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Abstract

This study employs landscape genetics to investigate the environmental drivers of a deadly vector-

borne disease, malaria caused by Plasmodium falciparum, in a more spatially comprehensive 

manner than any previous work. With 1804 samples from 44 sites collected in western Kenya 

in 2012 and 2013, we performed resistance surface analysis to show that Lake Victoria acts as 

a barrier to transmission between areas north and south of the Winam Gulf. In addition, Mantel 

correlograms clearly showed significant correlations between genetic and geographic distance 

over short distances (less than 70 km). In both cases, we used an identity-by-state measure of 

relatedness tailored to find highly related individual parasites in order to focus on recent gene 

flow that is more relevant to disease transmission. To supplement these results, we performed 

conventional population genetics analyses, including Bayesian clustering methods and spatial 

ordination techniques. These analyses revealed some differentiation on the basis of geography 

and elevation and a cluster of genetic similarity in the lowlands north of the Winam Gulf of 

Lake Victoria. Taken as a whole, these results indicate low overall genetic differentiation in the 

Lake Victoria region, but with some separation of parasite populations north and south of the 

Winam Gulf that is explained by the presence of the lake as a geographic barrier to gene flow. 

We recommend similar landscape genetics analyses in future molecular epidemiology studies of 

vector-borne diseases to extend and contextualize the results of traditional population genetics.

Keywords

landscape genetics; molecular epidemiology; Plasmodium falciparum ; relatedness; resistance 
surface; vector-borne disease

1 | BACKGROUND

Progress towards malaria elimination has stalled (WHO, 2021), in part because an 

inadequate understanding of how the environment influences transmission has hampered 

epidemiological modelling and targeting of control measures (Rabinovich et al., 2017). The 

Anopheles mosquitoes that transmit malaria rely on favourable environmental conditions 

to feed and reproduce successfully and human movement patterns that spread malaria are 

influenced by the available infrastructure. This means the environment plays a critical role in 

understanding and combating malaria transmission (Castro, 2017).

Several prior studies have sought to explain the environmental drivers of malaria 

transmission using methods such as geographically weighted regression and Bayesian risk 

modelling (Canelas et al., 2016). The former is logical for demographic or socioeconomic 

drivers that are tied to the host, but it does not capture the full variability in environmental 

drivers. Malaria transmission and gene flow can occur across a wide range of geographic 

scales, and thus, models that include the space between sample locations will yield greater 

insights. Risk maps inferred with Bayesian methods or kriging can be compared with 

environmental data layers for a more spatially distributed understanding of the drivers of 

transmission, but these methods typically do not incorporate varying levels of connectivity 

and gene flow between different locations.
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In previous studies, we have addressed these limitations using resistance surface models 

that seek to explain genetic distances between populations in terms of environmental or 

resistance distances (Kepple et al., 2021; Lo, Hemming-Schroeder, et al., 2017; Lo, Lam, 

et al., 2017). These distances represent the difficulty of travelling between two locations 

in a manner that considers both geographic distance and the properties of the intervening 

landscape, allowing assessment of which landscape properties obstruct or enable gene flow. 

Although parasites do not directly traverse the landscape, the landscape indirectly influences 

parasite gene flow through the impact of the environment on the movements of parasite 

hosts (i.e., mosquitoes and humans). Thus, resistance surfaces are a promising tool for 

studying vector-borne disease (Hemming-Schroeder et al., 2018). Our prior work has begun 

to build a better understanding of the spatial determinants of malaria transmission, but small 

numbers of study sites have limited the scope of the conclusions.

In this study, we use resistance surface analysis to examine the drivers of malaria 

transmission in Western Kenya, a malaria endemic area with moderate-to-high levels of 

transmission. This is the first time these methods have been applied in malaria using 

more than 10 study sites. We also perform conventional population genetics analyses, such 

as Bayesian- and ordination-based clustering techniques, to contextualize our landscape 

genetics results and enable comparison with the existing body of literature. We show novel 

patterns and drivers of genetic differentiation, and thus, heterogeneity in transmission, and 

provide a rigorous demonstration of the utility of landscape genetics in the study of vector-

borne diseases.

