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ABSTRACT OF THE DISSERTATION 

 

The molecular signatures of bipolar disorder and lithium treatment 

 

by 

 

Catharine Elizabeth Krebs 

Doctor of Philosophy in Human Genetics 

University of California, Los Angeles, 2018 

Professor Roel A. Ophoff, Co-Chair 

Professor Nelson B. Freimer, Co-Chair 

 

 Bipolar disorder (BD) is a highly heritable mood disorder with a complex genetic 

architecture. It is commonly treated prophylactically with the mood stabilizer lithium, although 

treatment responses vary widely across patients. Both how BD genetic variants confer risk and 

the molecular mechanisms underlying lithium’s therapeutic effects remain poorly understood. 

This dissertation begins with a review of recent findings from BD and lithium-response genetic 

studies and from BD and lithium treatment transcriptomic studies. This review will show that 

while presenting an opportunity to learn valuable information about underlying biology, gene 

expression studies investigating these phenotypes have had low sample sizes and inconsistent 

findings. Then, an original study attempting to fill this gap by exploring the whole blood 

transcriptome in a large BD case-control RNA sequencing sample is reported on. In this study, 

strong effects of lithium treatment and cell-type composition were revealed, pointing to potential 

therapeutic mechanisms of lithium, and underlining the importance of carefully correcting for 

these variables. To put these findings in the context of the current understanding of BD etiology 
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and lithium treatment mechanisms, a comparison was made with findings previously reported 

highlighting a list of high-confidence lithium-associated genes. A gene-set analysis comparing 

genes with differential expression to genes implicated from major psychiatric genome-wide 

association studies revealed that the observed gene expression changes were unrelated to 

genetic risk. The findings herein contribute to the current understanding of the BD transcriptome 

in whole blood and provide evidence for the mechanistic actions of lithium treatment. 
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CHAPTER 1 

 

Introduction 

 

Bipolar disorder (BD) is a debilitating psychiatric disorder characterized clinically by oscillations 

in mood resulting in depressive and manic states interspersed between neutral, euthymic 

states1. The hallmark features of a depressive state are sadness, low energy, social withdrawal, 

hypersomnia, and low self-esteem, whereas the features of a manic state are expansive mood 

and behavior, hyperactivity, grandiosity, reduced need for sleep, and increased self-esteem. 

There is no diagnostic test for BD, and its phenotype is defined solely by its clinical features. 

According to the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5), 

there are several clinical subtypes of BD that are distinguished based on the severity and 

duration of manic and depressive episodes2. BD type I is characterized by at least one full 

episode each of depression and mania. BD type II is characterized by at least one full episode 

of depression and at least one episode of hypomania, which is a less severe version of mania 

that does not impair function or interfere with daily life. Cyclothymic disorder is another type of 

BD characterized by less severe episodes of both depression and mania. Finally, there is a 

category of BD in the DSM-5 for other specified bipolar and related disorders that do not fulfill 

the diagnostic criteria for BD-I, BD-II, or cyclothymic disorder, and there are substance- and 

medication-induced bipolar and related disorders, in which bipolar symptoms should not recur 

once the causal element is removed. 

In addition to episodic mood symptoms, patients with BD can experience cognitive 

disturbances3 and psychosis. Although diagnostically distinct, there is extensive clinical overlap 

between BD, schizophrenia (SCZ), and major depressive disorder (MDD)4,5. Symptoms of a 

depressive episode (depressed mood, low energy, and withdrawn interests) can be observed in 
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all three disorders6, as can the symptoms of a psychotic state (delusions, hallucinations, and 

disorganized thoughts)7. Accordingly, although BD is classified separately from psychotic 

disorders and affective disorders by the DSM-5, it is considered to be a part of the psychosis 

spectrum8 and along the continuum of mood disorders characterized ranging in various 

proportions of depression and mania9. Furthermore, BD is often comorbid with other psychiatric 

disorders such as anxiety disorders, attention-deficit/hyperactivity disorders, and substance use 

disorders10. This clinical heterogeneity leads to problems of underdiagnosis and misdiagnosis, 

causing an estimated 5-10 years on average from disease onset to accurate diagnosis11. 

BD affects approximately 1% of the population worldwide12,13. Individuals with BD are far 

more likely than the general population to die by suicide14, and the disease costs billions of 

dollars each year in health care costs, disability, and early loss of life15,16. Understanding the 

causes of BD, both inherited and environmental, is crucial for alleviating the problems with 

diagnosis and treatment of BD and ultimately for improving the quality of life for individuals with 

BD. With the past decade of advances in genomic technologies, much has been learned about 

the genetic architecture of BD, the ways in which genetic variants confer risk for BD, and gene 

expression patterns associated with BD, all of which have provided insight into elusive 

pathophysiology. In Chapter 2 I discuss genetic and transcriptomic strategies for uncovering 

clues about BD-causing mechanisms and review findings from recent studies. 

The management of patients with BD involves the acute treatment of manic or 

hypomanic episodes, the acute treatment of depressive episodes, along with maintenance care 

to prevent relapse and recurrence17. Lithium was the first medication to be approved by the US 

Food and Drug Administration for the treatment of acute mania in 197018, and since then 15 

additional mood stabilizing or antipsychotic agents have been approved for the treatment of 

acute mania, bipolar depression, and/or maintenance therapy1. Lithium is the third smallest 

element and occurs naturally in the earth as a salt. It had been used for decades for its anti-gout 
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properties by the time it was first discovered to have sedative effects and subsequently used to 

treat mania in the 1940s19. It has a number of physiological effects that, unlike other 

psychopharmacological agents that target neuronal receptors, act mainly by altering intracellular 

second messenger systems via enzymatic inhibition in the phosphatidylinositol signaling and the 

glycogen synthase kinase 3 pathways20. It remains unclear which of these widespread effects 

are therapeutic, although theories exist that the molecular mechanisms of lithium converge to 

biological functions related to neuroprotection and neural plasticity, chronobiology, and 

stabilization of neuronal activity21. The therapeutic window of lithium dosage is very small, 

above which it becomes toxic and can lead to renal impairment, and therefore must be carefully 

monitored via regular serum concentration measurements22,23. Even with careful monitoring, 

patients undergoing long-term lithium treatment may experience a number of adverse side 

effects including hypothyroidism, gastrointestinal problems, polyuria, tremor, 

hyperparathyroidism, skin problems, among others, which contribute to non-adherence rates as 

high as 40%22.  

In addition to high non-adherence rates, there is significant interindividual variability in 

terms of therapeutic response to lithium treatment, with only about 30% of BD patients fully 

responding to this medication21. Family-based studies have suggested a genetic component 

underlying the lithium-response phenotype24,25, and genome-wide association studies have 

provided some evidence for the role of common genetic variation in lithium response26,27. 

Despite issues of non-adherence and non-response, lithium remains the first-line treatment 

option for patients with BD due to its efficacy in preventing relapse and recurrence, its ability to 

treat acute mania, and its ability to reduce suicide risk and overall mortality in patients with 

BD28,29. Aside from providing insight into the elusive therapeutic mechanisms of lithium, studying 

the genetics of lithium response may eventually provide valuable information for clinicians and 

patients to avoid unnecessary treatments. In Chapter 2 I review pharmacogenomics studies that 
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have explored the genetic basis of lithium response, and discuss transcriptomic studies that 

have examined the molecular signatures of lithium treatment. 

The review in Chapter 2 will show that gene expression studies investigating BD and 

lithium treatment phenotypes, while promising for uncovering mechanistic properties, have 

suffered from low sample sizes and had largely inconsistent findings. In Chapter 3, we present 

our own attempt to gain insight into the molecular mechanisms of BD and lithium treatment. In 

this original study, we explored the whole blood transcriptome in a large BD case-control RNA 

sequencing sample via differential gene expression and weighted gene co-expression network 

analyses. Results revealed little to no effects associated with BD diagnosis but pronounced 

effects related to lithium treatment and cell-type composition. We highlight functional pathways 

implicated in the cellular response to lithium, and underline the importance of carefully 

correcting for medication use and cell types in gene expression studies. We compared these 

results with findings previously reported and show a significant, concordant overlap with two 

previous studies of similar design. From these we announce a list of high-confidence genes that 

display altered expression in response to lithium treatment. A gene-set analysis comparing 

genes with differential expression to genes implicated from major psychiatric genome-wide 

association studies was also performed, revealing no enrichment of genetic signal in the lithium-

use genes we discovered. We show how the above findings contribute to the current 

understanding of the BD transcriptome in whole blood, and provide evidence for the mechanistic 

actions of lithium treatment. 

In Chapter 4, I conclude by putting these results in the context of the current 

understanding of BD etiology and lithium treatment mechanisms, and discuss future directions 

for this body of work. 
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CHAPTER 2 

 

Review of bipolar disorder genomics and lithium pharmacogenomics 

 

2.1 Introduction 

BD is a chronic and recurrent disorder characterized by biphasic mood episodes of mania or 

hypomania and depression1. It affects approximately 1% of the world population12 and is a major 

cause of functional impairment, disability, and mortality15. Time to diagnosis is often delayed11, 

but when correctly diagnosed, BD symptoms can be managed. However, even with accurate 

diagnosis and treatment, episodes can be highly recurrent and the disease is associated with 

poor quality of life for patients16,30. In order to reduce time to diagnosis, to treat patients better, 

and to improve quality of life, it is crucial to understand the risk factors and biological 

mechanisms underlying BD. Risk for BD is partially environmental, and some environmental 

factors have been identified including childhood adversity31, advanced paternal age32, and 

others33. But the proportion of risk for BD due to genetic factors, or the heritability of BD (h2), is 

very high, with estimates of up to 85%34. The familial clustering of response to lithium treatment 

suggests a genetic component to this phenotype as well25, and it has even been purported that 

lithium response represents a distinct genetic subtype of BD with homogeneous clinical and 

molecular profiles35. Genetic inquiries about lithium response have the potential to improve 

diagnostics and management, and even provide insight into the etiology of BD. In this chapter, I 

review recent findings in BD and lithium-response genetics, review strategies for characterizing 

the mechanisms of genetic risk for these phenotypes, and discuss the findings of transcriptomic 

approaches. 
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2.2 Bipolar disorder genetics 

Physicians have described the familial nature of psychiatric disorders since the early 1900s, 

when what we now know as bipolar disorder was still called manic depressive illness36. Indeed, 

early genetic epidemiological studies of BD demonstrated substantial heritability, spurring 

decades of linkage analysis studies37. These linkage studies, by scanning the genome for 

regions shared between family members, assumed that genetic risk for BD resided in one major 

locus or very few loci of the genome, and that causal variants followed a simple Mendelian 

pattern of inheritance and would thus segregate between affected and unaffected family 

members of a pedigree. They were altogether unsuccessful37, which we now know is due to 

BD’s complex genetic architecture and high degree of polygenicity38, or heritability arising from a 

large number of loci each with small effect. 

 The polygenic nature of BD and other common disorders was not revealed until 

technologies allowed for genome-wide scans of common genetic variation. The most prevalent 

type of variation in the genome is the single nucleotide polymorphism (SNP). SNPs are single 

base-pair changes to DNA that are common in the population (usually with frequencies greater 

than 5%). Genome-wide association studies (GWAS), which compare frequencies of SNP 

alleles across traits in large samples, have definitively demonstrated the highly polygenic nature 

of BD39-42. The proportion of risk for BD due to common variation in the form of SNPs, also 

known as SNP-based heritability (ℎ𝑆𝑁𝑃
2 ), is about 25% and is highly shared with SCZ (genetic 

correlation, rg SNP ≈ 0.68) and MDD (rg SNP ≈ 0.47)43. The largest BD GWAS to date, 

performed on 20,352 cases and 31,358 controls, discovered 31 SNPs in 30 loci that were 

associated with BD at genome-wide significance (P < 5x10-8) including 20 novel loci42. 

