
Lawrence Berkeley National Laboratory
LBL Publications

Title

Analysis and optimization of gyrokinetic toroidal simulations on homogenous and
heterogenous platforms

Permalink

https://escholarship.org/uc/item/48w9z3w5

Journal

The International Journal of High Performance Computing Applications, 27(4)

ISSN

1094-3420

Authors

Ibrahim, Khaled Z
Madduri, Kamesh
Williams, Samuel
et al.

Publication Date

2013-11-01

DOI

10.1177/1094342013492446

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/48w9z3w5
https://escholarship.org/uc/item/48w9z3w5#author
https://escholarship.org
http://www.cdlib.org/

Analysis and Optimization of Gyrokinetic Toroidal Simulations on
Homogenous and Heterogenous Platforms

Khaled Z. Ibrahim1, Kamesh Madduri2, Samuel Williams1, Bei Wang3 , Stephane Ethier4, Leonid Oliker1

1CRD, Lawrence Berkeley National Laboratory, Berkeley, USA
2 The Pennsylvania State University, University Park, PA, USA

3 Princeton Institute of Computational Science and Engineering, Princeton University, Princeton, NJ, USA
4 Princeton Plasma Physics Laboratory, Princeton, NJ, USA

{ KZIbrahim, SWWilliams, LOliker }@lbl.gov, Madduri@cse.psu.edu, beiwang@princeton.edu, ethier@pppl.gov

Abstract—The Gyrokinetic Toroidal Code (GTC) uses the particle-in-cell method to efficiently simulate plasma
microturbulence. This work presents novel analysis and optimization techniques to enhance the performance of GTC
on large-scale machines. We introduce cell access analysis to better manage locality vs. synchronization tradeoffs on
CPU and GPU-based architectures. Our optimized hybrid parallel implementation of GTC uses MPI, OpenMP, and
nVidia CUDA, achieves up to a 2× speedup over the reference Fortran version on multiple parallel systems, and scales
efficiently to tens of thousands of cores.

1 Introduction
Continuing the scaling and increasing the efficiency of high performance machines are exacerbating the complexity
and diversity of computing node architectures. Leveraging the power of these technologies requires tuning legacy
codes to these emerging architectures. This tuning requires revisiting the constraints imposed by legacy designs and
prior assumptions about computational costs. It also requires deep understanding of the algorithmic properties of the
studied code and the behavior of the underlying architectures with different computational patterns.

Our work explores analysis and optimizations across a variety of architectural designs for a fusion simulation
application called Gyrokinetic Toroidal Code (GTC). Fusion, the power source of the stars, has been the focus of
active research since the early 1950s. While progress has been impressive — especially for magnetic confinement
devices called tokamaks — the design of a practical power plant remains an outstanding challenge. A key topic of
current interest is microturbulence, which is believed to be responsible for the experimentally-observed leakage of
energy and particles out of the hot plasma core. GTC’s objective is to simulate global influence of microturbulence on
particle and energy confinement. GTC utilizes the gyrokinetic Particle-in-Cell (PIC) formalism [19] for modeling the
plasma interactions, and is orders-of-magnitude faster than full force simulations. However, achieving high parallel
and architectural efficiency is extremely challenging due (in part) to complex tradeoffs of managing runtime evolving
locality and data hazards, and low computational intensity of the GTC subroutines.

In this study, we present novel analyses of cell access on both CPU and GPU-based architectures and correlate that
with the observed performance. We also discuss how these analyses can guide the data layout and the parallelization
strategies to better manage locality and to reduce data hazards. We quantify the architectural interactions with key
GTC access patterns on multiple architectures through microbenchmarking.

Our tuning efforts involve the full GTC code for the multi- and manycore era, leveraging both homogeneous and
heterogeneous computing resources. A key contribution is the exploration of novel optimizations across multiple
programming models, including comparisons between flat MPI and hybrid MPI/OpenMP programming models. To
validate the impact of our work, we explore six parallel platforms: IBM BlueGene/P, IBM BlueGene/Q, Cray’s AMD
Magny-Cours-based XE6, Cray’s Intel Sandy Bridge-based XC30, as well as manycore clusters based on nVidia
Fermi and Kepler GPUs. Our optimization schemes include a broad range of techniques including particle and grid
decompositions designed to improve locality and multi-node scalability, particle binning for improved locality and load
balance, GPU acceleration of key subroutines, and memory-centric optimizations to improve single-node performance
and memory utilization. We additionally show how the choice of optimization strategy is greatly influenced not only
by the target architecture, but also the generation of the architecture. For instance, particle sorting on GPUs is better

1

mgrid = total number of points

mgrid = total number of points

Figure 1: An illustration of GTC’s 3D toroidal grid and the “four-point gyrokinetic averaging” scheme employed in the charge
deposition and push steps.

not adopted on nVidia Fermi due to the high cost of atomic conflicts, but the same technique proves beneficial on
the latest-generation Kepler architecture. Overall results demonstrate that our approach outperforms the highly-tuned
reference Fortran implementation by up to 1.6× using 49,152 cores of the Magny-Cours “Hopper” system, while
reducing memory requirements by 6.5 TB (a 10% saving). Additionally, our detailed analysis provides insight into the
tradeoffs of parallel scalability, memory utilization, and programmability on emerging computing platforms.

The rest of this paper is organized as follows: Section 2 briefly overviews GTC and related work. In Section 3,
we present experimental setup and the programming models used. We analyze the grid access patterns and their
interactions with different architectures in Section 4. Our optimization strategies are discussed in details in Section 5.
Section 6 covers performance results and analysis, and we conclude in Section 7.

2 GTC Overview and Related Work
The six-dimensional Vlasov-Maxwell system of equations [20] govern the behavior of particles in a plasma. The
“gyrokinetic formulation” [19] removes high-frequency particle motion effects that are not important to turbulent
transport, reducing the kinetic equation to a five-dimensional space. In this scheme, the helical motion of a charged
particle in a magnetic field is approximated with a charged ring that is subject to electric and magnetic fields. The
Particle-in-Cell (PIC) method is a popular approach to solve the resulting system of equations, and GTC [10, 11, 20]
is an efficient and highly-parallel implementation of this method.

The system geometry simulated in GTC is a torus with an externally-imposed magnetic field (see Figure 1) char-
acteristic of fusion tokamak devices. The self-consistent electrostatic field generated by the particles at each time step
is calculated by using a grid discretization, depositing the charge of each particle on the grid, and solving Poisson’s
equation in Eulerian coordinates. The field value is then used to advance particles in time. GTC utilizes a highly spe-
cialized grid that follows the magnetic field lines as they twist around the torus. This permits use of a smaller number
of toroidal planes in comparison to a regular grid that does not follow field lines, while retaining the same accuracy.

2.1 GTC Data Structures and Parallelization

GTC principally operates using two data representations: those necessary for performing grid-related work, and those
that encapsulate particle coordinates in the toroidal space. Three coordinates (shown in Figure 1) describe particle
position in the torus: ζ (zeta , the position in the toroidal direction), ψ (psi , the radial position within a poloidal plane),
and θ (theta , the position in the poloidal direction within a toroidal slice). The corresponding grid dimensions are
mzetamax , mpsi , and mthetamax . The average number of particles per grid cell is given by the parameter micell .

The charge density grid, representing the distribution of charge throughout the torus, and the electrostatic field
grid, representing the variation in field strength (a Cartesian vector), are two key grid-related data structures in GTC.
Note that the field grid, a vector quantity, requires three times the storage of the charge density grid. The highly-
tuned and parallel Fortran implementation of GTC, which we will refer to as the reference version, uses multiple
levels of parallel decomposition. A one-dimensional domain decomposition in the toroidal direction is employed to
partition grid-related work among multiple processors in a distributed-memory system. GTC typically uses 64 to
128-way partitioning along the torus. In addition, particles within each of these toroidal domains can be distributed
among multiple MPI processes for parallelizing particle-related work. A third level of parallelism is intra-node shared
memory partitioning of both particle and grid-related work, and this is accomplished using OpenMP pragmas in GTC.
The two-level particle and grid decomposition entails inter-node communication, as it is necessary to shift particles
from one domain to another (due to the toroidal parallelization), and also obtain the globally-consistent states of grid
data structures (due to the particle decomposition).

Charge Push Shift
Flops 180mi 450mi 12mi

Particle data (in bytes)
read 40mi 208mi 8mi+ 100mis

written 140mi 72mi 100mis
Arithmetic intensity a

(flops/byte) ≤0.56 ≤1.28 N/A
Grid Datab (in bytes)

read ≤320 ≤768 0
written ≤256 0 0

Table 1: Characteristics of memory-intensive loops in particle-processing
GTC kernels (charge deposition, push, and shift) for a single time-step in
terms of total number of particles per MPI task (mi) or number of particles
shifted (mis). aArithmetic intensity is computed as total flops divided by
total data accessed, assuming a write allocate cache policy. bGrid data is
per particle computation. Due to the high reuse, the total size of grid data
is smaller than particle data, as shown in Table 2.

Grid Size B C D
mzeta 1 1 1
mpsi 192 384 768

mthetamax 1408 2816 5632
mgrid (points 151161 602695 2406883

per plane)
chargei (MB)a 2.31 9.20 36.72
evector (MB)a 6.92 27.59 110.18
Total Particles

(micell = 20) 3.02M 12.1M 48.1M
(micell = 96) 14.5M 57.9M 231M

Table 2: The GTC experimental settings. mzeta =
1 implies each process operates on one poloidal
plane. aminimum per process.

