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Checkpoint/Restart Vision and Strategies for
NERSC’s Production Workloads

Zhengji Zhao and Rebecca Hartman–Baker
NERSC User Engagement Group
{zzhao,rjhartmanbaker}@lbl.gov

Abstract—As a primary approach to fault-tolerant computing,
Checkpoint/Restart (C/R) improves scientific productivity for
users, provides scheduling flexibility for computing centers,
and protects against system failures. While both application-
specific (or application-level) and transparent C/R are used in
practice, we are interested in transparent checkpointing, which is
vital for system-level checkpointing. Developing and maintaining
transparent C/R tools for HPC applications, however, is labor
intensive and highly complex due to ever-changing HPC systems
and diverse production workloads. Existing C/R tools are often
research-oriented, so there is a gap to close before they can be
used reliably with production workloads, especially on cutting-
edge HPC systems. In this position paper, we present our journey
to prepare a production-ready MPI-Agnostic Network-Agnostic
(MANA) transparent checkpointing tool for NERSC, and share
our vision and strategies to bring transparent C/R capabilities to
NERSC’s production workloads on current and future systems.

Index Terms—checkpoint/restart, MANA, DMTCP, HPC, pro-
duction workloads, preemption

I. INTRODUCTION

As a primary approach to fault-tolerant computing, Check-
point/Restart (C/R) is essential to a wide range of the
HPC community. C/R enables long-running jobs for users,
and improves their scientific productivity by minimizing
compute-time loss due to system failures and improving queue
turnaround by utilizing the backfill opportunities with shorter
jobs. C/R makes it possible for users to migrate a compu-
tation from one system to another, and also enables replay
debugging, which is crucial for efficient debugging, especially
at large scales, by checkpointing a hard-to-reproduce and/or
expensive computation. From computing centers’ perspective,
C/R provides some protection against system failures (in-
cluding, for example, PG&E’s Public Safety Power Shutoffs),
makes it easier to schedule large jobs, increases system utiliza-
tion, and enables scheduling flexibility to maintain the systems
and support diverse workloads with different priorities. For
example, the DOE SC’s experimental and observational fa-
cilities often require real-time access to computing resources
to generate immediate feedback for follow-up experiments.
These kinds of real-time workloads will continue to increase
in the near future at NERSC, meaning we may soon need the
capability to preempt partial- or full-system jobs when these
demanding real-time jobs enter our systems. It is therefore
vital to get C/R capability working at NERSC.

This work was supported by the Office of Advanced Scientific Computing
Research in the Department of Energy Office of Science under contract
number DE-AC02-05CH11231.

Both application-specific and transparent checkpointing can
be used in practice. Many applications at NERSC have some
level of internal C/R support, which can be efficient. How-
ever, due to the lack of standard entry points for checkpoint
and restart operations, application-level checkpointing usually
requires user intervention to restart the application, and is
difficult to use for system-level checkpointing. How is a batch
system supposed to know how to restart a specific applica-
tion? There are also restrictions for when applications can
checkpoint, resulting in limited and inflexible C/R capabilities
in most applications. For example, the application may need
to complete an iteration or reach the end of a phase in the
program before checkpointing can take place. In addition,
application-specific C/R imposes additional code development
and maintenance burdens on application developers, who
would prefer to focus their effort on science and often cannot
afford the additional cost of C/R code development, further
limiting C/R capabilities available in applications.

In contrast, transparent checkpointing does not require
code changes in applications, and is capable of stopping
and resuming at any point of execution. The batch system
can simply restart the pre-terminated jobs from the most
recent successful checkpoint files, requiring no application-
specific information. These capabilities are requirements for
system-level checkpointing. Therefore, we focus our efforts
on transparent checkpointing1.