Associated alleles, also called risk alleles, within these loci have small effects, with odds ratios < 

1.2, hence the need for very large case-control samples for discovery. The estimated variance 
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explained by these alleles was only ~8%, meaning the locations of common genetic risk alleles 

associated with BD are still mostly unknown. 

Risk alleles in a given individual can be weighted according to their measured GWAS 

effect and summed to form a polygenic risk score (PRS), which is essentially a measure of an 

individual’s genetic risk for disease44. But because PRS scores calculated from even the largest 

BD GWAS only explain a small amount of variance in liability (8%), their use for the prediction of 

an individual’s risk for BD is not yet powerful enough to discern between cases and controls and 

they therefore have limited clinical utility42. As BD GWAS sample sizes increase, more genetic 

risk variants will be discovered, more variance in genetic liability will be explained, and the 

predictive power of BD PRS scores should improve.  

Although as of yet limited in their clinical utility, BD GWAS findings have shed light on 

the disease’s etiology. Early BD GWAS were small and unconvincing, and it wasn’t until the 

total sample reached over 10,000 that discovery and replication were successful45. There, in a 

collaborative effort combining data from three separate studies, two regions of association were 

reported on that included genes that are now widely accepted as being causal in BD etiology, 

ankyrin 3 (ANK3) and calcium voltage-gated channel subunit alpha-1C (CACNA1C)45. The 

proteins encoded by these genes play important roles in neuronal function: ankyrins link integral 

neuronal membrane proteins like sodium channels to axonal cytoskeletons46, and calcium 

channels mediate membrane potential and neuronal signaling47. The Psychiatric Genomics 

Consortium (PGC) was formed in 2007 as a way to pool samples gathered by different 

investigators and perform very large GWAS for psychiatric disorders in order to optimize power 

for genetic discoveries (www.med.unc.edu/pgc). The first BD GWAS performed by the PGC in 

2011 was the largest until that point, with 7,481 cases, 9,250 controls, and over 45 thousand 

samples available for replication39. In this study, two loci were replicated at genome-wide 

significance, which include the genes CACNA1C, supporting previous findings, and ODZ4, 

http://www.med.unc.edu/pgc
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providing novel evidence for this gene that encodes a neuronally expressed transmembrane 

protein involved in axon guidance39,48. Since then, several additional large BD GWAS have been 

performed, confirming previously implicated susceptibility loci and suggesting many novel 

ones49. However, the strongest signal within many of these loci is in a non-coding variant, many 

loci contain multiple genes, and the causal variants remain largely unknown. Therefore the 

functional mechanisms of BD-associated variants remain largely elusive. Nevertheless, 

promising genes within loci associated with BD (e.g. CACNA1C, GRIN2A, ANK3, TRANK1) so 

far seem to implicate functional pathways related to ion channels, neurotransmitter channels, 

and other synaptic components42. 

As is the case with many complex genetic diseases, common variation only partially 

explains BD heritability (ℎ𝑆𝑁𝑃
2  ≈ .25 compared with h2 ≈ .75)43,50. The additional risk that is 

unaccounted for may be explained by rare variants in the form of single nucleotide variants, 

small insertions and deletions, and larger copy number variants (CNVs) that span thousands to 

millions of base pairs and often encompass several genes. Rare (allele frequency < 1%), highly 

penetrant (convey high risk) CNVs have been found in other psychiatric disorders, particularly in 

SCZ and autism spectrum disorders, but the findings in BD have not been as clear51. A recent 

study analyzing large, rare CNVs found one CNV locus associated with BD, a duplication at 

16p11.2 that is the most significant BD CNV to date, and found evidence confirming the 

hypothesis that CNVs contribute less to BD risk than to schizophrenia risk52.  

Smaller rare variants of just one to a few base pairs in length are more difficult to detect 

as they require exome or genome sequencing. These technologies are much more expensive to 

perform than the SNP arrays that detect common variants and large CNVs. Additionally, directly 

testing for differences in rare alleles like in GWAS is difficult because rare variants have such 

small allele frequencies. Therefore, rare variant studies in BD have either tested for high 

penetrant variant segregation in pedigrees (where alleles segregate with diagnosis in a 
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Mendelian fashion), or have tested groups of less penetrant variants aggregated by gene or 

functional set to increase power. Sequencing studies of BD pedigrees have not been successful 

at finding large effect variants with Mendelian patterns of inheritance53-56. However, studies have 

shown increased burdens of rare variants associated with BD, specifically in genes involved in 

neuronal excitability57 and in genes likely to be relevant for BD56, suggesting that the genetic risk 

for BD not arising from common variation comes from small effect rare variation. 

 

2.3 Lithium-response genetics 

Understanding the predictors for response to lithium in patients with BD is crucial not only for 

optimal management and improvement of quality of life but also for uncovering causal 

mechanisms of this apparent subtype of BD. Several clinical predictors are well-understood and 

remain the most useful factors in predicting response to lithium treatment, including course of 

illness, family history of BD, family history of lithium response, age of BD onset, number of 

hospitalizations, and classic clinical presentation of BD, that is BD without mixed states, rapid 

cycling, and psychotic features58. That lithium responders tend to have a family history of BD 

has been recognized for decades59. More recently, it has been suggested that lithium-

responsiveness is itself familial. In one study, a total of 64 subjects were examined showing 

significantly higher rates of response in family members of responders (67%) than non-

responders (35%; P = 0.014)25. In another study, out of 15 subjects with BD, patients who 

responded to lithium had a lithium-responsive parent and patients who responded to 

antipsychotics had a lithium non-responsive parent24. While small, these studies suggest that 

variation in the lithium-response phenotype may have a genetic basis, and a consortium, The 

International Consortium on Lithium Genetics (ConLiGen), has been set up to investigate this 

hypothesis in large samples60. It has even been argued that the homogenous phenotypic nature 

of lithium-responsiveness may represent a distinct heritable subtype of BD35. If the genetic 
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predictors for lithium response can be untangled, they have the potential to become a powerful 

tool in personalized medicine for patients with BD. 

The evidence for lithium response clustering in families has indeed stimulated an era of 

genetic studies investigating this phenotype. As with BD and other complex traits, the results 

from candidate gene studies should be met with caution due to their limited sample sizes and 

biased nature61. Linkage studies have also been unsuccessful, suggesting that if genetic liability 

for lithium response exists, it is most likely comprised of common variants of small effect62-64. 

Estimates for the SNP heritability of lithium-responsive BD measured against healthy controls is 

about the same as the SNP heritability for the broader BD phenotype: between 0.25-0.29 

depending on the definition of response used26. From these results it is unclear whether lithium-

responsive BD is genetically distinct from non-lithium-responsive BD. Estimates for the SNP 

heritability of lithium responsive BD measured against non-lithium responsive BD have not yet 

estimated its SNP-based heritability to be statistically different from zero26,27. This could be due 

to a lack of power (they have been small with <2,563 cases) and, or it could be that lithium 

response is driven by non-heritable components. A recent study from ConLiGen, leveraging the 

sample size of the largest PGC SCZ GWAS (36,989 cases and 113,075 controls)65 and the 

genetic overlap between SCZ and BD43 investigated the relationship between SCZ PRS and 

lithium response in patients with BD66. In line with previous family studies that found an 

association between poor lithium response and a family history of SCZ67, they found that 

individuals with BD who did not respond well to lithium had higher polygenic load for SCZ.  

Despite the low sample sizes of lithium-response GWAS, two genome-wide significant 

loci have been discovered, although neither have been replicated26,27. The first of these loci, 

discovered with ConLiGen’s dataset of 2,563 BD subjects evaluated for lithium response, is a 

region on chromosome 21 that includes two long noncoding RNAs of unknown biological 

function. The other, discovered comparing lithium responders (N = 1,639) with healthy controls 
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(N = 8,899) is a region on chromosome 2 that includes the gene SESTD1. The implication of 

this gene, which encodes a protein involved in phospholipid regulation, is in line with theorized 

mechanisms of therapeutic lithium action on phospholipid pathways20. Other GWAS have been 

performed on lithium response have been unsuccessful68. Overall, these results provide some 

evidence that lithium responders represent a more homogenous subtype of BD, however it 

remains to be determined if lithium response has distinct genetic liability. Larger sample sizes 

are needed to show this definitively. 

In addition to small sample sizes, another challenge facing studies investigating this 

phenotype is the method of defining lithium response. Determining whether someone is 

responsive to lithium takes years to reliably establish and is muddled by non-adherence due to 

side effects, other medications used, and irregular clinical course69,70. Members of ConLiGen 

have developed a measure of lithium responsiveness called the Alda scale25,71, which quantifies 

the degree of improvement in the course of treatment. This score measures the change in 

frequency and severity of mood symptoms, and is weighted by factors that determine if these 

changes are a result of the actual treatment as opposed to spontaneous improvement or the 

effect of an additional medication. In the largest ConLiGen GWAS, they considered both a 

dichotomous version of the Alda scale score and a continuous one27. The locus on chromosome 

21 they report is associated with the continuously defined measure of lithium response, 

indicating that this measure may be better at capturing the supposed heritable lithium-

responsive subtype of BD. Other studies have used measures of lithium response entirely 

different from the Alda scale26,68. This lack of consensus as to how to define the phenotype may 

lead to inconsistent results in future lithium-response genetics studies. 
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2.4 Functional genomics of bipolar disorder and lithium treatment 

Characterizing genetic variation is just one way to understand the underlying biological 

processes involved in complex traits. Clues about molecular mechanisms can also be 

uncovered by investigating intermediate, molecular phenotypes that are partially heritable and 

partially regulated by environmental factors. Genomic technologies now allow for large-scale, 

unbiased measures of a slew of such molecular phenotypes including gene expression and 

splicing72, DNA methylation73, transcription machinery binding74, chromatin accessibility75, long-

range DNA interactions76, and more. The evidence from a decade of GWAS suggests that 

genetic variants conferring liability for complex traits act in part by altering one or more of  these 

genomic characteristics77. Therefore, functional genomic investigations of BD provide the 

opportunity to learn about the ways in which BD risk variants ultimately lead to the phenotype 

and about more general genomic properties of the disease state.  

Genome-wide scans of gene expression via microarray and sequencing technologies 

have made studying the transcriptome commonplace for complex traits and increasingly so in 

the context of pharmacological agents. Arguably the most common type of transcriptome 

analysis is a differential expression analysis (DEA), which is a search for individual genes with a 

difference in expression between two conditions, i.e. between cases and controls, or across a 

continuous trait. These differentially expressed genes (DEGs) may represent consequences of 

genetic liability, the biological state of the trait itself, or consequences of environmental 

conditions. Many studies of this type have been carried out for both BD and lithium treatment, 

and in Table 1 we present a summary of such studies78-100. This summary reveals a lack of 

consistency between study designs and findings, and perhaps most strikingly, shows the low 

numbers of samples investigated for BD and lithium (N ≤ 62 BD subjects). We included select 

studies performed in SCZ and MDD because of their overlapping genetic risk with BD, which 

may be reflected in the transcriptome, and to illustrate what the results of a study of similar  
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Table 1. Review of BD and lithium previous studies with differential expression analyses. 