2.2 GTC Code Structure

The gyrokinetic PIC method involves five main operations for each time step: charge deposition from particles onto
the grid using the four-point gyro-averaging scheme (charge), solving the gyrokinetic Poisson equation on the grid
(poisson), computing the electric field on the grid (field), using the field vector and other derivatives to advance
particles (push), and smoothing the charge density and potential vectors (smooth). In addition, distributed memory
parallelization necessitates a sixth step, shift, to move particles between processes or toroidal domains. In this paper,
we assume a collisionless system and that the only charged particles are ions (adiabatic electrons).

The parallel runtime and efficiency of GTC depends on several factors, including the simulation settings (the
number of particles per grid cell micell , the discretized grid dimensions, etc.), the levels of toroidal (ntoroidal) and
particle decomposition (npartdom) employed, as well as the architectural features of the parallel system, described in
previous GTC performance studies on parallel systems [1, 11, 28].

Our work builds on our well-optimized C implementation of GTC, and further improves upon it to address the
challenges of HPC systems built from multi- and manycore processors. Thus, understanding and optimizing the
following key routines on multi- and manycore architectures is imperative for achieving high performance.
Charge deposition: The charge deposition phase of GTC’s PIC primarily operates on particle data, but involves
the complex particle-grid interpolation step. Particles, represented by a four-point approximation for a charged ring,
deposit charge onto the grid. This requires streaming through a large array of particles and updating locations in
memory corresponding to the bounding boxes (eight grid points each) of the four points on the particle charge ring
(see Figure 1). Each particle update may thus scatter increments to as many as 32 unique grid memory locations. In
a shared memory environment, these increments must either be guarded with a synchronization mechanism to avoid
read-after-write data hazards, or redirected to private copies of the charge grid. We further discuss in detail the locality
vs. synchronization challenges of accessing the grid in Section 4.

As seen in Table 1, for each particle, the reference implementation of this step reads 40 bytes of particle data,
performs 180 floating point operations (flops), and updates 140 bytes of particle data — resulting in a low arith-
metic intensity of 0.56 flops per byte (assuming perfect grid locality and no cache bypass). In a distributed-memory
parallelization, particles within a toroidal segment may be partitioned among multiple processes by setting npartdom
greater than 1. The effect is that each process maintains a private copy of the charge density grid onto which it deposits
charge from the particle it owns. GTC merges these copies into a single copy using MPI “Allreduce” primitive.
Poisson/Field/Smooth: These three routines constitute purely grid-related work, where the floating-point operations
and memory references scale with the number of poloidal grid points (mgrid). Simulations employ high particle
densities (micell ≥ 100), and so the time spent in grid-related work is typically substantially lower than the particle
processing time (charge, push, and shift). Note that multi-node parallelism in these steps is limited to the extent of 1D
domain decomposition (the ntoroidal setting). When npartdom is set to a value greater than 1, each process begins
with the global copy of the charge/potential/field grid and executes the Poisson/field/smooth routine independently.
The reference GTC code (the version we optimize) uses a custom iterative method [21] for solving the gyrokinetic
Poisson equation, and is efficient for the case of adiabatic electrons. Other versions of GTC use solvers [27] available
through the PETSc library.

Flat MPI
24 processes

each with 1 thread

Hybrid
4 processes
of 6 threads

Hybrid
1 process

of 24 threads

npartdom = 24 npartdom = 4 npartdom = 1

mzetamax = 16, mzeta=1 on a total of 16 Hopper nodes

cores
0-5

cores
6-11

cores
12-17

cores
18-23

cores
0-23

zeta

core
0

core
1

core
2

core
3

core
4

core
5

core
6

core
7

core
8

core
9

core
10

core
11

core
12

core
13

core
14

core
15

core
16

core
17

core
18

core
19

core
20

core
21

core
22

core
23

Figure 2: An illustration of the approaches used to exploit parallelism on Hopper, and the node-centric view of the replication of
charge and field grids. Particles are partitioned, but never replicated.

Push: In this phase, the electric field values at the location of the particles are “gathered” and used for advancing
them. This step also requires streaming through the particle arrays and reading irregular grid locations in memory
(the electric field values) corresponding to the four bounding boxes of the four points on the ring. This can involve
reading data from up to 16 unique memory locations. Additionally, as seen in Table 1, this kernel reads at least 208
bytes of particle data, performs 450 flops, and updates 72 bytes for every iteration of the particle loop. As this routine
only performs a gather operation in a shared memory environment, it is devoid of data hazards. Moreover, since the
arithmetic intensity of this kernel is higher than charge deposition’s, it is somewhat less complex to optimize.
Shift: GTC’s shift phase scans through the particle array looking for particles that have moved from the local domain
(in the ±zeta directions). The selected particles are buffered, marking the resultant “holes” in the particle array where
a particle has effectively been removed, and sending these buffers to the neighboring domains. Particles are moved
only one step in zeta at once (thus performing nearest-neighbor communication among processes along the toroidal
direction), and so the shift phase iterates up to mzetamax/2 times. In the reference implementation, holes are filled
sequentially as particles are received. However, such a sequential implementation can be inefficient in highly threaded
environments (particularly GPUs). We discuss remediation strategies in Sections 5.1 and 5.2. Even when npartdom
is greater than one, processes still only communicate with their two spatially neighboring processes.

2.3 GTC Simulation Configurations

The most important parallel performance-related parameters describing a GTC simulation are the dimensions of the
discretized toroidal grid and the average particle density. In all our initial experiments, we set mzetamax to 16
and mzeta to 1 (i.e., 16-way domain decomposition, with each process owning one poloidal plane). All scaling
experiments in this paper are strong scaling.

In order to demonstrate the viability of our optimizations across a wide variety of potential simulations, we explore
three different grid problem sizes, labeled B, C, D, and explore two particle densities: 20 and 96 particles per grid point.
Therefore, a “B20” problem — often used in throughout this paper as it fits into all memory configurations — uses
the class B grid size with an average particles per grid point count of 20 (assuming one process per node). Grid size C
corresponds to the JET tokamak, the largest device currently in operation [16], and D to the forthcoming International
Thermonuclear Experimental Reactor (ITER): a multi-billion dollar large-scale device intended to prove the viability
of fusion as an energy source [15]. Table 2 lists these settings, which are similar to ones used in production runs [11].
Note, the grid memory requirements will scale with the number of processes per node. For the three examined GTC
problem configurations, the maximum Larmor radius (a function of several GTC parameters) corresponds to roughly
mpsi/16. The initial Larmor radii follow a uniform random distribution.

Figure 2 visualizes the confluence of programming model and simulation configurations on Hopper. As mzetamax

and mzeta are 16 and 1 respectively, the torus is partitioned into 16 segments of 1 poloidal plane. To assign one of these
segments to each 24-core Hopper node, we explore three approaches to parallelism within a node: one process per core,
one process per chip, and one process per node. This is achieved by varying npartdom . Particles within this toroidal
segment are simply partitioned among processes on a node. For instance, in a D96 simulation with npartdom = 24,
the 231M particles on a node would be partitioned among the processes. However, this particle partitioning setting
has two negative effects. First, the per-process particle density is only four particles per grid point, and second, the
poloidal charge and field grids are replicated 24-way. Compared to the 24-thread hybrid implementation, the flat MPI
implementation incurs a 24-way replication of charge grid data. All processes reduce their copies of the charge grid
into one via the MPI Allreduce collective and solve Poisson’s equation redundantly, so that each process has a copy of
the resultant field grid. Moving to a hybrid implementation reduces the scale of the reduction, as well as the degree of
redundancy in the solve. Conversely, the particle shift phase is done on a process-by-process basis. Shift is simplest
in the flat MPI implementation and becomes progressively more complex and less concurrent in the hybrid version.

2.4 Related Work

PIC is a representative method from the larger class of particle-mesh methods. In addition to plasma physics (e.g.,
GTC’s gyrokinetic PIC), particle-mesh methods find applications in astrophysics [3, 13], computational chemistry,
fluid mechanics, and biology. There are also several popular frameworks from diverse areas that express PIC compu-
tations such as VPIC [5], OSIRIS [12], UPIC [8], VORPAL [26], and QuickPIC [14].

Prior work on performance tuning of PIC computations has mostly focused on application-specific domain (mesh)
decomposition and MPI-based parallelization. The ordering of particles impacts the performance of several PIC steps,
including charge deposition and particle push. Bowers [4] and Marin et al. [24] look at efficient particle sorting, as
well as the performance impact of sorting on execution time. A closely-related macro-scale parallelization issue is
particle load-balancing [7], and OhHelp [25] is a library for dynamic rebalancing of particles in large parallel PIC
simulations. Koniges et al. [18] report performance improvements by overlapping computation with inter-processor
communication for gyrokinetic PIC codes. The performance of the reference GTC MPI implementation has been
previously well-studied on several large-scale parallel systems [1,11,28]. Prior research also examines expressing PIC
computations via different programming models [2, 6].

There has also been recent work on new multicore algorithms and optimizations for different PIC steps. Stanchev
et al. [30] investigate GPU-centric optimization of particle-to-grid interpolation in PIC simulations with rectilinear
meshes. Decyk et al. [9] present new parameterized GPU-specific data structures for a 2D electrostatic PIC code
extracted from the UPIC framework. In our prior work on multicore optimizations for GTC, we introduced various
grid decomposition and synchronization strategies [22, 23] that lead to a significant reduction in the overall memory
footprint in comparison to the prior MPI-based GTC implementation, for the charge and push routines. This paper
extends our prior work by developing an integrated CPU- and GPU-optimized version that accelerates a fully-parallel
and optimized GTC simulation at scale.