Making a transparent-to-users C/R tool capable of sup-
porting HPC production workloads is challenging. It is labor
intensive and highly complex primarily due to the ever-
changing HPC system landscape and diverse, evolving pro-
duction workloads. Many checkpointing packages developed
in the past, including the most influential Berkeley Lab
Checkpoint/Restart (BLCR) [1], are no longer maintained. As
pointed out by Cooperman [2], among the 19 checkpointing
packages from before 2010, which were listed in the website,
https://checkpointing.org/, only two are still active. (One of
the two is DMTCP [3] which we have selected to work
with.) As a result, for many years no viable C/R tools were
available for production use on cutting-edge HPC systems.
Even now, existing C/R tools are often research-oriented and
meant to demonstrate promising C/R capabilities on specific
platforms. There is thus a large gap to close before these tools

1In some cases, though, it may be necessary to combine transparent and
application-specific checkpointing to achieve optimal C/R performance. See
IV-B.

https://checkpointing.org/


Fig. 1. The M×N maintenance penalty of C/R tools. The figure was modified
from Rohan Garg’s HPDC’19 talk slides [4].

can reliably provide C/R capabilities across a wide range of
different applications and cutting-edge HPC systems.

We begin by analyzing the many challenges in C/R code
maintenance. First, for HPC workloads, dominated by MPI and
hybrid MPI+OpenMP applications, C/R tools that work across
many combinations of MPI implementations and networks
are exceedingly difficult to maintain. This is the so-called
M (# of MPI implementations) ×N (# of Networks) mainte-
nance penalty [5] (see Figure 1). Since front-edge computing
centers introduce new HPC systems every few years, the
already numerous MPI implementation/network combinations
also constantly change. Additionally, fast-emerging process
and memory architectures, which are often heterogeneous and
even dynamically configurable, impose significant research
and development efforts to enable transparent checkpointing
on them. The programming models and languages used to
program for new hardware are continuously evolving as well.
This fast turnover is extremely difficult for code developers
to keep pace with, meaning there are no production-ready
transparent C/R tools on cutting-edge HPC systems.

Second, C/R tools that require long-term coordination be-
tween MPI library, kernel, and resource manager/scheduler
developers have proven unsustainable; this was the primary
challenge for the once promising and influential BLCR [1].
Third, transparent C/R tools often interact directly with OS
kernels, and frequent OS updates on HPC systems can easily
break C/R tools. Fourth, C/R tools incur runtime overheads
and impose extra work upon users, which hinders user uptake
of the C/R approach. Finally, maintaining C/R codes for
production use has low priority among C/R researchers, as
it generally does not produce novel research results that can
secure funding from stakeholders.

Much of our work so far has focused on addressing these
challenges. In Section II, we present the strategies that we
have been using to bring the transparent C/R capabilities to
NERSC’s production workloads. In Section III, we present
what we have learned so far, and in Section IV we present our
long-term C/R vision and strategies. We conclude the paper
with our future work.

II. OUR STRATEGIES SO FAR

NERSC, like other computing centers at DOE laboratories,
has a unique role in bringing C/R research to production
usage, because our funding is dependent upon the successful
operation of an HPC center, not production of novel research
results. With this understanding and our own vision for the
future, we started our long journey to enable transparent C/R
capabilities for NERSC production workloads in mid-2017.
We have been using the following three strategies to address
the challenges we described above.

A. Selecting DMTCP/MANA as our C/R tool and promoting
its development

First, we selected Distributed Multi-Threaded CheckPoint-
ing (DMTCP) [3] as our C/R tool. DMTCP lives completely
in user space and therefore does not require coordination with
MPI, kernel, and batch-system developers, or system admin-
istrators. With DMTCP, we can also bring C/R capabilities to
NERSC incrementally, which is critical to the project’s long-
term success.