First author Year Tissue Diagnosis Condition tested N samples Platform DEG cutoff N DEGs Pathways/ terms enriched in DEGs

Elashoff
77 2007

*Multiple brain 

regions
BD & HC BD vs. HC †

284, 331 Microarray meta P  < 0.001 375

Energy metabolism, protein turnover, MHC antigen response, 

RNA processing, intracellular transport activity, stress 

response, and metallothionein

Matigian
78 2007 LCLs BD & MZ BD vs MZ 3, 3 Microarray FC > 1.3 82

Programmed cell death, protein metabolism, regulation of 

transcription, and Wnt signaling

Choi
79 2011 Prefrontal cortex BD & HC BD vs. HC 40, 43 Microarray FC > 1.3 & FDR < 0.05 367 -

Akula
80 2014

Dorsolateral 

prefrontal cortex
BD & HC BD vs. HC 11, 11 Sequencing FDR < 0.05 5

‡
Transmembrane receptor protein phosphatase activity, 

regulation of transmission of nerve impule, GTPase binding, 

regulation of cyclic nucleotide metabolic processes, and cell 

part morphogenesis

Beech
81 2014 Whole blood BD LR vs. LNR 9, 19 Microarray FDR < 0.1 62 -

Mostafavi
82 2014 Whole blood MDD & HC MDD vs. HC 463, 459 Sequencing P  < 3.6E-6 0 §

Interferon alpha/beta signaling

van Eijk
83 2014 Whole blood SCZ & HC SCZ vs. HC 106, 96 Microarray FDR < 0.05 525 -

EU vs. HC 11, 10 Microarray FDR < 0.05 262 -

MA vs. HC 11, 10 Microarray FDR < 0.05 216 Human diseases, metabolism, ribosome

EU vs. MA 11, 11 Microarray FDR < 0.05 22 -

BA9 BD & HC BD vs. HC 7, 6 Sequencing FC > 1.5 2,085
Morphogenesis, nervous system development, synaptic 

transmission, axon guidance, regulation of action potential, ion 

BA24 BD & HC BD vs. HC 7, 6 Sequencing FC > 1.5 1,643
Synaptic transmission, signaling, cellular homeostasis, 

morphogenesis, nervous system development, ion transport, 

Cruceanu
86 2015

Anterior cingulate 

cortex
BD & HC BD vs. HC 13, 13 Sequencing FDR ≤ 0.05 10 G-protein coupled receptor pathways

Fibroblasts BD ped AF vs. UAF #
6, 6 Sequencing FC > 1.5 & P < 0.05 1 -

iPSCs BD ped AF vs. UAF #
6, 6 Sequencing FC > 1.5 & P < 0.05 0 -

NPCs BD ped AF vs. UAF #
6, 6 Sequencing FC > 1.5 & P < 0.05 18 ‡

Key neuronal processes

Mertens
88 2015 Neurons BD & HC BD vs. HC 6, 4 Sequencing FDR ≤ 0.1 45

Calcium ion signaling, neuroactive ligand-receptor interaction, 

PKA/PKC signaling, and action potential firing

SCZ & HC SCZ vs. HC 31, 26 Sequencing FDR ≤ 0.1 105
Circadian rhythm, prostate cancer, Natural killer cell mediated 

cytotoxicity, signaling pathways, etc.

BD & HC BD vs. HC 25, 26 Sequencing FDR ≤ 0.1 153

GnRH signaling, taste transduction, vascular smooth muscle 

contraction, gap junction, Huntington's disease, chemokine 

signaling pathway, RNA polymerase, Phosphatidylinositol 

signaling system, apoptosis, etc.

Anand
90 2016

Peripheral 

lymphocytes
BD T vs. UT 22, 22 Microarray FDR < 0.05 35

Interferon signaling, glucocorticoid, VDR/RXR, EGF and 

aldosterone receptor signaling, and PI3 kinase signaling

BD LR-T vs. LNR-T 8, 8 Sequencing P  < 0.05 244
DNA repair, protein deacetylation, cellular response to stress, 

nucleoplasm

BD & HC T vs. UT 23, 23 Sequencing FDR < 0.05 2,803 -

Fromer
92 2016

Dorsolateral 

prefrontal cortex
SCZ & HC SCZ vs. HC 258, 279 Sequencing FDR ≤ 0.05 693 -

Hess
93 2016 Whole blood SCZ & HC SCZ vs. HC 300, 278 Microarray mega FDR < 0.1 2,238

Innate immune and inflammatory signaling, cellular stress 

response, response to androgens, glycotic metabolism, cell 

survival and growth, DNA repair, mitochondrial function, etc.

Jansen
94 2016 Whole blood MDD & HC C-MDD vs. HC 882, 331 Microarray FDR < 0.1 129

Interleukin 6 signaling pathway, natural killer cell mediated 

cytotoxicity, apoptosis, immune response

Pacifico
95 2016 Dorsal striatum BD & HC BD vs. HC 18, 17 Sequencing FDR < 0.05 14 Immune response, inflammation, and oxidative phosphorylation

Peterson
96 2016 LCLs BD ped AF vs. UAF 193, 593 Microarray FDR < 0.05 0 -

Fries
97 2017 LCLs BD T vs. UT 62, 62 Microarray FDR < 0.05 236 Cell death

LCLs BD & HC T vs. UT 21, 21 Microarray P  < 0.05E-5 459 Apoptosis, protein transport, cell cycle, RNA processing, etc.

Fibroblasts BD & HC BD vs. HC 10, 11 Microarray P  < 0.05E-4 296 Cell signaling, wound healing, cell adhesion, etc.

LCLs BD & HC BD vs. HC 10, 11 Microarray P  < 0.05E-5 58 Leukocyte activation, apoptosis, immune response, etc.

iPSCs BD BD vs. HC 6, 4 Sequencing FDR < 0.05 3 TREM1

NSCs BD BD vs. HC 6, 4 Sequencing FDR < 0.05 42
Inflammation, GABA receptor signaling, dopamine receptor 

signaling, and TREM1

Cingulate cortex2015Zhao
89

2016

BD & HCWhole blood2014Witt
84

2015Madison
87

2014Xiao
85

Breen
91 LCLs

Kittel-

Schneider
98

2017

2017
Vizlin-

Hodzic
99
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(Table 1 legend cont.) *Multiple brain regions including frontal BA46, BA10, BA6, BA8, BA9, and 

cerebellum. †165 BD individuals (samples partially overlapping). ‡Enrichment analysis was 

performed on genes with nominal p-values (P < 0.05). §Enrichment analysis was performed on 

genes with small p-values (sets of top N genes, N = [30, 60, 100, 150, 300, 500]). #N = 2 

samples with 3 replicates each. Abbreviations: AF, affected; BD, bipolar disorder; BD ped, BD 

pedigree; C-MDD, current major depressive disorder; EU, euthymic; FC, fold change; FDR, 

false discovery rate; HC, healthy control; iPSCs, induced pluripotent stem cells; LCLs, 

lymphoblastoid cell lines; LNR, lithium non-responder; LNR-T, lithium non-responder treated 

with lithium; LR, lithium-responder; LR-T, lithium responder treated with lithium; MA, manic; 

MDD, major depressive disorder; MZ, unaffected monozygotic twin; NPCs, neural progenitor 

cells; NSCs, neural stem cells; SCZ, schizophrenia; T, treated with lithium; UAF, unaffected; UT, 

untreated with lithium. 

 

 

Table 2. Overlapping genes between select previous studies. Criteria for list inclusion was: BD 
or lithium conditions tested, > 10 samples, > 50 DEGs at FDR < 0.1, and differential expression 
analysis statistics available for download. Lists were filtered to include genes with false 
discovery rate (FDR) < 0.05. The exact degree of enrichment was not computed due to an 
unknown number of background genes in each study. Therefore instead, an arbitrary 
background of 12,000 genes was chosen and the significance rank of the top four overlaps was 
reported on in parentheses and cannot be considered to be the true rank of significance. The 
diagonal contains the number of genes in a given list. 

 

design and size might look like for BD or lithium83,84,93-95. Upon checking for overlap of genes 

discovered from these studies (Table 2), the greatest degree of overlap was between two lists 

from the same study99: fibroblast BD versus control (N = 209) and LCL BD versus control (N = 

46) with 15 genes shared99. The greatest degree of overlap between two lists from different 

studies was between treated versus untreated LCLs list98 (N = 236) and the treated versus 

untreated LCLs list92 (N = 1,504) with 62 genes shared. While this reinforces the findings of 

Anand Breen 2 Choi Fries Kittel 1 Kittel 2 Kittel 3 Pacifico

Anand 35 2 0 0 2 0 1 0

Breen 2 2 1,504 25 62 71 15 2 0

Choi 0 25 347 3 7 8 2 0

Fries 0 62 (2) 3 236 15 4 0 0

Kittel 1 2 71 (3) 7 15 (4) 358 12 15 0

Kittel 2 0 15 8 4 12 209 2 0

Kittel 3 1 2 2 0 15 (1) 2 46 0

Pacifico 0 0 0 0 0 0 0 13
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these three studies and is reassuring given their similarity in design, overall the overlap between 

all eight lists was low. For the 28 pairwise comparisons made, the median number of genes 

shared between lists was two. This inconsistency is likely due to varying tissue types, designs, 

sample sizes, and analysis methods between studies. 

Although the sharing of individual genes was low between these studies, several 

functional patterns emerge from pathway enrichment analyses. In the studies investigating 

differences between BD cases and healthy controls, terms related to metabolic processes, 

inflammation and immune response, apoptosis and cell death, and cell signaling are 

consistently enriched. Studies utilizing brain tissue or neuronal cell lines consistently show 

enrichment of neuronal-related functions, such as terms related to neurotransmitters and 

synapses. And in studies investigating lithium treatment, terms related to cell signaling are 

consistently enriched. These processes contribute to the current understanding of the cellular 

and molecular alterations associated with BD that cause internal neuronal dysfunction and alter 

neuronal interconnectivity, such as mitochondrial dysfunction, endoplasmic reticulum stress, 

neuroinflammation, oxidation, and apoptosis101. This neuronal dysfunction may reduce synaptic 

plasticity, alter circuitry and brain structure, and ultimately lead to the mood symptoms, changes 

in energy levels, and cognitive impairments associated with BD102. Likewise, lithium may restore 

some of these higher level mechanisms by reversing hyperexcitability and neuroinflammation in 

a neuroprotective manner89. These lines of research investigating the cellular and molecular 

signatures of BD and lithium are in their early stages. Larger sample sizes and in vitro 

innovations are needed to elucidate these mechanisms with higher reliability and at higher 

resolution. It is also unclear if these processes are causally linked to BD. Genetic findings 

should be incorporated with gene expression findings to determine if this is the case. 
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CHAPTER 3 

 

Whole blood transcriptome analysis in bipolar disorder reveals strong lithium effect 

 

3.1 Introduction 

Bipolar disorder (BD) is a debilitating psychiatric disorder affecting approximately 1% of the 

population worldwide and presenting a major public health burden13,15. It is characterized 

clinically by oscillations in mood resulting in depressive and manic states interspersed between 

neutral, euthymic states, but its pathophysiological characteristics are not well understood15. It is 

clinically heterogeneous2, frequently comorbid with other psychiatric disorders10, and often 

difficult to diagnose11. Even when treated properly, recurrence and relapse are common16. The 

first-line treatment for BD is lithium, which is used not only for the long-term prevention of 

recurrent mood symptoms but also for the prevention of suicide for the treatment of acute 

mania23,29. However, only about 30% of BD patients fully respond to lithium, it has several 

adverse side effects, and its mechanisms of action are not well understood21,22,103. 

 In order to improve diagnostics, treatments, and quality of life for individuals with BD, it is 

crucial to understand its risk factors and underlying biological mechanisms. Risk for BD is highly 

genetic, with heritability estimates as high as 85%34, and common variation explaining up to a 

third of that43. Family studies suggest that response to lithium treatment has a genetic 

component as well, but GWAS sample sizes for lithium-response have been low and findings 

have therefore been inconsistent and sparse24-27. Investigating molecular phenotypes as an 

intermediate measure between genetic variation and clinical variation serves as an alternative 

strategy for uncovering disease mechanisms. A review of previous work exploring BD and 

lithium treatment transcriptomics can be found in Chapter 2. Briefly, studies have had low 
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sample sizes and a wide variety of designs and tissue types, and findings have been largely 

inconsistent (see Table 1).  

 Therefore, to explore the gene expression changes associated with BD and lithium use, 

we collected RNA sequencing data from peripheral whole blood in a large case-control cohort 

from The Netherlands, creating the largest transcriptomic datasets of BD and lithium treatment 

to date. Collection of whole blood, because of its accessibility, allows for larger sample 

collections than post-mortem brain tissue, thus improving power needed to detect expected 

subtle changes. We examined gene expression differences between groups both at the 

individual gene level and at the level of gene co-expression. While gene expression differences 

were minor between subjects with BD and controls, we identify widespread differences between 

subjects being treated with lithium and those not. These differences are partially but not entirely 

explained by differences in cell-type composition. Our results suggest there are nominal BD-

related gene expression effects in blood but numerous effects related to lithium treatment. This 

work highlights the importance of accounting for medication use in psychiatric transcriptomic 

studies and provides insight into the molecular mechanisms of lithium’s attenuating effects on 

mood disturbances. 