3 Experimental Setup
We list the evaluated systems and their raw performance in Table 3. “Intrepid,” a BlueGene/P system that is opti-
mized for power-efficient supercomputing, uses the PowerPC 450d processors with dual-issue, in-order, embedded
cores (four). “Vesta,” a BlueGene/Q machine, uses the latest-generation 64-bit PowerPC A2 processor. The A2 has
larger number of cores (16 cores each with 4 threads), higher frequency, larger memory capacity, and an integrated
NIC on-chip. The third system, “Hopper,” is a Cray XE6 massively parallel processing (MPP) system, built from
Magny-Cours Opteron with two dual hex-core chips, with strong NUMA properties. Hopper and Intrepid have a 3D
torus interconnect, while Vesta has a 5D torus. Cray XC30, “Edison,” is based on dual 8-core Intel Sandy Bridge
architecture, with two NUMA domains per node, and has a dragonfly interconnect. The Dirac cluster at NERSC is a
small GPU testbed cluster, and is built from 50 dual-socket, quad-core 2.4 GHz Xeon X5530 compute nodes. Dirac is
a testbed for GPU technology. Currently, one Tesla C2050 (Fermi) GPU is installed on each Dirac node. Each C2050
includes 448 scalar “CUDA cores” running at 1.15 GHz and grouped into fourteen SIMT-based streaming multipro-
cessors (SM). For our experiments, we use the term “Fermi Cluster” to refer to heterogeneous CPU/GPU simulations.
Finally, we evaluate the performance of Titan, the top machine in the top 500 list [31] as of Nov. 2012. Each node
has 16-core AMD Opteron 6274 processor, accelerated by an nVidia Tesla K20x GPU. Tesla K20x (Kepler) has lower
frequency compared with Fermi but larger L2 cache and more cores per multiprocessor (32 and 192 cores for Fermi
and Kepler, respectively).

Core Arch IBM PPC450d IBM A2 AMD Opteron Intel SNBe nVidia Fermi nVidia Kepler
Type dual-issue dual-issue superscalar superscalar dual warp quad warp

in-order in-order out-of-order out-of-order in-order in-order
SIMD SIMD SIMD SIMD SIMT SIMT

Clock (GHz) 0.85 1.6 2.1 2.6 1.15 0.732
DP GFlop/s 3.4 12.8 8.4 20.8 73.6a 171
$/core (KB) 32 16 64+512 32+256 48 48

Memory-Parallelism HW Prefetch HW Prefetch, SMT HW Prefetch HW Prefetch, SMT Multi-threading Multi-threading
Node Arch Blue-Gene/P Blue-Gene/Q Opteron 6172 Xeon E5 2670 Tesla C2050 Tesla K20x

Cores×Chips 4×1 16×1 6×4 8×2 14a×1 14a×1
Last $/chip 8 MB 32 MB 6 MB 20 MB 768 KB 1.5 MB
STREAMf 8.3 GB/s 28 GB/s 49.4 GB/s 38 GB/s 78.2 GB/s 171
DP GFlop/s 13.6 204.8 201.6 166.4 515 1310

Memory 2 GB 16 GB 32 GB 32 GB 3 GB 6 GB
Power 31Wc 80Wc 455Wc 338Wc 390Wd 439Wd

Blue-Gene/P Blue-Gene/Q Cray XE6 Cray XC30 Dirac Testbed Cray XK7System Arch
“Intrepid” “Vesta” “Hopper” “Edison” “Fermi Cluster” “Titan”

Affinity N/A N/A aprun KMP AFFINITYe KMP AFFINITYe aprun
Compiler XL/C XL/C GNU C Intel C Intel C + nvcc GNU C + nvcc

Interconnect
¯

custom 3D Torus custom 5D torus Gemini 3D Torus Aries Dragonfly InfiniBand Fat Tree Gemini 3D Torus

Table 3: Overview of Evaluated Supercomputing Platforms. aEach shared multiprocessor (SM for Fermi or SMX for Kepler) is
one “core.” bTwo threads per core. Power based on Top500 [31] datac and empirical measurementsd. The GPUs alone are 214W
and 235W for Fermi and Kepler, respectively. eAffinity only used for full threaded experiments. fSTREAM copy.

3.1 Programming Models

Our study explores three popular parallel programming paradigms: Flat MPI, MPI/OpenMP, and MPI/OpenMP/-
CUDA. MPI has been the de facto programming model for distributed memory applications, while the hybrid MPI/-
OpenMP models are emerging as a productive means of exploiting shared memory via threads. The hybrid nature of the
GPU-accelerated nodes necessitates the use of a MPI/OpenMP/CUDA hybrid programming model. For all conducted
experiments, we utilize every CPU core on a given compute node. Therefore, the number of threads per MPI process
is inversely related to the number of MPI processes per node, so as to ensure full utilization of cores. Furthermore,
we restrict our hybrid experiments to one MPI process per core (flat MPI), one process per chip (NUMA node), and
one process per compute node. In the case of the Hopper XE6, these configurations represent 24 processes/node, 4
processes of 6 threads/node, and 1 process of 24 threads/node. GPU accelerated code requires one controlling process
on the host side per GPU for earlier generations. This constraint is relaxed in newer generations, but we did not
measure performance advantage for this relaxation for our workloads. The Dirac cluster, as well as Titan, contains
a single GPU per node, and we choose to have a single process invoking the GPU accelerated code while OpenMP
threads are used for host-side computations.

4 Grid Access Analysis
This section discusses cell (or grid) access characteristics and their interaction with the underlying hardware for both
the CPU- and GPU-based architectures. As discussed earlier, the particle-in-cell method relies on aggregating the ef-
fects of many particles onto few cells, solving the field equations on these cells, and thus attaining orders of magnitude
performance improvements. We focus on the access pattern for cells when they are concurrently accessed with particle
data for two reasons. First, data access is shaped such that particles (the larger dataset) are streamed, thus creating a
difficult-to-optimize irregular access to the grid data (smaller in size). Second, most parallelization strategies involve
distributing particles between execution units (processes or threads) with no concurrent access to particle data. In
contrast, grid points are inherently shared between execution units, even if we create replicas to temporarily alleviate
the need for concurrent accesses.

Concurrent access to grid points can be beneficial during data gather phase (particle push) because it can lead
to improved locality. Concurrent access is also a challenge in the scatter phase (charge deposition) and can lead to
conflicting updates. Most of the optimizations in accessing the grid are geared towards either improving locality in
accessing the grid, during the gather phase, or reducing conflicts during the scatter phase. Both objectives impose
conflicting requirements in the data layout and the access ordering.

We can create particle access in any arbitrary order, thus creating many possibilities for the associated access
pattern to the grid. While sorting to group particles that access the same or neighboring cells is reportedly an effective
technique to improve performance [22, 29], we present experimental results showing that the benefits are greatly

20

31

18

45

Grid Point 0

1
8

 4
-w

a
y

 a
c

c
e

s
s

e
s

1
4

 1
-w

a
y

 a
c

c
e

s
s

e
s

1
5

 2
-w

a
y

a
c

c
e

s
s

e
s

2
 3

-w
a

y

a
c

c
e

s
s

e
s

1
5

1
6

2
0

T
h

re
a

d
 0

1
5

2
2

3
1

T
h

re
a

d
 1

1
5

3
5

1
8

T
h

re
a

d
 2

1
5

2
0

4
5

T
h

re
a

d
 3

G
P

 0
G

P
 1

G
P

 3
..
.

x y -way accesses

x: frequency

y: concurrency

Figure 3: Profiling concurrent accesses for
grid points due to thread concurrency.

1 6 t h r e a d s 6 4 t h r e a d s
0 %

1 0 %
2 0 %
3 0 %
4 0 %
5 0 %
6 0 %
7 0 %

Pe
rce

nta
ge

 of
 gr

id
ac

ce
ss

es

T h r e a d c o n c u r r e n c y

 1 - w a y a c c e s s
 2 - w a y a c c e s s
 3 - w a y a c c e s s
 4 - w a y a c c e s s
 5 - w a y a c c e s s
 6 - w a y a c c e s s
 7 - w a y a c c e s s
 8 - w a y a c c e s s
 9 - w a y a c c e s s
 1 0 - w a y a c c e s s
 1 1 - w a y a c c e s s
 1 2 + - w a y a c c e s s

Figure 4: Contribution of different concurrent accesses for B20 problem for two
thread concurrency levels 16 & 64.

1 - 1 0 - 2 0 - 3 0 - 4 0 - 5 0 - 6 0 - 7 0 - 8 0 - 9 0 - I n f
0 %

2 0 %

4 0 %

6 0 %

8 0 %

1 0 0 %

Pe
rce

nta
ge

 of
 gr

id
ac

ce
ss

es

U p d a t e f r e q u e n c y

1 6 T h r e a d s

1 - 1 0 - 2 0 - 3 0 - 4 0 - 5 0 - 6 0 - 7 0 - 8 0 - 9 0 - I n f
0 %

2 0 %

4 0 %

6 0 %

8 0 %

1 0 0 %
6 4 T h r e a d s

U p d a t e f r e q u e n c y

 1 - w a y a c c e s s 2 - w a y a c c e s s 3 - w a y a c c e s s 4 - w a y a c c e s s 5 - w a y a c c e s s 6 - w a y a c c e s s 7 - w a y a c c e s s 8 - w a y a c c e s s

Figure 5: Percentage of memory accesses decomposed by access frequency and concurrency levels for B20 problem using two
thread concurrency levels 16 & 64.

influenced by the underlying architecture.