A breakthrough in the DMTCP implementation in May
2019, called the MPI-Agnostic Network-Agnostic transparent
checkpointing (MANA) [5], [6], addressed the critical M×N
maintenance issue. MANA is implemented as a plugin for
DMTCP. Based on a novel “split-process” approach, MANA
is fully transparent to the underlying MPI, network, and libc
library and underlying Linux kernel. In a split process, a single
system process contains two programs in its memory address
space: the lower half, containing an MPI proxy application
with MPI library, libc and other system libraries; and the upper
half, containing the original MPI application and data (see
Figure 2). MANA tracks which memory regions belong to
the upper and lower halves, and achieves MPI agnosticism
by checkpointing only the upper-half memory and discarding
the lower-half memory at checkpoint, and then reinitializing
the MPI library upon restart. MANA achieves network ag-
nosticism by draining MPI messages before checkpointing.
To ensure that no checkpointing occurs when some ranks
participate in a collective call, MANA prefaces all collective
MPI calls with a trivial barrier (See Figure 3). The real
collective call happens only when all the ranks enter or exit the
trivial barrier. During the real collective calls, checkpointing
is disabled, assuring that no messages floating in the network
when checkpointing is initiated. MANA was a substantial
step forward toward ready-to-use C/R tools on future HPC
platforms!

Our collaboration with the DMTCP team began in March
2018, with the initial goal of enabling DMTCP to work reli-
ably with serial/threaded applications running on a single node.
As of this writing, in collaboration with the DMTCP/MANA
team and NERSC’s summer interns we have made MANA
work with various workloads of the application that uses the
most cycles at NERSC, the VASP [7] materials science code.
There are still a few outstanding issues to resolve for VASP,
(e.g., high runtime overhead), but the improvements to the



Fig. 2. MANA is based on the “split-process” approach, in which a system
process contains two separate programs: the upper half, containing the original
MPI application and data; and the lower half, containing MPI library, libc and
other system libraries. MPI Agnosticism is achieved by checkpointing only
the upper half memory and discarding the lower half, and then reinitializing
MPI upon restart. The figure was modified from Rohan Garg’s HPDC’19 talk
slides [4].

Fig. 3. MANA’s two-phase algorithm for checkpointing MPI collective calls.
MANA achieves its network agnosticism by draining the network before
checkpointing. The figure was modified from Rohan Garg’s HPDC’19 talk
slides [4].

MANA code from our collaboration was a substantial advance-
ment toward converting MANA to a production-quality tool.

Because MANA can be used reliably with VASP, we have
been able to examine what transparent checkpointing can do
for VASP. VASP does not scale to a large number of processors
due to the nature of its algorithms, so a typical VASP job
is run for a long time on a handful of nodes. Nonetheless,
VASP usage makes up more than 20% of the computing cycles
at NERSC [9]. Like many other applications run at NERSC,
VASP has internal C/R support for some of its workloads, such
as atomic relaxation and molecular dynamic (MD) simulation
jobs. It does not, however, have the same support for other
workloads, such as Random Phase Approximation (RPA) jobs,
which often have runtimes exceeding 48 hours, the maximum
walltime allowed on Cori [8], a Cray XC40 system at NERSC.
We had to make special reservations to support these long-
running jobs in the past. While enabling long-running jobs is
not the only use case of MANA, with MANA we no longer
need to make special reservations to support long-running
VASP jobs. Even for the atomic relaxation and MD jobs that
have internal C/R support, there are multiple advantages to
using MANA:

1) MANA can do periodic as well as on-demand check-
pointing, and can stop and resume at any point of
execution, while the internal checkpointing is available
only upon the successful completion of a preset number
of iterations. If the job hits the walltime limit before
completing the specified number of iterations, VASP will
fail to generate checkpoint files.

2) With MANA all output files after multiple checkpoint
and restart will be exactly identical to an identical
job that runs without C/R. Because MANA tracks the
length of each open file at the time of checkpoint, and
then at the time of restart, it truncates the file back
to the length that it had at the time of checkpoint.
With VASP’s internal C/R support, users must provide
modified input files for each restarted job, and have to
back up the output files from each pre-terminated job,
otherwise they will be overwritten by the next restarted
job. This means the batch system cannot restart a pre-
terminated VASP job without user intervention. When
the job completes after multiple restarts from the internal
support, users have to combine multiple output files
when the intermediate results are important.