2 | MATERIALS AND METHODS

2.1 | Scientific and ethical statement

Scientific and ethical clearance for sample collection and preparation was given by the 

institutional scientific and ethical review boards of the Kenya Medical Research Institute, 

Kenya, and the University of California, Irvine, USA. Written informed consent/assent for 

study participation was obtained from all consenting heads of households, parents/guardians 

(for minors under the age of 18), and each individual who was willing to participate in the 

study.

2.2 | Study area

Malaria transmission in Western Kenya is moderate to high with contemporaneous 

prevalence estimates ranging from 40% to 60% in the lowlands near Lake Victoria (Okoyo 

et al., 2015; Zhou et al., 2016) to around 15% in the highlands (Zhou et al., 2016). There 

are pronounced gradients in elevation, rainfall and temperature in our study region (Figure 

S1). Temperature and moisture are both crucial to mosquito survival and activity, and the 

reduced, seasonal malaria transmission observed in the highlands of Kenya is explained by 

lower temperature, rainfall and humidity (Kenya NMCP, KNBS, & ICF International, 2016).

2.3 | Sample collection and genotyping

A total of 1804 PCR-confirmed P. falciparum DNA samples collected in 2012 and 2013 

across 44 sites in Western Kenya (Figure 1) were included. These samples were selected 
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from 11,000 asymptomatic school children aged 3–12 years, as described in our earlier 

study (Lo et al., 2015). Approximately 50 μl of blood collected by finger prick was blotted 

on Whatman 3MM filter paper, from which P. falciparum DNA was extracted using the 

Saponin/Chelex method (Bereczky et al., 2005).

Eight single-copy microsatellite loci (Table S1) were genotyped for P. falciparum. Each 

PCR involved 2 μl of genomic DNA in 2 mM MgCl2, 2 μM of each primer (forward 

primers were labelled with fluorescent dyes; Applied Biosystems) and 10 μl of 2×DreamTaq 

Green PCR Master Mix (Thermo Scientific). PCR cycling conditions were as follows: 2 

min, 94 C; (30 s, 94 C; 40 s, 58 C; 50 s, 72 C) for 40 cycles; and 5 min, 72 C. After 

amplification, the products were combined into three groups based on size and separated on 

an ABI 3730 sequencer. The allele sizes were recorded using two methods, depending on the 

sample: manual visualization using Peak Scanner and automated extraction in the Thermo 

Scientific Cloud Microsatellite Analysis Software. In both cases, a threshold of 300 relative 

fluorescent units was used for peak detection to filter out background noise. For each 

microsatellite, the dominant allele and any other alleles with at least 33% of the dominant 

allele’s height were scored. Five hundred and seventy-four samples were processed with 

both methods, and 79% of the overlapping alleles were scored identically. The automated 

method was considered more accurate and was used for alleles scored with both methods.

Samples were filtered by both the number of successfully scored loci per sample and the 

number of samples per study site. Only samples with at least six successfully scored loci 

were included in further analyses. This ensured that every pair of samples would have 

at least four overlapping loci. The P. falciparum samples were grouped into populations 

according to the clinic where they were collected (i.e., the geographic location). Of these 

populations, only those with at least five samples were used in further analyses. 81.3% of 

samples passed both filters. The preprocessed microsatellite data are provided in Table S2 

and the study site locations are provided in Table S3.

2.4 | Population structure

Linkage disequilibrium (LD) was estimated by computing the r‾d statistic, which 

approximates the popular index of association but does not increase with the number of 

loci (Agapow & Burt, 2001). This was computed with the poppr R package (Kamvar et al., 

2014), both with and without clonal correction. Pairwise LD was also estimated for each 

unique pair of loci. Missing data values were ignored for these computations.