4.1 CPU Grid Access Analysis

On CPU-based architectures, we decompose the grid concurrent access by access frequency, i.e. updates per iteration,
and the level of concurrent accesses, i.e. sharing among threads. We present how the pattern of access changes with
thread concurrency assigned to a poloidal plan.

To analyze grid accesses for access concurrency due the thread concurrency, we annotate the code to count the
number of accesses to each grid point. We analyze with radial binning of particles in each iteration to reduce concurrent
accesses, and accumulate the accesses for each thread in a separate data structure. As shown in Figure 3, accesses
for each grid point is decomposed based on the access concurrency and the access frequency associated with this
concurrency level. The larger the number of threads accessing a grid point, the higher the conflict in the scatter phase
in accessing the charge grid, charge, and the wider the sharing of electric field in the gather phase, push. We show,
later, the impact of access frequency and concurrency on the observed performance using microbenchmarking.

As shown in Figure 4, the percentage of grid accesses without concurrency (1-way access) decrease from 65%
to 34% when we increase the thread concurrency level from 16 to 64. We also observe higher percentage of access
concurrency of grid points with the increase of thread concurrency, even though we do radial binning of particles
after each iteration. For instance, 4-way concurrent access increases from 2% to about 9% when increasing the thread
concurrency from 16 to 64. These results show that particle binning is less effective in reducing concurrent access in
strong scaling experiments, where the same dataset is distributed between an increasing number of threads.

In Figure 5, we show the distribution of accesses for different concurrent accesses and access frequencies. We
observe that highly concurrent accesses are typically associated with small access frequencies. We also observe that
increasing thread concurrency leads to increasing accesses with large concurrency and frequency.

Of critical importance to performance is when access concurrency leads to conflicts. Therefore, we created a
microbenchmark, listed in Appendix A, to assess the performance for atomics under multiple access concurrencies
and frequencies. As shown in Figure 6, the impact of conflicts due to concurrent accesses on performance is more

1 2 4 8 1 6 3 2 6 4 1 2 8

0

1 0 0

2 0 0

3 0 0

4 0 0

4
8

1 2
1 6

2 0
La

ten
cy

 (n
s)

T h r
e a d

 C o n c
u r r

e n c
y

U p d a t e F r e q u e n c y

Figure 6: Atomic microbenchmark performance for different thread concurrencies and access frequencies on a Hopper node.

severe when the access frequency is small. Noting that the microbenchmark measures the lower bound of latency of
atomics, large frequency can behave similar to small cluster depending on the access interleaving at runtime.

Generally, 24-way concurrency on Hopper cluster can increase the latency of atomic by at most 2.4× compared
with no concurrent access. This low impact is due to having multiple cores sharing the same socket, thus making
migration less expensive between cores. Having large access clusters, even under high concurrency provide a good
chance of committing multiple updates locally before data migration, thus reducing the lower bound on latency by 7×.

Figure 6 shows the high cost of conflicts if we have a single grid, while the decay of concurrent accesses to the
grid point, Figure 4, suggests that having fully replicated grid per thread is too wasteful for the memory. Another
observation is that grid points with a large update frequency and a large concurrency can lead to a large variability in
the access cost (the difference between the high cost for frequent migration and the low cost if updates are clustered).
This can lead to unintentional load imbalance. Balancing the above conflicting requirements lead to choosing grids
with ghost zones to balance between locality and conflict avoidance while accessing the charge grid, as detailed in
Section 5.1. Electric field access always benefits from particle binning because accesses does not involve dependency
hazards (no updates).

4.2 GPU Grid Access Analysis

On GPUs, access concurrency to the grid between threads in a thread block is far more critical to performance than
the concurrent accesses between multiprocessors, which cannot be easily controlled. As such, the grid analysis intro-
duced in Section 4.1 does not greatly influence the performance on GPU architectures. GPUs have limited hardware
structures to capture temporal locality (L1 ≤ 48K, L2 ≤(768KB for Fermi, 1.5MB for Kepler) shared by all multipro-
cessors), and in nVidia Fermi architecture conflicting atomics are executed in the shared L2 cache, making the data
access equally distanced from all multiprocessors. On Fermi architectures, committing atomic updates to the L2 cache
voids the improvement with the increase in update frequency that we observe for the CPUs, shown in Figure 6, be-
cause frequent updates do not bring the data closer to the atomic issuer. Additionally, inter-multiprocessor concurrent
accesses to a grid point do not cause data migration, but can rather cause contention. Capturing the contention effect
with the small L2 cache—with respect to the large dataset accessed by all the multiprocessors—is difficult for GTC.

On GPUs, we have an additional parallelization level, in which consecutive particles assigned to a multiprocessor
(or a thread block) are split between multiprocessor threads. As discussed earlier, in Section 4, we can control the
level of access conflict to the grid through particle sorting. To assess the GPU response to different sorting strategies,
we created a microbenchmark that controls the level of conflict between threads in a thread block.

Using a dispersion factor parameter, the microbenchmark in Appendix B controls the amount of conflicts be-
tween threads in a block. We create patches of random accesses in a radius of 512×dispersion factor. As shown in
Figure 7(left), for a dispersion factor less than 4, the performance of atomics for Fermi architecture improves with
reducing dispersion by about 7.4×. Surprisingly, as we reduce the dispersion further, below 4, the performance de-

6 4 3 2 1 6 8 4 2 1 0 . 5 0 . 2 5 0 . 1 3
0

2 0
4 0
6 0
8 0

1 0 0
1 2 0
1 4 0
1 6 0

6 4 3 2 1 6 8 4 2 1 0 . 5 0 . 2 5 0 . 1 3
0 . 8
1 . 0
1 . 2
1 . 4
1 . 6
1 . 8
2 . 0
2 . 2
2 . 4
2 . 6
2 . 8
3 . 0 G a t h e r r e a d s

La
ten

cy
 (n

s)

D i s p e r s i o n f a c t o r

 F e r m i - L 1 : 4 8 K B
 F e r m i L 1 : 1 6 K B
 K e p l e r - L 1 : 4 8 K B
 K e p l e r L 1 : 1 6 K B

A t o m i c u p d a t e s

La
ten

cy
 (n

s)

D i s p e r s i o n f a c t o r

 F e r m i - L 1 : 4 8 K B
 F e r m i L 1 : 1 6 K B
 K e p l e r - L 1 : 4 8 K B
 K e p l e r L 1 : 1 6 K B

Figure 7: Left: atomic latency per multiprocessor for nVidia Fermi and Kepler GPUs for multiple conflict levels. Right: gather
latency per multiprocessor for access patterns similar to atomic updates.

no binning
radial binning

update-based binning
no binning

radial binning
update-based binning

0

10

20

30

40

50

60

70

80

90

100

K e p l e r

Ex
ec

uti
on

 tim
e (

se
c)

 B i n n i n g
 P u s h
 C h a r g e

F e r m i
no binning

radial binning
update-based binning0%

20%

40%

60%

80%

100%

Pe
rce

nta
ge

 of
 di

sti
nc

t g
rid

 ac
ce

ss
es

Inc
rea

se
d l

oc
ali

ty
Inc

rea
se

d c
on

flic
t

Figure 8: Impact of particle binning on the performance of GTC on Fermi GPUs.

teriorates by up to 5×. The Fermi performance for atomics with high locality is surprising but is also confirmed by
nVidia [17]. Fortunately, this performance issue has been fixed on the latest generation nVidia Kepler Architecture.
Not only does the performance improve for atomics, but the impact of conflicting updates is significantly reduced, as
shown in Figure 7.

We additionally used the same microbenchmark access pattern to generate a gather operation, composed of reads
based on the indirection array generated for the atomics. As shown in Figure 7(right), the latency per operation is
reduced by 2.5× as we decrease dispersion, attesting for the improved locality and following what we intuitively
expect in such experiments. For Kepler architecture, the read latency is higher due to the lower frequency of the
multiprocessors. In both cases, scatter (through atomics) and gather, the choice of the L1 cache size does significantly
affect the performance.

To show the impact of this GPU behavior on the GTC code, we present in Figure 8 two different binning strategies
(affecting particle traversals) and we compare them with no binning. The first binning strategy is based on the radial
position of the particles, similar to that used with the CPU analysis, while the second is based on the placement of the
majority of updates to the grid. In GTC, a particle updates upto four different cells, based on the gyro radius. Because
of the radial structure, these four cells are stored in 8 different memory segments (two per cell, one for the inner and
the other for the outer ring). To create a single index for sorting based on the update locations, we divide the grid into
4KB regions. We then calculate which region of the grid receives most of the updates. The index of this region is used
in sorting the particles. The second strategy is more superior in making the updates clustered to a small grid region.

As shown Figure 8 (left), the percentages of distinct memory locations in a frame of 2K updates (32KB) are 88%,
71%, 20% for no binning, radial binning, and update-based binning, respectively. These 2K updates correspond to
what a 64-thread block commits in one iteration to all grid cells. The three binning points can roughly be associated
with dispersion factors less than 4 in Figure 7 with sorting leading to a smaller dispersion and thus a reduced perfor-
mance, for nVidia Fermi architecture. Binning improves the gather phase (push) of computation by up to 2.1x, while
it degrades the scatter phase (charge) by 1.9x. Overall the performance with binning is reduced by up to 16%. For
Kepler, sorting improves the overall performance due to the better support of Atomics. The best strategy for sort-
ing is determined by the problem size. In the B20 problem shown in Figure 8, simple radial binning is the best for
performance. For larger problems, the second sorting technique, based on update regions, delivers better performance.