3) One may argue that managing inputs/outputs to use the
internal C/R support could be automated. While it can
be done with additional user effort, the process is vul-
nerable to any random errors that happen on the system
at a certain rate. In contrast, transparent checkpointing
is resilient to random errors and can always restart from
the most recent successful checkpoint files.

4) VASP supports on-demand checkpointing for atomic
relaxation or MD jobs, so users can send a checkpoint
request to a running job if it cannot complete the preset
number of iterations before hitting the walltime limit.
Upon receiving the request, VASP completes the current
ionic step and writes out the checkpoint file and quits.
The next job can start from the checkpoint file. However,
it is hard to estimate how long it needs to complete
the current ionic step: It could require anywhere from
a few seconds to hours depending on where it is in the
execution, making it difficult for VASP users to adopt
the variable-time job scripts (see next section for more
detail) provided by NERSC to automate job resubmis-
sions. In contrast, MANA has a relatively predictable
checkpoint overhead, depending on the memory usage
and file systems used, making it easy to automate job
resubmissions.

5) VASP atomic relaxation and MD jobs can restart with
the last updated atomic configuration file when the
checkpoint file (WAVECAR) is not present; the re-
sult, however, may not be identical to an uninterrupted
run (especially for MD jobs). With MANA, bitwise
reproducibility can be guaranteed between a job that
completes after multiple restarts and an uninterrupted
job with identical initial input. MANA transparently
saves all states, including random seeds. This makes it an
ideal tool to restart chaotic MD simulations, for which



trajectories diverge rapidly with even slight changes in
restart data.

6) VASP is a widely used, well maintained commercial
code, and has tens of thousands users over the world,
but internal C/R support in VASP is limited, indicating
that adding internal C/R support in VASP is not trivial
and/or may require significant development effort.

The downside of running VASP with transparent check-
pointing tool is the additional runtime overhead, putting aside
the C/R overhead that would be incurred in both application-
level and transparent checkpointing. MANA developers have
devised algorithms and protocols to minimize the runtime
overhead (to be implemented); however, ultimately the ques-
tion remains: how much overhead can we tolerate in exchange
for the benefits of C/R?

B. Promoting C/R uptake among NERSC users

Second, in parallel with the MANA code development work,
we developed variable-time job scripts to automate preempted
job submissions, rolled out queue policies and configurations
to incentivize C/R usage, and provided user training to increase
the uptake of C/R. Variable-time job scripts [10], [11] can
automatically split a long-running job into multiple shorter
ones that self-resubmit until the job completes. This was a
key step towards promoting user uptake of the C/R approach,
making it easier for users to work with preempted jobs with
or without external C/R tools. The “flex” QOS [12] was
configured with a substantial charging discount for variable-
time jobs to incentivize C/R usage. This queue offers a 75%
charging discount in exchange for users’ flexibility about
job walltime. A flex job must request a minimum walltime
of at most two hours, and can use up to 256 Cori KNL
nodes for up to 48 hours. The jobs in the flex queue create
additional opportunities for the Slurm scheduler to perform
backfill and increase machine utilization. In 2020, the “flex”
queue was used by over 150 distinct users, consuming nearly
3% of all Cori KNL cycles, enabling NERSC to achieve more
than 90% utilization on Cori. More than half of these “flex”
users ran their jobs with variable-time job scripts. We hosted
multiple user training sessions [13]–[19] to help NERSC users
adopt variable-time job scripts and the C/R approach in their
production workloads with or without DMTCP/MANA. We
have also provided extended user documentation on C/R [20],
and have started providing one-on-one NERSC appointment
service [21] on checkpointing for users as of June, 2021.

C. Building an active and strong C/R community

Our third strategy was to build an active and strong C/R
community to promote production-ready C/R tools develop-
ment. An active community will ensure the long-term sustain-
ability of the C/R approaches. We hosted the First International
Symposium on Checkpointing for Supercomputing [22] in
February, 2021, which attracted more than 250 participants,
and we will be hosting our second International Symposium on
Checkpointing for Supercomputing [23] in November, 2021,
in conjunction with SC21.