 

3.2 Methods 

3.2.1 Participants 

Data were generated according to protocols approved by the respective local ethics committees 

at the University Medical Center Utrecht and the University of California Los Angeles. Patients 

were recruited via clinicians, the Dutch patients’ association, pharmacies, and advertisements. 

Controls were recruited via advertisements and involvement in previously studies after having 

agreed to be re-contacted for new research. Participants were included upon the criteria of 

having at least three Dutch grandparents and being older than 18 years of age. Only patients 
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with a diagnosis of BD-I or BD-II and who were in a euthymic state were included. Control 

subjects did not have a diagnosis of BD or any psychotic or neurological disorder and had no 

first-degree relative with a diagnosis of BD or any psychotic disorder. Diagnosis was confirmed 

via assessment with the Structured Clinical Interview for DSM-IV (SCID) (www.scid4.org) by 

carefully trained staff members consisting of PhD students, research assistants, trainee 

psychiatrists, psychologists, and medical students, under the supervision of experienced 

psychiatrists. Participants were considered euthymic if they did not meet DSM-IV criteria for a 

mood episode in the last month according to the SCID. Of the recruited participants, peripheral 

whole blood was drawn and processed for genotyping and RNA sequencing from 240 controls 

and 240 cases, of whom 13 had a diagnosis of BD-II and 227 had a diagnosis of BD-I. 

In addition to diagnosis assessments and blood sampling, subjects were assessed for 

medication use and tobacco use. Information about subjects’ lithium use was gathered via self-

report regarding treatment from their own physician in three ways: 1) in an online medical 

questionnaire that inquired about medication use, 2) during the on-site assessment where a list 

of current and lifetime medication use was discussed, and 3) in an assessment of a lithium 

satisfaction questionnaire. The data of these three measures was combined to accurately 

determine the current use of lithium of subjects with BD. Information regarding other medication 

use, response to lithium, and past lithium use was incomplete and less reliable. Nevertheless, 

this data showed that a majority of subjects being treated with lithium, since starting the 

medication, have experienced less frequent (N = 104, 68.4%) and less severe (N = 113, 74.3%) 

mood episodes, and are satisfied or very satisfied with the use of lithium (N = 113, 74.3%). Of 

the 152 subjects using lithium, 59 were using lithium with another mood stabilizer and 93 were 

using lithium as their only mood stabilizer. Without a more extensive lithium-response 

evaluation, lithium use in this study cannot be considered as lithium response, but we conclude 

http://www.scid4.org)/
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that it can be considered as a loose proxy. Data about antipsychotic use was too sparse for this 

to be considered as a phenotype in subsequent analyses. 

 

3.2.2 Sample preparation and RNA sequencing 

Whole blood was collected in PaxGene Blood RNA tubes and total RNA extracted using the 

PAXgene isolation kit (Qiagen) according to manufacturer’s protocols. RNA integrity number 

(RIN) values were obtained using Agilent’s NRA 6000 Nano kit and 2100 Bioanalyzer. RNA 

concentrations were determined using the Quant-iT RiboGreen RNA Assay kit. The UCLA 

Neuroscience Genomics Core subsequently performed RNA sequencing and prepared sample 

libraries using the TruSeq Stranded RNA plus Ribo-Zero Gold library prep kit to remove 

ribosomal and globin RNA to enrich for messenger and noncoding RNAs. Concentration of the 

sequencing library was determined on a TapeStation and a pool of barcoded libraries were 

layered on eight lanes of the Illumina flow cell bridge amplified to raw clusters. An average of 

24.9 million paired-end reads of 75 bases in length per sample were obtained on an Illumina 

HiSeq 2500. The raw sequence data were processed for quality control (QC) using FastQC, 

after which all samples were deemed suitable for downstream analysis. 

 

3.2.3 RNA-seq alignment and gene expression quantification 

Reads were mapped to human reference genome hg19 using TopHat2104 allowing for two 

mismatches yielding an average mapping rate of 96.0% per sample and an average concordant 

pair mapping rate of 89.8% per sample. Samples had an average of 33.9% duplicate reads. 

Picard Tools were used to obtain 18 different sequencing metrics such as number of reads, 

percent mapped reads, and number of coding bases, that were examined for QC and then 

processed for dimension reduction using principal component analysis. The first three principal 

components, which explain 75.9%, 16.9%, and 6.4% of variance, respectively, were used as 
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covariates in subsequent analyses. Known Ensembl gene levels were quantified using HTSeq 

in the union mode to obtain integral counts of reads that intersect the union of all transcripts of 

genes. Principal component analysis (PCA) of gene expression quantification was used for data 

visualization and additional QC, after which four samples were removed for apparent mix-up 

(Supplemental Methods). Thirty-two additional samples were excluded due to missing clinical 

information. Differential expression and co-expression analyses were therefore limited to a set 

of 444 subjects (240 cases and 204 controls). 

 

3.2.4 Normalization, covariate correction, and differential expression analysis 

Gene expression counts from HTSeq were filtered for genes having > 10 counts in 90% of 

samples, yielding 12,344 genes for subsequent analyses. Filtered counts were converted to 

log2-counts-per-million (log-cpm) to account for differences between samples in sequencing 

depth and to stabilize variances at high counts. Then, the mean-variance relationship was 

modelled with precision weights at the individual observation level using limma voom105. Briefly, 

voom non-parametrically estimates the mean-variance trend of the logged read counts and uses 

this to predict the variance of each log-cpm value. The predicted variance is then used as a 

weight, which is incorporated into the linear model procedure during differential expression 

analysis. These gene-wise weighted least-squares linear models are fitted to the normalized 

log-cpm values, taking into account the voom precision weights and the final covariate model, 

generating a coefficient for the effect of each variable on each gene’s expression: 

 

gene expression ~ trait of interest + covariates 

 

Then, for each gene, the coefficient for the trait of interest is statistically tested for being 

significantly different from zero. P-values from this test were corrected for multiple testing using 
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the Benjamini-Hochberg false discovery rate (FDR) estimation, and a gene was considered to 

be differentially expressed if it had an FDR < 0.05. The final covariate model for differentially 

expressed genes (DEGs) between BD cases and controls included the following variables: age, 

sex, lithium use, tobacco use, assessment group, RIN, sequencing plate, and sequencing 

metric PCs 1 through 3. The final covariate model for DEGs between subjects being treated with 

lithium (i.e. lithium users) and non-lithium users included the following variables: BD diagnosis, 

age, sex, tobacco use, assessment group, RIN, sequencing plate, and sequencing metric PCs 1 

through 3. An overview of covariates can be found in Supplementary Table 1. DEGs were 

checked for overlap and concordance with other datasets (Supplementary Methods). Fold 

changes (FC) reported are in log2 fold change units. 

 

3.2.5 Co-expression network analysis 

To determine networks of genes with correlated expression, weighted gene co-expression 

network analysis (WGCNA)106 was performed using the WGCNA package in R. WGCNA 

defines a network of genes as nodes with edges between genes based on pairwise correlations 

between genes, and separates the network into modules of gene clusters with highly 

coordinated expression. To do this, first the 12,344 filtered and normalized genes were 

residualized adjusting for the following covariates: age, sex, tobacco use, assessment group, 

RIN, sequencing plate, and sequencing metric PCs 1 through 3. Then, a connectivity metric 𝛼ij 

was calculated for each pair of genes i and j by taking the absolute value of the Pearson 

correlation coefficient between genes, and transforming that values to a power:  

 

𝛼ij = |rij|𝛽  
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The 𝛽 parameter was chosen according to the approximate scale-free topology criterion 

described by Zhang and Horvath. We selected β = 7 using the soft thresholding approach and 

the resulting adjacency matrix of all pairwise correlations was calculated.  

 Modules of co-expressed genes were then defined as follows. First, network 

interconnectedness was determined by applying a topological overlap measure to the adjacency 

matrix. Average linkage hierarchical clustering was then derived from the topological overlap 

matrix, and modules were identified using the dynamic tree cut algorithm implemented in the 

WGCNA package. Then the gene expression profiles of each module q were summarized by 

calculating the module eigengene E(q), which is defined as the first principal component of the 

expression matrix of that module. Each gene was then assigned a continuous, fuzzy measure of 

module membership for each module, regardless of that gene’s binary module assignment from 

the dynamic tree cut. Module membership K𝑐𝑜𝑟,𝑖
(𝑞)

 or KME is calculated by correlating the 

transformed expression of gene i with the module eigengene value for module q: 

 

KME ∶= cor(xi , E(q)) 

 

The module membership measure is between -1 and 1 and specifies how close node i is to the 

module q. Larger absolute value module memberships correspond to more similar gene-

eigengene pairs. 

 To determine biologically significant modules, gene significance measures were 

assigned to each gene for each of our traits of interest, including BD diagnosis and lithium use, 

by calculating the absolute correlation between the trait and the expression profiles. Then a 

measure of module-trait significance was calculated by correlating module membership values 

with gene significance values. An association was considered significant if its P-value 

surpassed Bonferroni correction for testing multiple modules (P < 𝛼 = 0.05/Nmodules). Finally, 
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intramodular connectivity kIM was calculated to determine the level of connectivity for the genes 

in modules significantly associated with traits of interest.  

 

3.2.6 Functional annotation 

The Database for Annotation, Visualization, and Integrated Discovery (DAVID, v6.8)107 was 

used for functional annotation of each gene list. We used three gene lists from the differential 

expression analysis: the 976 lithium DEGs at FDR < 0.05, the 754 up-regulated lithium DEGs at 

FDR < 0.05, and the 222 down-regulated lithium DEGs at FDR < 0.05. We also used gene lists 

from the five co-expression network analysis modules that were significantly associated with 

BD: M1 (Ngenes = 2092), M7 (Ngenes = 700), M9 (Ngenes = 55), M11 (Ngenes = 622), and M26 (Ngenes 

= 484). The full set of 12,344 filtered and normalized genes used as input for differential 

expression and co-expression network analyses was used as background to determine 

overrepresentation in each of the gene lists. The functional annotation clustering tool was 

applied using unique Ensembl IDs and the following databases: SP_PIR_KEYWORDS, 

UP_SEQ_FEATURE, GOTERM_BP_FAT, GOTERM_CC_FAT, GOTERM_MF_FAT, 

BIOCARTA, KEGG_PATHWAY, INTERPRO, UCSC_TFBS. Cluster annotations were called 

significant if the enrichment was greater than 1.0 and at least 1 gene list in the annotation 

cluster survived Bonferroni correction (P < 0.05). 

 

3.2.7 Estimation of cell type proportions 

To estimate cell-type composition in our sample we employed the CIBERSORT online software 

(cibersort.stanford.edu)108. Briefly, CIBERSORT uses reference gene expression signatures to 

estimate the relative proportions of cell types in tissues with complex, heterogeneous cell 

composition via linear support vector regression. The reference dataset we used to deconvolve 

our mixture of whole blood cell types was the validated leukocyte gene signature matrix that is 

http://cibersort.stanford.edu/
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provided with the CIBERSORT software, termed LM22108. It contains 547 genes whose 

expression discriminate between 22 different human hematopoietic cell phenotypes (Table 3), 

including seven T-cell types, naive and memory B cells, plasma cells, natural killer cells, and 

myeloid subsets. 

 

Table 3. Leukocyte reference cell types. *Estimated as zero in all samples. 
 
