HIS1/∆orf19.6798(ssn6)::C.a.LEU2

[2]

∆/∆rbf1 793 Rbf1 a/∆MTLalpha::ARG4 C.m.LEU2/∆leu2

C.d.HIS1/∆his1 URA3/ura3D::imm434

IRO1/iro1∆::imm434 arg4::hisG/arg4::hisG

∆orf19.5558(rbf1)::C.a.HIS1/∆orf19.5558(rbf1)::C.a.LEU2

[2]
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∆/∆wor1

∆/∆ssn6

1355 Wor1

Ssn6

a/∆alpha C.m.LEU2/∆leu2 C.d.HIS1/his1∆

URA3/ura3D::imm434 IRO1/iro1∆::imm434

arg4::hisG/arg4::hisG ∆MTLalpha::ARG4

∆orf19.6798(ssn6)::C.a.HIS1/∆orf19.6798(ssn6)::C.a.LEU2

∆wor1/∆wor1

∆/∆wor1

∆/∆rbf1

1354 Wor1

Rbf1

a/∆alpha C.m.LEU2/leu2∆ C.d.HIS1/his1∆

URA3/ura3D::imm434 IRO1/iro1∆::imm434

arg4::hisG/arg4::hisG ∆MTLalpha::ARG4

∆orf19.5558(rbf1)::C.a.HIS1/∆orf19.5558(rbf1)::C.a.LEU2

∆wor1/∆wor1

Figure S2: Five GRN architectures were arbitrarily generated as references in the in silico
test. They have 5-9 (a-e) genes and no self-regulatory edges. The pointed and (or blunt)
arrows represent activating (and repressing) regulatory interactions, respectively.
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Figure S3: The non-autoregulation in silico test comparison results in F1 score (upper
panel), AUROC (middle panel), and AUPRC (bottom panel). The F1 scores are calculated
using a threshold cutoff of 0.5 for all models. The best performance is marked by a star for
symmetric and asymmetric methods.
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Figure S4: A stacked histogram displays the distribution of edge variances across 30
independent inference runs, showing the number of edges for each variance category.



Figure S5: Prediction of drop-out transcriptional profiles in C. albicans. A dropout strategy
was utilized to infer GRNs based on a subset of available data and assessed the predictive
capability of the inferred GRNs for transcriptional profiles that were deliberately excluded
from the training dataset. The initial states were configured to correspond to the omitted
transcriptional profiles.
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