III. LESSONS LEARNED

Despite our extensive efforts promoting MANA for users,
adoption is lower than we had hoped. The bottleneck was the
delivery of production-quality MANA.

A. Substantial gap to close for production-ready MANA

Enabling transparent checkpointing for production work-
loads has proven extremely difficult and slow. There is a
substantial gap between proof-of-concept MANA code and a
production-quality tool. Many issues that did not appear for
the demonstration in the MANA paper must now be addressed
explicitly. First, MANA lacked support for hugepages memory
or static linking, but on Cori the hugepages memory is enabled
by default and static linking is needed for applications that
run at large scales. Adding support for hugepages and static
linking was therefore necessary for MANA to be used with
production workloads. Second, MANA works by wrapping
MPI APIs to ensure consistent states across MPI tasks when
checkpointing, and also to achieve its MPI and network
agnosticism, but MANA had only a small set of commonly
used MPI APIs wrapped for demonstration. Given the large
number of applications run at NERSC, many missing MPI
wrapper functions need to be implemented in MANA, which
often requires non-trivial effort (e.g., the one-sided MPI APIs).
Finally, MANA is implemented as a plugin to DMTCP, adding
additional options to the DMTCP commands. This made the
commands that launch and restart target applications under
MANA quite long, therefore user-friendly interface scripts
were added to make it easy to use.

Numerous bugs have been exposed and fixed [24] when
testing MANA with VASP production workloads, and some
of the bugs show up only after multiple checkpoints/restarts.
These bugs ranged from local logical errors in the implemen-
tation, to algorithmic design flaws that required redesigning
and improving, as well as the lack of proper treatment for
some libraries that interact with target applications, e.g., the
XPMEM and PMI libraries, as well as some special variables
to support Fortran bindings in the Cray MPICH library. Some
of the memory corruption and rare race condition bugs were
very evasive, requiring substantial effort for developers to fix
them.

One such example is a memory corruption bug (glibc error
message: double free or corruption) that was exposed with
one of the VASP workloads. The developers identified that
the corruption occurred when VASP was deallocating a buffer
at restart, but it was difficult to debug due to the special
structure of MANA and the additional complications added by
the differences between MPI’s Fortran and C interfaces. First,
the developers tried using existing memory debugging tools,
including Clang’s address sanitizer, electric fence, and glibc’s
mcheck function. However, these debugging tools ended up
not being helpful. Clang’s address sanitizer and glibc’s mcheck
function provided too many false positives during restart
and prevented VASP from continuing to run, because the
memory-restoring process of MANA confused these memory
debugging tools. Electric fence was able to work with MANA



but dramatically slowed down the program and changed C/R
schedules so that the bug was not reproducible. Then, the
developers implemented a small memory debugging tool, lib-
malloccheck. This library can be loaded with LD PRELOAD
and interpose the malloc and free functions to add more
debugging information to each allocation and deallocation.
The tool showed that no overrun or underrun in the corrupted
memory area was found, implicating glibc’s internal data
structure for allocation as the cause of the corruption. The
developers studied the source code of the malloc and free
functions in glibc, and found a broken memory arena allocated
inside glibc, which led to a memory inconsistency problem
when MANA was restoring anonymous hugepages segments
at restart. After resolving the hugepages issue, the memory
corruption error was finally fixed.

