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Neurocomputational Changes in Inhibitory Control Associated 
With Prolonged Exposure Therapy

Katia M. Harlé1,2, Andrea D. Spadoni1,2, Sonya B. Norman1,2, Alan N. Simmons1,2

1VA San Diego Healthcare System, San Diego, California, USA

2Department of Psychiatry, University of California San Diego, La Jolla, California, USA

Abstract

Posttraumatic stress disorder (PTSD) is associated with inhibitory control dysfunction that extends 

beyond difficulties inhibiting trauma-related intrusions. Inhibitory learning has been proposed as 

a potential mechanism of change underlying the effectiveness of extinction-based therapies such 

as prolonged exposure (PE), a first-line treatment for PTSD. To identify neurocognitive markers 

of change in inhibitory learning associated with PE, we applied a Bayesian learning model to the 

analysis of neuroimaging data collected during an inhibitory control task, both before and after 

PE treatment. Veterans (N = 20) with combat-related PTSD completed a stop-signal task (SST) 

while undergoing fMRI at time points immediately before and after PE treatment. Participants 

exhibited a small, significant improvement in performance on the SST, as demonstrated by longer 

reaction times and improved inhibition accuracy. Amplitude of neural activation associated with 

a signed prediction error (SPE; i.e., the discrepancy between actual outcome and model-based 

expectation of needing to stop) in the right caudate decreased from baseline to posttreatment 

assessment. Change in model-based activation was modulated by performance accuracy, with 

a decrease in positive SPE activation observed on successful trials, d = 0.79, and a reduction 

in negative SPE activation on error trials, d = 0.74. The decrease in SPE-related activation on 

successful stop trials was correlated with PTSD symptom reduction. These results are consistent 

with the notion that PE may help broadly strengthen inhibitory learning and the development of 

more accurate model-based predictions, which may thus facilitate change in cognitions in response 

to trauma-related cues and help reduce PTSD symptoms.

Prolonged exposure (PE) therapy, an evidence-based manualized psychotherapy based on 

cognitive behavioral principles, has gained prominence in the treatment of posttraumatic 

stress disorder (PTSD) and trauma-related psychopathology (Foa, Hembree, & Rothbaum, 

2007; Mills et al., 2012). Because it has received significant empirical support that 

generalizes across different types of trauma, including interpersonal (Foa et al., 2005) and 

combat-related trauma (Tuerk et al., 2011), PE is recommended as a first-line treatment 

for PTSD. Grounded on classical conditional principles, the aim of this therapy is to 

expose patients to the negative, triggering cues at the root of their PTSD symptoms (i.e., 

reexperiencing, avoidance, and hyperreactivity to those cues and traumatic memories) 
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in order to facilitate an extinction of the fear response to those cues. The underlying 

theory is that until those unprocessed trauma-related cues are engaged so that the patient 

can experience managing the distress associated with the cues, the learned maladaptive 

responses that create PTSD symptoms will not extinguish and will continue to promote 

related functional impairment (Foa et al., 2007). Thus, the core focus of PE includes 

imaginal and in vivo repeated exposure to feared stimuli (e.g., cues and memories), which 

involve the retelling of the trauma within the safe confines of therapy and approaching 

specific triggering cues in the patient’s real-life environment, respectively (Foa et al., 2007; 

Foa et al., 2005).

Inhibitory learning, in contrast to fear habituation (Myers & Davis, 2007), is thought to 

be central to this process of extinction and thus to the effectiveness of exposure-based 

therapies such as PE (Bouton, 1993; Craske, Treanor, Conway, Zbozinek, & Vervliet, 

2014). Within this framework, exposure to the feared conditioned stimulus (CS) without the 

occurrence of the unconditioned stimulus (US; i.e., the feared event) allows for new learning 

to occur (i.e., CS occurrence does not mean US is impeding), which overrides initial CS–

US associations. Thus, the opportunity to process the co-occurrence of CS and absence 

of US (i.e., experience expectancy violation) to learn or update the contingency likelihood 

appears to be a key ingredient of PE therapy. Critically, inhibitory control, and presumably 

inhibitory learning, which subserves this executive function, appears to be compromised in 

untreated PTSD, and the degree of this deficit covaries with symptom severity (Aupperle, 

Melrose, Stein, & Paulus, 2012). Such alterations generally involve impaired performance 

combined with hyporecruitment of ventrolateral, medial, and inferior prefrontal regions 

of the brain in the context of proactive control performance (e.g., cognitive reappraisal, 

inhibitory control tasks; Aupperle et al., 2012). In contrast, successful PE treatment in 

PTSD has been associated with increased activation of the ventromedial prefrontal fear 

extinction networks and a concomitant reduced activation of the emotional salience network, 

particularly the amygdala, in response to feared stimuli (Felmingham et al., 2007). Overall, 

this research is consistent with the notions that (a) PTSD is associated with inhibitory 

learning deficits; (b) inhibitory learning is a key ingredient of successful exposure treatment 

to reduce PTSD symptoms; and (c) extinction-based therapy, such as PE, may facilitate 

symptom reduction by facilitating learning of new cue–response inhibitory associations (i.e., 

inhibitory learning). However, thus far, the effect of PE on the neurocognitive processes 

underlying inhibitory learning has not been specifically investigated. Moreover, it is unclear 

whether such potential improvement in inhibitory learning is context-specific (i.e., in 

response to trauma cues) or whether it may provide a more generalized improvement in 

inhibitory learning.