Earlier for Fermi, we attempted to exploit clustering of updates based on binning by committing updates to the GPU
shared memory before committing them to the GPU global memory. Unfortunately, this degrades the performance
because of the overhead of managing the shared memory and the reduced occupancy of thread blocks sharing a
multiprocessor. To sum up, binning, which is provably beneficial to CPUs, is associated with a large performance
penalty for the charge phase on nVidia Fermi architecture. In contrast, Kepler carries an improved support for atomics
making sorting a viable strategy.

5 Code Optimization
The reference optimized GTC code was developed in Fortran 90, and uses the MPI and OpenMP libraries for paral-
lelism. We have rewritten the entire application in C for several reasons. First, our new implementation provides a
common optimization substrate and simplifies GPU exploitation. We can also leverage optimized C/OpenMP mul-
tithreaded implementations from prior work, developed for the particle-mesh interpolation performed in charge and
push [23]. The new C version permits exploration of several data layout alternatives, especially for the grid data.
To maximize spatial locality on streaming accesses and thus improving sustained bandwidth, we chose the structure-
of-arrays (SOA) layout for particle data, which necessitated moving away from the reference GTC representation
(array-of-structures). This optimization is employed on both CPUs and GPUs, while particle binning strategy and grid
replication is based on the underlying architecture, guided by the discussion in Section 4.

5.1 CPU Optimizations

We now discuss the details of the code restructuring as well as CPU specific optimizations for the different computation
kernels. Common to all routines, we apply low-level restructuring such as flattening 2D and 3D grid arrays to 1D,
zero-indexed arrays in C, pre-allocation of memory buffers that are utilized for temporary storage in every time step,
aligned memory allocation of particle and grid arrays to facilitate SIMD intrinsics and aligned memory references,
NUMA-aware memory allocation relying on the first-touch policy, and C implementations of Fortran 90 intrinsics
such as modulo and cshift. Our work optimizes all six GTC phases on the CPU. On all kernels, we use OpenMP for
thread-level parallelism. The key parallelization strategy and new contributions are discussed below.
Charge: Our previous single-node work [22, 23] explored optimizing GTC’s charge deposition via multiple repli-
cation and synchronization strategies, exhaustively searching for an optimal performance. The analysis in Section 4
provides an empirical evidence that partial grid replication can provide minimal occurrence of expensive conflicts in
accessing the charge grid, while not increasing the memory requirements. Our grid replication is based on creating a
number of static replicas in addition to the original copy of the charge grid. Each replica can constitute either a full
poloidal plane, or a small partition of it extended with a ghost zone in psi to account for the potentially-large radius of
gyrating particle. Threads may quickly access their own replica without synchronization, or slowly access the globally
shared version with a synchronization primitive. Thus, the size of the replica may be traded for increased performance.

Our optimized version leverages OpenMP to parallelize the particle loop, and using our previous results as guid-
ance, selects the best replication and synchronization for each underlying platform. Note that as the BlueGene/P does
not support 64-bit atomic operations, we employ the full poloidal grid replication strategy when running hybrid con-
figurations (MPI/OpenMP). In case of the x86 systems, we have an additional cache-bypass optimization. As seen in
Table 1 charge deposition involves substantial write traffic to particle data. Given that these unit stride writes are not
accessed again until the push phase, we implement SSE intrinsics for streaming (cache-bypass) stores, boosting the
computational intensity of the interpolation loop to 1.0.
Poisson/Field/Smooth: The grid-related routines are primarily comprised of regular accesses to grid data structures
such as the charge density, potential, and the electric field. The main optimization for these routines is NUMA-aware
allocation of both temporary and persistent grid data structures, in order to maximize read bandwidth for grid accesses.
Additionally, we fuse OpenMP loops wherever possible to minimize parallel thread fork-join overhead.

Push: Similar to charge,we use a threaded implementation of push. The key optimizations performed in this study
is loop fusion to improve the arithmetic intensity and NUMA-aware allocation. We also improve load balancing via
OpenMP’s guided loop scheduling scheme. This increases performance for larger cache working sets seen by particles
near the outer edge, with a reduced number of loop iterations assigned to those threads. Load balancing is thus far
more efficient than what is possible with a flat MPI reference approach.
Shift: Recall that shift is an iterative process in which particles move one step at a time around the torus. We optimize
the shift phase by threading the MPI buffer-packing and unpacking, as well as via the use of additional buffer space at
the end of the particle arrays. In practice each thread enumerates a list of particles that must be moved, buffer space
then is allocated, threads fill in disjoint partitions of the buffer, and the send is initiated. When particles are received,
they may be filled into the “holes” emptied by departing particles. However, performing hole-filling every step can
unnecessarily increase overhead. Therefore, particle arrays are allocated with extra elements, and incoming particles
are copied in bulk into this extra space. If the buffer is exhausted, holes are filled with particles at the end of the particle
arrays. The hole filling frequency can thus be a runtime parameter, that we tune based on the particle movement rate.
Particle binning: For efficient parallel execution of charge and push, and for reducing the cache working set size
of grid accesses, we make the important assumption that particles are approximately radially-binned. This is however
not likely to be satisfied as the simulation progresses, as particles may move in the radial direction as well as across
toroidal domains (causing holes in the particle array). Thus, we implement a new multithreaded radial binning routine,
as an extension to the shift routine. Radial binning frequency is be a parameter that can be set dynamically, and is
currently based on the number of toroidal domains and the expected hole creation frequency.
On-the-fly auxiliary array computations: GTC requires twelve double precision values per particle (96mi bytes)
to maintain the coordinates and state of each particle. This also represents the data volume per particle, exchanged
in the shift routine. In addition, seven auxiliary arrays of size mi words each (44mi bytes total) are maintained just
to facilitate exchange of data from the disjoint charge and push phases of the simulation. The auxiliary information,
accounting for particle data write traffic in charge and read traffic in push, can be avoided if we redundantly perform
approximately 120 floating point operations per particle in the push phase. While we implemented this optimization,
it did not lead to an overall improvement in performance for the problem configurations and parallel systems tested in
this paper. This may however be an important optimization for future memory- and bandwidth-constrained systems.

5.2 GPU Acceleration

To investigate the potential of manycore acceleration in a cluster environment, we employ GPUs based on Fermi
and Kepler architectures. A judiciously selected subset of the computational phases were ported to the GPU. As
particle arrays can constitute the bulk of memory usage, our implementation strives to keep particles on the GPU
to maximize performance. In practice, this constrains the size of possible problem configurations. We leverage our
previous research into tuning the charge and push phases for GPUs [22]; however, significant additional effort was
required to implement and optimize the GPU shift functionality.

Our implementation strategy requires that most auxiliary arrays are kept in the GPU memory to communicate data
between GTC’s computational phases. For instance, the indices of the electrostatic field that are computed during
the charge phase are stored for use by the push phase. Additionally certain memory-intensive optimizations, such as
keeping additional particle buffer space for shifted particles, were not suitable with the limited GPU memory capacity.
Charge: Similar to the OpenMP version, CUDA parallelizes the iterations of particle arrays among thread blocks
with special attention paid to attain memory coalescing. The thread blocks then perform the requisite scatter-add
operations to a charge grid resident in the GPU’s device memory. However, unlike the CPU implementations of
charge deposition, there is no grid replication on the GPU. Rather, the GPU version relies solely on fast double-
precision atomic increment (implemented via a compare-and-swap operation). Unfortunately, the scatter nature of
this kernel makes memory coalescing of grid data all but impossible. Nevertheless, we alleviate this performance
impediment via a transpose within shared memory. Thus, computation is organized so that CUDA threads access
successive particles when reading, but is reorganized so that a thread block works together on one charge deposition
cluster when writing. Given the limited use of shared memory, we configure the GPU to favor the L1 cache.

We also highlight that the charge phase is also partly executed on the CPU, thus exploring architectural hetero-
geneity. Specifically, the communication involved in reduction of the charge density across domains and subsequent
boundary condition updates are managed by the CPU. The solve routines utilize the charge density grid and produce
the electorostatic field vector used in the push phase.
Poisson/Field/Smooth: The three solve-related phases are performed on the CPU as they mandate communicating

Intrepid Hopper Fermi Cluster

O
ut

 o
f M

em
or

y

O
ut

 o
f M

em
or

y
0

250
500
750

1000
1250
1500
1750
2000
2250
2500

4x
1

1x
4

4x
1

1x
4

Fortran Optimized C

Ti
m

e
(s

ec
on

ds
)

0
25
50
75

100
125
150
175
200
225
250

24
x1

4x
6

1x
24

24
x1

4x
6

1x
24

Fortran Optimized C
Ti

m
e

(s
ec

on
ds

)

R
ef

er
en

ce
 F

or
tra

n
ve

rs
io

n
do

es
n'

t
ex

pl
oi

t G
P

U
s

ca
nn

ot
 s

ha
re

 o
ne

G

P
U

 a
m

on
g

m
ul

tip
le

 p
ro

ce
ss

es

0

50

100

150

200

250

300

350

8x
1

2x
8

1x
16

8x
1

2x
8

1x
16

Fortran C/CUDA

Ti
m

e
(s

ec
on

ds
) smooth

field

poisson

charge

shift

push

PCIe
(cudaMemCpy)

Vesta Edison Titan

0
50

100
150
200
250
300
350
400
450
500
550

64
x1

4x
16

1x
64

64
x1

4x
16

1x
64

Fortran Optimized C

Ti
m

e
(s

ec
on

ds
)

0
25
50
75

100
125
150
175
200
225
250

16
x1

2x
8

1x
16

16
x1

2x
8

1x
16

Fortran Optimized C

Ti
m

e
(s

ec
on

ds
)

R
ef

er
en

ce
 F

or
tra

n
ve

rs
io

n
do

es
n'

t
ex

pl
oi

t G
P

U
s

ca
nn

ot
 s

ha
re

 o
ne

G

P
U

 a
m

on
g

m
ul

tip
le

 p
ro

ce
ss

es

0

50

100

150

200

250

300

350

8x
1

2x
8

1x
16

8x
1

2x
8

1x
16

Fortran C/CUDA
Ti

m
e

(s
ec

on
ds

) smooth

field

poisson

charge

shift

push

PCIe
(cudaMemCpy)

Figure 9: Breakdown of runtime spent in each phase for the B20 problem as a function of architecture, optimization, and thread-
ing. Note, minor axis is “processes×threads”, or equivalently, “npartdom×OMP NUM THREADS”. Additionally, observe each is
plotted on a different timescale. PCIe time has been removed from each kernel’s time and tabulated in a separate bar.

the computed values with other nodes via MPI. We predict that migrating these computations to the GPU will likely
not substantially improve Fermi Cluster performance, as their fraction of the runtime is small (details in Section 6).
Push: For the push phase, we leverage our extensive GPU optimizations [22]. Unfortunately, the transpose operation
that facilitated charge showed no benefit here. Our analysis indicates that a simple decomposition of one particle
per CUDA thread and 64 threads per block performed well. Additionally, conditional statements were replaced with
redundant computation to avoid divergent code, and some variables were judiciously placed in CUDA’s “constant”
memory. We also observe that the per-SM SRAM should be configured to prefer the L1 cache (i.e., 16 KB shared +
48 KB L1) for the larger grid size. Finally, prior to execution, push must transfer the field grid produced by the CPU
solver from host memory to the GPU’s device memory.
Shift: The shift phase is far more challenging to implement on the GPU. First, the GPU must enumerate a list of
all particles currently residing in device memory whose toroidal coordinate is now outside of the GPU’s domain and
pack them into special buffers. Although a sequential implementation of such an operation is straightforward, a GPU
implementation must express massive parallelism. To that end, each thread block maintains small shared buffers that
are filled as it traverses its subset of the particle array. Particles are sorted into three buffers for left shift, right shift
and keep buffer. Whenever the local buffer is exhausted, the thread block atomically reserve a space in a pre-allocated
global buffer and copy data from the local buffer to the global one. Packed particles are also flushed over the original
particle array, thus clustering particle holes towards the end of each thread block assignment. To efficiently implement
this functionality we used low-level intrinsics such as ballot voting and bit-counting instructions.

The array of structure that benefited the charge and push routines proved problematic here. Reducing the number
of memory transfers, from 24 to 2 in our case, required using the array of structures organization. Consequently data
is transposed while flush to the global buffer. This organization also helps in facilitating the messaging mechanism.
The global buffer is copied back to the host where the normal iterative shift algorithm is executed. Upon completion,
the host then transfers a list of incoming particles to the GPU, where unpacking involves filing clustered holes in the
particle arrays and transposing the data back to the GPU structure of arrays layout.
Particle binning: The decision of whether to use particle binning is based on the target GPU generation. For Fermi,
we showed in Section 4.2 that the performance degradation due to atomic conflicts in the charge deposition outweighs

the performance improvement in the push phase from the improved locality. For Kepler, particle binning improves the
performance, and hence better be adopted. The best strategy of binning is based on the dataset size: for small datasets
simple radial binning is enough, while a more sophisticated particle binning based on update regions, discussed in
Section 4.2, is better used for larger datasets.

6 Results and Analysis
In this section, we present the performance of GTC using 16 nodes on all platforms, where the underlying prob-
lem (simulation) remains constant. Our optimizations explore the balance between threads and processes via the
npartdom (particle decomposition) configuration parameter. Additionally we present large-scale simulations to un-
derstand strong-scaling behavior at high concurrency.

6.1 Optimization and Threading

To highlight the benefits of our optimizations as well as the trade-offs of using multiple threads per process, we
examine the B20 problem in detail. Figure 9 shows the time spent in each phase for 200 time steps of the simulation,
as a function of machine, optimization (major axis), and threading (minor axis). The three threading configurations per
platform include the flat MP (one MPI process per core), MPI/OpenMP (one MPI process per chip), and MPI/OpenMP
(one MPI process per compute node) — for both the reference Fortran GTC as well as our optimized C version.
As Intrepid and Vesta have only one chip per node, both hybrid implementations represent identical configurations.
Moreover, as all simulations use every core on a node, changes in threads per process are realized by decreasing
npartdom .

Results demonstrate a dramatic increase in performance when threading is used. This benefit primarily arises
from retasking cores from performing redundant solves (Poisson/field/smooth) to collaborating on one solve per node.
Interestingly, it appears that the Fortran version on Hopper and Edison does not effectively exploit the NUMA nature
of the compute nodes. For instance, when using 24 threads per process on Hopper, there is a marked degradation
in Fortran performance in push, charge, and Poisson. Conversely, our optimized implementation delivers moderate
improvements in charge (obviates the intra-node reduction) and solve (trading redundancy for collaboration), but a
slight decrease in push performance. Finally, the benefit of threading on Intrepid is more basic. This problem size per
node cannot be run using the flat MPI programming model as it runs out of memory. This highlights the importance of
moving to a threaded model, allowing us to exploit shared memory and avoid redundant poloidal replicas in the solver
routines. BlueGene/Q (Vesta) nodes have more memory thus can accommodate larger problem configurations, thus
the need for threading shifts to larger problem sizes. We also note that on all platforms, our optimized implementation
attains best performance with one process per node.

Figure 9 also relates the relative contribution to runtime for each GTC computational component for a given
architecture and threading configuration. Results show that the threading and optimization choice can have a profound
impact on the relative time in each routine. Generally, as the number of threads increase, there is an improvement
in the solver routines (due to reduced redundancy) as well as the shift routine (particles need not be shifted if they
remain on the node). However, in the reference Fortran implementation, threading has a minimal impact on charge or
push performance. As such, the fraction of time spent in charge and push can become dramatic, exceeding 71% of
the best runtime on the x86 machines and constituting a combined 93% and 85% of the runtime on Intrepid and Vesta
repsectively.

Results also show that, contrary to conventional wisdom, PCIe overhead does not substantially impede GPU per-
formance. On Fermi, the challenges of data locality and fine-grained synchronization result in slower GPU execution
times compared with running on the CPU alone. Unfortunately, the extra GPU memory bandwidth cannot make up
for its inability to form a large working set in its relatively small L2 cache. Migrating the solver computations to the
GPU would have a negligible impact on performance as it constitutes a small fraction of the runtime.

The Fermi performance is significantly impacted by the low atomic performance. Comparing Figure 6 & Figure 7,
we see that the best throughput of a GPU multiprocessor atomics (with all its SMT threads) is equivalent to the
best single-core performance. Additionally, we had to choose a slow implementation of the push phase, which is
not impacted by the atomics, for a better overall performance, as discussed in details in Section 4.2. Kepler [17]
shows a much better overall performance, about 2.06× the Fermi performance. The charge routine improves by
1.63×, while the push routine received a 11.5× improvement due to running with sorted particles in addition to the
increase of Kepler throughput over Fermi. In fact Kepler delivers the best performance for the push phase over all
other architectures. The shift routine is slowed down by 22% because of its dependency on shared memory. In our
implementation of the shift phase, a small thread block (of 64 threads) uses the whole shared memory resources, thus

BGP BGQ XE6 XC30 Fermi XK7
Kernel Intrepid Vesta Hopper Edison Cluster Titan

push 1.93× 1.05× 1.12× 0.92× 0.95× 9.75×
shift 2.03× 0.63× 0.89× 0.66× 0.40× 0.41×

charge 0.79× 1.63× 1.43× 1.72× 1.73× 2.00×
poisson 0.70× 2.99× 1.53× 1.97× 2.52× 3.00×

field 3.52× 4.42× 2.43× 3.09× 3.10× 3.19×
smooth 9.09× 6.51× 2.76× 3.75× 13.8× 3.91×
overall

speedup
1.22× 1.50× 1.35× 1.77× 1.34× 2.12×

Figure 10: Speedup of B20 problem by kernel (best threaded C vs. best threaded Fortran). Note, baseline for the GPU’s is the best
of Fortran implementations running on the node’s CPUs.

0

5

10

15

20

25

30

35

40

45

50

55

BGP
Intrepid

BGQ
Vesta

XE6
Hopper

XC30
Edison

Fermi
Cluster

XK7
Titan

Pe
rf

or
m

an
ce

 p
er

 N
od

e
re

la
tiv

e
to

 B
G

P

Optimized
Reference

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

5.50

6.00

BGP
Intrepid

BGQ
Vesta

XE6
Hopper

XC30
Edison

Fermi
Cluster

XK7
Titan

En
er

gy
 E

ffi
ci

en
cy

 re
la

tiv
e

to
 B

G
P

Optimized
Reference

Figure 11: Performance and energy efficiency (normalized BGP = 1.0) before and after optimization for B20. Baseline for the
GPU is fastest Fortran version on the CPU. Speedups through optimization are labeled. Power based on Top500 [31] and empirical
measurements (see Table 3).

allowing reduced occupancy of the multiprocessor. Running one thread block per multiprocessor, with a small thread
count, makes Kepler in a disadvantageous position compared with Fermi because Kepler has a lower frequency. The
shift routine will be a subject of further tuning for Kepler architecture in our future work.

Table 10 details the B20 performance benefits of our optimized approach compared with the fastest reference For-
tran implementation on a kernel-by-kernel basis. For our x86 optimizations, the complex charge routine delivers more
than a 2× speedup due to our locality-aware, low-synchronization particle-grid interpolation approach. Unfortunately,
the lack of 64-bit atomic operations prevents us from leveraging those techniques to improve Intrepid charge perfor-
mance. The benefits observed in the three grid-related routines is even more dramatic, partially due to the attained
peak performance with one process per node (thus all the on-node parallelism is tasked for one solve). Interestingly,
BlueGene/P speedups vary wildly — a testament to the differences between XLF and XLC compilers, as well as the
lack of ISA-specific BlueGene optimizations in our current implementation. Our shift routine also includes time for
radial binning, which is performed every four time steps. Hence we do not achieve a substantial speedup on the x86
platforms. Fortunately, the BlueGene/Q (Vesta) A2 core supports 64-bit atomics that are executed in the L2-cache, in
addition to supporting transactional memory. This new support allows our optimizations to improve the performance
on the BlueGene line of architectures. We notice that the performance boost of Vesta compared with Intrepid is about
12.2×, the largest across all node architectures.

Finally, Table 10 shows that the GPU implementation benefited from speedups on the solver phases (as particles
are not flushing the grid points from the caches. The significant improvement of the GPU performance with Kepler for
GTC does not significantly reduce performance the gap with CPU architectures because of their continued performance
improvement.

Figure 12: Heatmaps showing per-node performance (particles pushed per second per time step) as a function of system and
problem configuration. All numbers are normalized to B20 Intrepid performance (for mzeta = 16).

6.2 Performance and Energy Comparison

Figure 11(left) summarizes our optimization impact (compared with the fastest reference Fortran implementation), as
well as the relative per-node performance across all architectures (normalized to the BlueGene/P reference version).
Results show the significant speedup of an Edison node compared with GPU-accelerated Titan, and low-power Blue-
Gene/Q node, attaining a 1.6×, and 3.51× performance advantage (respectively). Overall, through our optimizations,
we attain significant application-level speedups of 1.22×, 1.5×, 1.35×, 1.77×, 1.34×, and 2.12×on Intrepid, Vesta,
Hopper, Edison, the Fermi Cluster, and Titan respectively, compared to the fastest Fortran version.

We now turn to Figure 11(right) that shows the energy efficiency trade-offs (derived from empirical measurements
and the Top500 [31] data, see Table 3) between our evaluated architectures — an increasingly critical metric in su-
percomputing design. The energy efficiency of reference (or optimized) is calculated as the reference (or optimized)
performance divided by the total node estimated power. The improvement of energy efficiency with optimization
compared with the Fortran reference increased on newer generation platforms, Vesta, Edison, and Titan. BlueGene/Q
improved node architecture delivers the the highest efficiency across all architectures, 5.7× the BlueGene/P efficiency.
Titan, accelerated by nVidia Kepler, delivers 1.9× the performance efficiency of BlueGene/P. The Kepler improvement
in efficiency is surpassed by other architectures because of the memory access attributes of GTC. Nevertheless, we
believe that Kepler is a major step for accelerator-based architectures for applications with irregular access patterns,
especially those relying on atomics.

6.3 Memory Savings

Computer architecture design is seeing memory capacity per node growing slower than peak performance. Thus,
reducing memory usage is an important success. Using the threading paradigm (in either C or Fortran), reduces the
processes per node, and thus the total number of field grid copies per node. These savings in memory scale with
the number of cores and problem size. For example, the class B problem on Intrepid memory requirements are only
reduced by 21 MB, while the D size configuration on Hopper results in significant saving of 2.5 GB. Additionally, in
our optimized version, threads share one copy of the grid and partitions a second (unlike the reference Fortran, where
each thread creates a redundant charge grid copy), resulting in an additional 800 MB of savings for the class D Hopper
problem. Overall, our approach saves 330 MB, and about 3.3 GB for Intrepid, and Hopper respectively, corresponding
to 16%, 4%, and 1% of each node’s DRAM. These savings will have increasingly important impact on forthcoming
platforms, which are expected to have higher core count and less memory per core.

6.4 Perturbations to Problem Configurations

Having examined B20 in detail, we now explore a range of configurations to understand our optimization impact
across a wide range of problems. Figure 12 provides insight into how performance varies as a function of problem
configuration and architecture. The vertical axis corresponds to the grid size. Whereas the class B grid is relatively
small (2.3 MB per component) and could likely fit in cache, the class C grid is larger (9.2 MB per component) and
will challenge the cache subsystems used on most CPUs. The horizontal axis of Figure 12, micell , denotes the
average number of particles per grid point (particle density). Increasing micell has two effects that are expected to
increase performance. First, because the computational complexity of charge, push, and shift phases vary linearly with
micell , the time spent in those routines increases relative to the time spent in the solver routines (whose computational
complexity depends on mzetamax). Additionally, a larger micell increases the temporal locality of accessing the grid.

Given that the total memory required for a simulation grows linearly with grid size and particle density, it is not
surprising that at 16 nodes all but the B20 problem was too large for Intrepid and the C96 was too large for the Fermi,

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

1

10

6144 12288 24576 49152

Ef
fic

ie
nc

y

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Cores

Performance Perfect Efficiency

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

6144 12288 24576 49152

%
 T

im
e

Cores

push shift charge poisson field smooth

Figure 13: Strong-scaling results on Hopper using the D96 problem. (left) performance and efficiency as a function of concurrency,
normalized to 6144 cores. (right) the breakdown of runtime among phases.

Kepler (Titan), and Vesta. The only way to run larger problems is to use multiple nodes per plane. Broadly speaking,
on the x86 machines, increasing the grid size and the corresponding working set results in a performance degradation.
Conversely, an increase in particle density (increased locality, decreased solve time), causes a performance improve-
ment.

6.5 Large Scale runs

Ultimately, ultra-scale simulations must focus on large grid sizes with high particle densities. To understand the
potential scaling impediments, we examine the ITER-scale D96 problem with ntoroidal = 64 on the Cray XE6
Hopper. Compared to the B20 problem in the previous subsection, the size of the grid per node is increased by a factor
of 16×, while simultaneously the particle density is increased by almost a factor of 5×. Our experiments scale the
number of nodes from 256 to 2048 (6144 to 49,152 cores) in a strong scaling regime by increasing npartdom from 4
to 32. Thus, at 256 nodes, each node uses a field grid of 110 MB to push 58 million particles. All experiments leverage
our fastest optimized hybrid implementation on Hopper.

Figure 13(left) shows that performance increases by a factor 4.1× (relative to the 6144-core reference point), attain-
ing a 1.6× overall improvement compared with the fastest reference implementation on 49,152 cores. Note, however,
that parallel and energy efficiency (red line) achieves only 51%, mostly due to the increasing fraction of time spent in
the solver routines, clearly visible in Figure 13(right). In reality, the actual solve times remain almost constant, but the
time spent in push, shift, and charge decrease by up to 11.5×. Mitigating the solver scaling impediment requires either
parallelization of the 2D solvers across npartdom , or increasing the particle density proportionally with npartdom
via weak scaling simulations. Nonetheless, the unique characteristics of particle distributions within a poloidal plane
allowed push to attain super-linear scaling, while shift and charge improved by 4.3 and 5.1× respectively.

7 Conclusions
In this work, we analyze a gyrokinetic fusion code and explore the impact of various multicore-specific optimizations.
The global capability of the GTC code is unique in that it allows researchers to study the scaling of turbulence with
the size of the tokamak and to systematically analyze important global dynamics. Our work explores novel multi-
and manycore centric optimization schemes for this complex PIC-based code, including multi-level particle and grid
decomposition to alleviate the effects of irregular data accesses and fine-grained hazards, increasing computational
intensity through optimizations such as loop fusion, and optimizing multiple diverse numerical kernels in a large-
scale application. Results across a diverse set of parallel systems demonstrate that our threading strategy is essential
for reducing memory requirements, while simultaneously improving performance by 1.22×, 1.50×,1.35×, 1.77×,
1.34×, and 2.12× on BlueGene/P, BlueGene/Q, the Cray XE6, the Cray XC30, Fermi Cluster, and Titan, respectively.

The B20 problem provided insights into the scalability and performance optimization challenges (CPU and GPU)
facing GTC simulations. For example, our memory-efficient optimizations on CPUs improved performance by up to
1.77× while reducing memory usage substantially. Proper use of threading placed simulations in the ideal regime
where they are limited by the performance of on-node charge and push calculations.

Our highly-optimized GPU charge and push routines, we observe that GTC’s data locality and fine-grained data

synchronization challenges are at odds with the underlying Fermi architecture’s synchronization granularity and small
cache sizes—thus mitigating the GPU’s potential. Kepler improved atomic performance significantly puts GPUs
in a better position with other architectures for the GTC irregular access pattern, which is typically challenging on
GPU streaming-based programming model. We also observe that Vesta and Edison deliver the highest overall energy
efficiency compared with other studied architectures.

To evaluate our methodology at scale, we explored strong-scaling D96 experiments on Hopper using up to 49,152
cores, and showed that our optimization scheme achieves a 1.6× speedup over the fastest reference Fortran version,
while reducing memory requirements by 6.5 TB (a 10% savings). Results show that in the strong scaling regime, the
time spent in solver remains roughly constant, while charge/push/shift exhibit parallel scalability. Thus, the redun-
dancy in the solver (performing the same calculation (npartdom times) impedes scalability and efficiency, motivating
exploration of solver parallelization schemes that will be the subject of future work.

Additionally, future work will address the limited DRAM capacity of next-generation system via radial partitioning
techniques that lower memory requirements.

8 Acknowledgments
All authors from Lawrence Berkeley National Laboratory were supported by the DOE Office of Advanced Scientific
Computing Research under contract number DE-AC02-05CH11231. Dr. Ethier is supported by the DOE contract DE-
AC02-09CH11466. This research used resources of the Argonne Leadership Computing Facility at Argonne National
Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-
06CH11357. This research also used resources of the National Energy Research Scientific Computing Center, which
is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
Finally, this research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National
Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-
AC05-00OR22725.

References
[1] M. Adams, S. Ethier, and N. Wichmann. Performance of particle in cell methods on highly concurrent computa-

tional architectures. Journal of Physics: Conference Series, 78:012001 (10pp), 2007.
[2] E. Akarsu, K. Dincer, T. Haupt, and G. Fox. Particle-in-cell simulation codes in High Performance Fortran. In

Proc. ACM/IEEE Conference on Supercomputing (SC’96), page 38, Nov. 1996.
[3] E. Bertschinger and J. Gelb. Cosmological N-body simulations. Computers in Physics, 5:164–175, 1991.
[4] K. Bowers. Accelerating a particle-in-cell simulation using a hybrid counting sort. Journal of Computational

Physics, 173(2):393–411, 2001.
[5] K. Bowers, B. Albright, B. Bergen, L. Yin, K. Barker, and D. Kerbyson. 0.374 Pflop/s trillion-particle kinetic

modeling of laser plasma interaction on Roadrunner. In Proc. 2008 ACM/IEEE Conf. on Supercomputing, pages
1–11, Austin, TX, Nov. 2008. IEEE Press.

[6] S. Briguglio, B. M. G. Fogaccia, and G. Vlad. Hierarchical MPI+OpenMP implementation of parallel PIC
applications on clusters of Symmetric MultiProcessors. In Proc. Recent Advances in Parallel Virtual Machine
and Message Passing Interface (Euro PVM/MPI), pages 180–187, Sep–Oct 1996.

[7] E. Carmona and L. Chandler. On parallel PIC versatility and the structure of parallel PIC approaches. Concur-
rency: Practice and Experience, 9(12):1377–1405, 1998.

[8] V. K. Decyk. UPIC: A framework for massively parallel particle-in-cell codes. Computer Physics Communica-
tions, 177(1-2):95–97, 2007.

[9] V. K. Decyk and T. V. Singh. Adaptable particle-in-cell algorithms for graphical processing units. Computer
Physics Communications, 182(3):641–648, 2011.

[10] S. Ethier, W. Tang, and Z. Lin. Gyrokinetic particle-in-cell simulations of plasma microturbulence on advanced
computing platforms. Journal of Physics: Conference Series, 16:1–15, 2005.

[11] S. Ethier, W. Tang, R. Walkup, and L. Oliker. Large-scale gyrokinetic particle simulation of microturbulence in
magnetically confined fusion plasmas. IBM Journal of Research and Development, 52(1-2):105–115, 2008.

[12] R. Fonseca et al. OSIRIS: A three-dimensional, fully relativistic particle in cell code for modeling plasma based
accelerators. In Proc. Int’l. Conference on Computational Science (ICCS ’02), pages 342–351, Apr. 2002.

[13] R. Hockney and J. Eastwood. Computer simulation using particles. Taylor & Francis, Inc., Bristol, PA, USA,
1988.

[14] C. Huang et al. QUICKPIC: A highly efficient particle-in-cell code for modeling wakefield acceleration in
plasmas. Journal of Computational Physics, 217(2):658–679, 2006.

[15] The ITER project. http://www.iter.org/.
[16] JET, the Joint European Torus. http://www.jet.efda.org/jet/, last accessed Apr 2011.
[17] NVIDIA’s next generation CUDA compute architecture: Kepler GK110. http://www.nvidia.

com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf, last
accessed Apr 2013.

[18] A. Koniges et al. Application acceleration on current and future Cray platforms. In Proc. Cray User Group
Meeting, May 2009.

[19] W. Lee. Gyrokinetic particle simulation model. Journal of Computational Physics, 72(1):243–269, 1987.
[20] Z. Lin, T. Hahm, W. Lee, W. Tang, and R. White. Turbulent transport reduction by zonal flows: Massively

parallel simulations. Science, 281(5384):1835–1837, 1998.
[21] Z. Lin and W. Lee. Method for solving the gyrokinetic Poisson equation in general geometry. Physical Review

E, 52(5):5646–5652, 1995.
[22] K. Madduri, E. J. Im, K. Ibrahim, S. Williams, S. Ethier, and L. Oliker. Gyrokinetic particle-in-cell optimization

on emerging multi- and manycore platforms. Parallel Computing, 37:501–520, Sept 2011.
[23] K. Madduri, S. Williams, S. Ethier, L. Oliker, J. Shalf, E. Strohmaier, and K. Yelick. Memory-efficient opti-

mization of gyrokinetic particle-to-grid interpolation for multicore processors. In Proc. ACM/IEEE Conf. on
Supercomputing (SC 2009), pages 48:1–48:12, Nov. 2009.

[24] G. Marin, G. Jin, and J. Mellor-Crummey. Managing locality in grand challenge applications: a case study of the
gyrokinetic toroidal code. Journal of Physics: Conference Series, 125:012087 (6pp), 2008.

[25] H. Nakashima, Y. Miyake, H. Usui, and Y. Omura. OhHelp: a scalable domain-decomposing dynamic load
balancing for particle-in-cell simulations. In Proc. 23rd International Conference on Supercomputing (ICS ’09),
pages 90–99, June 2009.

[26] C. Nieter and J. Cary. VORPAL: a versatile plasma simulation code. Journal of Computational Physics,
196(2):448–473, 2004.

[27] Y. Nishimura, Z. Lin, J. Lewandowski, and S. Ethier. A finite element Poisson solver for gyrokinetic particle
simulations in a global field aligned mesh. Journal of Computational Physics, 214(2):657–671, 2006.

[28] L. Oliker, A. Canning, J. Carter, J. Shalf, and S. Ethier. Scientific computations on modern parallel vector sys-
tems. In Proc. 2004 ACM/IEEE Conf. on Supercomputing, page 10, Pittsburgh, PA, Nov. 2004. IEEE Computer
Society.

[29] C. Shon, H. Lee, and J. Lee. Method to increase the simulation speed of particle-in-cell (pic) code. Computer
Physics Communications, 141:322329, December 2001.

[30] G. Stantchev, W. Dorland, and N. Gumerov. Fast parallel particle-to-grid interpolation for plasma PIC simulations
on the GPU. Journal of Parallel and Distributed Computing, 68(10):1339–1349, 2008.

[31] Top500 Supercomputer Sites. http://www.top500.org.

http://www.iter.org/
http://www.jet.efda.org/jet/
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.top500.org

A Pseudo-code for benchmarking atomic performance on multicore systems
Performance of concurrent atomic accesses to a grid poloidal plane. This microbenchmark creates multiple access
frequencies and thread concurrency levels for randomly generated memory addresses.

procedure CPU ATOMIC CONCURRENCY TEST
for i = 0 to update count− 1 do

Compute a random index[i] within the grid space
end for

5: for u = 1 to max update frequency − 1 do
for t = 1 to max threads do

Start the timer
. Each thread do the same

for all i = 1 to update count− 1 do
10: for j = 0 to u-1 do

. Control of concurrency level
if my thread < t then

AtomicUpdate(grid[index[i]], update val)
end if

15: end for
end for
Record the elapsed time to time[u][t]

end for
end for

20: end procedure

B Pseudo-code for benchmarking atomics on GPU Architectures
This microbenchmark creates multiple levels of access conflict by threads sharing a thread block. A dispersion factor
controls the radius of update around a focal point in the grid. A high dispersion factor leads to accesses that are less
likely to be captured by the cache hierarchy. A small dispersion leads to increased conflicts and a better locality.

procedure CPU DRIVER
pick an update radius (dispersion factor * 512 double)
for block = 0 to multiprocessor count− 1 do

for i = 0 to update count− 1 do
5: Pick a random grid point

. Assume a Thread Block of 128 threads
for thr=0 to 127 do

for cell=0 to 3 do
Pick a random cell

10: . 4 points per cell × 2 doubles per point
for c = 0 to 7 do

Calculate index[block][i][cell*8+c][thr] randomly within the update radius
end for

end for
15: end for

end for
end for
Allocate the grid array on the GPU.
Transfer the update array index to the GPU

20: Time the execution time of running GPU KERNEL on the GPU
end procedure
procedure GPU KERNEL

Calculate the update index, my index, based on my block
for i = 0 to update count− 1 do

25: for c = 0 to 23 do
AtomicUpdate(grid[my index[i][c][my thr]]], update val)

end for
end for

end procedure

	1 Introduction
	2 GTC Overview and Related Work
	2.1 GTC Data Structures and Parallelization
	2.2 GTC Code Structure
	2.3 GTC Simulation Configurations
	2.4 Related Work

	3 Experimental Setup
	3.1 Programming Models

	4 Grid Access Analysis
	4.1 CPU Grid Access Analysis
	4.2 GPU Grid Access Analysis

	5 Code Optimization
	5.1 CPU Optimizations
	5.2 GPU Acceleration

	6 Results and Analysis
	6.1 Optimization and Threading
	6.2 Performance and Energy Comparison
	6.3 Memory Savings
	6.4 Perturbations to Problem Configurations
	6.5 Large Scale runs

	7 Conclusions
	8 Acknowledgments
	A Pseudo-code for benchmarking atomic performance on multicore systems
	B Pseudo-code for benchmarking atomics on GPU Architectures