B. High runtime overheads

In addition, the MPI and network agnosticism of MANA
came at the cost of substantial runtime overhead, which
requires further research to resolve. Here the runtime over-
head refers to the overhead of running an application un-
der MANA without checkpointing as compared to running
the native application. While a negligible runtime overhead
was observed with some applications (e.g., HPCG [25], and
miniFE [26]), we have seen up to 24% runtime overhead of
MANA on Cori KNL (17% on Haswell) when running with
VASP, which makes frequent MPI collective calls (thousands
of times per second per rank). This high runtime overhead
has been attributed to frequent, high-cost context switches
between the upper and lower halves. MANA’s split-process
approach utilizes two different programs in the same memory
address space, and the upper (user application) and lower
(MPI library) half programs each has their own thread-local
storage region, whose variables are referred to using the “FS”
register of the x86-64 CPUs. MANA interposes all MPI calls
from the user application from the upper half program to
call the MPI functions in the lower half. When switching
between the upper and lower half programs, the value of
the “FS” register must be changed to point to the correct
thread-local region, which requires a kernel call to invoke a
privileged assembly instruction. Since a kernel call is relatively
expensive, when frequently invoked it could result in excessive
overhead. A more efficient mechanism for modifying the “FS”
register does exist in more recent Linux kernel 5.9, which
uses unprivileged assembly instruction (called FSGSBASE
instruction set, which allows read/write FS/GSBASE from
any privileges). If the FSGSBASE kernel patch [27] could
be applied to Cori, which is running Linux kernel 4.12, the
high runtime overhead of MANA would be largely reduced,
as demonstrated in [5], [28]. However, applying an OS kernel
patch is difficult on production systems, and it is very likely
that we will not get this patch on Cori before it retires in
a couple of years. Fortunately, the MANA developers have
made progress on reducing this runtime overhead without the
kernel patch, but it required significant effort from them, and
the fix is still under development. There are a few other

sources (albeit smaller) of runtime overhead, such as the
insertion of a trivial barrier (MPI Barrier) to all MPI collective
calls to allow checkpointing to occur only at consistent state;
the virtualization of MPI communicators and datatypes that
requires a table lookup to map a virtual ID to its real ID; and
so on. MANA developers have ideas for algorithms to address
all these sources of overhead, such as using the wrapped
MPI functions only when checkpointing actually occurs, and
implementing a more efficient hash-table lookup algorithm,
but all these need time and resources to implement.

C. Chasing hardware

MANA has achieved MPI and network agnosticism, which
is significant progress towards ready-to-use C/R tools, how-
ever, it still needs to deal with new architectures separately.
So far we have been working on getting MANA to work
on Cori, our Cray XC40 system with Intel Hawell and
KNL processors. While MANA’s functionality and reliability
enhancements for Cori will be useful for our next flagship
system, Perlmutter [29], an HPE Cray EX system with both
NVIDIA A100 GPUs accelerated nodes and AMD Milan CPU
nodes, it will require significant effort to enable MANA on
the Perlmutter GPU partition, as MANA does not yet support
GPUs. There is a plan to integrate some recent work on trans-
parent checkpointing of CUDA, CRAC [30], into MANA to
support Perlmutter GPUs; however, it will require significant
time and resources to implement the code integration. It should
be noted that in addition to NVIDIA GPUs, a variety of other
accelerators, such as AMD GPUs, Intel GPUs, FPGAs, as
well as specialized accelerators, are all on the HPC landscape
and horizon. It is possible that multiple types of specialized
accelerators may be present on a single node on future systems
to continue to scale performance beyond Moore’s law [31].

Like other HPC centers, NERSC introduces a new cutting-
edge system every few years. It is expected that future systems
will be more heterogeneous and complex. Can C/R tools ever
catch up with emerging architectures and technologies?

IV. VISION AND STRATEGIES ON CHECKPOINT/RESTART
FOR HPC PRODUCTION WORKLOADS

To have ready-to-use transparent C/R tools for HPC pro-
duction workloads on current and future systems, significant
efforts are required in both the short term as well as the long
term. While anyone in the HPC community can contribute
to this goal, computing centers like NERSC have unique and
important roles to play to achieve this goal, realizing all the
benefits that transparent C/R has to offer, and bringing pro-
found changes to how future systems are designed, operated,
and used.

