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To translate, or not to translate:
viral and host mRNA regulation
by interferon-stimulated genes
Melody M.H. Li, Margaret R. MacDonald, and Charles M. Rice

Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA

Review
Type I interferon (IFN) is one of the first lines of cellular
defense against viral pathogens. As a result of IFN sig-
naling, a wide array of IFN-stimulated gene (ISG) pro-
ducts is upregulated to target different stages of the viral
life cycle. We review recent findings implicating a subset
of ISGs in translational regulation of viral and host
mRNAs. Translation inhibition is mediated either by
binding to viral RNA or by disrupting physiological inter-
actions or levels of the translation complex components.
In addition, many of these ISGs localize to translationally
silent cytoplasmic granules, such as stress granules and
processing bodies, and intersect with the microRNA
(miRNA)-mediated silencing pathway to regulate trans-
lation of cellular mRNAs.

ISGs block virus replication
In response to an infection, the host recognizes pathogen-
associated molecular patterns (PAMPs) of invading
microbes in the cell. Viral PAMPs are often nucleic acid-
based, derived from their DNA, or from their RNA gen-
omes. Several pattern recognition receptor families located
in various cellular compartments work together to sense
PAMPs leading to activation of the transcription factors
IFN-regulatory factors 3 or 7 (IRF3/7) and nuclear factor
kappa-light-chain-enhancer of activated B cells (NFkB)
(for a recent review, see [1]). The signaling events following
PAMP recognition result in dimerization and translocation
of IRF3/7 into the nucleus along with NFkB, leading to the
transcription and expression of type I IFN and proinflam-
matory cytokines, which in turn get secreted by the cell.
Autocrine or paracrine signaling in response to IFN
induces downstream expression of an array of IFN-
stimulated genes (ISGs), which function to establish an
antiviral state [1].

ISGs act on different stages of the viral life cycle, from
entry and replication to assembly and release. In order to
productively infect the host and multiply, viruses usurp
the host translation machinery to make viral proteins.
Translational inhibition is a common mechanism utilized
by ISGs to mediate antiviral effects [2]. Indeed, some of the
best studied ISGs, protein kinase RNA-activated (PKR)
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and 20-50-oligoadenylate synthetase (OAS)/RNAseL func-
tion to block translation to limit virus replication (Box 1).
This review focuses on the more recently described ISGs
that regulate host or viral translation, localize to transla-
tionally silent granules, and interfere with miRNA-medi-
ated silencing of host transcripts.

Regulation of viral and host mRNA translation
Viruses are completely reliant on host cell translational
machinery to produce the proteins encoded by their genes.
In eukaryotic cells, translation is initiated (summarized in
Figure 1 and recently reviewed in [3]) by binding of eu-
karyotic initiation factor (eIF) 4E to the m7G cap structure
at the 50 end of mRNAs. Meanwhile, poly(A)-binding pro-
tein (PABP) binds to the poly(A) tail at the 30 end of
mRNAs. Both eIF4E and PABP interact with the scaffold
protein eIF4G, leading to mRNA circularization and re-
cruitment of the 43S preinitiation complex, the minimal
constituents of which include the eIF3 complex (13 subu-
nits; a–m), the ternary complex eIF2-GTP-Met-tRNAi, and
the 40S ribosomal subunit. The 43S complex then scans the
50 untranslated region (UTR) of the mRNA until it reaches
the translational start codon. Ribosome scanning is aided
by the RNA helicase, eIF4A, which disrupts secondary and
tertiary structures in the 50 UTR. The 60S ribosomal
subunit then joins the 40S ribosomal subunit to form
the 80S ribosome, resulting in translation initiation and
elongation; formation of polyribosomes (polysomes) where
multiple ribosomes simultaneously translate the same
mRNA can then take place. Because translation initiation
is a complex and highly ordered process, most of the
translational regulation in eukaryotic cells occurs at this
step [3]. Several ISG products, such as zinc finger antiviral
protein (ZAP), interferon-induced protein with tetratrico-
peptide repeats 1 (IFIT1), and schlafen 11 (SLFN11), have
been shown to affect viral or global protein synthesis, and
their modes of action are described in this section. The
common strategies shared by these ISGs include direct
binding to viral RNA, and interaction with or perturbation
of the translation machinery components, preventing
translation.