Genetic clustering of samples was first assessed with principal component analysis (PCA), 

a method which transforms the input matrix into a set of orthogonal components ranked 

in descending order of the variance they explain. Visualizing combinations of the highly 

ranked components allows one to identify the number of clusters present in the data. In this 

case, the microsatellite genotypes were converted into binary format, meaning one column 

per locus-allele combination, one row per sample, and a value of 0 or 1 based on whether 

that allele was present. This format was chosen because it allows flexible representation of 

samples with multiple clones. Missing data values were replaced with the mean frequency 

of the allele in question, as this allows all samples to be used in PCA without biasing the 

results. PCA was then performed on this binary matrix using the R programming language 
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(R Core Team, 2021) and visualized with the aid of the GGally R package (Schloerke et al., 

2021). To corroborate the PCA findings, another ordination technique, discriminant analysis 

of principal components (DAPC), performed with the adegenet R package (Jombart, 2008), 

was also used to estimate the number of clusters (Appendix S1).

Principal component analysis shows the overall pattern of clustering in a genetic data set, but 

PCA cannot be used to estimate the degree of membership a given individual has in a given 

population. In addition, genetic data will likely not conform to the linearity assumption of 

PCA. For this reason, PCA was only used to identify the probable number of clusters present 

in the data. Another programme, rmaverick, was used to assign individuals to clusters and 

estimate admixture coefficients for each individual (Verity, 2018). rmaverick is a Bayesian 

method that, similar to the popular programme STRUCTURE (Pritchard et al., 2000), 

seeks to find the population groups that are not in Hardy–Weinberg or linkage equilibrium. 

The admixture coefficients for each individual represent the proportion of membership 

that individual has in each cluster. Unlike alternatives like STRUCTURE, rmaverick uses 

a Metropolis-coupled Markov chain Monte Carlo technique, in which parameter values 

are simultaneously estimated in different ‘chains’ and information is periodically passed 

between chains (Verity & Nichols, 2016). This information passing improves mixing and 

can make it more likely that the model will converge.

Based on evaluation of different parameter configurations, rmaverick was run with 10,000 

burn-in iterations, 2000 sampling iterations, 500 rungs, a GTI power of 3 and the admixture 

model. The burn-in iterations are an initial period in which the model is run without saving 

results to avoid bias from the initial conditions, whereas the sampling iterations are the 

portion of the model run in which results are saved. The rungs are the number of Metropolis-

coupled chains used and the GTI power controls the distribution of these chains. Mono- and 

biclonal infections were incorporated by running rmaverick with mixed ploidy and repeating 

the allele when only one was present for a given locus. Samples with more than two clones 

were discarded for this analysis. The pophelper R package (Francis, 2016) was used to assist 

in visualization of results.

2.5 | Spatial patterns of relatedness

Genetic relatedness between samples was estimated as the proportion of shared alleles, 

treating each polyclonal infection as a single ‘subpopulation’, given that no existing 

analytical method can separate individual parasite haplotypes for infections that have 

multiple alleles at more than one locus. Each infection was treated as a subpopulation 

when calculating genetic relatedness, similar to the approach of Wesolowski et al. (2018). 

Thus, the value we obtained was the proportion of shared alleles between samples or 

infections, but not necessarily between individual parasite clones. The specific algorithm 

used to compute the proportion of shared alleles was that employed in the R package 

PopGenReport (Adamack & Gruber, 2014), reimplemented to work with our data. Missing 

reads were treated as the absence of any alleles for the locus in question and did not affect 

the calculation.