A. Working toward architecture-agnostic C/R

For the longer term, instead of checkpointing tools chasing
hardware, “integrating checkpointing as first class citizens
in future systems” [32] is essential. Currently, C/R tools
are “forced” to take a software-only approach to checkpoint
hardware, because hardware comes without any support for



checkpoint and restart operations. If this situation continues,
C/R tools will never be able to catch up with the fast changing
pace of emerging hardware, especially now as hardware is
evolving to be more heterogeneous and complex. If each new
piece of hardware were to come with a set of standard APIs
that C/R tools could use to query/manipulate the hardware
states and manage memory segments on them, this would be
important progress toward ready-to-use C/R tools on the future
cutting-edge systems. These APIs could tremendously shorten
C/R tools development time to checkpoint new hardware (or
even enable ready-to-use C/R straight out of the box), and we
expect that it would not require a major effort for the hardware
vendors, who know their hardware best, to provide them.
What we request may simply be a small subset of existing
functionalities or tools developed during hardware design
and testing phases. Computing centers like NERSC must
influence/collaborate with hardware and software vendors to
provide C/R capability on future systems via procurement or
other avenues, and should contribute to the standardization of
the APIs that hardware vendors must provide to support C/R
operations. It should be noted that hardware vendors will not
provide C/R components on their hardware if their clients,
like computing centers, never ask for them. We believe that
our efforts will eventually help create a commercial drive
among hardware and software vendors, achieving architecture
agnostic and ready-to-use C/R tools on future systems.

B. Handshaking with application-level checkpointing

So far we have focused on transparent checkpointing, which
requires no information from applications. While this approach
works well most of the time, it can sometimes result in
inefficiencies that could be easily avoided if applications
could provide minimal information for external C/R tools.
Checkpointing SPAdes workloads, one of the most impor-
tant production workloads of The Joint Genome Institute at
Lawrence Berkeley National Laboratory, using DMTCP is
such an example [33]. One of the key characteristics of the
SPAdes application is that it creates/uses temporary files of up
to a terabyte in size, known as precious files, and later in the
execution it deletes them. These files, which may or may not
be opened by the processes at all times, co-exist with other
output files in the same directory, and SPAdes needs these
precious files to properly restart the application. However,
DMTCP tracks only the open files at checkpoint time and
assumes that all the files associated with a process will be
persistent and present at their original paths. To solve this
problem, the authors exploited a plugin in DMTCP designed
specifically for SPAdes that backs up precious files at the
checkpoint and replaces them at restart. Since DMTCP has no
feedback from SPAdes about which output file is a precious
file and which one is not, it ends up naively saving all the
output files at checkpoint time and replacing them at restart
time. This increases the size of the files to back up over
time, reaching up to a few terabytes, and raises I/O time
significantly. This performance penalty could be avoided if
SPAdes were somehow “checkpoint-aware” and did not delete

these precious files during the course of execution if run under
DMTCP. Alternatively, SPAdes could help DMTCP identify
the precious files among regular output files so it could save
only the precious files instead of all output files. This could be
done simply by prefixing/suffixing to identify precious files, or
writing all precious files in a specific directory. What DMTCP
needs from SPAdes is minimal and non-invasive, and prevents
extremely inefficient checkpointing.

Like hardware vendors providing the APIs for their hard-
ware for C/R tools, application developers could provide
“some” information about their applications for C/R tools to
work properly and efficiently. Computing centers should con-
tribute to creating this minimum requirement for applications,
and influence the many application developers with whom they
interact regularly to adopt this practice, which would require
only minimal effort from application developers. Additionally
computing centers should also influence application developers
to develop more MPI standard-compliant codes, to minimize
unexpected issues when using C/R tools.

