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Abstract

We propose TP-compilation, a new inference technique for probabilistic logic
programs that is based on forward reasoning. TP-compilation proceeds incre-
mentally in that it interleaves the knowledge compilation step for weighted
model counting with forward reasoning on the logic program. This leads to a
novel anytime algorithm that provides hard bounds on the inferred probabil-
ities. The main difference with existing inference techniques for probabilistic
logic programs is that these are a sequence of isolated transformations. Typi-
cally, these transformations include conversion of the ground program into an
equivalent propositional formula and compilation of this formula into a more
tractable target representation for weighted model counting. An empirical
evaluation shows that TP-compilation effectively handles larger instances of
complex or cyclic real-world problems than current sequential approaches,
both for exact and anytime approximate inference. Furthermore, we show
that TP-compilation is conducive to inference in dynamic domains as it sup-
ports efficient updates to the compiled model.

Keywords: Probabilistic Inference, Knowledge Compilation, Probabilistic
Logic Programs, Dynamic Relational Models

1. Introduction

During the last few years there has been a significant interest in com-
bining relational structure with uncertainty. This has resulted in the fields
of statistical relational learning (Getoor and Taskar, 2007; De Raedt et al.,
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2008), probabilistic programming (Pfeffer, 2014) and probabilistic databases
(Suciu et al., 2011), which all address this combination. Probabilistic logic
programming (PLP) languages such as PRISM (Sato, 1995), ICL (Poole,
1993), ProbLog (De Raedt et al., 2007), LPADs (Vennekens et al., 2004) and
CP-logic (Vennekens et al., 2009) form one stream of work in these fields.
These formalisms extend the logic programming language Prolog with prob-
abilistic choices on which facts are true or false. We refer to De Raedt and
Kimmig (2015) for a detailed overview.

A common task in PLP is to compute the probability of a set of queries,
possibly given some observations. A recent insight is that probabilistic infer-
ence for PLP corresponds to weighted model counting (WMC) on weighted
logical formulas (Fierens et al., 2015; Chavira and Darwiche, 2008; Darwiche,
2009). As a result, state-of-the-art inference techniques rely on a three step
procedure (Fierens et al., 2015): (1) transform the dependency structure of
the logic program and the queries into a propositional formula, (2) com-
pile this formula into a tractable target representation, and (3) compute the
weighted model count (WMC). A recurring problem is that the first two steps
are computationally expensive, and infeasible for some real-world domains,
especially if the domain is highly cyclic.

The key contribution of this paper is TP-compilation, a novel inference
technique for probabilistic logic programs that interleaves construction and
compilation of the propositional formula. TP-compilation uses the TcP op-
erator that generalizes the TP operator (Van Emden and Kowalski, 1976)
from logic programming to probabilistic logic programming. Whereas the
TP operator finds one interpretation that satisfies the program, the TcP op-
erator finds all possible interpretations and associated probabilities. At any
point, after each application of the TcP operator, the WMC provides a lower
bound on the true probability of the queries and we thus realize an anytime
algorithm. We obtain an efficient realization of the TcP operator by repre-
senting formulas as Sentential Decision Diagrams, which efficiently support
incremental formula construction and WMC (Darwiche, 2011).

The main advantage of TP-compilation is that forward reasoning allows
for a natural way to handle cyclic dependencies. Because our approach does
not require to convert the complete logic program into a propositional formula
before compilation, no additional variables are introduced to break cycles.
This considerably simplifies the compilation step and pushes the boundaries
for exact as well as approximate inference.

A second advantage is that constructing the formula incrementally results
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in a set of formulas, rather than one big formula, which enables program
updates and inference in dynamic models, i.e., applications where time is
involved. In case of program updates, clauses are added to or deleted from the
program and TP-compilation can update the already compiled formulas. This
can cause significant savings compared to restarting inference from scratch.
Dynamic models contain time explicitly, introducing a repeated structure in
the model. TP-compilation allows us to exploit this structure, as well as the
given observations, to efficiently perform inference.

An empirical evaluation on real-world applications of biological and social
networks, web-page classification tasks and games demonstrates how our
approach efficiently copes with cyclic and dynamic domains. We show that
TP-compilation outperforms state-of-the-art approaches on these problems
with respect to time, space and quality of results.

This paper extends the work of Vlasselaer et al. (2015) to stratified prob-
abilistic logic programs with negation. Earlier work of Bogaerts and Van den
Broeck (2015) extends the TcP operator towards general logic programs by
means of approximation fixpoint theory, which is very general and powerful.
When one is only interested in stratified logic programs, however, a much
simpler result suffices, which we present here. Furthermore, we show how
TP-compilation allows us to efficiently cope with dynamic models. This dy-
namic approach is inspired by the work presented in Vlasselaer et al. (2016)
but differs in two aspects. Firstly, we consider dynamic relational mod-
els while Vlasselaer et al. (2016) consider dynamic Bayesian Networks, i.e.,
models without cycles. Secondly, TP-compilation allows for a more flexi-
ble approach that additionally exploits the observations to further scale up
inference.

The paper is organized as follows. We start by reviewing the necessary
background in Section 2. Sections 3 and 4 formally introduce the TcP opera-
tor and corresponding algorithm. We deal with dynamic domains in Section 5
and discuss experimental results in Section 6. Before concluding, we discuss
related work in Section 7.

2. Background

We review the basics of (probabilistic) logic programming. First, we
introduce definite clause programs and show how to include negation. Next,
we discuss probabilistic logic inference and knowledge compilation.
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2.1. Logical Inference for Definite Clause Programs

A term is a variable, a constant, or a functor applied on terms. An
atom is of the form p(t1, . . . , tm) where p is a predicate of arity m and the
ti are terms. A definite clause is a universally quantified expression of the
form h :− b1, ..., bn where h and the bi are atoms and the comma denotes
conjunction. The atom h is called the head of the clause and b1, ..., bn the
body. The meaning of such a clause is that whenever the body is true, the
head has to be true as well. A fact is a clause that has true as its body and
is written more compactly as h. A definite clause program is a finite set of
definite clauses, also called rules. If an expression does not contain variables
it is ground.

Let A be the set of all ground atoms that can be constructed from the
constants, functors and predicates in a definite clause program P . A Her-
brand interpretation of P is a truth value assignment to all a ∈ A, and is
often written as the subset of true atoms (with all others being false), or as
a conjunction of atoms. A Herbrand interpretation satisfying all rules in the
program P is a Herbrand model. The model-theoretic semantics of a definite
clause program is given by its unique least Herbrand model, that is, the set
of all ground atoms a ∈ A that are entailed by the logic program, written
P |= a.

Example 1. Consider the following definite clause program:

edge(b, a). edge(b, c).

edge(a, c). edge(c, a).

path(X, Y ) : - edge(X, Y ).

path(X, Y ) : - edge(X,Z), path(Z, Y ).

The facts represent the edges between two nodes in a graph (see Figure 1)
and the rules define whether there is a path between two nodes. Abbreviating
predicate names by initials, the least Herbrand model is given by {e(b, a),
e(b, c), e(a, c), e(c, a), p(b, a), p(b, c), p(a, c), p(c, a), p(a, a), p(c, c)}.