 
 
 To prepare our gene expression data for input to CIBERSORT, raw expression counts 

from HTSeq were converted to transcripts per million (TPM). Using the resulting matrix of TPM 

values for our 480 samples and the LM22 gene signature matrix as input, CIBERSORT was run 

online with 100 permutations and with quantile normalization disabled as recommended for 

RNA-seq data. The output matrix consisted of deconvolution results with relative fractions of cell 

types normalized to 1 across all cell subsets for each sample. These estimated cell-type 

proportions were then residualized using a linear regression model adjusting for the following 

covariates: sex, age, tobacco use, sequencing plate, RIN, and sequencing metric PCs 1 through 

3. Then, residualized cell-type estimates were used to predict lithium use in a stepwise linear 

regression using the stepAIC function in the MASS package in R. The estimated cell-type 

B cells memory Neutrophils

B cells naive NK cells activated

Dendritic cells activated NK cells resting

Dendritic cells resting Plasma cells

Eosinophils T cells CD4 memory activated

Macrophages M0 T cells CD4 memory resting

Macrophages M1* T cells CD4 naive

Macrophages M2 T cells CD8

Mast cells activated* T cells follicular helper*

Mast cells resting T cells gamma delta

Monocytes T cells regulatory*

LM22 reference cell types
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proportions were also appended to the table of technical and biological covariates and then 

used to re-run the differential expression analysis while accounting for cell-type heterogeneity in 

the sample. 

 

3.2.8 Enrichment of cell types in co-expression modules 

The enrichment of LM22 cell types in gene co-expression modules determined from WGCNA 

was calculated in two ways. First, the hypergeometric overlap between modules and cell type 

signature genes was calculated. The binary matrix of LM22 signature genes provided by 

Newman et al.108, where 1 denotes that a gene was significantly differentially expressed in that 

particular cell type and 0 denotes that it was not, was used to extract lists of signature genes for 

each cell type, or genes with a value of 1. These lists are partially overlapping, with 262 genes 

being unique to a given list and 285 genes being shared between ≥ 2 lists (maximum 10). Then, 

using the GeneOverlap library in R, the hypergeometric overlap was calculated between each of 

these 22 cell type signature gene lists and each of the 27 module gene lists using the full set of 

12,344 filtered and normalized genes as background.  

Second, binary cell type signatures were used to predict module membership values in a 

linear model. We reasoned that this method might be more powerful than a strict overlap due to 

the fact that every gene has a module membership value for every module, regardless if it was 

assigned to that module. The gene co-expression network output, which consists of module 

membership values for each gene for each module, was limited to the set of LM22 signature 

genes that were expressed in our sample (Ngenes = 331). These values were then used as an 

outcome in a linear model, with the binary matrix of LM22 signature genes as predictors. To 

avoid multiple testing penalties, only five regressions were run on the five modules that were 

associated with lithium: M1, M7, M9, M11, and M26. 
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3.2.9 Integration of GWAS data 

Analyses were performed across five GWAS traits from publicly available datasets (bipolar 

disorder, lithium-response as a continuous trait, lithium-response as a dichotomous trait, 

schizophrenia, and self-reported depression) and 2 sets of DEGs (BD at FDR < 0.2 and lithium-

use at FDR < 0.05). Differential expression log2 fold changes and FDR-corrected p-values for 

each of the 12,344 genes expressed at > 10 counts in 90% of samples were obtained from 

limma to integrate whole-blood gene expression signatures with GWAS data using Multi-marker 

Analysis of GenoMic Annotation (MAGMA v1.06)109.  

GWAS summary statistics were obtained for the following five GWAS traits: 

1) SCZ65: 36,989 cases and 113,075 controls; 

2) BD42: 20,352 cases and 31,358 controls; 

3) 23andMe self-reported depression110: 75,607 cases and 231,747 controls; 

4) Lithium-response, continuous A score (B score > 4 excluded)27: N = 2,098; 

5) Lithium-response, dichotomous phenotype (total score > 7)27: N = 1,918. 

The 1000 Genomes Project Phase 3 release European reference panel (N = 503) was used to 

model LD in all analyses111. Eight gene lists were used from two different DEG models along 

with a positive and negative control:  

1) Lithium-use DEGs at FDR < 0.05: N = 897 genes; 

2) Up-regulated ithium-use DEGs at FDR < 0.05: N = 680 genes; 

3) Down-regulated lithium-use DEGs at FDR < 0.05: N = 217 genes; 

4) BD DEGs at FDR < 0.2: N = 630 genes; 

5) Up-regulated BD DEGs at FDR < 0.2: N = 389 genes; 

6) Down-regulated BD DEGs at FDR < 0.2: N = 241 genes; 

7) Positive control gene-set: the top 100 most significant genes from a random 

draw of N = 1,000 using the BD GWAS gene-level test statistics; 
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8) Negative control gene-set: a random draw of N = 1,000 genes using the BD 

GWAS gene-level test-statistics. 

MAGMA was used to run gene property analyses, which uses a multiple regression 

framework to associate a continuous gene variable to GWAS gene level p-values. SNPs were 

mapped to genes using Ensembl gene IDs and NCBI build 37.3 gene boundaries +/- 10kb 

extensions using the -- annotate flag. For each phenotype, we generated gene-level p-values by 

computing the mean SNP association using the default gene model (‘snp-wise=mean’). We only 

included SNP with MAF > 5% and dropped synonymous or duplicate SNPs after the first entry 

(‘synonym-dup=drop-dup’). For each annotation, we then regressed gene-level GWAS test 

statistics on the corresponding gene annotation variable using the ‘--gene-covar’ function while 

adjusting for gene size, SNP density, and LD-induced correlations (‘--model correct=all’), which 

is estimated from an ancestry-matched 1KG reference panel. In all analyses, we included only 

genes for which we had both the gene variable and GWAS gene level test statistic available.  

 

3.3 Results 

3.3.1 Sample description 

Subjects comprised of individuals of Dutch ancestry from the Netherlands from which whole 

blood was drawn and a clinical evaluation was gathered. The sample consisted of 240 cases 

with a diagnosis of BD (94.6% BD-I and 5.4% BD-II) and 240 controls. Of the BD cases, 152 

were being treated with lithium at the time of assessment. RNA from all 480 blood samples was 

prepared using the TruSeq Stranded RNA plus Ribo-Zero Gold library kit then sequenced on 

the Illumina HiSeq 2500, yielding an average of 24.9 million paired end reads of 75 bases in 

length per individual. Thirty-six RNA-seq samples were excluded due to missing clinical 

information or apparent sample mix-up. Differential expression and co-expression network 

analyses were therefore limited to a set of 444 subjects (240 cases and 204 controls; Table 4). 
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Table 4. Sample demographics. P-values for categorical variables were calculated using 
Fisher’s exact test. P-values for continuous variables were calculated using Student’s t-test. SD, 
standard deviation. 
 

3.3.2 Minimal changes in bipolar disorder gene expression 

To explore the transcriptomic signatures of BD, we first evaluated whether subjects with BD 

harbor transcriptional differences on a per gene level compared with controls. Gene expression 

counts were normalized to log counts per million (log-cpm) to account for sequence depth, then 

the mean-variance relationship was accounted for with limma voom105. Finally, known clinical 

and technical covariates, including lithium use, were corrected for in gene-wise linear models. 

Of the 12,344 genes tested, only six were differentially expressed in BD after correcting for 

multiple testing (FDR < 0.05; Figure 1). The differences in expression were very small, with 

absolute fold changes ranging from 0.116 to 0.437. While the number of identified differentially 

expressed genes (DEGs) was too small to perform functional enrichment analysis, we did find 

that three of the six genes (COG4, DOCK3, and BBS9) were expressed in GTEx frontal cortex 

tissue (median TPM > 1) and show relatively stable expression across brain cell types except 

for DOCK3, which is enriched in neurons (fold change relative to other cell types = 6.823; Table 

5). Four of the genes were present in the Stanley Genomics brain gene expression database, 

and two of these were found to be differentially expressed in BD individuals in at least one 

study, COG4 and DOCK3, although the latter was altered in the opposite direction. COG4 was 

also reported as differentially expressed in a schizophrenia mega-analysis of nine whole blood 

Case Control Lithium user Non-lithium user

P P

Diagnosis 240 204 - 152 (100%) 88 (30.1%) <2.20E-16

Female sex 131 (54.6%) 119 (58.3%) 0.444 90 (59.2%) 160 (54.8%) 0.420

Lithium use 152 (63.3%) 0 (0%) <2.20E-16 152 292 -

Tobacco use 74 (30.8%) 39 (19.1%) 6.14E-03 48 (31.5%) 65 (22.3%) 0.0387

Age 50.3 (12.4) 43.4 (14.8) 1.95E-07 48.0 (13.1) 46.7 (14.4) 0.309

Mean (SD) Mean (SD)

N (%) N (%)
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microarray datasets 94. Using polygenic risk scores (PRS) for BD as the differential expression 

trait of interest rather than the dichotomous case-control phenotype did not yield any significant 

genes, while PRS did significantly differ between BD cases and controls (P = 3.85 x 10-6; 

Supplementary Figure 1; Supplementary Methods). 

 

Figure 1. Genes significantly differentially expressed in BD. q, FDR-adjusted P < 0.05. 
 
 

 

Table 5. BD DEG expression in brain tissue and cell types and results from Stanley Genomics 
analyses. TPM, transcripts per million; FPKM, fragments per kilobase million; NS, not 
significant; -, not present. 
 
 
3.3.3 Widespread subtle gene expression changes in lithium users  

To investigate the effects of lithium on gene expression, we analyzed differences in the 

expression of individual genes between subjects undergoing lithium treatment (N = 152) and 

subjects not undergoing lithium treatment (N = 292). Following the same differential expression 

Ensembl ID
Gene 

symbol

Median expression 

in GTEx frontal 

cortex (TPM)

Fetal 

astrocytes

Mature 

astrocytes
Neurons

Oligoden-

drocytes

Microglia/ 

macrophage
Endothelial

Stanley Genomics differential 

expression results for BD

ENSG00000203872 C6orf163 0.2999 - - - - - - NS

ENSG00000103051 COG4 27.44
1.621 

(1.159)

2.953 

(2.607)

1.095 

(0.728)

1.414 

(0.982)

0.928 

(0.603)

0.606 

(0.378)

NS in combined analysis, down-

regulated in three studies

ENSG00000249859 PVT1 0.5569 - - - - - - NS

ENSG00000088538 DOCK3 37.62
1.953 

(0.742)

1.727 

(0.645)

8.723 

(6.823)

1.891 

(0.715)

0.516 

(0.177)

0.305 

(0.103)

NS in combined analysis, down-

regulated in one study

ENSG00000267702 - 0.04648 - - - - - - -

ENSG00000122507 BBS9 4.311
10.113 

(1.385)

7.621 

(0.977)

5.721 

(0.699)

9.392 

(1.262)
4.03 (0.473)

9.739 

(1.320)
-

Mean expression in Zhang in FPKM (FC relative to the other five cell types)
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pipeline as above, we found 976 genes with small differences (|FC| mean = 0.201, max = 0.820, 

SD = 0.100) in gene expression between lithium users and non-lithium users (Figure 2A). These 

genes were enriched for biological terms related to Ca2+ signaling and other signaling 

pathways, and immunity (Figure 2B). To distinguish between up- and down-regulated gene 

pathways, we stratified genes by their direction of change in expression. The 754 up-regulated 

genes were annotated for many of the same terms as the full set but with greater enrichment 

scores, indicating that the up-regulated genes are driving the enrichment scores in the full set 

(Figure 2B). Of the 976 lithium-use DEGs, 804 were expressed in GTEx frontal cortex samples 

(TPM > 1), and 488, 553, 503, 478, 512, and 403 were expressed in neurons, fetal astrocytes, 

mature astrocytes, oligodendrocytes, microglia/ macrophages, and endothelia, respectively 

(FPKM > 1). However, none of these gene sets were significantly enriched (hypergeometric P > 

0.05). 

 Because our study is the largest of its kind to date, a replication dataset was unavailable. 