C. Funding support for development/maintenance of C/R tools
for production use

MANA’s MPI and network agnosticism is essential for
ready-to-use C/R tools on future HPC systems. However,
because MANA originated as a research code, there is a
significant gap to close before it becomes a production-
ready tool. This is a common issue with C/R research codes.
Relying primarily on PhD students/research institutions, whose
main focus is on novel research, to deliver production-ready
code has proven ineffective. We believe that a contractor or
commercial software company is the best party to deliver a
production-ready C/R tool and to provide on-going support
for production use. Computing centers should partner with
each other and work with relevant funding agencies to create
funding opportunities or provide funding support for C/R
tools maintenance and enhancement efforts, and also seek
collaboration with the C/R researchers/tools developers (e.g.,
DMTCP/MANA team) and contractors/software companies to
create production-ready tools that meet the C/R needs for HPC
production workloads.

In the longer term, we propose creating a consortium for
C/R efforts, modeled after the HPSS collaboration2, to develop
a C/R standard, support development of C/R code, and provide
direction and strategy. The consortium would be composed of
member HPC centers, HPC hardware and software vendors,
C/R researchers and code developers, and other interested
parties. Each partner would provide developer time and/or
representatives on executive and technical steering committees.
We believe that no single organization has the experience and
resources to tackle all the challenges emerging from fast-
changing HPC technologies and production workloads, so a
broad collaboration across the HPC community is essential to
continue to meet the C/R needs of the HPC community. DOE

2HPSS Collaboration: https://www.hpss-collaboration.org/collaboration.
shtml

https://www.hpss-collaboration.org/collaboration.shtml
https://www.hpss-collaboration.org/collaboration.shtml


computing centers should take the initiative, and collaborate
with commercial entities who are willing to pioneer the C/R
market in HPC to build the base for the C/R consortium.

D. Reducing C/R overhead

Optimizing I/O for large checkpoint images at all scales is
essential for C/R tools to be used in production. In addition
to deploying faster file systems such as local storage or
burst buffers to store the checkpoint images, utilizing external
libraries e.g., [34], in transparent C/R tools themselves is
a direction to pursue to reduce C/R read/write overhead.
We should also explore hardware/hardware-assisted solutions
where applicable, e.g., persistent memory devices [35]–[37],
which can be effective in reducing C/R overhead.

E. Changing common HPC system operation practices

C/R tools often interact directly with operating system
kernels. It has been difficult to apply OS kernel patches
on production systems. Moving forward, computing centers
should work with system vendors to establish a standard
procedure to make it possible to apply needed critical OS
kernel patches to support C/R tools and more.

F. Building a strong C/R community

Building a strong and active C/R community is critical
for meeting our C/R needs on current and future systems.
C/R researchers and tools developers, practitioners, application
developers, and end users as well as hardware and software
vendors can all contribute to the development of C/R research
and success in production use, motivating the development of
usable C/R tools, and harnessing the full benefits of C/R.

G. Critical approach for long-term success

Finally, we would like to stress that it is critical to take an in-
cremental approach when working towards bring transparent
C/R capabilities to HPC production workloads with ultimate
goal of system-level checkpointing.

V. FUTURE WORK

So far much of our effort has focused on getting MANA to
work with our top application, VASP. In the near term, we will
continue to collaborate with the MANA developers to reduce
the high runtime overhead of MANA for VASP, which invokes
MPI collective calls excessively. When the runtime overhead
issue of VASP from using MANA is resolved, we will be able
to pre-empt the 20% of Cori node-hours used by VASP jobs to
run on-demand real-time workloads. Perhaps this is the most
exciting application of MANA from NERSC’s perspective.
We will also continue enabling MANA on the remaining
top applications on Cori (Note that top 20 applications at
NERSC account for more than 80% of machine usage!) in an
incremental manner and will implement a preemptable queue
to create a buffer of nodes deployable for real-time workloads.
Of special interest for future work is the goal of optimizing
I/O for large checkpoint images by exploring external libraries
in MANA, e.g., [34]. We will work on enabling C/R on

Perlmutter by integrating CRAC [30], recently developed for
transparently checkpointing CUDA, into MANA.

Meanwhile, we will continue to follow the vision and
strategies outlined in Section IV to bring transparent C/R
capabilities to HPC production workloads on current and
future systems.
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