PARPs

Several members of the poly(ADP-ribose) polymerase
(PARP) family are ISGs with antiviral activity (Box 2).
Among them, the best-characterized antiviral protein is

http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcb.2015.02.001&domain=pdf
http://dx.doi.org/10.1016/j.tcb.2015.02.001
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Box 1. Early discoveries on the mechanism of action of IFN

Before the discovery of ISGs, it was known that treatment of animal

cells with IFN confers upon them resistance to new virus infections.

IFN is not directly antiviral; cellular transcription and protein

synthesis were found to be required for IFN to work, suggesting

that IFN signaling leads to the translation of an inhibitory protein(s).

The inhibitory activity targets an early stage of the viral life cycle,

specifically the translation of the viral mRNA [99,100]. Protein

synthesis in lysates prepared from mouse L cells pretreated with IFN

was blocked upon exposure to dsRNA [101,102]. It appeared that a

dsRNA-dependent protein kinase(s) and an oligonucleotide inhibitor

(pppA20-50A20-50A) were involved [103–111]. It is now well appre-

ciated that protein kinase RNA-activated (PKR) is a serine–threonine

kinase and when activated by dsRNA becomes autophosphorylated

and phosphorylates the a subunit of eIF2, leading to the inhibition of

host and viral mRNA translation [112–118]. In addition, activation of

the 20-50-oligoadenylate synthetase (OAS) by dsRNA triggers the

synthesis of 20-50A from ATP, which causes the dimerization and

activation of a latent endoribonuclease (later referred to as RNAse L)

[113,119]. RNAseL causes the degradation of viral or cellular RNA

leading to translation inhibition [120–122].

Review Trends in Cell Biology June 2015, Vol. 25, No. 6
PARP13 or zinc finger antiviral protein (ZAP), which is
encoded by the zinc finger CCCH-type, antiviral 1
(ZC3HAV1) gene. In the remainder of the review, we will
refer to the protein as ZAP. ZAP is transcriptionally upre-
gulated by type I IFN signaling and directly induced by
phosphorylated IRF3 in virus-infected cells [4,5]. There are
at least two splice variants of ZAP – ZAPL (PARP13.1) and
ZAPS (PARP13.2) – where the long isoform encodes a
PARP domain on the C terminus that is missing in the
short isoform [6]. Although both isoforms are induced,
ZAPS is upregulated more than ZAPL by virus and type
I IFN [7–9]. ZAP was first discovered as a potent antiviral
factor against the retrovirus Moloney murine leukemia
virus (MLV) in a cDNA library screen [10]. Since then, it
has been shown to inhibit a broad range of RNA and DNA
viruses, including other retroviruses, alphaviruses, filo-
viruses, and hepatitis B virus [8,11–14]. It is not under-
stood what determines the broad yet specific antiviral
activity of ZAP. It binds viral RNA via its N-terminal zinc
fingers, and ZAP-responsive sequence elements in MLV
and Sindbis virus have been mapped [15]. ZAP recruits the
exosome to target retroviral and specific host mRNAs for
degradation [14,16–18] but also acts to block viral genome
translation [11]. ZAP dramatically reduces Sindbis virus
production, and experiments utilizing temperature-sensi-
tive Sindbis virus mutants that are unable to replicate the
RNA genome at nonpermissive temperatures support a
mechanism in which ZAP represses translation of the
incoming viral genome [11]. ZAP also inhibits translation
of luciferase reporters that carry the ZAP-responsive ele-
ments from HIV-1 and Sindbis virus [19]. ZAP binds to
eIF4A and interferes with the interaction between eIF4A
and eIF4G, and as a result blocks translation independent-
ly of mRNA degradation [19] (Figure 1).

In addition to ZAP, other members of the PARP family
are upregulated by IFN and have also been shown to
inhibit alphaviruses. Murine PARP7, PARP10, and the
long isoform of PARP12 (mPARP12L) block cellular trans-
lation and inhibit replication of Venezuelan equine enceph-
alitis virus (VEEV), another member of the alphavirus
genus [20,21]. mPARP12L also blocks infection of a variety
of RNA viruses from other families, such as vesicular sto-
matitis virus (VSV), encephalomyocarditis virus (EMCV),
and Rift Valley fever virus (RVFV) [20]. Similar to ZAP,
mPARP12L affects protein translation, and the tethering of
mPARP12L to a renilla luciferase reporter mRNA inhibits
its translation [22]. Furthermore, mass spectrometry iden-
tified ribosomal proteins and proteins involved in transla-
tion as interacting partners of mPARP12L. mPARP12L
interacts with ribosomes in the polysome-containing frac-
tions at 4 hours post-infection (pi) with VEEV but facilitates
disassembly of polysomes at later times of infection (12 h pi),
which is dependent on its RNA-binding and PARP catalytic
activities [21,22] (Figure 1). mPARP12L mutants that are
unable to transfer ADP-ribose to substrate proteins, includ-
ing mPARP12L itself, fail to block translation; however,
they are still able to inhibit replication of GFP-expressing
VEEV. One possible explanation is that mPARP12L utilizes
an unknown mechanism to block VEEV replication that
is unrelated to poly-ADP-ribosylation and translational
inhibition. The role of the PARP domain in mediating
translational inhibition and the catalytic activity-indepen-
dent antiviral function of mPARP12L warrant further
studies.

IFIT1

IFIT proteins are localized in the cytoplasm and lack any
obvious enzymatic domain or activity. They contain multi-
ple tetratricopeptide repeats, which are important for
protein–protein interactions. IFIT1 (also called p56 and
ISG56) is among the better characterized members, and its
expression is induced by dsRNA, IRF3, type I IFN, and a
variety of viruses [23,24]. Similar to PARP proteins, the
IFIT family targets viruses by translational repression
[25]. Many cellular and viral mRNAs are methylated at
the N-7 and 20-O positions of the 50 guanosine cap by
nuclear and cytoplasmic methyltransferases, but the func-
tion of 20-O methylation was unclear for many years.
Recent studies found that 20-O methylation of the 50 cap
of viral RNA serves as an immune evasion strategy for
viruses that are otherwise recognized by IFIT1.

Human IFIT1 blocks West Nile virus (WNV), Japanese
encephalitis virus (JEV), and coronavirus mutants that
lack 20-O-methyltransferase activity, and inhibition occurs
by IFIT1 preferentially sequestering capped RNA lacking a
20-O-methyl group and preventing eukaryotic translation
initiation factors from binding to the RNA template
[26–30] (Figure 1). Structural studies and binding assays
also support a role for IFIT1 in recognizing single-stranded
viral RNA bearing a 50-triphosphate group, which results
in translation inhibition, although binding appears to be of
lower affinity than IFIT1 binding to 50 capped RNA lacking
20-O-methylation [28,31,32]. Intriguingly, alphaviruses do
not carry a 20-O-methylated cap but instead have evolved a
stable secondary structure in their 50 UTRs to evade IFIT1
recognition and translational repression [33]. Taken to-
gether, IFIT1 is a critical innate immune effector that
inhibits viruses whose RNAs lack a 20-O-methylated cap.

In addition to directly binding to the viral RNA, IFIT1
binds the eukaryotic translation initiation factor 3e (eIF3e)
subunit in a yeast two-hybrid screen and inhibits transla-
tion both in vitro and in vivo by blocking eIF3 stabilization
321
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Figure 1. Interferon-stimulated genes (ISGs) repress translation by targeting host and viral factors important for regulation of translation initiation and elongation.

Translation initiation involves binding of eukaryotic initiation factor (eIF) 4E to the m7G cap structure at the 50 end of mRNAs (middle top). Both eIF4E and poly(A)-binding

protein (PABP) interact with the scaffold protein eIF4G, leading to mRNA circularization. The 43S preinitiation complex, which consists of the eIF3 complex (13 subunits; a–

m), the ternary complex eIF2-GTP-Met-tRNAi and the 40S ribosomal subunit, is then recruited (top left). The 43S complex scans the 50 untranslated region (UTR) of the

mRNA, which is unwound by the RNA helicase eIF4A until the initiating AUG is found. As a result, the 60S ribosomal subunit joins the 40S ribosomal subunit to form the

80S ribosome, resulting in translation initiation and elongation, and formation of polyribosomes (polysomes) on the mRNA (middle bottom). The ISGs that target some of

the translation initiation and elongation steps are depicted in red.
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of the ternary complex eIF2-GTP-Met-tRNAi [34,35]
(Figure 1). IFIT1 was also identified as an eIF3-associated
protein fractionating with hepatitis C virus (HCV) trans-
lation complexes in IFN-treated cells [36]. IFIT1 blocks
translation driven by the HCV internal ribosome entry site
(IRES) and the inhibition depends on eIF3 binding by
IFIT1. IRESs are RNA elements that recruit the ribosome
to internal sites in the mRNA in a cap-independent man-
ner [3]. The HCV IRES interacts with eIF3 and 40S
322
ribosomal subunit to initiate translation and therefore is
prone to eIF3 inhibition by IFIT1. However, in another
study that interrogated the effects of IFIT1 on different
modes of translation, IFIT1 preferentially inhibits cap-
dependent translation but not translation of the EMCV
IRES [35]. Since the EMCV IRES is different than that of
HCV and functions by a different mechanism, the former
might have a different requirement for eIF3 and hence is
more resistant to IFIT1 effects.



Box 2. An overview of ADP-ribosylation

Mono- and poly-ADP-ribosylation of proteins (Figure I) are important

post-translational modifications that are implicated in a variety of

cellular processes, such as DNA repair, cell death, chromatin remodel-

ing, and immune cell development [123–126]. Poly(ADP-ribose) poly-

merases (PARPs) transfer ADP-ribose from the co-substrate NAD+ onto

specific amino acid residues of substrate proteins. Seventeen PARPs

exist in humans, all with a conserved PARP domain, and nearly one-

third of the PARP genes contain signatures of rapid evolution in

primates [127]. Some of the PARPs carry the enzymatic activity to

modify proteins with poly-ADP-ribose (pADPr) or mono-ADP-ribose

(mADPr), whereas others are inactive, based primarily on the presence

or absence of a catalytic triad motif of histidine, tyrosine, and glutamate

(HYE) that is required for transferring the initial ADPr and/or multiple

ADPr molecules [55]. Most of the PARP proteins can also auto-ADP-

ribosylate themselves. Alternatively, poly-ADPr-glycohydrolase

(PARG) removes the pADPr chain leaving the most proximal ADPr

still attached to the target protein [128,129]. Searches for enzymes

that reverse mono-ADP-ribosylated proteins back to their unmodified

state have been elusive until recently when cellular macrodomains

were shown to reverse mono-ADP-ribosylation [130,131]. The presence

of macrodomain motifs in multiple diverse viruses such as alpha-

viruses, coronaviruses, rubella, and hepatitis E viruses suggests

that the metabolism of this post-translational modification might be

critical for viral antagonism of host responses. In this review, we will

discuss some of the recent findings related to the novel roles of ISGs in

the PARP family in stress granule formation and stress response-

induced translational derepression of miRNA targets, involving

PARP12, ZAPL/PARP13.1, and ZAPS/PARP13.2.

ADPr

Mono-ADP-ribosylated
protein

Poly-ADP-ribosylated
protein

Unmodified 
protein

PARG
PARPPARP

PARP

Macrodomain

TRENDS in Cell Biology 

Figure I. Enzymes responsible for addition and removal of ADP-ribose.
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SLFN11

Many viral genes have a different codon usage than host
genes; for example, high frequencies of adenosine (A) at
wobble positions have been found in lentiviral genomes [37–
39]. It was shown that codons rarely used by the host cell are
highly represented in the HIV-1 genome, and the virus
induces changes in cellular transfer RNA (tRNA) levels to
decode the rare codons and facilitate viral protein synthesis
[39]. Human schlafen 11 (SLFN11) has been shown to block
the production of wild type HIV-1 by inhibiting the transla-
tion of viral proteins [40]. Schlafen genes are a subset of ISGs
that are found only in mammals and possess motifs resem-
bling DNA/RNA helicase domains. Murine SFLN proteins
are regulators of T cell development, and their expression is
upregulated by lipopolysaccharide (LPS), poly(I:C), and type
I IFN [40–43]. SLFN11 binds cellular tRNAs to counteract
HIV-induced changes in tRNA levels and achieve viral
translation inhibition [40] (Figure 1). The mechanism by
which SLFN11 acts is not clear, but it provides an example of
how ISGs can specifically block viral translation due to the
rare codon usage of viruses.

ISG15

Some ISGs mediate antiviral activity by counteracting the
effects that viruses have on host translation. IFN-stimu-
lated gene of 15 kDa (ISG15) is a ubiquitin-like protein
that is upregulated by type I IFN. It is covalently attached
to lysine residues of target proteins, and has been found as
a modification on newly translated proteins of both viral
and host origin [44]. Replication of many viruses is
blocked by ISG15 in vitro and/or in vivo, and for some
of these viruses, ISG15 acts at the step of virus release
[44]. Previously, Coxsackievirus B3 (CVB3) 2A protease
was shown to cleave the host cell eukaryotic initiation
factor eIF4G, leading to host cell translational shutoff in
infected cells while allowing IRES-driven translation of
the viral genome [45]. Interestingly, CVB3 2A protease is
modified by ISG15, and the modified protease is less
efficient at cleaving eIF4G in both HeLa cells and cardi-
omyocytes [46] (Figure 1). Indeed, inhibition of virus
production and decreased CVB3-induced pathology were
observed in wild type mice compared to ISG15 knockout
animals [46]. The data suggest a previously unappreciat-
ed role for ISG15 modification in subversion of virus-
induced translational shutoff. However, further studies
are necessary to determine if this strategy applies to other
viruses that cause host shutoff.

Localization to cytoplasmic granules and regulation of
miRNA-mediated silencing
As cellular mRNA exits the nucleus, the translation initi-
ation complex is recruited and assembled, leading to poly-
some formation and active translation of the mRNA.
Polysomes can be dissembled by cues of translational
silencing or deadenylation, and the mRNA is redirected
to cytoplasmic RNA granules for regulated translation
and/or decay (for recent reviews, see [47,48]). Upon expo-
sure to stress-inducing stimuli, such as oxidation, hypoxia,
and virus infection, translationally stalled mRNAs, 40S
ribosomal subunits, and several RNA-binding proteins
localize to distinct cytoplasmic foci called stress granules
(SGs) (Figure 2). In most cases, phosphorylation of eIF2a,
triggered by stress inducers including the chemical sodium
arsenite, results in the assembly of SGs. Alternatively,
acute energy starvation or the drug pateamine A can
induce SG formation by an eIF2a phosphorylation-
independent mechanism. SGs are believed to mediate
antiviral processes and in response viruses have evolved
323
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Figure 2. Interferon-stimulated genes (ISGs) localize to stress granules (SGs) and P bodies (PBs), translationally silent sites in the cytoplasm. Polysomes can be dissociated

by signals of translational silencing or deadenylation, and the actively translating mRNA is redirected to SGs and PBs for repression or triage. Messenger

ribonucleoproteins can also move from one type of granule to the other. ISGs that are localized to SGs upon stress induction and to PBs are shown as stars.
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strategies to interfere with SG formation, although in some
cases SG formation acts in a proviral manner (for a recent
review, see [49]). Further, cytoplasmic processing bodies
(PBs) contain untranslated mRNAs and can serve as sites
of mRNA degradation (Figure 2). There is evidence in
support of dynamic interactions between SGs and PBs
where mRNA species from dissociated polysomes get remo-
deled in SGs and some of them are subsequently targeted
for degradation in PBs [48].

Argonaute (Ago) proteins localize to mammalian PBs
and are effectors of the RNA-induced silencing complex
(RISC) that is involved in miRNA-mediated translational
regulation of cellular transcripts [50–52]. The miRNA
pathway (summarized in Figure 3 and recently reviewed
in [53]) starts with the nuclear processing of longer prima-
ry miRNA (pri-miRNA) transcripts into pre-miRNA hair-
pins by the RNase III enzyme Drosha. The cytoplasmic
RNase III enzyme Dicer then cleaves pre-miRNAs into
miRNA duplexes where one strand is guided to its targets
by Ago. In most cases, Ago-miRNA complexes engage
mRNA targets with imperfect sequence complementarity
leading to cleavage-independent repression of mRNA tran-
scripts by translational silencing and to a lesser degree
deadenylation and mRNA degradation. By contrast, a few
miRNAs and small interfering RNAs (siRNAs) bind to
target sites with extensive or perfect sequence complemen-
tarity, which results in mRNA cleavage.

It has been shown that several ISGs localize to cyto-
plasmic granules (Figure 2) and, of these, the PARP proteins,
324
Moloney leukemia virus type 10 homolog (MOV10), and
adenosine deaminase acting on RNA 1 (ADAR1) are known
to regulate miRNA-mediated silencing of target genes. Reg-
ulation is mediated by modifying or interacting with com-
ponents of the RISC, or by editing miRNAs. In the instances
described below, the immune response is altered as a result
of translational derepession of antiviral gene transcripts or
increased recognition of infected cells by immune subsets.

PARPs

Among the ISG members of the PARP family, human
PARP12, PARP13.1 (ZAPL), and PARP13.2 (ZAPS) were
found to localize to cytoplasmic SGs [54]. In response to
arsenite-induced oxidative stress, PARP12 of both human
and murine origin colocalizes in cytoplasmic puncta with
well-characterized components of SGs, such as Ras
GTPase-activating protein-binding protein 1 (G3BP1),
the T-cell-restricted intracellular antigen 1-related protein
(TIAR), and the eukaryotic translation initiation factor 3h

(eIF3h) subunit [22,54] (Figure 2). The ability to localize to
SGs is dependent on mPARP12’s N-terminal zinc fingers,
suggesting a role for RNA binding in SG localization.
Similar to PARP12, both ZAP isoforms localize to cyto-
plasmic SGs after sodium arsenite treatment (Figure 2),
and in addition become poly-ADP-ribosylated, as does
Ago2 [54]. ADP-ribose addition to ZAPS and ZAPL must
be carried out by other cytoplasmic PARP proteins because
ZAPL lacks auto-ADP-ribosylating activity and is pre-
dicted to be an inactive PARP enzyme, and ZAPS lacks
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Figure 3. Interferon-stimulated genes (ISGs) affect microRNA (miRNA) processing, production, and actions. The mammalian RNAi pathway is depicted here. The RNase III

enzyme Drosha first processes longer primary miRNA (pri-miRNA) transcripts into pre-miRNA hairpins in the nucleus. After nuclear export, pre-miRNAs are cleaved into

miRNA duplexes by Dicer in the cytoplasm and loaded onto Argonaute 2 (Ago2). The minimal RNA-induced silencing complex (RISC) complex (Dicer-TRBP-Ago2) targets

transcripts with extensive or perfect sequence complementarity to the miRNA leading to mRNA cleavage, whereas imperfect sequence complementarity between the target

transcript and miRNA leads to translational silencing, deadenylation, and mRNA degradation. ISGs interacting with different components of the RNAi pathway are shown

as stars. A-to-I editing by adenosine deaminase acting on RNA 1 (ADAR1) either leads to (A) decreased processing and increased degradation of pri-miRNA [97], or (B)

silencing of a different set of gene targets [96]. The involvement of Moloney leukemia virus type 10 homolog (MOV10) in different repressive mechanisms of miRNA is

controversial and therefore highlighted by question marks.

Review Trends in Cell Biology June 2015, Vol. 25, No. 6
the PARP domain completely [54,55]. There was some
evidence suggesting that human PARP12 might be one
of the SG-specific PARPs that ADP-ribosylates ZAP and/or
Ago2 [54]. Interestingly, the short isoform of ZAP has a
higher level of ADP-ribosylation than ZAPL upon patea-
mine A treatment, supporting distinct roles for ZAP iso-
forms in the cellular response to stress [54].

The known functional consequences of ADP-ribosyla-
tion are largely restricted to nuclear processes. Therefore,
the finding that ADP-ribosylation of Ago2 increases upon
stress is novel and implies important functions for this
post-translational modification in cytoplasmic processes
[54]. The resultant ADP-ribosylation of Ago2 after stress
or overexpression of either ZAPS or ZAPL correlates with
derepression of miRNA-mediated translational silencing of
luciferase reporters that contain siRNA or miRNA binding
sites in their 30 UTRs [9,54]. Overexpression of human
PARP12 also leads to relief of silencing of a luciferase
reporter with miRNA binding sites, albeit less dramatical-
ly compared to ZAP overexpression [54]. Because many
325
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ISGs are anti-proliferative, their constitutive expression
levels in the cells are presumably low and tightly regulat-
ed. It was postulated that due to an increased density of
miRNA binding sites in the 30UTRs of ISGs compared to all
cellular 30 UTRs, the mRNAs of ISGs are selectively re-
pressed under normal physiological conditions to maintain
cellular homeostasis [9]. However, ISG mRNAs are dere-
pressed during viral infection to allow upregulation of
antiviral gene expression (Figure 3). In this case, ADP-
ribose serves as the signaling molecule that switches off
RISC activity in order to upregulate ISG expression and
eliminate the virus. This derepression of miRNA activity
on ISGs has so far been shown to contribute to inhibition of
herpes simplex virus 1 and a mutant influenza A virus that
induces a stronger antiviral response than the wild type
virus [9]. ZAPS, ZAPL, and potentially PARP12 are im-
portant components of stress-induced relief of RISC activi-
ty, although the mechanism by which they act remains
unclear.

As mentioned here, ZAP intersects with a variety of
cellular processes potentially in an isoform-specific fashion
and carries out complex functions that are seemingly
contradictory and cannot be unified by a single mechanism.
For example, it is not clear how ZAP can block translation
of viral mRNA yet be involved in the derepression of
miRNA-mediated silencing of cellular transcripts. It is
possible that ZAP’s binding to viral RNA, recruitment of
exosome components, interaction with the translation ma-
chinery, and regulation of Ago2 all play a role in its
antiviral activity although the relative contribution of
these various functions to ZAP’s inhibition of different
viruses needs to be further investigated.

MOV10

MOV10 protein is a member of the superfamily 1 (SF-1)
RNA helicase family [56] and contains seven highly con-
served helicase motifs in its C-terminal region. MOV10,
upregulated by type I IFN, has been shown to inhibit HCV,
retroviruses, and both long terminal repeat (LTR) and non-
LTR endogenous retroelements, but can facilitate the
RNA-directed transcription of hepatitis delta virus
[2,57–62]. MOV10, identified in purified Ago1- and Ago2-
containing complexes from human cells, localizes to cyto-
plasmic PBs (Figure 2) and is functionally required to
mediate miRNA-guided mRNA silencing [63]. Interest-
ingly, MOV10 is critical for regulation of local protein
synthesis at synapses where cellular mRNAs normally
suppressed by miRNAs enter the polysomes once
MOV10 is targeted for degradation in response to synaptic
stimulation [64].

One controversy in the RNAi field is what determines
the different repressive mechanisms following miRNA and
siRNA targeting. Identification of specific host factors or
differential complex formation required for miRNA func-
tion may help elucidate the different outcomes of targeted
transcripts. Using fractions isolated from cells a minimal
RISC complex, consisting of Dicer, the HIV-1 TAR RNA
binding protein (TRBP), and Ago2, cleaves target RNA
with perfect complementarity; use of a pre-miRNA hairpin
as the source of siRNA results in more efficient target
cleavage than a mature miRNA duplex [65,66]. These
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studies provide evidence for the coupling of miRNA proces-
sing by Dicer and Ago2-mediated target cleavage. Alterna-
tively, a larger fraction containing the minimal RISC
complex components as well as MOV10, core proteins of
the 60S ribosomal subunit, and eIF6, a ribosome inhibitory
protein, resulted in translational repression and down-
regulation of target mRNAs [67] (Figure 3). It was pro-
posed that eIF6 prevents ribosome association or recycling
and recruits target RNAs to PBs, which are free of core
translation components. In contrast to these studies, si-
lencing experiments implicate MOV10 in both mRNA
cleavage mediated by a perfectly matching miRNA and
translation repression mediated by an imperfectly match-
ing miRNA [68]. In support of the role of MOV10 in mRNA
cleavage, APOBEC3G, another ISG that localizes to cyto-
plasmic PBs, inhibits miRNA function mediated by perfect
complementarity sites by interfering with the interaction
between Ago2 and MOV10, causing either abnormal as-
sembly or maturation of the RISC complex [68,69]. Taken
together, MOV10 interacts with Ago2 and is critical for the
function of the RISC, but the relative contribution of
MOV10 to different repressive mechanisms of miRNAs
is still controversial and needs to be further explored.

ADAR1

Members of the ADAR family of enzymes convert A to
inosine (I) in RNA species that carry double-stranded
structures [70]. A-to-I RNA editing leads to nucleotide
substitution as I is recognized by the cell as guanosine,
and affects the coding of the protein that is ultimately
made. Intriguingly, the majority of A-to-I editing targets in
the cell are noncoding RNAs [71–76]. All members of the
ADAR family (ADAR1, 2, and 3) contain a deaminase
domain at their C-terminal end that is required for
enzymatic activity and two to three double-stranded
RNA-binding domains (dsRBDs). ADAR1 also contains
Z-DNA-binding domains (ZBDs) in its amino-terminus.
ADAR1 has been implicated in the editing of a variety of
viral genomes, which either drives genetic diversity of the
population and generates novel viral protein variants or
limits viral replication and reduces infectivity [77–88].

Two major isoforms of ADAR1 (p110 and p150) exist in
mammalian cells. The longer 150-kDa protein (p150) is
IFN inducible and shuttles between the nucleus and cyto-
plasm whereas the amino-terminally truncated 110-kDa
version (p110) is constitutively expressed and predomi-
nantly nuclear [89–91]. However, recent studies demon-
strated that both ADAR1 isoforms shuttle between the
nucleus and cytoplasm [92,93]. ADAR1 p150 localizes to
cytoplasmic SGs in HeLa cells upon oxidative or IFN-
induced stress; this localization is dependent on the ZBDs
found exclusively in p150 [94,95] (Figure 2).

Previous studies suggested conflicting roles for ADAR1
in both facilitating and interfering with miRNA proces-
sing through direct interaction with components of the
RNAi pathway or A-to-I editing of miRNAs (Figure 3).
Altered miRNA seeds due to A-to-I editing could lead to
altered translation profiles. Both ADAR1 p110 and p150
physically interact with Dicer in an RNA-independent
manner to increase the rate of cleavage of pre-miRNA
by Dicer, and thus facilitate loading of miRNA onto the
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RISC [93]. As expected, miRNA expression is downregu-
lated in ADAR1�/�mouse embryos compared to wild type,
leading to increased protein levels of the predicted miRNA
targets [93]. Furthermore, miR-376 cluster transcripts
undergo extensive A-to-I editing in select human and
mouse tissues as well as specific subregions of the brain,
and the edited miRNAs target a different set of genes,
suggesting a role for ADAR1 in tissue-specific regulation of
gene expression [96]. Conversely, ADAR1 p110 can edit
specific A residues in pri-miRNAs and negatively affect
the miRNA pathway. Editing of one of the ADAR1 targets,
pri-miR-142, leads to decreased processing by Drosha and
its degradation by Tudor-SN, a RISC-specific ribonuclease
that targets I-containing dsRNAs [97]. ADAR1 can also
block virus infection through editing of miRNAs. Surpris-
ingly, ADAR1 p110 but not the IFN-induced p150 is upre-
gulated during cytomegalovirus (CMV) infection and edits
miR-376a, the precursor of which is a known target of
ADAR1 [96]. The edited mature miR-376a downregulates
HLA-E expression, and as a result infected cells become
more susceptible to elimination by natural killer cells,
suggesting an indirect antiviral role for the constitutive
form of ADAR1 [98].

Concluding remarks
The innate immune response has developed multiple strat-
egies to attack viral intruders through the action of effector
proteins induced by type I IFN. A common antiviral strat-
egy shared among some of these ISGs is to cause dysre-
gulation of viral or host translation through interaction
with translation factors and components of the RNAi
pathway, and facilitation of stress-induced post-transla-
tional modification and function of Ago2. However, several
important questions remain to be addressed. Are SGs
functional sites of antiviral signaling triggered by sensing
of viral RNA and translational inhibition? For example,
ZAP has been shown to interact with the cytosolic viral
RNA sensor RIG-I to enhance IFN-b production and NFkB
signaling [7]. Can viral RNA binding and sequestration by
some of these SG-specific ISGs activate cytosolic sensors to
relay innate immune signaling? Moreover, for some of the
ISGs mentioned, for example, ZAP and ADAR1, one of
their isoforms is constitutively expressed in the cell where-
as the other is induced by IFN. It is possible that the
constitutively expressed form is also upregulated by
IFN, albeit to a lower level compared to the IFN-inducible
form. To add to the complexity, there is evidence support-
ing differential upregulation of the two different ADAR1
isoforms by different viruses, blurring the line between
constitutively expressed and IFN-inducible forms
[98]. How do the different isoforms of ISGs coordinate their
activity upon viral infection, and how does that affect the
antiviral response? What are the mechanisms by which
ADP-ribosylation (and other post-translational modifica-
tions) triggers changes in protein function? We have much
to learn regarding the details of these translational control
mechanisms. It will be interesting to ponder new informa-
tion that is uncovered regarding the processes described
here and how they might be exploited for manipulation of
viral or host translation for novel antiviral or therapeutic
strategies.
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