Nevertheless, the 976 lithium-use DEGs were tested for overlap with lists of DEGs from similar 

studies found in the literature (Table 6). While these studies vary widely in their design, tissue 

type, and sample size, and even though there is no study with the same design, tissue type, and 

size as ours, we were able to find a significant overlap between our 976 lithium-use DEGs and 

the lists from two studies. In the first study, DEGs were detected by comparing peripheral 

monocyte gene expression in subjects before and after lithium monotherapy. Of the 35 DEGs 

discovered, 18 were shared with the current study (hypergeometric P = 4.66 x 10-12), and all 18 

were concordant in direction (Figure 3A). In the second study, DEGs were detected by 

comparing LCL gene expression before and after lithium treatment in vitro. Of the 1,504 DEGs 

discovered, 134 were shared with our study (hypergeometric P = 9.23 x 10-3), and 84.6% of 

these were concordant in direction (Figure 3B). There were two genes shared between all three 
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lists, RFX2 and SLC29A1. We announce genes in these overlapping lists as high confidence 

lithium-associated genes. 

 

Figure 2. Genes significantly differentially expressed in lithium users. (A) 976 genes differentially 
expressed between lithium users and non-lithium users (shown as blue triangles, FDR-adjusted 
P < 0.05; all other genes tested shown as light gray circles). (B) DAVID107 functional annotation 
cluster enrichment of all 976 DEGs (upper) and 754 up-regulated DEGs (lower). Enrichment 
scores increase when the gene list is limited to up-regulated genes only. Clusters were 
considered significant if the enrichment score > 1 and at least one term in the cluster survived 
Bonferroni correction for multiple testing. 
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Table 6. Overlap between lithium-use DEGs and previous studies. DEG lists from previous 
studies were included upon the following criteria: >10 samples, > 50 DEGs at FDR < 0.1, and 
data available for download. *Bonferroni-Holm P < 0.05   
 

 

Figure 3. Comparison of fold changes of overlapping DEGs in the current study (Krebs, et al.) 
overlapping with Anand, et al.91 (Left) and with Breen, et al.92 (Right). Genes whose effects are 
concordant in direction are colored in blue. 
 
 
 
 
 
 

First 

author
Year Tissue Diagnosis

Conditions 

tested

N 

samples
Platform FDR N DEGs P N

% 

concordant
r P

Anand 2016
Peripheral 

lymphocytes
BD T vs. UT 22, 22 Microarray 0.05 35 4.66E-12 18 100 0.35 0.151

Beech 2014 Whole blood BD LR vs. LNR 9, 19 Microarray 0.1 62 0.991 1 - - -

Breen 2016 LCLs BD & HC T vs. UT 23, 23 Sequencing 0.005 1504 9.23E-03 134 84.6 0.550 2.20E-16

Choi 2011
Prefrontal 

cortex
BD & HC BD vs. HC 40, 43 Microarray 0.05 379 0.998 13 - - -

Fries 2017 LCLs BD T vs. UT 62, 62 Microarray 0.05 236 6.62E-02 24 - - -

Fromer 2016
Prefrontal 

cortex
SCZ & HC SCZ vs. HC 258, 279 Sequencing 0.05 693 0.976 41 - - -

Hess 2016 Whole blood SCZ & HC SCZ vs. HC 300, 278 Microarray 0.05 1613 0.852 109 - - -

Jansen 2016 Whole blood MDD & HC C-MDD vs. HC 882, 331 Microarray 0.1 142 0.480 10 - - -

LCLs BD & HC T vs. UT 21, 21 Microarray * 459 0.862 2 - - -

Fibroblasts BD & HC BD vs. HC 10, 11 Microarray * 296 0.971 18 - - -

LCLs BD & HC BD vs. HC 10, 11 Microarray * 58 1.00 4 - - -

van Eijk 2014 Whole blood SCZ & HC BD vs. HC 106, 96 Microarray 0.05 525 0.120 34 - - -

SCZ & HC BD vs. HC 31, 26 Sequencing 0.1 105 0.368 9 - - -

BD & HC BD vs. HC 25, 26 Sequencing 0.1 153 0.973 6 - - -

Intersection with current study

Zhao 2015

2017
Kittel-

Schneider

Cingulate 

cortex

Genes usedStudy description
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3.3.4 Modules of co-expressed genes are associated with lithium use 

We hypothesized that in addition to individual genes demonstrating altered expression, the 

coordinated expression of genes may be disrupted in BD, reflecting widespread regulatory 

effects or coordination of specific biological pathways. We therefore constructed a network of 

co-expressed genes in the entire sample using WGCNA and assessed the detected modules for 

association with BD. This network consisted of 27 modules ranging in size from 48 to 2,760 

genes (mean Ngenes = 441). By evaluating the correlation of module membership values with 

gene significance for BD diagnosis, we quantified the association of each module with BD. After 

Bonferroni multiple testing correction, five modules were significantly associated with lithium-

use, but no modules were associated with BD or any other clinical or technical variable 

(Supplementary Table 2). 

 Of the five modules associated with lithium use, three shared significant overlap with 

lithium-use DEGs (Table 7). M26 was most significantly associated with lithium (P = 2.00 x 10-4; 

Figure 4A) but was not significantly enriched for lithium DEGs. M1 was also associated with 

lithium (P = 9.04 x 10-4; Figure 4B) and had the most significant enrichment of DEGs (431 of 

2,092 genes in the module were DEGs; hypergeometric P = 2.03 x 10-97). Functional annotation 

clustering of the genes in M1 showed an enrichment of terms related to cell signaling, immunity, 

and glycophosphatidylonositol anchor. 

Module preservation analysis was also performed to assess differences in network 

density and connectivity between groups, but showed full preservation indicating that networks 

constructed in separate groups maintain their underlying structure (Supplementary Methods and 

Supplementary Figure 2).  
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Table 7. Co-expression module association with lithium use. Functional annotation cluster 
enrichment determined using DAVID107. Correlation with lithium use calculated by correlating 
gene module membership values with gene significance values for lithium use. Overlap was 
calculated by testing for hypergeometric overlap between the list of lithium-use DEGs and the 
list of genes within each module. GPI, glycophosphaditylinositol.  

 

 

 

Figure 4. Module correlation with lithium use for (A) M26 and (B) M1. Module membership is the 
correlation of each gene’s expression with the module eigengene, which is the first principal 
component of the module. Gene significance for lithium use is the correlation of each gene’s 
expression with lithium use. 
 

 

 

Module N genes Functional annotation cluster term(s) r P N genes P

M1 2,092 Transmembrane, GPI anchor, immunoglobulin 0.156 9.40E-04 431 2.03E-97

M7 700

Helicase activity, ATP binding, metabolism, DNA 

replication, endoplasmic reticulum, proteasome, 

protein biosynthesis

-0.165 4.50E-04 22 1.00

M9 55 G-protein coupled receptor 0.153 1.15E-03 17 6.15E-07

M11 622 - 0.17 3.12E-04 102 4.93E-13

M26 484 Nucleic acid binding, splicing -0.175 2.00E-04 17 1.00

Correlation with lithium use Overlap with DEGs
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3.3.5 Estimated neutrophil composition is associated with lithium use 

We then sought to determine if variation in our sample could be explained by differences in 

blood cell-type composition. To deconvolve cellular heterogeneity, we applied CIBERSORT108 to 

our gene expression quantifications using a reference panel of 22 blood cell-type signatures. 

The resulting estimated cell-type proportions (Figure 5A) were then examined for their 

relationship with lithium use in BD cases only. Each cell type was residualized for demographic 

and technical variables then used to predict lithium use in a stepwise linear model. One cell type 

significantly predicted lithium use within the BD cases, neutrophils (P = 0.0236), which are 

elevated in individuals being treated with lithium (Figure 5B). Indeed, 16 of 60 signature 

neutrophil genes were also lithium-use DEGs (hypergeometric P = 4.45 x 10-6). 

 

Figure 5. Estimated neutrophil composition association with lithium use. (A) Leukocyte cell type 
proportions per sample as estimated from gene expression, sorted by neutrophil proportions. 
Lithium users, as shown in the bar on the bottom, cluster on the right-hand side where 
neutrophil proportions are higher. (B) Lithium users have higher estimated neutrophil 
proportions (P = 0.0236). 
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3.3.6 Estimated cell type proportions partially explain lithium-associated changes in gene 

expression 

Because estimated neutrophil composition was associated with lithium use, and because cell-

type composition affects gene expression profiles108, we next sought to determine how cell-type 

composition contributed to lithium-associated gene expression changes in our sample. To do 

so, we included the estimated cell-type proportions as covariates in addition to the ones used 

previously and re-evaluated differential expression in lithium users. The number of genes 

showing differential expression in subjects undergoing lithium treatment decreased from 976 in 

the model without cell-type estimates to 233 in the model with cell-type estimates (FDR < 0.05; 

Figure 6A), of which 194 (83.2%) were significant in the original model and concordant in 

direction of effect (Figure 6B). No functional annotation cluster terms remained significant after 

correcting for multiple testing. The number of genes differentially expressed between BD cases 

and controls decreased to zero after accounting for estimated cell-type proportions. 

 

3.3.7 Lithium-associated co-expression module M1 is enriched for neutrophil gene expression 

signatures 

We then sought to determine if the various lithium-associated modules of co-expressed genes 

reflected biologic signatures of distinct populations of blood cell types. We did this in two ways. 

First, a hypergeometric overlap between lithium-associated module gene lists and cell-type 

signature gene lists revealed a significant overlap between module M1 with monocyte and 

neutrophil signature genes and M9 with eosinophil and activated mast cell signature genes 

(Figure 7A, left). Second, the expression of cell-type signature genes was used to predict 

module membership values in a linear model for each of the five lithium-associated modules. 

Neutrophils, monocytes, and eosinophils were again implicated (Figure 7A, right). In both of 



 37 

these analyses, the most significant cell type-module relationship was M1 with neutrophil 

estimates (hypergeometric P = 5.68 x 10-21, linear model P < 2.20 x 10-16). Indeed, neutrophil 

signature genes had higher M1 membership values (Figure 7B). 

 

Figure 6. Estimated cell type proportions partially explain lithium-associated changes in gene 
expression. (A) After correcting for estimated cell type proportions, 233 DEGs remain significant 
(shown as purple triangles, FDR < 0.05; all other genes tested shown as light gray circles). (B) 
Comparison of log2 fold changes (FC) before (y-axis) and after (x-axis) correcting for cell type 
proportion estimates. Of the 233 genes significant after correcting for cell type estimates, 194 
(83.2%) were significant in the original model without correcting for cell type estimates and 
concordant in the direction of effect (shown as green triangles, FDR < 0.05). 
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Figure 7. Lithium-associated co-expression module M1 enrichment for neutrophil gene 
expression signatures. (A) Lithium-associated module enrichment for leukocyte cell types. Left, 
Hypergeometric overlap between leukocyte cell type signature genes and genes in each 
module. Right, Linear regression of leukocyte cell type signature genes to predict module 
membership values. (B) Neutrophil signature genes have higher module membership values for 
M1 than other leukocyte signature genes (regression P < 2.20 x 10-16). 
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3.3.8 Lithium-induced gene expression differences are not enriched for genes with common 

variants associated with BD and other psychiatric disorders 

To evaluate if BD and lithium-use DEG sets were associated with a higher burden of psychiatric 

risk alleles, we performed gene-set analyses using MAGMA109. Analyses were performed 

across three psychiatric GWAS traits: BD42, SCZ65, and self-reported depression110. SCZ and 

depression were used because of their high degree of overlap in SNP-based heritability with 

BD43. The self-reported depression GWAS was used instead of MDD GWAS because of the 

large sample size and successful findings of this study. The lithium-response traits were not 

used because the SNP-based heritability estimates for these traits were zero (Figure 8A). 

Because the set of BD DEGs at FDR < 0.05 was too small to test, instead we tested the set of 

BD DEGs at FDR < 0.2. None of the comparisons demonstrated an association with genetic risk 

across the genes implicated in the current study (except for the Positive control gene set), even 

after stratifying by up- and down-regulated genes (Figure 8B). 

 

3.4 Discussion 

We present the largest BD case-control gene expression study conducted to date. After 

carefully controlling for technical and clinical factors, there were minimal transcriptomic 

differences between BD cases and controls (Figure 1, Table 5). One of the top differentially 

expressed genes, COG4, encodes a part of a multiprotein complex that is a key determinant of 

Golgi apparatus structure and capacity for intracellular transport and glycoprotein 

modification112. COG4 mRNA is expressed widely across body tissues including the brain113. It 

has been reported as having alternative splicing in subjects with BD114, and concordant with our 

results, was reported as down-regulated in three of the ten Stanley Genomics BD brain 

datasets115. Further work will be needed to determine the role of COG4 in BD, but perhaps 
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neuronal hyperexcitability in BD89 destabilizes internal cellular processes including Golgi 

function116.  

 

Figure 8. Lithium-induced gene expression differences are not enriched for genes with common 
variants associated with BD. (A) SNP-based heritabilities of psychiatric GWAS traits. The SNP-
based heritability estimates for both the dichotomous and continuous lithium-response traits 
were not significantly different from zero and were therefore not used in the subsequent 
analysis. (B) Gene-set enrichment of DEG sets with genes in psychiatric trait-associated loci. 
DEG sets stratified by up- and down-regulated genes. The BD DEG set was extended to include 
genes with FDR-corrected P < 0.2. The red line represents the significance threshold of  
-log10(0.05). 
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 The therapeutic mood-stabilizing mechanisms of lithium are not well understood despite 

it being the single most extensively studied psychopharmacological agent18. One likely reason 

for this is the magnitude of lithium’s physiological interactions117. In pharmacological terms, 

lithium is a small molecule (the third smallest element in fact) without a defined target103. This 

lack of specificity makes it difficult to discern therapeutic mechanisms from off-target effects, 

which likely lead to many of the undesirable side effects and even the toxicity of lithium at doses 

that are too high. Lithium ions (Li+) have a single positive charge and are hypothesized to mimic 

and disrupt the actions and targets of more ubiquitous metal ions such as magnesium (Mg2+)103. 

Theorized therapeutic mechanisms of lithium include its inhibition of the protein GS3Kβ, and its 

effect on intracellular signaling cascades such as those involving protein kinases and 

phosphatidylinositol20. It is not clear how these mechanisms relate to higher order properties 

thought to be involved in BD etiology like neuronal function, chronobiology, and brain structure. 

Examining lithium mechanisms at high biological resolution is therefore not only crucial for 

understanding the high rates of non-response and non-adherence to prophylactic lithium 

treatment in BD patients but also for understanding BD etiology itself. 

The investigation of gene expression differences in lithium users in our large BD cohort 

makes this the largest naturalistic study of the transcriptional effects of lithium treatment to date. 

Our analysis revealed widespread but subtle changes in gene expression in response to lithium 

treatment (Figure 2). The large number of genes altered each with small effect is in line with 

lithium’s broad scope of physiological effects117 and with the complex genetic architecture of 

BD93. These genes were enriched for functional annotations related to transmembrane, cell 

signaling, protein kinase, and immunity. These pathways have been implicated in previous BD 

transcriptome studies86,87,89,96,99 and are known targets of lithium21,118. Although a direct 

replication was unavailable, the lithium-use DEGs presented herein significantly overlapped with 

DEGs from two previous studies, which we present as high-confidence lithium-associated genes 
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(Table 6, Figure 3). There were two genes shared among all three of these lists, RFX2 and 

SLC29A1. RFX2 was among the top DEGs in the current study (FC = .581, FDR adjusted-P = 

1.40 x 10-11) and encodes regulatory factor X2, a transcriptional activator that regulates human 

leukocyte antigen (HLA) class II expression119. HLA proteins play a key function in the immune 

system and are encoded in the major histocompatibility complex (MHC) locus containing a 

number of genetic associations to autoimmune diseases120. The MHC locus also contains the 

strongest associated signal in SCZ GWAS (rs115329265 on chromosome 6, combined P = 3.48 

x 10-31)65. SLC29A1 encodes a member of the solute carrier family of transmembrane 

glycoproteins that mediate the essential transport of substrates across cell membranes121 and is 

a reasonable putative target of lithium122. While this gene has not been implicated in BD GWAS, 

other solute carrier family genes were present in genome-wide significant loci42.  

 Similar to the individual gene expression analysis, the gene co-expression analysis 

revealed lithium-associated changes in expression but not BD-associated ones (Figure 4). The 

lithium-associated modules of co-expressed genes were enriched for many of the same 

functional annotations as the lithium-use DEGs, including transmembrane and immunity, which 

is expected considering the extensive overlap between the genes in M1, M9, and M11 and the 

lithium-use DEGs. In addition to lithium-use, M1 was also associated with estimated neutrophil 

proportions (Figure 7). The M1 hub gene was MXD1 (kIM = 1), which encodes max dimerization 

protein 1, a member of the Myc/Max/Mad network of transcription factors that mediate cellular 

proliferation, differentiation and apoptosis123. That a transcription factor is a hub gene is not 

surprising given the extensive interactions of transcription factors with target genes. Myc 

proteins are regulated by glycogen synthase kinase-3 (GSK3)124, which is known to be inhibited 

by lithium and therefore hypothesized to play a role in mood disturbances125. Lithium-associated 

inhibition of GSK3 and the hypothesized subsequent effect on Myc proteins may also affect 

Myc’s dimerization partner, Max.  
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 The lithium-use effect on gene expression we observed was partially due to differences 

in cell types, although not entirely as evidenced by the remainder of 233 genes with differential 

expression after correcting for estimated cell type composition (Figure 6). The cell type effect 

seems to be driven primarily by neutrophils, which displayed higher estimated proportions in 

individuals undergoing prophylactic lithium treatment (Figure 5). Indeed, lithium-induced 

leukocytosis and more specifically neutrophilia has been described since the medication’s early 

use in psychiatry118. Lithium induces neutrophilia through a complex pathway involving GSK3 

and immune-related transcription factors and genes126. Increased levels of neutrophils are 

typically associated with anti-inflammatory or an infection-fighting immune response127. Whether 

these immunity-related mechanisms play a role in the mood stabilizing effects of lithium remains 

to be determined. Immune components of psychiatric illness including BD128 have long been 

recognized, but it remains unclear if they represents a causal pathway, a property of the disease 

state, or a consequence of environmental factors like body mass index or smoking.  

Finally, we hypothesized that genes whose expression is altered by lithium treatment 

may be involved in BD etiology and therefore enriched for genes implicated from GWAS. To test 

this, we performed a gene-set analysis of DEG sets with multiple psychiatric GWAS, which 

revealed a lack of association with common risk alleles (Figure 8). This indicates that genes 

displaying a transcriptional response to lithium treatment in blood do not harbor genetic risk for 

psychiatric disorders. This can be interpreted several ways. First, it could indicate that 

psychiatric genetic studies are thus-far underpowered and therefore our DEGs do not show 

enrichment for genetic risk even though it may actually be there. This may be the case given the 

small amount of SNP-based heritability that can be explained by known loci. This is certainly the 

case for lithium-response, which has a SNP-based heritability of zero and was therefore left out 

of the subsequent analysis. Second, it could indicate that our study is underpowered to 

demonstrate enrichment of genetic risk, and that with larger sample sizes we may expect to see 
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genes with altered expression in blood the blood of lithium users to be enriched for psychiatric 

genetic risk. Third, it could indicate that the transcriptomic mechanisms of genetic risk for BD 

are not present in whole blood. Both of these scenarios are possible, but given the substantial 

overlap of cis-eQTLs between brain and blood129, we suspect there to be genetic regulatory 

mechanisms associated with BD and lithium detectable in blood that will be revealed with larger 

sample sizes of both genetic and transcriptomic studies. 

 These results contribute to the understanding of the genomics of lithium action, which is 

essential for the future of personalized psychiatric medicine for patients with BD. They suggest 

that lithium causes widespread gene expression changes in whole blood, converging on 

biological pathways related to cell signaling and immunity, and partially as a result of increased 

neutrophils. Future studies with larger sample sizes and independent replication datasets will be 

needed to confirm our findings. Whether these genes and pathways play a role in the mood-

stabilizing mechanisms of lithium remains to be determined. Lithium use, as a trait only present 

in BD subjects and therefore confounded with BD diagnosis, likely eliminated most of the 

observable BD effects via confounding by indication. We caution investigators regarding the 

importance of correcting for cell type composition and medication use, and suggest a lithium-

naive study design to optimize BD transcriptomic signal that is independent of lithium use. 

Nevertheless, we argue that investigating the BD transcriptome in whole blood remains valuable 

due to the accessibility of this tissue, its potential for biomarker discovery, and its potential for 

use in longitudinal study designs, which are appealing due to the episodic nature of BD. The 

suggested immune component of BD etiology and lithium therapy makes blood a clear choice of 

tissue as well. In addition, peripheral tissues such as blood partially recapitulate gene 

expression signatures of the brain130, and compared to post-mortem tissues are less subject to 

poor quality due to rapid degradation upon death131. Studies involving post-mortem tissue, in 
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vitro neuronal cells, or animal models will nevertheless be needed to determine the therapeutic 

effect of lithium on BD-associated brain-related function.  

 

3.5 Supplementary Methods 

3.5.1 Sequencing metrics 

Transcriptome alignments were analyzed for quality control using CollectRnaSeqMetrics in 

Picard Tools. Eighteen sequencing metrics were obtained: number of paired reads, percent 

duplication, percent GC content, number of bases passing Illumina’s filter, number of bases 

passing Illumina’s filter that were aligned, number of coding bases, number of UTR bases, 

number of intronic bases, number of intergenic bases, number of correct strand reads, number 

of incorrect strand reads, percent mRNA bases, percent usable bases, median coverage, 

median 5’ bias, median 3’ bias, and median 5’ to 3’ bias. Upon examination of these metrics, no 

samples were removed for low quality. They were then processed for PCA dimension reduction 

using the prcomp function in R. Principal components one through three, which explain 75.9%, 

16.9%, and 6.4% of the variance in sequencing metrics respectively, were used as covariates in 

subsequent analyses. 

 

3.5.2 Gene expression principal component analysis 

Principal component analysis of gene expression quantification was performed for visualization 

and quality control purposes. To do this, first the read count matrix obtained from HTseq was 

transformed using the variance stabilizing transformation function in DESeq2132 and then filtered 

for the 500 most variable genes. PCA was then performed using the prcomp function in R. 

Principal components were then examined for their relationship to technical and biological 

variables. PC1 distinctly separates samples by sex except for four samples, which we removed 

from further analyses due to apparent mix-up or contamination. 
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3.5.3 Genotyping and polygenic risk scores 

Genotyping was performed on a subset of samples (Ncases = 234, Ncontrols = 187) using the 

Illumina Infinium Human OmniExpressExome. Standard genotyping quality control was 

performed with PLINK133 to remove outliers and low quality SNPs and samples [36]. Imputation 

was performed on the Michigan Imputation Server (imputationserver.sph.umich.edu)134 with the 

1000 Genomes Phase 3 version 5 reference panel111, Eagle phasing135, and European ancestry. 

Following imputation, variants were excluded if they had mismatching alleles, if they were 

duplicates or indels, or if they had a SNP call rate < 90%. After imputation each sample had 

46,625,935 SNPs. The imputed data were further filtered for r2 > 0.3 and MAF > 0.05, yielding a 

final set of 6,828,668 SNPs per sample. 

A polygenic risk score (PRS) for a given individual represents the cumulative genetic 

load of disease risk alleles and is defined as the sum of trait-associated alleles across many 

genetic loci, weighted by effect sizes estimated from a genome-wide association study. To 

calculate PRS we used the largest BD GWAS42 with our samples removed, and used a P-value 

cut-off of P < 0.05. We compared PRS scores between BD cases and controls and between 

lithium using cases and non-lithium using cases by computing the Student’s t-test. 

 

3.5.4 Curation of DEG lists from previous studies and enrichment analyses 

To compare our results with the results of previous studies, PubMed was searched for 

transcriptome-wide gene expression studies with BD case-control or lithium treatment designs. 

Four schizophrenia case control studies and one major depressive disorder study were also 

included because of their large sample sizes and therefore increased power to detect 

differentially expressed genes. Both microarray and RNA sequencing technologies were 

considered. A variety of tissues were considered including peripheral whole blood and post-

http://imputationserver.sph.umich.edu/
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mortem brain from different regions, as well as several in vitro cell culture designs. Criteria for 

studies included in the comparison analysis were having > 10 samples, > 50 DEGs at FDR < 

0.1, and differential expression analysis statistics available for download. The set of genes from 

Breen, et al.92 was limited to genes with FDR < 0.005 because those were the only genes 

available for download.  

Hypergeometric overlap tests were performed between the lithium-use DEGs and each 

of the gene lists from these previous using the GeneOverlap library in R. The full set of 12,344 

genes expressed with > 10 counts in 90% of samples was considered as background gene 

expression. To account for multiple tests, Bonferroni correction was applied. For gene sets with 

significant hypergeometric P-values, the concordance rate and correlation statistics were 

calculated. 

We inspected whether DEGs were differentially expressed in studies in The Stanley 

Medical Research Institute Online Genomics Database (www.stanleygenomics.org)115. We also 

inspected whether DEGs were expressed in brain tissues and cell types. A gene was 

considered to be expressed in frontal cortex tissue if it had a median gene TPM > 1 in GTEx 

(www.gtexportal.org). A gene was considered to be expressed in one of the six brain cell 

types136 (neurons, fetal astrocytes, mature astrocytes, oligodendrocytes, microglia/ 

macrophages, and endothelia) if it had a mean FPKM > 1.  

 

3.5.5 Weighted gene co-expression network module preservation analysis 

Using the same pipeline as described in Methods, we constructed WGCNA106 networks in four 

groups separately: BD cases (β = 4.2), controls (β = 5.5), lithium users (β = 7), and non-lithium 

users (β = 7). These networks were then assessed for module preservation using the WGCNA 

package in R. This module preservation analysis considers the structure of co-expression 

modules constructed in one group, the reference network, then tests the density and 

http://www.stanleygenomics.org)/
http://www.gtexportal.org/
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connectivity of these same module structures in another group, the test network. Four analyses 

were run: with the BD case network as the reference and the control network as the test, vice 

versa, with the lithium use network as the reference and the non-lithium use as the test, and 

vice versa. 

Evaluating module preservation requires the module assignment of each gene in the 

reference network, as well as adjacency matrices for both the reference network and the test 

network. Using these inputs for each of the four analyses, various module preservation statistics 

were calculated using modulePreservation in the WGCNA package with 200 permutations. Two 

main types of preservation statistics were calculated: density based preservation statistics, 

which determine whether module nodes (genes) remain highly connected in the test network, 

and connectivity based preservation statistics, which determine whether the connectivity pattern 

between nodes in the reference network is similar to that in the test network. Significance levels 

(permutation test P-values) were calculated by using a permutation test procedure that 

randomly permutes the module assignment in the test data. To evaluate module preservation 

between networks, the composite Zsummary statistic was considered, which is the average of the 

density and connectivity based preservation statistics. Lower Z scores correspond to reference 

modules that are lesser preserved in the test network. Modules with Z scores less than 2 were 

considered not to be preserved. Modules with Z scores greater than 2 but less than 10 were 

considered to be moderately preserved. Modules with Z scores greater than 10 were considered 

to be well-preserved. Because Z statistics and permutation test P-values depend on the module 

size, the composite module preservation statistic medianRank, which is less dependent on 

module size, was also used to compare relative preservation among the modules. The 

medianRank statistic summarizes the ranks of the observed density and connectivity 

preservation statistics. Results of the module preservation analyses can be seen in 

Supplementary Figure 2. 
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3.6 Supplementary Tables and Figures 

 

 

Supplementary Table 1. Covariate relationships with BD diagnosis and lithium use. P-values 
computed by Fisher’s exact test (binary variable) or t-test (continuous variable). SD, standard 
deviation.  
 

Case Control Lithium user Non-lithium user

P P

Diagnosis 240 204 - 152 (100%) 88 (30.1%) <2.20E-16

Female sex 131 (54.6%) 119 (58.3%) 0.444 90 (59.2%) 160 (54.8%) 0.420

Lithium use 152 (63.3%) 0 (0%) <2.20E-16 152 292 -

Tobacco use 74 (30.8%) 39 (19.1%) 6.14E-03 48 (31.5%) 65 (22.3%) 0.0387

Assessment group 240 (100%) 111 (53.4%) <2.20E-16 152 (100%) 199 (68.2%) <2.20E-16

Sequencing plate 1 48 (20.0%) 38 (18.6%) 0.810 58 (38.2%) 28 (9.6%) 0.800

Sequencing plate 2 48 (20.0%) 41 (20.1%) 1.000 60 (39.5%) 29 (11.5%) 0.803

Sequencing plate 3 48 (20.0%) 41 (20.1%) 1.000 59 (38.8%) 30 (10.3%) 1.000

Sequencing plate 4 48 (20.0%) 42 (20.6%) 0.906 57 (37.5%) 33 (11.3%) 0.619

Sequencing plate 5 48 (20.0%) 42 (20.6%) 0.906 58 (38.2%) 32 (11.0%) 0.804

Age 50.3 (12.4) 43.4 (14.8) 1.95E-07 48.0 (13.1) 46.7 (14.4) 0.309

RIN 7.50 (0.764) 7.70 (0.599) 1.92E-03 7.48 (0.633) 7.65 (0.726) 0.00774

Sequencing metric PC1 5.48E-4 (0.0458) 6.21E-4 (0.0462) 0.987 -7.35-4 (0.0457) 9.22E-4 (0.0461) 0.828

Sequencing metric PC2 4.55E-3 (0.0563) -4.34E-3 (0.0324) 0.0385 6.16E-3 (0.0591) -2.50E-3 (0.0391) 0.105

Sequencing metric PC3 6.92E-3 (0.0421) -6.44E-3 (0.0491) 2.44E-03 6.43E-3 (0.0410) -2.16E-3 (0.0480) 0.0495

N (%) N (%)

Mean (SD)Mean (SD)
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Supplementary Table 2. Co-expression module association with BD diagnosis and lithium use. 
Correlation P-values were calculated by correlating gene module membership values with gene 
significance values for the traits shown. Hypergeometric P-values were calculated by testing for 
overlap between the list of lithium-use DEGs and the list of genes within each module. 
*Significant at P < α = 0.05/27. 
 

Module Lithium use BD diagnosis
Hyper-

geometric P

M1 9.40E-04* 0.208 2.03E-97*

M2 0.363 0.989 0.902

M3 0.356 0.172 1.000

M4 0.634 0.505 0.979

M5 0.615 5.31E-02 0.966

M6 5.49E-02 0.105 0.998

M7 4.50E-04* 3.10E-03 1.000

M8 0.508 0.733 1.000

M9 1.15E-03* 0.165 6.15E-07*

M10 3.01E-03 1.92E-02 0.390

M11 3.12E-04* 1.76E-02 4.93E-13*

M12 3.05E-02 1.93E-02 1.000

M13 0.378 0.413 1.000

M14 0.585 0.134 0.564

M15 0.176 0.176 1.000

M16 0.821 0.227 1.000

M17 0.342 4.37E-02 1.000

M18 1.87E-02 0.163 0.830

M19 0.131 0.865 0.975

M20 5.50E-03 1.02E-02 1.000

M21 0.687 0.498 0.998

M22 0.349 0.238 1.000

M23 0.637 0.978 1.000

M24 0.584 0.451 1.000

M25 1.16E-02 0.377 3.83E-02

M26 2.00E-04* 2.68E-03 1.000

M27 0.309 8.46E-02 1.000

Correlation P
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Supplementary Figure 1. Polygenic risk scores across groups. PRS calculated from the largest 
BD GWAS42 was significantly different between cases and controls (Left, Student’s t-test P = 
3.85 x 10-6) but not between cases using lithium and cases not using lithium (Right, Student’s t-
test P = 0.690). 
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Supplementary Figure 2. Module preservation analysis. The blue dashed line represents a 
Zsummary = 2, below which a module is considered not to be preserved. The green dashed line 
represents a Zsummary = 10. If a module falls between the green and blue dashed lines it is 
considered to be weakly to moderately preserved. If a module falls above the green dashed line, 
it is considered to be strongly preserved. The 28 modules in the BD case network were 
significantly preserved in controls. The 33 modules in the control network were significantly 
preserved in BD cases. Three modules in the control network displayed moderate preservation 
in cases, M6c, M12c, and M1c (Zsummary = 8.9, 9, and 9.7, respectively), but their median ranks 
were not among the top indicating that their low summary preservation statistics were due to 
small module size. The 29 modules in the lithium-use network were all significantly preserved in 
non-lithium users. The 32 modules in the non-lithium use network were all significantly 
preserved in lithium users. Two modules in the non-lithium-treated network displayed moderate 
preservation, M22n and M13n (Zsummary = 8.6 and 9.5, respectively), but their median ranks were 
not among the top indicating that their low summary preservation statistics were due to small 
module size. 
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CHAPTER 4 

 

Conclusion 

 

We know from family studies that a large portion of risk for BD comes from genetic variation, 

and have confirmed this via genome-wide examinations of common genetic variation42. 

However, much of the genetic variation underlying risk for BD remains unknown, and even in 

known loci, which variant is causal and how variants mechanistically lead to disease are a 

mystery. Several studies have been successful in defining disease mechanisms in SCZ and 

MDD via gene expression analyses83,93, but the results of similar studies in BD have been 

inconclusive due to small sample sizes and varying study designs (see Table 1). In our own 

attempt to characterize BD mechanisms, we explored gene expression signatures in whole 

blood in a large Dutch cohort. We found that almost all of the variation in gene expression 

observed in BD was due to lithium use.  

Lithium is the first-line treatment for BD23, but it is associated with high non-adherence 

rates due to adverse side effects22, and there is a high degree of interindividual variability in 

response69. Lithium responsive-BD tends to run in families25, but larger GWAS samples are 

needed to determine if it is a heritable subtype of BD27. Lithium is hypothesized to act by 

competing with Mg2+ and Ca2+ to alter internal cellular signaling mechanisms like those related 

to GSK3, inositol monophosphatase protein kinase A (PKA) and G-protein-coupled receptor 

signaling, ultimately leading to higher order effects on neuroprotection, chronobiology, and the 

immune system21. Our findings provided high resolution evidence for lithium targeting cellular 

processes related to signaling, calmodulin, protein kinase, and immunity. These effects were 

partially mediated by increased neutrophil content, adding to mounting evidence that lithium 

affects immune cells118. It remains to be determined if these effects contribute to lithium’s 
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therapeutic mood-stabilizing mechanisms. A lack of psychiatric genetic signal within the lithium 

effects we observed suggests that our findings exist outside the context of underlying genetic 

risk. But larger sample sizes in both transcriptomic and genetic studies are needed to confirm 

this.  

 The future of BD and lithium genomics will undoubtedly see larger studies with higher 

resolution. Large-scale genomic studies should emphasize phenotyping to homogenize samples 

and improve detection power. Ascertaining lithium-responsive BD subjects may be one way to 

accomplish this. Gene expression studies should carefully assess and correct for medication 

use and cell type composition, or design around these issues (e.g. by collecting medication-

naïve subjects and by performing single-cell RNA sequencing). As we delve deeper into the 

underlying biology of BD, biomarkers will emerge, and we may one day be able to diagnose and 

determine the best course of treatment from a simple blood draw. Outside of the lab, 

investigators should promote psychiatric genetic literacy to help dismantle the undue stigma 

attached to mental illness. Only through a cultural shift in care-seeking and care-giving will we 

ever see a world unburdened by mental illness. 
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