This individual-based measure was then aggregated to the population level by taking the 

fraction of individual relationships that passed a relatedness threshold of 0.15 and converted 
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to genetic distance by subtracting from 1. In other words, the relatedness for all of the 

pairs of individuals corresponding to each pair of populations was compared with this 

threshold and the population-based measure of relatedness was taken to be the fraction 

of individual pairs that exceed the threshold. This fraction of ‘highly-related’ individuals 

should be more sensitive to recent demographic events than other metrics such as average 

relatedness (Taylor et al., 2017). After sensitivity testing using thresholds between 0.1 and 

0.3, we selected a threshold of 0.15 because this did not lead to saturation at either the 

lower or upper bounds (i.e., clumping of pairs near a genetic distance of 0 or 1; Figure S2). 

This threshold is considerably lower than that used by Taylor et al. (2017), but they used 

single-nucleotide polymorphisms, rather than microsatellite data. The relatedness expected 

by chance alone is much higher in the former case. The distribution of the final relatedness 

values is shown in Figure S3.

To identify clustering of genetic information in geographic space, an ordination technique 

named MEMGENE was used (Galpern et al., 2014). MEMGENE extends PCA to isolate 

the spatial portion of the variance in a matrix of genetic distances. MEMGENE does 

this by performing PCoA on the matrix of geographic distances to find components that 

represent the geographic patterns among study sites, regressing these components against 

the genetic distances and then performing a second PCoA on the regression predictions. 

The components of this second PCoA are the MEMGENE variables, and each one can be 

thought of similarly to the components from standard PCA, except they only represent the 

portion of genetic variance that can be explained by geographic patterns. Visualizing these 

MEMGENE variables at each study location can show spatial clusters of related populations 

and point to possible barriers to transmission. This analysis was performed with the matrix 

of population-level genetic distances described previously.

To evaluate the hypothesis of isolation-by-distance (IBD), the study site coordinates were 

reprojected into planar space and geographic and genetic distances were compared using 

both a Mantel correlogram and the test for congruence among distance matrices (CADM). 

Coordinate reprojection converts the elliptical coordinate space that describes the Earth’s 

curved surface into a two-dimensional space that is amenable to analysis. The map 

projection selected for this study was the WGS 84-based coordinate system for UTM zone 

36 N. Once reprojected, Euclidean distance was calculated between all pairs of study sites. 

Mantel correlograms (Oden & Sokal, 1986) were computed using the R package vegan 

(Oksanen et al., 2020) using these Euclidean distances and the genetic distances described 

previously. The R package ape (Paradis & Schliep, 2019) was used to test for CADM.

2.6 | Landscape genetics

Environmental variables that either have been previously associated with P. falciparum 
transmission or that influence host and/or vector movement were selected for inclusion 

in resistance surface analysis (Table 1). To evaluate a potential barrier effect from Lake 

Victoria, a binary layer was created that represented grid cells belonging to Lake Victoria 

with a 1 and other grid cells with a 0. The rainfall and LST data, which are available at 

subannual frequency, were aggregated for the entire year using a mean composite. Both 

2012 and 2013 were used for these aggregations, but collection of the LST data did not 
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begin until 25 January 2012, so the first part of January 2012 is not included. The land cover 

data set was created at an annual time scale, and the 2012 version was selected for this 

study. The DEM and friction to human movement data sets are static, and, therefore, these 

considerations do not apply. All data sets were reprojected into the WGS 84-based UTM 36 

N coordinate system with 1 km spatial resolution.

Using these environmental data sets and the matrix of population-based genetic distance, 

resistance surfaces were estimated to assess the degree to which each environmental variable 

explains the observed patterns of genetic relatedness. Resistance surfaces are gridded spatial 

layers in which the values of each cell represent the degree to which that space obstructs 

gene flow. By treating gene flow as a proxy for transmission, the surface as a whole 

represents areas that are more or less permissible to malaria transmission. We used the 

R package ResistanceGA (Peterman, 2018) to optimize resistance surfaces. Briefly, this 

process involves (1) finding the least cost path between every pair of locations through 

the current resistance surface; (2) fitting a mixed linear effects model that explains genetic 

distance in terms of this resistance distance; and (3) applying a transformation to the 

resistance surface to improve the fit. This process is iterated many times. In the first round, 

the resistance surfaces are simply the rescaled environmental inputs. The entire procedure is 

performed in the framework of a genetic algorithm that tests a certain number of mutations 

(transformations) per generation, chooses the most fit to carry to the next generation (based 

on the mixed linear effects model) and repeats until the change in fitness does not meet a 

certain threshold.

For each run, ResistanceGA merges the input layers into a single composite layer, which 

serves to incorporate multiple inputs without creating multicollinearity issues. ResistanceGA 

accomplishes this compositing by summing the surfaces after transformations have been 

applied, which ensures this operation is mathematically rational, even for categorical 

variables. All possible combinations of input layers, including each layer individually, were 

tested. Because multiple input layers are transformed into one variable prior to fitting the 

regression models, the multicollinearity issues in landscape genetics described by Prunier et 

al. (2015) are not a concern.

Each resistance surface was fit twice so that consistency between replicates could be 

assessed. After fitting the resistance surfaces, bootstrapping was performed to determine 

how robust the fit of each surface is to random subsets of the input samples.

2.7 | Software pipeline

Unless otherwise noted, all analyses were performed using custom code written in the 

R (R Core Team, 2021) and Python (Python Software Foundation, 2022) programming 

languages. Throughout, the adegenet R package (Jombart, 2008) was used for reformatting 

genetic data, the Geospatial Data Abstraction Library (GDAL/OGR contributors, 2021) and 

the raster (Hijmans, 2022) and sf (Pebesma, 2018) R packages were used for spatial data 

processing, and the R tidyverse packages (Wickham et al., 2019) were used for general 

data manipulation and visualization. knitr (Xie, 2014) and R Markdown (Xie et al., 2018, 

2020) were used to organize and document analyses. The entire workflow was automated 

with Snakemake (Mölder et al., 2021) and is available on Bitbucket at https://bitbucket.org/
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a-hubbard/hubbardetal_landgen_drivers_malaria/. This repository includes specifications of 

the exact versions of each package used.

3 | RESULTS

3.1 | Population structure

Linkage disequilibrium analysis shows weakly significant LD driven by a single pair of loci 

(TA42 and 9735). This is consistent with weak population structure in a high transmission 

environment.

The PCA results suggested that the potential number of distinct genetic clusters is between 

three and six. The first four components of the PCA explain 5.9%, 3.8%, 3.6% and 3.2% 

of the overall variance, respectively. Visualization of these components shows two to three 

distinct clusters delineated by the first component and two weakly separated clusters in the 

third component (Figure S4). The other components explained less than 3% of the overall 

variance and thus were not analysed in detail. DAPC indicated three or four genetic clusters 

(Appendix S1), providing further evidence that somewhere between three and six clusters 

are supported by the data.

Based on these PCA and DAPC results, rmaverick was run for K values from one to six. 

The admixture bar plots show considerable mixing overall but some structuring according 

to latitude (Figure S5a) and elevation (Figure S5b). To visualize these geographic patterns 

in more detail, pie charts depicting mean population admixture coefficients were visualized 

at each study location for a K of four (Figure 1). Although there is no ‘true’ K, the model 

with four clusters was best supported by the posterior evidence (Figure S6) and so was a 

logical choice for further inspection. Inspection of Figure 1 indicates some differentiation 

on the basis of geography and elevation. Samples with substantial membership in cluster 1 

primarily came from the western portion of the study region, near the border with Uganda. 

Cluster 4 has some overlap with this area, but encompasses a wider area covering all of 

the lowlands north of the Winam Gulf. Cluster 3 is primarily associated with samples from 

higher elevation sites in the eastern portion of the study area. Cluster 2 does not seem to be 

strongly tied to geographic factors. To corroborate these findings and provide a reference for 

readers more familiar with STRUCTURE, we performed analogous investigations with this 

software, which yielded similar results (Appendix S2).

3.2 | Spatial patterns of relatedness

MEMGENE showed distinct spatial clusters north and south of Lake Victoria. This analysis 

revealed that 8.3% of the overall variance in genetic distances can be explained by spatial 

patterns. Of this fraction, the first component, or MEMGENE variable, explained 45.7% 

and showed a distinct spatial cluster of genetic similarity in the lowlands north of the 

Winam Gulf of Lake Victoria (Figure 2). The areas south and east of the Winam Gulf 

comprise a second cluster. Samples gathered near the Ugandan border, in the northwest of 

the study area, fall somewhere in between, but bear more similarity to samples from the 

south and east. The other components explained a considerably lower fraction of the spatial 

portion of the variance, and thus, a very low fraction of the overall variance, and so were 
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not visualized. After the regression step in MEMGENE (see Materials and Methods), a 

redundancy analysis is performed to identify components that significantly improve fit. The 

results described previously were found with a significance threshold of 0.05 in this step. 

When this threshold was lowered to 0.01, no significant components were found, suggesting 

the pattern described previously is only weakly significant.

The Mantel correlogram shows significant correlation between genetic and geographic 

distance over short distances (p < 0.05 for less than 70 km; Figure 3a, Table S4). 

This pattern of IBD was corroborated by the test for CADM, which showed highly 

significant congruence between genetic and geographic distance matrices (W = 0.642; p 
= .00045). However, the correlogram shows this relationship disappears as geographic 

distance increases, until eventually significant negative correlation was found at higher 

geographic distances. This surprising result can be understood by studying the MEMGENE 

map discussed above. While the majority of the sites in the second cluster, corresponding 

to negative MEMGENE values, are south and east of the Winam Gulf, several of the sites 

near the Ugandan border north of the Gulf also belong to this cluster (Figure 2). Many of 

these sites are between 90 and 130 km from the other locations belonging to this cluster, 

south and east of the Gulf, which correspond to the distances where negative correlations are 

observed in the Mantel correlogram. This suggests that a process that is not well-represented 

by geographic distance alone is driving genetic similarity between these two locations.

3.3 | Landscape genetics

The resistance surfaces clearly show that Lake Victoria is acting as a barrier to gene flow, 

based on both the ranking of best-fitting surfaces and high resistance values over Lake 

Victoria. To rank the surfaces, the corrected Akaike information criterion (AICc) was used 

with all output surfaces generated by both replicates. This is displayed for the 10 best-fitting 

surfaces in Table 2, along with the number of parameters and the conditional and marginal 

R2. Generally speaking, the two replicates conducted for each set of inputs did not produce 

identical outputs. However, the differences in likelihood and AICc were always small (Table 

S5), suggesting similar solutions and goodness-of-fit had been obtained between replicates. 

For the sake of comparing variables, the surface from the best-fitting replicate was selected 

for each set of inputs for display in Table 2 and visual inspection. Most of the best-fitting 

surfaces contained the binary Lake Victoria layer. LST and friction to human movement 

without access to motorized transport were also consistently present in the top-ranking 

surfaces. The distance-only and null models did not rank particularly highly, indicating the 

best landscape resistance models explain patterns of gene flow that geographic distance 

alone cannot. All of these conclusions were corroborated by the bootstrapping results (Table 

S6).

In the resistance surfaces themselves (Figure 4), pixels associated with Lake Victoria were 

assigned high resistance values in all of the best-fitting surfaces, regardless of whether they 

included the binary Lake Victoria layer. However, in the highest ranked layer, Lake Victoria 

and LST, LST was weighted to contribute more to the final model (77%), indicating that 

variable explains a substantial amount of variance that Lake Victoria alone cannot. Low land 

surface temperature was associated with high resistance to gene flow, as was high friction 
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to human movement without access to motorized transport. