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ABSTRACT 

The two-component m9del of multiparticle production 

is interpreted as the zeroth order term in an expansion in 

powers of the triple pomeron coupling. This leads to an 

s-matrix perturbative description of the pomeron in terms 

of measuraBle quantities. The first order corrections 

are calculated and it is shown that the breaking of 

factorization can differ significantly from that expected 

in the two-component model. Rough numerical estimates 

are also given. 

Work supported by the U. S. Atomic Energy Commission. 

t On leave from the Weizmann Institute of Science, Rehovoth, 

Israel. 
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The two-component model of rnultiparticle production suggested 

by Wilson [1] and developed by other:; [2], has had success in corre-

lating the available NAL and ISR data, and in this letter we show how 

this model suggests a perturbative S-matrix approach to the pomeron. 

Each term in the expansion corresponds to a distinct, observable class 

of reactions; there are no renormalization ambiguities, and the ratio 

of successive terms is small. 

The usual form of the two-component model describes the total 

cross section in terms of a "short-range correlation," or SRC, component 

(Fig. la) plus diffraction into low masses (Fig. lb). The former may 

be defined [3] as a "fireball" with no large rapidity gap in the final 

state, and its contribution to the total cross section is assumed to 

be dominated at high energy by an isolated factorizable Regge pole, 

and is amenable to the Mueller analysis of inclusive spectra. Processes 

with a large gap in the final state, as in low-mass diffraction, are 

described by pomeron exchange and give cut contributions to the cross 

section. Phenomenologically [2], the SRC component represents ~ 80% 

of inelastic events at moderate energies. The contribution to the 

cross section of diffraction into high masses [4) (Fig. 2) or processes 

with more than one large gap (Fig. 3) are proportional to the triple 

pomeron coupling and are small, provided.the latter is small. 

Processes involving several large gaps, as in Fig. )b, will involve 

higher powers of the triple pomeron coupling or of the pomeron-pomeron-

particle coupling. Furthermore each such process can be associated 

uniquely with a well-defined region of phase-space. 

Since the two-component model includes only processes of 

zeroth order in the triple pomeron coupling, it is natural to 
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investigate· a systematic expansion in powers of this coupling [5]. 

This approach is closely related to Abarbanel's decomposition of 

multiparticle unitarity used in the study of the two-pomeron cut [6]. 

In the present paper we will analyze the first order processes of 

Figs. 2a and 2b and discuss how they "renormalize" the singularities 

of the two-component model, and the implications for factorization. 

At presently available energies this approximation should be excellent. 

It is straightforward to extend our work to terms of any 

order, such as those associated with Figs. 3a and 3b, and we will give 

- such an extension in a future publication [7]. We have a set of 

rules for the J-plane contribution of any diagram in terms of explicit 

Regge-poles and momentum transfer integrals .. We will discuss in detail 

a solvable model in which pomeron-particle-pomeron vertices factorize 

in the pomeron masses. 

We begin by writing the contribution of Fig. la, the SRC 

component, to Im A{s,O) [8] as 

~~ {o) ~~ (o) 
faa Pbb 

J - o:_(o) 
p 

{1) 

where the singularity P must differ from the true pomeron P, and 

satisfy 0: (o) ~a: (0). This requirement follows because only a subset p p 

of the reactions which build P are allowed to contribute to p [9]. 

Low-mass diffraction, Fig. lb, leads to an AFS-like J-plane 

cut; 

1 J-16rrso at 

-4-

(~ ~~.<t0(~ ~!.b,(t)) ~~"(t) 12 

J-2o:(t)+l 
p 

(2) 

We emphasize that we exchange the P trajectory, rather than 

P, since the complete elastic process appears in the sums; we assume 

the same singularity is responsible, for all diffra.cti ve excitations. 

Also the cut contributions turn out to be small !!Ild not important for 

the subsequent discussion and therefore only the pole P is exchanged 

here. 

Diffraction into one high mass, as in Fig. 2a, gives [10] 

g (t) ~ (o) 
ppp Pbb 

(3) 

provided sbjs
0 

and s/sb are large; we will require these ratios to 

be greater than eto with t:; ~ 3· We use the P singularity in the 

fireball since there are no large gaps, and thus there is no difficulty 

with multiple counting [11]. The relation between 

will be discussed in Ref. 7; the latter is smaller for the same r-eason 

that o:_(o) < ~(0). To simplify the discussion we assume 
p 

o:_(o) > aopCo) - 1, which of course requires ~(0) ~ 1. The J-plane 
p 

projection of Eq. (3) is then a pole 
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(l) 
t3~ (o) ~--- (o) 
Pa.a Pbt 

J - o: (o) 
p 
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plus a cancelling cut 

- 16;.0 f ·{~ ~~. (~l~,(t) 12 

2ll(cnP(t)-l-oV 
X e 

where 

and 

a~(o) - aaP(t) + 1 
p 

J - ~(t) + l 

so aJo) - 2o:P(t) + 1 
p 

g (t) t3 (o) 
ppP Pbb 

ll~p(O)-~(t)+~ 
e 

(l) 

(5) 

(6) 

(7) 

The contribution of Fig. 2b may be obtained from these equations by 

interchanging a and b. 

The correction t3 (l) is expected to be small compared to 
Faa 

t3 since it is proportional both to the small quantity g and 
Paa ppjS 

the moderately small quantity ~ (3~ 1 , which measures the amount 
a' 
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of low mass diffraction. Combining (1), (4) and the analog of (4) 

with a ~ b, the P contribution is ~or 

( t3~ (o) + t3~1 )(o) (t3~ (o) + t3~1 >(o) 
Pa.a Pa.a "IPbb Pbb jl 

J -a (o) 
p 

(8) 

We have taken the liberty of adding a very small higher order term so 

that (8) manifestly factorizes [12]. 

Similarly from (2) and (5), the total cut contritution is 

-CL t3~. (t)'\ r~l) - r(l) (I t3~bb' (t)\} 
a 1 ) Pbb ha b 1 ) 

(9) 

If we follow the approximation made for the pole piece and add a higher 

order term [13] we get 

(9') 

where 

~ 2 (1) 
Na(t) = ~ t3Paa,(t) - r~ (t) 

a' Paa 
(10) 

This is essentially the Gribov [14] formula for the cut, but with the 

positive sign expected from approach [6]. The N's are not quite the 

usual nonsense wrong signature fixed pole residues, since r(l) 
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depends in part on P, but the difference is a higher order correction. 

Going from (9) to (9') may not be as good an approximation, however, 

because in our numerical estimate will turn out to be comparable 

to 2:~2 • This is important because. (9), unlike (9'), is not positive 

definite (for a = b) and so there is a possibility of a negative cut 

in the energy range where only the first order terms in 

contribute. 

g 
ppp 

can 

From Eqs. (6)-(10) we see that the effect of the first order 

corrections is to change the residues of the singularities of the two-

component model [1],[2] by various averages of g _(t); the~ 
ppp 

residue is increased and the strength of the cut decreased [3]. Thus 

the breaking of factorization in total cross sections should be less 

than the fraction of low-mass diffraction in the naive two-component 

model, and more in accord with experiment [14]. 

.we mention at this point some of the results of the solvable 

factorizable model alluded to above [7]. The pomeron pole residue 

and. two-P cut discontinuity are, to a good approximation, the results 

just derived in first order. The model will renormalize the pole at 

o: (0) into a higher pole which should be identified as the real 
p 

pomeron, the two being related by 

~(o) - o:~(o) · 
p 

X o:p(o) ~(t) + 1 

l Jt) 

. 4 
+ O(g ) 

ppp 

ppp 

(ll) 
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Finally, we wish to make a quantitative estimate. We must 

emphasize that some important input parameters, especially' o:p and 

g (t) are not well known from experiment, and the numbers we 
·ppP 

obtai~ should be regarded with caution. 

We consider pp scattering, and take crT - )8 rob, crSRC ~ 26 rob, 

and, [2]. From factorization, the single diffraction 

di.ssociation cross section is cr d d ~ 0.41 cr •• s. • • e.., 
In making the 

estimates, the approximate relations ~pp ~ g _ and 
. ppp 

o:_(O) ~~(o) ~ 1 are used. Since the correction terms depend only 
p 

on integrals over g (t), the results should not depend critically 
ppp 

on the details of the parametrization. We take o:.p = 0.3 GeV-
2 

and 

gppp(t) = -2ate1 ·5t [16],[17], where a = 1 Gev-
4, and 

L ~2 (t) ~ ~2 (o)(l + cr d d /cr n)ebt with b ""4 GeV-
2

,assumed to 
p' Ppp' Ppp s. . . e.., 

be the same for all diffractive excitations of the proton. With 

6 = 3.0, we obtain [18] ~~l)(O) ~ 1.25 
Plpt 

The factorizable piece of crT is then 

so f> (o) + ~(l)(o) ... 9.31~ --

~ ~ 
""35 rob, so the cut is ""3 rob, 

--a considerable reduction. Using Eq. (11) for the shift in pole 

position gives ~(0) - o:~(o) ... 0.0058. Thus, since ~(o) is very 
. p 

near one (as implied by the near constancy of the total cross section), 

so is o: (o). 
p 
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FIGURE CAPTIONS 

1 I OR(o) Fig. 1. s ~(o) t3Rbb(o) (s so) 
Processes in the two-component model. 

2 2 ~(t) 
~ ~(t) f3ibb(t) I~R(t) I (s/s0} 
161(S 

to dajdt, where s0 = 1 Gev2 is a scale energy and -~R(t) is the 

signature factor. 

Fig. 2. Diffraction into high mass. 

Fig. 3· Processes with more than one large gap. 
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