The task of logical inference is to determine whether a program P entails
a given atom, called query. The two most common approaches to inference
are backward reasoning or SLD-resolution, and forward reasoning. The for-
mer starts from the query and reasons back towards the facts (Nilsson and
Maluszynski, 1995). For the program depicted in Example 1 and the query
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Figure 1: A graph on the left and probabilistic graph on the right.

path(b, c), part of the SLD-tree is shown in Figure 2. The latter starts from
the facts and derives new knowledge using the immediate consequence oper-
ator TP (Van Emden and Kowalski, 1976).

?- path(b,c). 

?- edge(b,c). ?- edge(b,Z’),path(Z’,c). 

?- path(a,c). ?- path(c,c). 

?- edge(a,c). 

success 

?- edge(c,c). 

fail 

?- edge(a,Z’’),path(Z’’,c). … 

success 
Z’ = a 

… 

Figure 2: (Part of) SLD-tree for the program shown in Example 1 and the query path(b, c).

Definition 1 (TP operator). Let P be a ground definite clause program.
For a Herbrand interpretation I , the TP operator returns

TP(I ) = {h | h : - b1, . . . , bn ∈ P and {b1, . . . , bn} ⊆ I }

The least fixpoint of this operator is the least Herbrand model of P and is
the least set of atoms I such that TP(I ) ≡ I . Let T kP(∅) denote the result of
k consecutive calls of the TP operator, ∆I i be the difference between T i−1

P (∅)
and T iP(∅). Then T∞P (∅) is the least fixpoint interpretation of TP .

Example 2. The least fixpoint can be computed efficiently using a semi-
naive evaluation algorithm (Nilsson and Maluszynski, 1995). For the program
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given in Example 1, this results in:

I 0 = ∅
∆I 1 = {e(b, a), e(b, c), e(a, c), e(c, a)}
∆I 2 = {p(b, a), p(b, c), p(a, c), p(c, a)}
∆I 3 = {p(a, a), p(c, c)}
∆I 4 = ∅

and T∞P (∅) =
⋃
i ∆I i is the least Herbrand model as given above.

Property 1. Employing the TP operator on a subset of the least fixpoint
leads again to the same least fixpoint:

∀I ⊆ T∞P (∅) : T∞P (I ) = T∞P (∅)

Property 2. Adding a set of definite clauses P ′ to program P leads to a
superset of the least fixpoint for P:

T∞P (∅) ⊆ T∞P∪P ′(∅)

2.2. Beyond Definite Clause Programs

A normal logic program extends a definite clause program and allows for
negation, i.e., it is a finite set of normal clauses of the form h :− b1, ..., bn
where h are atoms and the bi are literals. A literal is an atom (positive
literal) or its negation (negative literal). The TP operator for definite clause
programs can be generalized towards stratified normal logic programs, where
the rules in the program are partitioned according to their strata (Nilsson
and Maluszynski, 1995). Let Ph be the subset of clauses in P where h is the
head, then a stratified program is defined as follows:

Definition 2 (Stratified Program). A normal logic program P is said to
be stratified if there exists a partitioning P1 ∪ · · · ∪ Pm of P such that:

if h : - . . . , b, . . . ∈ Pi then Pb ⊆ P1 ∪ · · · ∪ Pi
if h : - . . . ,¬b, . . . ∈ Pi then Pb ⊆ P1 ∪ · · · ∪ Pi−1

The TP operator for normal logic programs is defined as:

TP(I ) = {h | h : - b1, . . . , bn ∈ P and I |= b1, . . . , bn}
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where I |= bi if bi ∈ I and I |= ¬bi if bi /∈ I . Then, the canonical model1

can be obtained by iteratively computing the fixpoint for each stratum. Let
Ii be the Herbrand interpretation for stratum i, the canonical model for a
stratified program with m strata is computed as:

I1 = T∞P1
(∅)

I2 = T∞P2
(I1) ∪ I1

...

Im = T∞Pm
(Im−1) ∪ Im−1

and T∞P (∅) = Im .

Example 3. Consider the following normal logic program with two strata:

P1


sprinklerOn.
rain : - cloudy.
wetGrass : - rain.

P2

{
sprinkler : - ¬cloudy, sprinklerOn.
wetGrass : - sprinkler.

for which computing the canconical model results in:

I1 = {sprinklerOn}
I2 = {sprinkler, wetGrass} ∪ I1

and T∞P (∅) = {sprinklerOn, sprinkler, wetGrass}.

2.3. Probabilistic Logic Inference

Most probabilistic logic programming languages (e.g., ProbLog, PRISM,
ICL) are based on Sato’s distribution semantics (Sato, 1995). In this paper,
we use ProbLog as it is the simplest of these languages.

A ProbLog program P consists of a set R of rules and a set F of proba-
bilistic facts. Without sacrificing generality, we assume that no probabilistic
fact unifies with a rule head. A ProbLog program specifies a probability dis-
tribution over its Herbrand interpretations, also called possible worlds. Every

1For a full discussion of the semantics of general logic programs, we refer to Van Gelder
et al. (1991).
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grounding fθ of a probabilistic fact p : : f independently takes the value true
(with probability p) or false (with probability 1− p). For ease of notation,
we assume that F is ground.

Example 4. Our program given in Example 1 can be extended with proba-
bilities (see also Figure 1) in the following way:

0.4 : : edge(b, a). 0.3 : : edge(b, c).

0.8 : : edge(a, c). 0.9 : : edge(c, a).

path(X, Y ) : - edge(X, Y ).

path(X, Y ) : - edge(X,Z), path(Z, Y ).

The probabilistic facts represent that edges between two nodes are only true
with a certain probability. As a consequence, the rules now express a proba-
bilistic path.

A total choice C ⊆ F assigns a truth value to every ground probabilis-
tic fact, and the corresponding logic program C ∪ R has a canonical model
(Fierens et al., 2015); the probability of this model is that of C. Interpreta-
tions that do not correspond to any total choice have probability zero. The
probability of a query q is then the sum over all total choices whose program
entails q:

Pr(q) :=
∑

C⊆F :C∪R|=q

∏
fi∈C

pi ·
∏

fi∈F\C

(1− pi) . (1)

As enumerating all total choices entailing the query is infeasible, state-of-
the-art ProbLog inference reduces the problem to that of weighted model
counting (Fierens et al., 2015). For a formula λ over propositional variables
V and a weight function w(·) assigning a real number to every literal for an
atom in V , the weighted model count is defined as

WMC(λ) :=
∑

I⊆V :I|=λ

∏
a∈I

w(a) ·
∏
a∈V \I

w(¬a) . (2)

The reduction assigns w(fi) = pi and w(¬fi) = 1− pi for probabilistic facts
pi : : fi, and w(a) = w(¬a) = 1 else. For a query q, it constructs a formula λ
such that for every total choice C ⊆ F , C ∪ {λ} |= q ⇔ C ∪R |= q. While λ
may use variables besides the probabilistic facts, e.g., variables corresponding
to the atoms in the program, their values have to be uniquely defined for each
total choice.
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Example 5. Consider the sprinkler program introduced in Example 3 but
now, sprinklerOn and cloudy are probabilistic facts:

0.7 : : sprinklerOn. 0.2 : : cloudy.

converting the program results in the following propositional formula:

rain↔ cloudy.

∧ sprinkler↔ ¬cloudy ∧ sprinklerOn.
∧ wetGrass↔ rain ∨ sprinkler.

with w(sprinklerOn) = 0.7, w(¬sprinklerOn) = 0.3, w(cloudy) = 0.2 and
w(¬cloudy) = 0.8.

We briefly discuss the key steps of the sequential WMC-based approach,
and refer to Fierens et al. (2015) for full details. First, the relevant ground
program, i.e., all and only those ground clauses that contribute to some
derivation of a query (and evidence), is obtained using backward reason-
ing. Next, the ground program is converted to a propositional formula in
Conjunctive Normal Form (CNF), which is finally passed to an off-the-shelf
solver for weighted model counting.

Example 6. For the logic program given in Example 1 and a query p(a, c),
we would obtain the following ground program:

path(a, c) : - edge(a, c).

path(a, c) : - edge(a, c), path(c, c).

path(c, c) : - edge(c, a), path(a, c).

For acyclic rules, the conversion step is straightforward and only requires
to take Clark’s completion (Clark, 1978). For programs with cyclic rules,
however, the conversion step is more complicated and requires additional
variables and clauses to correctly capture the semantics of every cycle. This
can be done by rewriting the ground program.

Example 7. We can correctly break the cycles by rewriting the ground pro-
gram from Example 6 in the following way:

path(a, c) : - edge(a, c).

path(a, c) : - edge(a, c), path(c, c).

path(c, c) : - edge(c, a), aux path(a, c).

aux path(a, c) : - edge(a, c).
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The resources needed for the conversion step, as well as the size of the
resulting CNF, greatly increase with the number of cycles in the ground
program. For example, for a fully connected graph with only 10 nodes the
conversion algorithm implemented in ProbLog returns a CNF with 26995
variables and 109899 clauses.

Once the ground program is completely converted into a CNF formula, it
can be fed to any state-of-the art weighted model counter that supports this
standard input format. One of the popular approaches for weighted model
counting is supported by knowledge compilation.

2.4. Knowledge Compilation

For probabilistic inference it is common to compile the obtained propo-
sitional formula into a target language for which WMC is polynomial in the
size of the representation (Darwiche and Marquis, 2002; Chavira and Dar-
wiche, 2008). The most general language that efficiently supports WMC is
deterministic decomposable negation normal form (d-DNNF). The proper-
ties of d-DNNF state that disjunctions are required to be deterministic, i.e.
children of disjunctions cannot be true at the same time, and conjunctions
need to be decomposable, i.e. children of conjunctions are not allowed to
share variables. Most of the d-DNNF compilers, such as c2d or DSHARP,
require a CNF formula as input.

Sentential decision diagram (SDD) (Darwiche, 2011) is a recently intro-
duced target representation that is a strict subset of d-DNNF. An SDD is
of the form (p1 ∧ s1) ∨ · · · ∨ (pn ∧ sn) where each pair (pi ∧ si) is called an
element, the pi are called primes and the si are subs. Primes and subs are
themselves SDDs and the primes are consistent, mutually exclusive and ex-
haustive. These properties are stronger than the ones for d-DNNF, allowing
SDDs to efficiently support Boolean operations on formulas by means of an
apply operator. More concretely, two SDDs (p1 ∧ s1) ∨ · · · ∨ (pn ∧ sn) and
(p′1 ∧ s′1)∨ . . . (p′n ∧ s′n) can be combined with a boolean operator ◦ ∈ {∨,∧}
as follows (p1 ∧ p′1 ∧ s1 ◦ s′1) ∨ · · · ∨ (pn ∧ p′n ∧ sn ◦ s′n), only requiring lin-
ear time and space. Moreover, compressed SDDs are canonical leading to a
practical efficient incremental compilation when performing a large number
of recursive apply operations (Van den Broeck and Darwiche, 2015; Choi et
al., 2013). Hence, SDDs allow to be efficiently compiled in an incremental
(bottom-up) way and do not strictly require to first construct a formula in
CNF.
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To conclude, we note that ordered binary decision diagram (OBDD) is a
subset of SDD and also efficiently supports an apply operator. The advantage
of SDD is that it comes with size upper bounds based on treewidth which
are tighter than the size upper bounds based on pathwidth for OBDDs.

3. The TcP Operator

We now develop the formal basis of our approach. For ease of notation, we
first only consider definite clause programs and treat normal logic programs
towards the end of this section.

3.1. Definite Clause Programs

The incentive of our inference algorithm is to interleave formula construc-
tion and compilation by means of forward reasoning. The two advantages are
that (a) the conversion to propositional logic happens during rather than af-
ter reasoning within the logic programming semantics, avoiding the expensive
introduction of additional variables and propositions, and (b) at any time in
the process, the current formulas provide hard bounds on the probabilities.

Although forward reasoning naturally considers all consequences of a pro-
gram, using the relevant ground program allows us to restrict the approach
to the queries of interest. As common in probabilistic logic programming,
we assume the finite support condition, i.e., the queries depend on a finite
number of ground probabilistic facts.

We use forward reasoning to build a formula λa for every atom a ∈ A such
that λa exactly describes the total choices C ⊆ F for which C∪R |= a. Such
λa can be used to compute the probability of a via WMC (cf. Section 2.3).

Definition 3 (Parameterized interpretation). A parameterized interpre-
tation I of a ground probabilistic logic program P with probabilistic facts F
and atoms A is a set of tuples (a, λa) with a ∈ A and λa a propositional
formula over F expressing in which interpretations a is true.

Example 8. For the program shown in Example 4, the parameterized inter-
pretation is:

{
(
e(b, a), λe(b,a)

)
,(e(b, c), λe(b,c)

)
, (e(a, c), λe(a,c)

)
, (e(c, a), λe(c,a)

)
,

(p(b, a), λp(b,a)

)
,(p(b, c), λp(b,c)

)
, (p(a, c), λp(a,c)

)
, (p(c, a), λp(c,a)

)
,

(p(a, a), λp(a,a)

)
,(p(c, c), λp(c,c)

)
}.
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and, for instance, λe(b,a) = e(b, a) since e(b, a) is true in exactly those worlds
where the total choice includes this edge, and λp(b,c) = e(b, c)∨[e(b, a)∧e(a, c)]
since p(b, c) is true in exactly those worlds where the total choice includes
the direct edge or the two-edge path over a.

A naive approach to construct the λa would be to compute Ii = T∞R∪Ci
(∅)

for every total choice Ci ⊆ F and to set λa =
∨
i:a∈Ii

∧
f∈Ci

f , that is, the
disjunction explicitly listing all total choices contributing to the probability
of a. Clearly, this requires a number of fixpoint computations exponential
in |F|, and furthermore, doing these computations independently does not
exploit the potentially large structural overlap between them.

Therefore, we introduce the TcP operator. It generalizes the TP operator
to work on the parameterized interpretation and builds, for all atoms in par-
allel on demand, formulas that are logically equivalent to the λa introduced
above. For ease of notation, we assume that every parameterized interpre-
tation implicitly contains a tuple (true,>), and, just as in regular interpre-
tations, we do not list atoms with λa ≡ ⊥. Thus, the empty set implicitly
represents the parameterized interpretation {(true,>)}∪{(a,⊥)|a ∈ A} for
a set of atoms A.

Definition 4 (TcP operator). Let P be a ground probabilistic logic pro-
gram with probabilistic facts F and atoms A. Let I be a parameterized inter-
pretation with pairs (a, λa). Then, the TcP operator is TcP(I) = {(a, λ′a) |
a ∈ A} where

λ′a =

{
a if a ∈ F∨

(a :- b1,...,bn)∈P(λb1 ∧ · · · ∧ λbn) if a ∈ A \ F .

Intuitively, where the TP operator (repeatedly) adds an atom a to the inter-
pretation whenever the body of a rule defining a is true, the TcP operator
adds to the formula for a the description of the total choices for which the rule
body is true. In contrast to the TP operator, where a syntactic check suffices
to detect that the fixpoint is reached, the TcP operator requires a semantic
fixpoint check for each formula λa, which we write as I i ≡ TcP(I i−1).

Definition 5 (Fixpoint of TcP). A parameterized interpretation I is a fix-
point of the TcP operator if and only if for all a ∈ A, λa ≡ λ′a, where λa and
λ′a are the formulas for a in I and TcP(I), respectively.

12



It is easy to verify that for F = ∅, i.e., a ground logic program P , the iter-
ative execution of the TcP operator directly mirrors that of the TP operator,
representing atoms as (a,>). We use λia to denote the formula associated
with atom a after i iterations of TcP starting from ∅. We use SDDs to
efficiently represent the formulas λa as will be discussed in Section 4.

Example 9. Applying TcP to the program given in Example 4 results in the
following sequence:

The first application of TcP sets:

λ1
e(b,a) = e(b, a), λ1

e(a,c) = e(a, c), λ1
e(b,c) = e(b, c), λ1

e(c,a) = e(c, a)

These remain the same in all subsequent iterations.
The second application of TcP starts adding formulas for path atoms,

which we illustrate for just two atoms:

λ2
p(b,c) = λ1

e(b,c) ∨ (λ1
e(b,a) ∧ λ1

p(a,c)) ∨ (λ1
e(b,c) ∧ λ1

p(c,c))

= e(b, c) ∨ (e(b, a) ∧ ⊥) ∨ (e(a, c) ∧ ⊥) ≡ e(b, c)

λ2
p(c,c) = (λ1

e(c,a) ∧ λ1
p(a,c)) = (e(c, a) ∧ ⊥) ≡ ⊥

That is, the second step considers paths of length at most 1 and adds (p(b, c), e(b, c))
to the parameterized interpretation, but does not add a formula for p(c, c), as
no total choices making this atom true have been found yet.

The third iteration, adds information on paths of length at most 2:

λ3
p(b,c) = λ2

e(b,c) ∨ (λ2
e(b,a) ∧ λ2

p(a,c)) ∨ (λ2
e(b,c) ∧ λ2

p(c,c))

≡ e(b, c) ∨ (e(b, a) ∧ e(a, c))
λ3
p(c,c) = (λ2

e(c,a) ∧ λ2
p(a,c)) ≡ (e(c, a) ∧ e(a, c))

Intuitively, TcP keeps adding longer sequences of edges connecting the cor-
responding nodes to the path formulas, reaching a fixpoint once all acyclic
sequences have been added.

Correctness. We show that for increasing i, TciP(∅) reaches a least fix-
point Tc∞P (∅) where the λa are exactly the formulas needed to compute the
probability for each atom by WMC.

Theorem 1. For a ground probabilistic definite clause program P with prob-
abilistic facts F , rules R and atoms A, let λia be the formula associated with
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atom a in TciP(∅). For every atom a, total choice C ⊆ F and iteration i, we
have:

C |= λia → C ∪R |= a

Proof by induction: i = 1: easily verified. i→ i+1: easily verified for a ∈ F ;
for a ∈ A \ F , let C |= λi+1

a , that is, C |=
∨

(a :- b1,...,bn)∈P(λib1 ∧ · · · ∧ λ
i
bn

).

Thus, there is a a : - b1, . . . , bn ∈ P with C |= λibj for all 1 ≤ j ≤ n. By

assumption, C ∪R |= bj for all such j and thus C ∪R |= a. �

Corollary 1. After each iteration i, we have WMC(λia) ≤ Pr(a).

Theorem 2. For a ground probabilistic definite clause program P with prob-
abilistic facts F , rules R and atoms A, let λia be the formula associated with
atom a in TciP(∅). For every atom a and total choice C ⊆ F , there is an i0
such that for every iteration i ≥ i0, we have

C ∪R |= a ↔ C |= λia

Proof: ←: Theorem 1. →: C ∪ R |= a implies ∃i0∀i ≥ i0 : a ∈ T iC∪R(∅).
We further show ∀j : a ∈ T jC∪R(∅) → C |= λja by induction. j = 1: easily
verified. j → j + 1: easily verified for a ∈ F ; for other atoms, a ∈ T j+1

C∪R(∅)
implies there is a rule a : - b1, . . . , bn ∈ R such that ∀k : bk ∈ T jC∪R(∅). By
assumption, ∀k : C |= λjbk , and by definition, C |= λj+1

a . �
Thus, for every atom a, the λia reach a fixpoint λ∞a exactly describing the

possible worlds entailing a, and the TcP operator therefore reaches a fixpoint
where for all atoms Pr(a) = WMC(λ∞a ).2

Conditional Probabilities. Once a fixpoint is reached, conditional prob-
abilities can be computed using Bayes’ rule. The probability of a query q,
given a set E of observed atoms (evidence atoms) and a vector e of observed
truth values, is computed as:

Pr(q|E = e) =
WMC(λ∞q ∧ λ∞e )

WMC(λ∞e )
with λ∞e =

∧
e∈e

λ∞e

Hence, computing conditional probabilities additionally requires the con-
struction of a formula λ∞e that represents the evidence e.

2The finite support condition ensures this happens in finite time.
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3.2. Normal Logic Programs

The correspondence with the TP operator allows us to extend the TcP
operator towards stratified normal logic programs (Sec. 2.2). To do so, we
apply the TcP operator stratum by stratum, that is, we first have to reach a
fixpoint for Pi before considering the rules in Pi+1. Let Ii be the parametrized
interpretation for stratum i, the set of formulas for a stratified program with
m strata is obtained by:

I1 = Tc∞P1
(∅)

I2 = Tc∞P2
(I1)

...

Im = Tc∞Pm
(Im−1)

Following the definition of stratified programs, the formula for a negative
literal ¬a is only required once a fixpoint for the positive literal a has been
reached. Hence, λ¬a can be obtained as ¬λa.

4. Anytime Inference

Probabilistic inference iteratively calls the TcP operator until the fixpoint
is reached. This involves incremental formula construction (cf. Definition 4)
and equivalence checking (cf. Definition 5).

An efficient realization of our evaluation algorithm is obtained by repre-
senting the formulas in the interpretation I by means of a Sentential Decision
Diagram (SDD), which can handle the required operations efficiently (Dar-
wiche, 2011). Hence, we can replace each λa in Definition 4 by its equivalent
SDD representation Λa and each of the Boolean operations by the Apply-
operator for SDDs which, given ◦ ∈ {∨,∧} and two SDDs Λa and Λb, returns
an SDD equivalent with (Λa ◦ Λb).

4.1. TP-Compilation

The TcP operator is, by definition, called on I. To allow for different
evaluation strategies, however, we propose a more fine-grained algorithm
where, in each iteration, the operator is only called on one specific atom
a, i.e., only the rules for which a is the head are evaluated, denoted by
TcP(a, I i−1). Note that, in case of normal logic programs, we only consider
the rules within one stratum. Each iteration i of TP-compilation consists of
two steps;
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1. Select an atom a ∈ A.

2. Compute I i = TcP(a, I i−1)

The result of Step 2 is that only the formula for atom a is updated and, for
each of the other atoms, the formula in I i is the same as in I i−1. It is easy to
verify that TP-compilation reaches the fixpoint Tc∞P (∅) in case the selection
procedure frequently returns each of the atoms in P .

4.2. Lower Bound

Following Theorem 1, we know that, after each iteration i, WMC(λia)
is a lower bound on the probability of atom a, i.e., WMC(λia) ≤ Pr(a) =
WMC(λ∞a ), which holds for definite clause programs as well as for stratified
normal logic programs. To quickly increase WMC(λia) and, at the same time,
avoid a blow-up of the formulas in I, the selection procedure we employ picks
the atom which maximizes the following heuristic value:

WMC(Λi
a)−WMC(Λi−1

a )

φa · (Size(Λi
a)− Size(Λi−1

a ))/Size(Λi−1
a )

where Size(Λ) denotes the number of edges in SDD Λ and φa adjusts for the
importance of a in proving queries.

Concretely, Step 1 of TP-compilation calls TcP(a, I i−1) for each a ∈ A,
computes the heuristic value and returns the atom a′ for which this value
is the highest. Then, Step 2 performs I i = TcP(a′, I i−1). Although there
is overhead involved in computing the heuristic value, as many formulas are
compiled without storing them, this strategy works well in practice.

We take as value for φa the minimal depth of the atom a in the SLD-tree
for each of the queries of interest. This value is a measure for the influence of
the atom on the probability of the queries. For our example, and the query
p(b, c), the use of φa would give priority to compile p(b, c) as it is on top of
the SLD-tree (see Figure 2). Without φa, the heuristic would give priority
to compile p(a, c) as it has the highest probability.

4.3. Upper bound

To compute an upper bound for definite clause programs, we select F ′ ⊂
F and treat each f ∈ F ′ as a logical fact rather than a probabilistic fact, that
is, we conjoin each λa with

∧
f∈F ′ λf . In doing so, we simplify the compilation

step of our algorithm, because the number of possible total choices decreases.
Furthermore, at a fixpoint, we have an upper bound on the probability of the
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atoms, i.e., WMC(λ∞a |λF ′) ≥ Pr(a), because we overestimate the probability
of each fact in F ′.

Randomly selecting F ′ ⊂ F does not yield informative upper bounds
(they are close to 1). As a heuristic, we compute for each of the facts the
minimal depth in the SLD-trees of the queries of interest and select for F ′
all facts whose depth is smaller than some constant d. Hence, we avoid the
query to be deterministically true as for each of the proofs, i.e., traces in
the SLD-tree, we consider at least one probabilistic fact. This yields tighter
upper bounds. For our example, and the query p(b, c), both of the edges
starting in node b are at a depth of 1 in the SLD-tree (see Figure 2). Hence,
it suffices to compile only them, and treat both other edges as logical facts,
to obtain an upper bound smaller than 1.

Discussion. Computation of the lower bounds is also valid for programs
with negation but rules need to be compiled according to their stratification.
Computation of our upper bounds only holds for definite clause programs,
i.e., programs without negation, and is similar in spirit to the upper bounds
of Poole (1993) and De Raedt et al. (2007). As computation of the lower and
upper bound operates on different formulas, an anytime algorithm should
alternate between compiling these formulas.

5. Extensions of Tp-Compilation

Modeling real-world applications might require the inclusion of time in
an implicit way, e.g. with program updates, or explicit way, e.g. dynamic
models. We now show how TP-compilation allows us to deal efficiently with
these models.

5.1. Inference with Program Updates

A probabilistic logic program typically represents a stationary model,
that is, the set of rules R as well as the set of facts F is fixed. For many
applications, however, the program only expresses all available information at
one specific moment in time while the underlying process constantly evolves.
As an example one can think of a probabilistic graph, as shown in Figure 1,
where new edges and nodes are discovered over time, while others disappear.

To cope with new information, the set of facts F is updated while the
set of (non-ground) rules R remains unchanged. Adding facts leads to new
clauses in the ground program and removing facts removes clauses from the
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grounded program. One way to deal with program changes is to recompile
the complete program from scratch after each update of F . In case F changes
only marginally, however, a more efficient approach is to reuse past compila-
tion results. This can be achieved using the TcP operator, which allows for
adding clauses to and removing clauses from the program. We only consider
program updates for definite clause programs as for normal logic programs
we will have to restart compilation from the lowest strata affected by the
update.

Adding Clauses. For definite clause programs, we know that employing the
TP operator on a subset of the fixpoint reaches the fixpoint (see Property 1).
Moreover, adding definite clauses leads to a superset of the fixpoint (see
Property 2). Hence, it is safe to restart the TP operator from a previous
fixpoint after adding clauses. Assume the set of facts F is extended to
F ′, then we have T∞R∪F ′(∅) = T∞R∪F ′(T

∞
R∪F(∅)). Due to the correspondence

established in Theorem 2, this also applies to TcP . For our example, we
could add 0.1 : : e(a, b) and the corresponding ground rules. This leads to
new paths, such as p(b, b), and increases the probability of existing paths,
such as p(a, c).

Removing Clauses. When removing clauses from a definite clause pro-
gram, atoms in the fixpoint may become invalid. We therefore reset the com-
puted fixpoints for all total choices where the removed clause could have been
applied. This is done by conjoining each of the formulas in the parametrized
interpretation with the negation of the formula for the head of the removed
clause. Let I denote the parametrized interpretation and H the set of atoms
in the head of a removed clause, the new parameterized interpretation I ′ is
obtained as:

I ′ = {(a, λ′a) | (a, λa) ∈ I with λ′a = λa ∧
∧
h∈H

¬λh}

Then, we restart the TcP operator from the adjusted parametrized interpre-
tation I ′, to recompute the fixpoint for the total choices that were removed.
For our example, if we remove 0.5 : : e(b, c) and the rules containing this edge,
we are removing a possible path from b to c and thus decreasing the proba-
bility of p(b, c).
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5.2. Inference in Dynamic Models

Probabilistic logic programs allow us to represent stochastic processes by
means of a dynamic model (Nitti et al., 2013; Thon et al., 2011). To do so, one
explicitly inserts time such that each rule is of the form ht :− b1,t1, ..., bn,tn,
where t, t1, . . . , tn denotes the time step to which the corresponding atom
belongs. In this paper, we assume that the first-order Markov property holds,
allowing us to rewrite the rules as ht :− b1,t, . . . , bm,t, bm+1,t−1, . . . bn,t−1, i.e.,
each atom can only depend on atoms from the same or previous time step.
Note that this also implies that cycles cannot range over different time steps.

Example 10. Consider the following probabilistic logic program3 represent-
ing a dynamic social network:

0.2 : : coldOutsidet.

0.4 : : staySick(X)t.

sick(X)t : - coldOutsidet.

sick(X)t : - friends(X, Y ), sick(Y )t.

sick(X)t : - sick(X)t−1, staySick(X)t.

We assume the friends relation remains constant over time, and therefore
drop the time index for these atoms.

In practice, one distinguishes an initial model from the transition model.
The former expresses the prior distribution, i.e., the distribution for the first
time step, while the latter latter serves as a template for all subsequent time-
steps. As the transition model is the one that repeats over time, we focus on
the latter.

Inference. One way to perform inference in a dynamic model is by means
of unrolling, i.e. one grounds the program for a set of queries and runs a
standard inference algorithm. It is well-known, however, that this approach
scales poorly when inference is required for a large number of time steps.
A more efficient alternative is obtained by exploiting the repeated structure
that is inherently present in dynamic models (Murphy, 2002). We shortly
review the key ideas of inference in dynamic models and refer to Murphy
(2002) and Vlasselaer et al. (2016) for more details.

3The model can be represented as a PLP by including for each atom a time argument T.

19



The most common inference task in dynamic models is that of filtering.
Here, the goal is to compute the probability of a query q at time step t
given evidence (observations) up to time step τ , i.e., one aims to compute
Pr(qt|e1:τ ) with τ ≤ t. This task can be performed efficiently by repeatedly
computing the forward message for each time step t. The forward message
is the joint probability distribution over all atoms that d-separate the past
from the future, i.e., knowing the joint distribution over all these atoms
makes the future independent of the past. The set of atoms over which the
joint distribution has to be computed is referred to as the interface, which we
denote as It. The forward message can be computed recursively as follows:

Pr(It|e1:t) =
∑

it−1∈It−1

Pr(It|it−1, et) Pr(it−1|e1:t−1) (3)

with et the truth values of the observed atoms at time t and it−1 one
truth-value assignment to atoms in It−1. Once we have Pr(It|e1:t), we can
compute Pr(qt+1|e1:t+1).

Example 11. For the dynamic model presented in Example 10 and a domain
of three persons, ann, bob and cin, the interface is the following set of three
atoms:

It = {sick(ann)t, sick(bob)t, sick(cin)t}.

The forward message involves computing the probability of each possible value
assignment of the interface given the previous interface and evidence:

Pr
(
sick(ann)t ∧ sick(bob)t ∧ sick(cin)t | It−1, et

)
,

Pr
(
sick(ann)t ∧ sick(bob)t ∧ ¬sick(cin)t | It−1, et

)
,

. . .

Pr
(
¬sick(ann)t ∧ ¬sick(bob)t ∧ ¬sick(cin)t | It−1, et

)
Dynamic TP-compilation. We now extend our TP-compilation approach
to efficiently perform inference in dynamic domains. In doing so, we can
distinguish the following two phases:

• Offline phase: Use TP-compilation to compile the transition model.
The resulting parametrized interpretation I contains a tuple (a, λa) for
each atom a in the transition model. The formulas λa will then serve
as a template for each time-step that inference is required. The offline
phase only has to be performed once.
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• Online phase: Iterate over time-steps t and compute the forward mes-
sage. This includes extending the template formulas Λa to adjust for
the situation, i.e. the evidence, at time t.

Computation of the forward message at time t requires extending the
template formulas Λa to take into account the evidence for time-step t, de-
noted with et, as well as the distribution from t − 1. We use Λt

a to denote
the adjusted formula of atom a for time step t. Let it be one truth-value
assignment to atoms in It, its conditional probability is computed as:

Pr(it|e1:t) =
WMC

(∧
i∈it Λt

i

)
WMC(Λt

et)
(4)

with
Λt
i =

∨
ij∈I

(
(Λi ∧ Λet)|ij

)
∧ state j

t−1 ∧ ij (5)

where Λet is the formula representing the evidence, as defined before, and Λ|i
denotes that the formula Λ is conditioned on the values in i. Conditioning
transforms the formula by replacing all variables V in Λ with their assign-
ment in v and propagates these values while preserving the properties of
the formula (Darwiche and Marquis, 2002). The auxiliary variable statejt−1

is required to correctly include the distribution from t − 1 (cf. Equation
3) and the weight function sets w(statejt−1) = Pr(ijt−1|e1:t−1). The forward
message (the complete distribution) is obtained by repeating Equation 4 for
each it ∈ It.

To push more of the computational effort towards the offline phase, we
could rewrite Equation 5 as:

Λt
i =

∨
ij∈I

(
(Λi|ij

)
∧
(
Λet |ij

)
∧ state j

t−1 ∧ ij (6)

such that Λi|ij has to be computed only once.

Dealing with Evidence. The key difference of dynamic TP-compilation
compared to the structural interface algorithm (SIA) introduced by Vlasse-
laer et al. (2016) is how evidence is treated. The incentive of SIA is to push
as much of the computational overhead, i.e., all compilation steps, into the
offline phase. This requires the compilation of one large formula that con-
tains a variable for each of the atoms in the transition model, including the
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ones that are (potentially) observed. Then, the forward message is computed
by accordingly setting weights and requires an exponential number of WMC
calls.

With our TP-compilation approach, on the other hand, we do not include
evidence by setting weights but adjust the template formulas Λa to explicitly
contain the evidence. This requires, for each time step t, to conjoin the
template formulas with Λet , that is, the formula representing the evidence
(see Equation 5). Although this approach requires an additional compilation
step within the online phase, which might be computationally expensive,
representing the evidence explicitly allows us to exploit local structure, in
the form of determinism, in the forward message. Indeed, if w(statejt−1) = 0
or if (Λi ∧ Λet) ≡ ⊥, Equation 5 simplifies significantly. Hence, we avoid an
exponential representation of the forward message in case evidence introduces
determinism in Pr(It|e1:t).

Pushing Λi|ij towards the offline phase, as done by Equation 6, still re-
quires an exponential representation and does not maximally exploit poten-
tial determinism in the forward message. Hence, Equation 6 is only beneficial
in case there is not enough determinism to compensate for the computational
overhead in Equation 5. We refer to Equation 5 as flexible and to Equation
6 as fixed dynamic TP compilation.

Discussion. The above introduced approach only considers exact inference
for dynamic domains and is, in worst-case, exponential in the number of
atoms in the interface. A topic of future work is to investigate how we can
extend this approach towards bounded approximate inference as presented
by Boyen and Koller (1998).

6. Experimental Results

Our experiments address the following questions:

Q1 How does TP-compilation compare to exact sequential WMC approaches?

Q2 How does TP-compilation compare to anytime sequential approaches?

Q3 What is the impact of approximating the model?

Q4 Can we efficiently deal with program updates?

Q5 Can we efficiently exploit evidence in dynamic domains?
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We compute relevant ground programs as well as CNFs (where applicable)
following Fierens et al. (2015) and use the SDD package developed at UCLA4.
Experiments are run on a 3.4 GHz machine with 16 GB of memory. Our
implementation is available as part of the ProbLog package5.

6.1. Exact Inference

We use datasets of increasing size from two domains:
Smokers. Following Fierens et al. (2015), we generate random power

law graphs for the standard ‘Smokers’ social network domain. Cycles in the
program are introduced by the following rule:

smokes(X) : - friends(X, Y ), smokes(Y ).

Alzheimer. We use series of connected subgraphs of the Alzheimer network
of De Raedt et al. (2007), starting from a subsample connecting the two
genes of interest ‘HGNC 582’ and ‘HGNC 983’, and adding nodes that are
connected with at least two other nodes in the graph. The logic program
(i.e., the set of rules) is similar to the one we used in our example (see Figure
1) and cycles are introduced by the second rule for path.

The relevant ground program is computed for one specific query as well
as for multiple queries. For the Smokers domain, this is cancer(p) for a
specific person p versus for each person. For the Alzheimer domain, this is
the connection between the two genes of interest versus all genes.

For the sequential approach, we perform WMC using either SDDs, or d-
DNNFs compiled with c2d6 (Darwiche, 2004). For each domain size (#per-
sons or #nodes) we consider nine instances with a timeout of one hour per
setting. We report median running times and target representation sizes,
using the standard measure of #edges for the d-DNNFs and 3 · #edges for
the SDDs. The results are depicted in Figure 3 and 4 and provide an answer
for Q1.

In all cases, the TP-compilation (Tp-comp) scales to larger domains than
the sequential approach with both SDD (cnf SDD) and d-DNNF (cnf d-DNNF)
and produces smaller compiled structures, which makes subsequent WMC
computations more efficient. The smaller structures are mainly obtained be-
cause our approach does not require auxiliary variables to correctly handle

4http://reasoning.cs.ucla.edu/sdd/
5https://dtai.cs.kuleuven.be/problog/
6http://reasoning.cs.ucla.edu/c2d/
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Figure 3: Exact inference on Alzheimer.

the cycles in the program. For Smokers, all queries depend on almost the full
network structure, and the relevant ground programs – and thus the perfor-
mance of TP-compilation – for one or all queries are almost identical. The
difference between the settings for the sequential approaches is due to CNF
conversion introducing more variables in case of multiple queries.

6.2. Anytime Inference

We consider an approximated (Papr) as well as the original (Porg) model
of two domains:

Genes. Following Renkens et al. (2012, 2014), we use the biological
network of Ourfali et al. (2007) and its 500 connection queries on gene pairs.
The logic program is similar to the one we used in our example (see Figure
1). The original Porg considers connections of arbitrary length, whereas Papr

restricts connections to a maximum of five edges.
WebKB. We use the WebKB7 dataset restricted to the 100 most frequent

words (Davis and Domingos, 2009) and with random probabilities from
[
0.01,

0.1
]
. Cycles in the program are introduced by the following rule:

hasClass(P,C) : - linksTo(P, P2), hasClass(P2, C2).

7http://www.cs.cmu.edu/webkb/
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Figure 4: Exact inference on Smokers.
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Figure 5: Program updates for Alzheimer (left) and Smokers (right).

Following Renkens et al. (2014), Papr is a random subsample of 150 pages.
Porg uses all pages from the Cornell database. This results in a dataset with
63 queries for the class of a page.

We employ the anytime algorithm as discussed in Sections 4.2 and 4.3 and
alternate between computations for lower and upper bound at fixed intervals.
We compare against two sequential approaches. The first compiles subfor-
mulas of the CNF selected by weighted partial MaxSAT (WPMS) (Renkens
et al., 2014), the second approximates the WMC of the formula by sampling
using the MC-SAT algorithm implemented in the Alchemy package8.

8http://alchemy.cs.washington.edu/
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Papr Porg

WPMS TP -comp WPMS TP -comp

G
en

es

Almost Exact 308 419 0 30
Tight Bound 135 81 0 207
Loose Bound 54 0 0 263

No Answer 3 0 500 0

W
eb

K
B Almost Exact 1 7 0 0

Tight Bound 2 34 0 19
Loose Bound 2 22 0 44

No Answer 58 0 63 0

Table 1: Anytime inference: Number of queries with difference between bounds <
0.01 (Almost Exact), in [0.01, 0.25) (Tight Bound), in [0.25, 1.0) (Loose Bound),
and 1.0 (No Answer).

Papr Porg

MCsat5000 MCsat10000 MCsat

G
en

es In Bounds 150 151 0
Out Bounds 350 349 0

N/A 0 0 500

Table 2: Anytime inference with MC-SAT: numbers of results within and outside
the bounds obtained by TP -compilation on Papr , using 5000 or 10000 samples per
CNF variable.
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Figure 6: Anytime inference on Genes with Papr : number of queries with bound
difference below threshold at any time.

Following Renkens et al. (2014), we run inference for each query sepa-
rately. The time budget is 5 minutes for Papr and 15 minutes for Porg (ex-
cluding the time to construct the relevant ground program). For MC-SAT,
we sample either 5,000 or 10,000 times per variable in the CNF, which yields
approximately the same runtime as our approach. Results are depicted in
Tables 1, 2 and Figure 6 and allow us to answer Q2 and Q3.
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Table 1 shows that TP-compilation returns bounds for all queries in all
settings, whereas WPMS did not produce any answer for Porg . The latter
is due to reaching the time limit before conversion to CNF was completed.
For the approximate model Papr on the Genes domain, both approaches
solve a majority of queries (almost) exactly. Figure 6 plots the number
of queries that reached a bound difference below different thresholds against
the running time, showing that TP-compilation converges faster than WPMS.
Finally, for the Genes domain, Table 2 shows the number of queries where
the result of MC-SAT (using different numbers of samples per variable in the
CNF) lies within or outside the bounds computed by TP-compilation. For
the original model, no complete CNF is available within the time budget; for
the approximate model, more than two thirds of the results are outside the
guaranteed bounds obtained by our approach.

We further observed that for 53 queries on the Genes domain, the lower
bound returned by our approach using the original model is higher than
the upper bound returned by WPMS with the approximated model. This
illustrates that computing upper bounds on an approximate model does not
provide any guarantees with respect to the full model. On the other hand,
for 423 queries in the Genes domain, TP-compilation obtained higher lower
bounds with Papr than with Porg , and lower bounds are guaranteed in both
cases.

In summary, we conclude that approximating the model can result in
misleading upper bounds, but reaches better lower bounds (Q3), and that
TP-compilation outperforms the sequential approaches for time, space and
quality of result in all experiments (Q2).

6.3. Program Updates

We perform experiments on the Alzheimer domain discussed above, and
a variant on the smokers domain. The smokers network has 150 persons and
is the union of ten different random power law graphs with 15 nodes each.
We consider the multiple queries setting only, and again report results for
nine runs.

We compare our standard TP-compilation algorithm, which compiles the
networks for each of the domain sizes from scratch, with the online algorithm
discussed in Section 5.1. The results are depicted in Figure 5 and provide an
answer to Q4.

For the Alzheimer domain, which is highly connected, incrementally adding
the nodes (Tcp-inc) has no real benefit compared to recompiling the net-
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work from scratch (Tp-comp) and, consequently, the cumulative time of the
incremental approach (Tcp-inc-total) is higher. For the smokers domain,
on the other hand, the incremental approach is more efficient compared to
recompiling the network, as it only updates the subnetwork to which the
most recent person has been added.

6.4. Dynamic Inference

We evaluate dynamic TP compilation on two different domains:
Mastermind. Following Vlasselaer et al. (2016) we represent the mas-

termind game (Chavira et al., 2006) as a dynamic model where each of the
time steps corresponds to one round of playing the game. The goal of the
game is to guess the colors of the pegs hidden by the opponent after which
the opponent gives feedback whether you guessed the correct colors of the
pegs. For each round, we randomly guess the colors of the hidden pegs and
feedback is returned by the opponent. The goal is to compute the belief
state of the colors of the hidden pegs after 8 rounds of the game. We vary
the number of colors (C) as well as the number of pegs (P).

Sickness. We use the dynamic sickness domain as depicted in Example
10 with random power law graphs to represent the networks. For each time
step, evidence is randomly generated for x% of the sick atoms. The goal is
to compute the belief state of the persons being sick after 10 time steps.

We consider nine instances with a timeout of one hour and report median
results. For the mastermind domain, we compare fixed as well as flexible dy-
namic TP compilation (cf. Section 5.2) with the structural interface algorithm
(SIA) (Vlasselaer et al., 2016). The latter is a state-of-the-art inference tech-
nique for dynamic Bayesian networks based on d-DNNF compilation. For
the sickness domain, we compare flexible dynamic TP compilation for three
different levels of evidence, being on 0%, 33% and 66% of the sick atoms.
The results are depicted in Table 3 and 4 and allow us to answer Q5.

For the mastermind game we observe that dynamic TP compilation of-
fers significant speed-ups and scales to more complex domains compared to
SIA. Furthermore, the flexible approach compares favourable to the fixed ap-
proach as compile times are lower and sizes of the obtained representations
are smaller. Results for the sickness network show that inference (done with
our flexible approach) benefits from exploiting evidence. With the fixed ap-
proach we would only get as far as 0% evidence and, although not defined for
cyclic programs, SIA would be comparable to 0% evidence for compilation.
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SIA fixed TP flexible TP
Model size Toffline Tinf size Toffline Tinf size Toffline Tinf

#edges (s) (s) #edges (s) (s) #edges (s) (s)

C-P ×1000 ×1000 ×1000
6 - 3 24 1.3 0.02 84 0.9 0.06 48 0.03 0.06
9 - 3 88 4.9 0.1 345 7.1 0.5 171 0.1 0.6
6 - 4 361 55.2 1.2 741 10.8 0.7 504 0.8 0.6
8 - 4 1,350 220.7 13.6 2,604 60.1 4.1 1,374 3.2 3.2
9 - 4 - - - 4,506 130.2 9.8 2,826 5.8 10.1

10 - 4 - - - 6,939 281.0 19.2 4,368 10.2 21.6
11 - 4 - - - - - - 6,459 17.7 33.5
4 - 5 519 128.6 1.7 657 6.6 0.4 525 1.1 0.2
5 - 5 - - - 2,289 30.6 2.0 1,833 4.6 1.5
6 - 5 - - - 6,414 111.4 9.6 5,016 15.3 6.8
7 - 5 - - - 14,811 376.8 55.04 11,643 41.8 51.8

Table 3: Results for the mastermind game. We use size to denote the representation
size (averaged over all time steps), Toffline for runtimes of the offline phase and Tinf

for the runtime to compute the forward message for 1 time step.

0% evidence 33% evidence 66% evidence
Domain Toffline size Tinf size Tinf size Tinf

(s) #edges (s) #edges (s) #edges (s)

people ×1000 ×1000 ×1000

3 0.01 0.9 0.01 0.5 0.01 0.4 0.01
4 0.01 39 0.01 14 0.01 3 0.01
5 0.01 45 0.01 15 0.01 4 0.01
6 0.02 330 0.07 27 0.04 13 0.02
7 0.2 2,541 0.6 210 0.5 40 0.15
8 0.8 21,889 40.1 1,281 5.9 84 0.73
9 12.1 - - 4,170 75.6 423 16.4
10 11.0 - - - - 654 19.1

Table 4: Results for sickness network.

Hence, we conclude that dynamic TP compilation allows us to efficiently ex-
ploit evidence to further push the boundaries of exact inference in dynamic
relational domains.

29



7. Related Work

Knowledge compilation and weighted model counting has shown to be
very effective for inference in probabilistic logic programs (De Raedt et al.,
2007; Riguzzi, 2007; Riguzzi and Swift, 2011; Fierens et al., 2015) as well
as graphical models (Chavira and Darwiche, 2005; Darwiche, 2009; Choi et
al., 2013). Exact compilation of a propositional formula is computational
expensive, however, and one often has to resort to approximate techniques.
One way to do so is to first convert the program into a propositional formula,
as done for exact compilation, but then only compile selected subformulas
(Renkens et al., 2014) or feed the formula to a sampling algorithm, e.g. MC-
SAT (Poon and Domingos, 2006).

In case also construction of the complete propositional formula becomes
infeasible, one can transform the original program to an approximate, sim-
plified program that represents, ideally, a similar probability distribution
(Renkens et al., 2012). Other approaches employ forward reasoning to di-
rectly sample on the logic program, e.g., (Milch et al., 2005; Goodman et
al., 2008; Gutmann et al., 2011; Nitti et al., 2014), but these do not provide
guaranteed lower or upper bounds on the probability of the queries. Anytime
PLP algorithms based on backward reasoning have been proposed in the past
but they do not allow to answer multiple queries in parallel (Poole, 1993; De
Raedt et al., 2007). The problem of highly cyclic domains has recently also
been addressed using lazy clause generation (Aziz et al., 2015), but only for
exact inference.

Probabilistic logic programs under the distribution semantics define a
distribution over possible worlds, which randomly fixes the truth values of
probabilistic facts and then permits any type of logical reasoning within a
possible world. While our approach focusses on stratified programs with finite
support, the fixpoint operator is more recently also extended towards general
normal programs with function symbols (Bogaerts and Van den Broeck, 2015;
Riguzzi, 2016). A second class of probabilistic Prologs, including Stochastic
Logic Programs (SLPs) (Muggleton, 1996), uses a different approach, where a
distribution over the groundings of a query is defined based on a distribution
over the derivations in the query’s SLD tree, making an independent decision
on which branch to take at every node. The semantics is thus closely tied
to backward reasoning, and our forward reasoning based approach does not
easily apply in this setting.

Dynamic programs in PLP, one of the use cases considered in this paper,
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are typically handled by dedicated methods that are extensions of existing
inference techniques. Currently, inference in dynamic relational domains
relies on approximate techniques (de Salvo Braz et al., 2008; Nitti et al., 2013)
or requires that each rule in the program considers a transition over time steps
(Thon et al., 2011). Other approaches focus on models that are acyclic or
propositional (Murphy, 2002; Sato, 1995; Vlasselaer et al., 2016). Online or
dynamic inference has also been considered in the context of Markov logic
networks, but this only with approximate inference, e.g. (Kersting et al.,
2009; Geier and Biundo, 2011).

8. Conclusions

We have introduced TP-compilation, a novel anytime inference approach
for probabilistic logic programs that combines the advantages of forward rea-
soning with state-of-the-art techniques for weighted model counting. Our ex-
tensive experimental evaluation demonstrates that the new technique outper-
forms existing exact and approximate techniques on real-world applications
such as biological and social networks and web-page classification. Further-
more, we have extended TP-compilation towards dynamic domains and have
shown that it efficiently exploits given observations to scale-up inference.
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