Computational models, such as error-correction (Rescorla & Wagner, 1972) and Bayesian

based (Yu & Cohen, 2009) learning models, have been recognized as a powerful analytical 

approach in psychiatric research, as they can help refine the field’s understanding of 

cognitive processing abnormalities in mental illness and identify precise cognitive markers 

of clinical change and treatment response (Maia, Huys, & Frank, 2017). As such, they can 

play a pivotal role in advancing theories of the mechanisms of change involved in recovering 

from psychiatric disorders as well as how various treatments, such as PE, can target those 

mechanisms (Maia et al., 2017). For instance, a Bayesian learning model (Yu & Cohen, 
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2009) was recently shown to robustly capture individuals’ learned expectations of inhibitory 

response in the stop-signal task (SST; (Ide, Shenoy, Yu, & Li, 2013; Shenoy & Yu, 2011), 

a standard inhibitory task in which individuals have to inhibit a learned prepotent motor 

response (Aron, Fletcher, Bullmore, Sahakian, & Robbins, 2003). This “ideal observer” 

model assumes that on each trial, individuals track and update their expectation of the 

stop signal frequency, a dynamic latent belief they in turn use to adjust their action 

selection speed to minimize error. Using this model, neural markers of inhibitory learning 

inefficiencies have been identified among substance users of various clinical severity (Harlé 

et al., 2014; Harlé, Zhang, Ma, Yu, & Paulus, 2016). Specifically, the anterior cingulate 

and caudate regions of the brain showed abnormal activations to individuals’ Bayesian 

expectations of having to withhold the motor response and to their associated prediction 

errors, the latter capturing the degree of discrepancy between anticipated and observed cues 

(i.e., the degree of expectancy violation; Harlé et al., 2014; Harlé et al., 2016). Although the 

SST probes inhibitory learning in a simple action selection context, this research suggests 

that a Bayesian learning framework may be relevant and useful for assessing other types 

of goal-directed inhibitory tasks, such as learning to more accurately anticipate outcomes 

associated with traumatic cues. Thus, using the SST as an abstraction of inhibitory function 

and related belief-based adjustment processes may be a reasonable first step to relate 

potential changes in inhibitory learning to PE effectiveness and symptom reduction and, 

thus, to determine whether this framework may be relevant to trauma-related learning.

Given the relevance of inhibitory learning to exposure therapy, the goal of the present 

study was thus to use the formalism of a Bayesian leaning model to assess whether PE 

does have a systematic impact on inhibitory learning processes and, if so, to identify the 

neurocognitive markers associated with those treatment-related changes. A second goal of 

the present study was to investigate whether those potential neurocomputational changes 

may relate to clinical symptom reduction in individuals with PTSD. We applied a Bayesian 

learning model to functional magnetic resonance imaging (fMRI) data collected during an 

SST, both prior to and following a course of PE. As mentioned earlier, providing patients 

with opportunities to experience expectancy violation to correct their beliefs is one key 

element thought to promote learning and effectiveness of PE from an inhibitory learning 

perspective (Craske et al., 2014). Thus, we hypothesized that improved neurocomputational 

control of motor inhibitory function, reflected by change in neural activation to Bayesian 

model-based prediction errors during the SST, would be especially related to PE treatment 

effect and PTSD symptom reduction. We further expected such treatment-related changes to 

be observed in neural regions such as the anterior cingulate cortex and caudate, which are 

robustly implicated in tracking prediction errors in the SST and other cognitive interference 

paradigms (Harlé et al., 2014; Harlé et al., 2016).

Method

Participants and Procedure

The VA San Diego Human Subjects Review Board approved this study protocol, and all 

participants gave written informed consent. A total of 20 male U.S. military veterans who 

had been diagnosed with PTSD within the last month and were enrolled in a 12-week 
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PE treatment for PTSD at the San Diego VA trauma clinic were recruited for the present 

study; recruited individuals had served in the recent combat operations in Afghanistan and 

Iraq. Prolonged exposure treatment included psychoeducation about PTSD, exposure in 

sensu to the traumatic event, and in vivo exposure to avoided activities that functioned 

as reminders of participants’ traumatic experience. Processing of trauma-related emotions 

and cognitions were encouraged during exposure (see Supplementary Materials). Exclusion 

criteria included a history of more than 2 years of alcohol dependence, substance abuse in 

the previous month, use of psychotropic medication within the last 2 weeks (or fluoxetine 

within the last 6 weeks), lifetime diagnosis of bipolar disorder or schizophrenia, and 

fMRI-related issues (i.e., irremovable ferromagnetic material, pregnancy, claustrophobia). 

A diagnosis of comorbid anxiety disorder or major depressive disorder (MDD) was not an 

exclusion criterion as long as PTSD was the clinically predominant disorder. Participants 

were included in the present study if they received at least four face-to-face 90-min sessions 

of PE, which has been shown to be effective in reducing PTSD symptoms (Cigrang et al., 

2015). This approach allowed us to assess for any potential dose effect. At both baseline and 

immediately after completing treatment, participants completed a clinical interview and a 

functional magnetic resonance imaging (fMRI) session during which they performed various 

cognitive tasks, including the SST.

Measures

Psychiatric disorders.—Lifetime Axes I and II diagnoses, including PTSD, per criteria 

from the fourth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM
IV), were assessed with the Structured Clinical Interview for DSM-IV (SCID; First, Spitzer, 

Gibbon, & Williams, 1995) and the Clinician-Administered PTSD Scale (CAPS; Blake et 

al., 1990). These measures have demonstrated high interrater reliability, with a Cohen’s 

kappa coefficient of 0.79 reported for PTSD diagnosis with the CAPS (Aker et al., 1999) 

and kappa values ranging from 0.50 to 0.98 reported for SCID Axis I disorders (Lobbestael, 

Leurgans, & Arntz, 2011). Importantly, the concordance rate for diagnosing PTSD between 

the SCID and CAPS measures is high, κ = 0.89 (Aker et al., 1999). Verbal intelligence 

quotient (IQ) and overall intellectual functioning were assessed with the Vocabulary, Matrix 

Reasoning, and Letter-Number Sequencing modules of the Wechsler Adult Intelligence 

Scale (WAIS-IV; Wechsler, Coalson, & Raiford, 2008).

Stop-signal task.—To measure potential changes in inhibitory function in relation to PE 

treatment, participants completed a standard SST while undergoing fMRI, both at baseline 

(prior to first treatment session) and immediately after completing treatment. In the current 

study, the SST was composed of 288 trials, 216 (75%) of which were “go” trials and 72 

(25%) of which were “stop” trials. Participants were given a standard four-key button-press 

device with up, down, left, and right options. On go trials, individuals were presented 

with a go stimulus (an “O” or “X”) and tasked with pressing, as quickly as possible, 

the left button on when an X appeared and the right button when an O appeared. On 

stop trials, an auditory tone instructing the participant not to press either button was also 

briefly presented following the appearance of the go stimulus. Each trial lasted until the 

participant responded up to a maximum 1,300 ms, with a 200 ms interstimulus interval. At 

both baseline and follow-up, participants also completed the SST before entering the fMRI 
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scanner to provide practice and establish mean go reaction times (MGRT) from stimuli 

onset; this allowed us to compute six levels of individually customized stop signal delay 

(SSD), which provided an equivalent range of difficulty for all participants when performing 

the task in the scanner. This promoted a mean stop error (SE) rate of 50%. The prescanner 

task was also administered to ensure that participants where well trained in the task by 

the time they completed it inside the scanner, to minimize training effects. Participants’ 

MGRT from the prescanner task was used to determine six fixed SSD timings, which they 

encountered while performing the task in the fMRI scanner. All participants received the 

same number trials corresponding to each of these six fixed difficulty levels, including 

“hard” trials, with a longer SSD (i.e., MGRT 0 ms, MGRT 100 ms, MGRT 200 ms) and 

“easy” trials, with a shorter SSD (MGRT 300 ms, MGRT 400 ms, MGRT 500 ms). The 

sequence of go and stop trials was pseudorandomized through the task and counterbalanced 

(for more task details, see Harlé et al., 2014).

Data Analysis

Bayesian model of inhibitory response prediction.—To identify precise neural 

markers of change in inhibitory function following PE treatment, we applied a Bayes

optimal learning model adapted from the “dynamic belief model” (DBM; Yu & Cohen, 

2009). This latent variable model assumes that individuals estimate and update, on a trial

by-trial basis, their belief about the probability of encountering a stop trial based on the 

observed sequence of trials of the task. This dynamically updated belief is represented by 

a probability distribution over the unobserved stop signal frequency and the mean of this 

distribution on each trial, the latent variable “P(stop).” The model further assumes that 

individuals adjust their behavior (i.e., reaction time [RT]) as a function of this trial-level 

expectation P(stop). This Bayesian framework of goal-directed behavior has been shown 

to account for behavioral sequential effects commonly seen in the SST, whereby recently 

experienced stop trials promote slowing down (i.e., increase RT) on a subsequent go trial 

in order to minimize the chance of making a commission error. The DBM captures RT 

adjustments in the SST as well as the race model and its computational form, the drift

diffusion model, which provides a modeling framework for perceptual disambiguation in the 

SST and other 2-alternative forced-choice tasks. However, DBM-based modeling of the SST 

has the additional advantage of explaining behavioral changes to contextual manipulation 

(i.e., fluctuations in true stop signal frequency) and reward or punishment contingencies 

associated with performance (Ide et al., 2013; Shenoy & Yu, 2011). Importantly, when 

applied to the SST, this learning model has been successful at predicting individuals’ 

behavior in the task and identifying neural markers of inhibitory function abnormalities 

that are not otherwise observable behaviorally among clinical and subclinical samples (Harlé 

et al., 2014; Harlé et al., 2016; Ide et al., 2013). Mathematically, the model assumes that, 

on each trial, k, the probability of the unobserved stop signal frequency, p(rk | Sk−1), is a 

mixture of the previous posterior distribution, p(rk−1 | Sk−1), and a fixed prior distribution, 

p0(rk), where Sk = {s1, …. , sk} is the sequence of observed trials up to trial k (i.e., 1 = stop 

trial, 0 = go trial). The p(rk−1 | Sk−1) and p0(rk) probability distributions are weighted by 

the fixed model parameters α and 1−α, respectively. On each trial, the probability of trial k 
being a stop trial, given the sequence of observed trials at this point in the task, P(sk = 1 | 
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Sk−1), which, for simplicity, we call P(stop), is the mean of the predictive distribution p(rk | 

Sk−1):

p rk ∣ Sk − 1 = αp rk − 1 ∣ Sk − 1 + (1 − α)p0 rk

The posterior distribution is updated according to Bayes’ Rule, being directly proportional to 

the likelihood of the observed trial outcome multiplied by the prior distribution:

p rk ∣ Sk ∝ P sk ∣ rk p rk ∣ Sk − 1

In the present study, model parameters for the fixed beta distribution p0(rk) and α were 

kept constant across all participants and visits. Indeed, based on simulations with this same 

paradigm and experimental settings, α and the p0(rk) parameter values that maximize model 

fit at the individual level produced P(stop) sequences highly correlated across parameter 

settings, r > .90, R2 > .80, suggesting that a group-level setting is most parsimonious. In 

addition, using the same parameter settings across participants and visit made any potential 

observed neural differences associated with P(stop) more readily interpretable. A setting of 

Beta(a = 2.50, b = 7.50), corresponding to a mean of .25 and a scale of a + b = 10, was 

used for the fixed prior distribution p0(rk). This setting was based on previous simulations 

that sought to maximize the linear fit between true and recovered values for the mean of the 

fixed prior distribution p0(rk) and the α parameter across various settings of the p0(rk) scale 

parameter setting (s = a + b). Based on the model assumption of a positive linear association 

between anticipation of a stop signal and RTs, α was fit to participants’ data and inferred 

based on the setting that maximized the linear regression fit (R2) of P(stop) on successful 

go RT across all participants (range tested: .25–1.00, α = .80 maximized overall fit across 

all participants and visits; Harlé et al., 2014; Ide et al., 2013). Based on these model 

parameters, individuals’ P(stop) sequence was computed and used as parametric regressor 

in subsequent neural analyses (described later). We note this sequence was the same for 

everyone given that all participants experienced the same pseudorandomized sequence of 

go and stop trials. Finally, in order to distinguish inhibitory learning from error learning 

in the present paradigm, we modeled trial-wise expectations of making an error (P(err)), 

as the mean of the predictive distribution p(errk | Zk), using the same Bayesian learning 

model, where Zk = {z1, … ,zk} is the sequence of observed trial outcomes up to trial k 
(i.e., 1 = error trial, 0 = successful trial). We used fixed parameter settings with a prior 

distribution consistent with an empirical error rate of roughly half of all stop trials, based on 

the individual range of SSD targeting a 50% error rate for all participants. Accordingly, we 

used a parametrization of Beta(a = 1.25, b = 8.75), with a mean = .25 × .50 = .125, which 

was fit to individuals’ sequence of successful and error trials to calculate P(err) on each trial.

Behavioral statistical analyses.—We applied hierarchical generalized mixed-effect 

linear models to participants’ stop trial and RTs (go RT), treating participant as a random 

factor and other independent variables as fixed effects. The first set of models for go RTs 

used a linear mixture of P(stop), visit (pre- or posttreatment), number of PE therapy sessions 

received, and change in CAPS score (i.e., degree of symptom reduction following PE). Go 

trials with an RT of zero (omission errors) or over 1300 ms were automatically counted as 
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“go errors,” as were wrong key presses, and not included in these analyses. The second set 

of models for error data used a logit-link function applied to a mixture of P(stop), visit, 

SSD, number of PE sessions received, and change in CAPS score. We report change in 

log-likelihood ratio (following a chi-squared distribution) and regression coefficients (when 

applicable) with associated t test and p value for any significant effect or interaction.

Image acquisition and preprocessing.—Participants completed each of their scanning 

sessions (i.e., baseline and posttreatment) on a 3 T General Electric (Boston, MA) scanner 

with an eight-channel head array coil. On each session, T2*-weighted EPI functional runs, 

synchronized with the SST stimuli, were collected for each participant (total time about 8:32 

min) using an event-related fMRI design with the following parameters: 32 ms echo time, 

90° flip angle, 3.43 × 3.43 × 2.60 mm voxels with a 1.40 mm gap, 30 whole brain axial 

slices, a repetition time (TR) of 2,000 ms, and 256 repetitions. A sagittal high-resolution 

spoiled gradient recalled anatomical sequence was also acquired at the beginning of each 

session (25 cm field of view; 256 × 256 matrix; 172 1 mm–thick slices; with 4.8 ms echo 

time and 8 ms repetition time, 12° flip angle). The SST presentation was projected on a 

screen visible to participants through a mirror in the head coil. Participants used a standard 

four-key button-press device to respond to task stimuli.

Preprocessing, normalization to Montreal Neurological Institute (MNI) coordinates, and 

subsequent fMRI analyses were conducted using ANTsR, a statistical interface between 

Advanced Normalization Tools Software (ANTs), R statistical software, and Analysis 

of Functional NeuroImages (AFNI) software (Cox, 1996). Preprocessing steps included 

removal of temporal outliers, field inhomogeneity correction, slice time correction, and 

temporal whitening. Motion correction and a CompCor component-based noise correction 

were also conducted and removed during preprocessing. Outlying acquisitions were 

censored from the time series using a cutoff rule of 2 standard deviations. Regressors 

were convolved with a canonical hemodynamic response function (HRF) and entered into a 

general linear model (GLM) to calculate normalized beta weights and associated statistics. 

Data were aligned to individual anatomical and MNI template.

First-level fMRI analyses.—Nine task regressors of interest, based on the three main 

types of trials—go, stop success (SS), and SE—were convolved with a canonical HRF 

and included as predictors in a first GLM. Go error trials were relatively few (M = 8.50 

omissions and M = 1.87 wrong key at baseline; M = 9.83 omissions and M = 2.83 wrong 

key at posttreatment) and were not included in these analyses (see Supplementary Table 1). 

Thus, for each trial type, a categorical event-related regressor, a P(stop)-weighted parametric 

regressor, and a P(err)-modulated parametric regressor were included in this order (Ide 

et al., 2013), with the parametric regressors being orthogonalized relative to the previous 

regressor. We included both P(stop) and P(err) modulated regressors in order to distinguish 

treatment effect on anticipation and learning of the stop response, that is, P(stop), versus 

anticipation and learning related to accuracy, which could be confounded in regions such as 

the anterior cingulate cortex (ACC) (Ide et al., 2013). Thus, this first-level GLM provided 

a way to assess neural activation associated with P(stop) independently of the categorical 

trial type event and the modulation of P(err) by trial type. To assess for potentially distinct 

Harlé et al. Page 7

J Trauma Stress. Author manuscript; available in PMC 2021 November 04.

V
A

 A
uthor M

anuscript
V

A
 A

uthor M
anuscript

V
A

 A
uthor M

anuscript



treatment-related changes in P(stop) model updating processes, we also created a second 

GLM with the trial-wise Bayesian signed prediction error, that is, SPE; Outcome-P(stop) 

and unsigned prediction error, that is, UPE; |Outcome-P(stop)|, as parametric regressors of 

interest. Indeed, whereas SPE can be shown to approximate the degree of Bayesian model 

updating, thereby capturing the degree of learning (i.e., updating of the Bayesian model–

based P(stop) estimate), UPE represents a measure of discrepancy between stop expectations 

and actual trial type observed in the task. The latter can therefore be understood as an 

overall tracking index of the P(stop) model goodness-of-fit in contrast to signed trial-level 

adjustment to P(stop); that is, learning process. This second model also included a regressor 

modeling trial error (0 = correct or 1 = error) to control for performance error related 

activity (Ide et al., 2013). Finally, to assess for potential modulation of Bayesian prediction 

error by trial type, we constructed a third GLM, which was similar to the first one except 

that for each trial type (go, SS, SE), the second parametric regressor was weighted by 

a Bayesian SPE instead of P(stop). In addition, the signed prediction error of P(err) (i.e. 

outcome-P(err)), replaced P(err) for the modulation of the third regressor for each trial type. 

All GLM models included a baseline regressor that consisted of intertrial intervals with a 

fixation cross as well as go RTs and SSD as parametric regressors of no interest.

Second-level fMRI analyses.—A voxel-wise linear mixed-effects (LME) model was 

applied to the regressor t statistics of our first-level GLM. Specifically, we tested for the 

effect of visit (pre- vs. posttreatment) and its interaction with P(stop)-modulated trial type—

Go × P(stop), SS × P(stop), or SE × P(stop)—with individual participant treated as random 

effect. In a first contrast analysis, we isolated P(stop) modulated activations for go versus 

stop trials (SS and SE were averaged). Whole brain statistical maps were obtained for 

the visit main effect, reflecting areas tracking P(stop) value irrespective of trial type or 

accuracy, and the Visit × P(stop)-Modulated trial type interaction. To test potential treatment 

effect on the modulation of P(stop) activation by overall performance (correct vs. incorrect 

trials), we conducted a second LME contrast comparing all successful trials (go and SS 

averaged) to failed trials (SE), obtaining statistical maps for this Visit × P(stop)-Modulated 

outcome type interaction. Finally, we conducted the same contrast analyses to assess for 

potential treatment effect on P(err)modulated neural activity, and to distinguish those from 

any P(stop)-related neural changes. That is, we assessed for the Visit × P(err) weighted 

trial type (go vs. stop) and the Visit × P(err) weighted trial accuracy (success vs. error) 

interactions. The t statistics and degrees of freedom for each LME contrast of interest were 

extracted at the voxel level to draw a statistical map of voxel-wise p values. To correct 

for multiple comparisons, we used a cluster threshold adjustment based on Monte Carlo 

simulations, generated with AFNI’s 3dFWHMx and 3dClustSim program (version compiled 

with AFNI_17.2.17 on September 17, 2017), which computes a three-parameter spatial 

autocorrelation function applied to participants’ detrended preprocessed data to create an 

optimal smoothing kernel. A minimum of 7 contiguous voxels (i.e., 7 × 64 = 448 mm3) 

was found to result in a corrected cluster-wise activation probability of p < .050 based on 

a voxel-wise a priori probability of p < .001. This method and minimum cluster size have 

been shown to robustly protect against false positives (Cox, Chen, Glen, Reynolds, & Taylor, 

2017; Eklund, Nichols, & Knutsson, 2016).
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In subsequent region of interest (ROI) analyses, individual t statistics associated with 

Bayesian prediction error regressors (SPE and UPE) based on the second or third first-level 

GLM, depending of the significant contrast of interest, were extracted to assess for any 

treatment-related change in predication error activity. We selectively focused on any area 

identified in the main effect and interaction contrasts (described earlier) that were consistent 

with either type of Bayesian prediction errors (UPE and SPE) at the baseline assessment (see 

Supplemental Materials for rationale). For any cluster of voxels consistent with a significant 

pre–post change in SPE or UPE activation, we computed the average of the cluster voxels t 
statistics from both baseline and posttreatment. We then computed the change score in such 

cluster UPE or SPE activation as the difference between those mean t scores. This activation 

change score was then correlated with treatment measures of interest, namely CAPS score 

and the number of PE sessions received.

Results

Participant Characteristics and Clinical Profiles

Participants were male, an average of 31.95 years of age (SD = 7.35), and had completed 

a mean of 13.81 years (SD = 1.47) of education. The sample included 40.0% Caucasian, 

30.0% Hispanic, 10.0% African American, and 20.0% Asian American participants. The 

most common secondary diagnosis, in addition to PTSD, was MDD (65.0%), followed 

by generalized anxiety disorder (GAD; 20.0%; see Table 1 for participants’ demographic 

and baseline neuropsychological functioning). During treatment, participants completed an 

average of 10.45 (SD = 3.95) individual PE therapy sessions, which took place over an 

average of 14.71 weeks (SD = 4.83). As expected, PTSD symptom severity significantly 

decreased between baseline (M CAPS score = 89.25, SD = 15.25) and posttreatment 

evaluation (M CAPS score = 54.90, SD = 29.08), M score change = −34.35, t(19) = 6.0, 

p < .001. Average pre-to-post reductions in scores on CAPS Module B (re-experiencing), 

Module C (avoidance) and Module D (arousal) were −9.35, −15.30, and 9.70, respectively, 

ps < .001.

Behavioral Performance and Model-Based Behavioral Adjustment

Consistent with our Bayesian model’s assumptions, a positive linear association between go 

RTs and P(stop) was observed, B = 238 ms, t(19) = 2.8, p = .011; omnibus test: χ2(1, N = 

20) = 6.7, p = .010, adjusted R2 = .08. Thus, overall and across visits, participants tended 

to slow down as P(stop) increased. The main effect of visit on go RT was also statistically 

significant: B = 57 ms, t(19) = 13.7, p < .001, omnibus test: χ2(1, N = 20) = 184.9, p < 

.001; M RT at baseline = 687 ms, M RT at follow-up = 738 ms (see Supplementary Figure 

S1); this pointed to an overall increase in go RT at the posttreatment visit. The P(stop) × 

Visit interaction was not statistically significant, χ2(1, N = 20) = 0.1, p = .832, which was 

consistent with similar model fits at both pre- and posttreatment visits. A significant Visit × 

CAPS Change interaction was also observed, B = 67, t(19) = 8.1, p < .001, omnibus test: 

χ2(1, N = 20) = 67.2, p < .001; this suggests that individuals with a larger reduction in 

PTSD symptoms had, on average, longer (i.e., less impulsive) go RTs at their posttreatment 

assessment. No other significant main effects nor interactions were observed.
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As expected in relation to stop trial difficulty, participants had a higher likelihood of error 

on trials with longer SSD (i.e., closer to their average RT), odds ratio (OR) = 1.93, Wald’s 

z = 22.4, p < .001, omnibus test: χ2(1, N = 20) = 635.0, p < .001 (see Supplementary 

Figure S1). The visit main effect was also statistically significant, with a significantly lower 

likelihood of error at the posttreatment assessment, OR = 0.30, Wald’s z = −2.1, p = .037, 

omnibus test: χ2(1, N = 20) = 34.7, p < .001. Moreover, as expected, a negative association 

between error likelihood and P(stop) was observed, with a smaller likelihood of error as 

P(stop) increased, OR = 0.04, Wald’s z = −2.1, p = .040, omnibus test: χ2(1, N = 20) = 

3.9, p = .049. Other main effects (e.g., CAPS change) or interactions (e.g., P(stop) × Visit, 

P(stop) × SSD, SSD × Visit) did not reach statistical significance, ps = .231–.651.

fMRI Analyses

After regressing out any variance correlated with actual stimulus outcome (stop vs. go), we 

found no areas consistent with an overall visit effect (i.e., pre- to posttreatment change) on 

P(stop) activation. That is, no neural regions were identified in which the average activation 

to Bayesian model–based expectations of the “need to stop” (across all trials) changed 

between baseline and posttreatment assessment. Additionally, no cluster survived correction 

for multiple comparison for the P(stop)-Weighted Trial Type × Visit interaction contrast. 

In other words, no neural regions were identified in which the modulation of trial type by 

model-based expectations of the need to stop significantly changed between baseline and 

posttreatment assessment.

Modulation of Bayesian prediction of inhibitory response by trial outcome.—
Activation of one cluster in the right anterior caudate was associated with a significant 

interaction between visit and P(stop) weighted trial accuracy (averaged go success and 

SS vs. SE trials), cluster volume = 10 voxels/640 mm3; peak voxel coordinates (x, y, z): 

19, 23, 10; F(1, 19) = 26.0, p < .001 (see Figure 1). In this region, negative activations 

associated with P(stop) were observed on successful go and SS trials at baseline, which 

significantly decreased, ps = .003–.010, and were not different from zero, ps = .178–.820, at 

posttreatment assessment. In contrast, a positive activation to P(stop) on SE trials observed 

at baseline significantly decreased at posttreatment, p < .001, and was no longer different 

from zero, p = .090 (see Figure 2). Based on the fact that P(stop) activation was of 

similar sign (i.e., negative) on go and SS trials, we specifically extracted SPE activation 

in this region. Consistent with this P(stop) activation pattern, an observed significant 

activation to Bayesian SPE on successful trials significantly decreased to a non-zero level at 

posttreatment, p < .001–p = .004, d = 0.97 for go trials, d = 0.79 for SS. In contrast, an SPE 

deactivation on SE trials at baseline significantly decreased in amplitude at posttreatment, p 
= .002, d = 0.74 (see Figure 3A). We note that overall UPE activation at baseline was not 

significantly different from zero in this region (M = −0.03, p = .861), which is in contrast to 

SPE activation (M = 0.34, p = .048), based on extractions from our second GLM. Moreover, 

SPE activation decreased at posttreatment to a larger extent than UPE activation, F(1, 19) 

= 4.5, p = .046, further pointing to a stronger treatment effect on SPE rather than UPE 

activation change (see Methods section and Supplementary Materials for rationale).
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Further assessing the relation between such pre–post change in P(stop)-based activation 

and symptom reduction, we found that pre–post change in CAPS score was negatively 

correlated with pre–post change in P(stop) activation during successful stop trials, Mdn 
voxel-wise correlation coefficient for ROI: r = −.51, p = .022. Change in CAPS score 

was also positively correlated with pre–post change in Bayesian SPE activation during 

successful inhibition, Mdn voxel-wise correlation coefficient for ROI: r = .50, p = .025 

(see Figure 3B). In summary, pre- to posttreatment neural changes were consistent with a 

decrease in positive activation to the signed difference between actual and anticipated need 

to stop while successfully performing in the task. Importantly, the degree of reduction in this 

signed difference signal during successful performance was proportional to an individual’s 

reduction in PTSD symptoms.

Modulation of Bayesian prediction of error.—We conducted three similar LME 

analyses with the P(err) weighted regressors—P(err) × Go, P(err) × SS, P(err) × SE)—

to assess for any treatment effect on P(err) modulation by trial type after regressing out 

any variance correlated with P(stop) modulation and trial event alone. Assessed contrasts 

included (a) Visit × P(err)-Weighted Trial Type (go vs. stop), Visit × P(err)-Weighted Trial 

Accuracy (success vs. error), and overall visit effect on P(err) activation (independent of 

trial type). No other regions were identified in those contrast analyses. That is, in contrast 

to P(stop)-related effects reported earlier, there was no pre–post change in neural activity 

associated with Bayesian model–based expectation of making an error. This was true 

regardless of trial type or performance accuracy.

Noncomputational (categorical) regressors.—To ensure that any effect of treatment 

on P(stop)-modulated activity we observed was significant above and beyond task event–

related activation, we conducted three similar LME analyses with the categorical (i.e., non

P(stop)) weighted regressors (go, SS, SE) and their interaction with visit. These analyses did 

not lead to any significant clusters of activation. We found no regions consistent with either 

interaction contrast. Thus, the change in P(stop)-related activity reported earlier cannot be 

accounted for by mere task trial–type effects. This further suggests that the modulation of 

task events by Bayesian expectations of inhibitory response in the present analyses provides 

a better model of neural activation change related to PE treatment effects.

Discussion

The goal of the present study was to assess whether a Bayesian framework of inhibitory 

learning can be useful in assessing the neurocognitive impact of PE on inhibitory control 

and whether these potential treatment-related changes relate to clinical improvement. 

Specifically, we wanted to know whether neural activation associated with model-based 

dynamic expectations of the need to stop (i.e., P(stop)) and associated learning can be 

modulated by PE and predict PTSD symptom reduction. We specifically assessed for distinct 

treatment-related effects on two types of Bayesian prediction errors, including one more 

directly reflecting the amount and direction of model-based P(stop) adjustment (i.e., SPE) 

and one more generally related to the model goodness-of-fit (i.e., UPE). We found that 

completing PE (approximately 10 sessions, on average) was associated with a marked 

decrease in neural activation to P(stop) and related SPE in the right caudate, which was 
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further moderated by performance accuracy. Specifically, a positive SPE activation on 

successful trials at baseline was no longer different from zero at posttreatment, and the 

degree of this decrease on successful stops was correlated with PTSD symptom reduction 

based on CAPS scores. In contrast, a negative Bayesian SPE activation on SEs at baseline 

decreased in amplitude at posttreatment assessment, but such change was not related to 

change in PTSD severity. These neural changes appeared in the context of subtle but 

significant improvement in behavioral performance, including RT slowing and improved 

accuracy.

Decreased activation amplitude associated with P(stop) and a Bayesian SPE in the right 

caudate, in the context of improved behavioral performance, is overall suggestive of a 

fine-tuning of model-based behavior resulting in better prediction of the need to inhibit. 

This is reflected by reduced neural signals of signed Bayesian surprise, which reflects 

the discrepancy between expected and observed outcomes, at posttreatment. This finding 

is consistent with the notion that PE helps improve inhibitory learning. In the context of 

exposure to trauma-related cues during such treatment, this improved inhibitory learning 

may account for the therapeutic effects of PE by adjusting expectations of danger, thus 

promoting new, more adaptive responses to those cues. Although we did not have a control 

group, we note (a) the minimum treatment length (at least 4 weeks) and (b) the fact that 

participants completed an SST of nearly the same length outside the scanner prior to the 

fMRI task at both pre- and posttreatment assessments. This speaks against a mere training 

effect occurring between pre- and postassessment and accounting for improved behavioral 

performance and neural changes.

The caudate is part of an adaptive cognitive processing network with various prefrontal 

regions, including motor planning areas, such as the presupplementary motor area (SMA) 

and motor cortex (Duann, Ide, Luo, & Li, 2009) and parietal regions (Di Martino et al., 

2008), and it appears to play an important role in cognitive control and learning of stimulus

action associations (O’Doherty et al., 2004). It has also been robustly implicated in coding 

prediction errors in reward learning and other types of learning-based decision making, 

such as inhibitory control tasks (Gläscher, Daw, Dayan, & O’Doherty, 2010). Overall, these 

studies point to a key role of this region in guiding inhibitory performance through learning 

and an anticipatory model-updating process, which is congruent with the present findings. 

Moreover, PTSD patients fail to show a decrease in activation to threatening cues in the 

caudate and other subcortical areas, consistent with a lack of habituation and learning related 

to threatening cues (Tuescher et al., 2011). Importantly, systematic pre–post decreases in 

amygdala and caudate activation (particularly right caudate) have been associated with 

successful cognitive behavioral therapy and PE treatment outcomes in anxious patients 

(Porto et al., 2009; Whiteside, Abramowitz, & Port, 2012). Overall, this research suggests 

that treatment-related reductions in caudate activation may be therapeutically beneficial for 

PTSD patients in cognitive behavioral treatment, which could be related to improved belief 

adjustment following treatment, as suggested by the present findings.

Although an overall decrease in activation amplitude to such Bayesian prediction errors was 

observed from pre- to posttreatment across all trial types, it is notable that performance 

accuracy modulated such activation pattern. Specifically, at baseline, a positive SPE 
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activation was seen on successful trials, regardless of trial type, whereas a negative SPE 

activation was observed on error trials. Importantly, this modulation by trial accuracy 

appears specific to P(stop)-related activation after controlling for activation related to 

Bayesian model-based P(err) in our analyses. The specific sign of SPE activation on 

successful versus error trials may reflect the relevance of this prediction signal for motor 

planning, in terms of, for example, activating a particular motor pathway when performance 

is successful but inhibiting those or other pathways when an error is made.

The fact that the degree of decreased Bayesian SPE activation on successful trials, and more 

specifically on successful inhibitory (stop) trials, was correlated with larger reductions in 

PTSD symptom severity has important clinical implications. That is, participants with larger 

decreases in SPE activation when successfully inhibiting benefited most from PE treatment. 

In contrast, although there was also a general pre- to posttreatment decrease in SPE signal 

on SEs, such reduction was not related to number of PE sessions attended or change in 

CAPS score. Thus, the ability to fine-tune non–trauma-related inhibitory learning over the 

course of treatment, as reflected by decreases in expectancy violation neural signals during 

successful inhibition, may promote improved inhibitory learning associated with trauma, as 

suggested herein by a reduction in PTSD symptoms. This neural change over the course 

of treatment, reflected by a larger decrease in SPE activation, may in turn help patients 

benefit to a larger extent from exposure-based therapies, such as PE. In line with this 

inhibitory learning framework of exposure, the combination of experiencing discrepancy 

(i.e., exposure) and learning of new CS–US contingencies appears to be important to 

the extinction process, or at least to the reduction of maladaptive fear responses, as it 

promotes new learning and related decrease of expectancy violation (Craske et al., 2014). 

This is consistent with the modality of PE itself in that patients learn to successfully inhibit 

unwanted intrusions by exposing themselves to traumatic cues. This, in turn, allows them 

to experience the discrepancy between their initial heightened expectancies of danger and 

actual outcome (e.g., absence of dangerous events; Foa et al., 2007). Exposure should 

then lead to more accurate predictions and decreased discrepancy between expectations 

and observations during successful inhibition, and, thus, decreased fear-related symptoms. 

Overall, this finding suggests that individuals with PTSD who show a larger decrease in 

caudate sensitivity to nonaffective inhibitory learning model updating between start and end 

of PE treatment may be more likely to benefit from PE and reduce their symptoms.

We note that the present study had several limitations. First, the sample size was small, as 

there are challenges in enrolling and retaining this veteran population (Mott et al., 2014). 

As a result, there are still very few clinical studies of this type, which are needed for future 

research. Based on previous similar computational studies of the SST (Harlé et al., 2014; Ide 

et al., 2013) and PE pre–post comparisons studies (Powers, Halpern, Ferenschak, Gillihan, 

& Foa, 2010; Simmons, Norman, Spadoni, & Strigo, 2013), however, large effect sizes 

were expected (i.e., a Cohen’s d higher than 0.7) for both symptoms and neural changes, 

for which our sample size would provide sufficient statistical power. Second, participants 

in the present study received a range of treatment lengths and intensities in contrast to a 

fixed manualized treatment length. This, however, increases ecological validity and makes 

the findings more generalizable to real-world veteran and community populations. Third, 

the absence of a waitlist or alternative therapy control group makes it difficult to conclude 
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whether the observed effects are specific to PE versus another modality or to PE versus mere 

task repetition although we note that participants were substantially habituated to the SST 

with a prescanning task at both assessment time points. Such controlled studies are needed 

for future research. Fourth, we note that depression and other comorbidities were prevalent 

in our sample, as commonly observed in PTSD populations (Rytwinski, Scur, Feeny, & 

Youngstrom, 2013). Although they are more ecologically valid, the present findings may 

not generalize to individuals without such comorbidities. Finally, this study was restricted to 

combat-related PTSD. The present results need to be replicated in a more trauma-relevant 

inhibitory paradigm and in a broader range of trauma features (e.g., interpersonal).

In conclusion, PE was associated with improved inhibitory learning, as demonstrated 

by decreased neural expectancy violation signals and improved performance. Moreover, 

therapeutic effects seem to be specifically linked to the experience of expectancy violation 

and the selective fine-tuning of model updating activity in the caudate area when successful 

inhibition occurs. The observation of such neural changes in a relatively small sample 

and with a general, not trauma-cued, inhibitory control paradigm, further points to a more 

generalized improvement in inhibitory learning, beyond idiosyncratic trauma narratives. 

Overall, these findings lend credence to the inhibitory learning model of extinction in the 

context of PE therapy (Bouton, 1993; Craske et al., 2014). That is, improved inhibitory 

learning may help facilitate belief adjustment in response to trauma-related cues and 

expectations, which should reduce anxiety and PTSD symptoms.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Blood-oxygen-level-dependent (BOLD) signal associated with a significant interaction 

between visit (baseline vs. posttreatment) and P(stop)-weighted activation to outcome 

(success vs. error) in the right caudate, volume = 640 μl; peak voxel (x, y, z): 19, 23, 

10; F = 26(1,19), p < .001, where P(Stop) is the trial-level expectation of encountering a 

Stop signal.

Harlé et al. Page 17

J Trauma Stress. Author manuscript; available in PMC 2021 November 04.

V
A

 A
uthor M

anuscript
V

A
 A

uthor M
anuscript

V
A

 A
uthor M

anuscript



Figure 2. 
P(stop) activation by trial type at baseline and posttreatment assessment. Negative 

activations associated with P(stop) were observed in the right caudate at baseline on 

successful trials (GO trials and Stop Success/SS trials), which significantly decreased after 

prolonged exposure (PE) treatment, ps = .003–.010, and were not different from zero, ps 

= .178–.820, at posttreatment assessment. In contrast, positive activation to P(stop) on stop 

error trials at baseline significantly decreased at posttreatment, p < .001, and no longer 

differed from zero, p = .090. Error bars indicate standard error of the mean.
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Figure 3. 
(A) Activation (t statistic) to a Bayesian signed prediction error (SPE) by trial type at 

baseline and posttreatment assessment. Positive SPE activations were observed in the 

right caudate at baseline, which significantly decreased after prolonged exposure (PE) 

treatment, p < .001–p = .004, and were not different from zero, ps = .135–.930 at 

posttreatment assessment. In contrast, negative activation to SPE on stop error trials at 

baseline significantly decreased, p = .002, and was no longer different from zero at 

posttreatment, p = .110. Error bars indicate standard error of the mean. (B) Positive 

correlation between pre–post treatment change in SPE mean caudate cluster activation on 

successful stop trials and pre–post change in posttraumatic stress disorder (PTSD) symptoms 

as measured by the Clinician-Administered PTSD Scale (CAPS) total scores. Individuals 

with larger decreases in SPE activation on successful stop trials had larger decreases in 

PTSD severity.
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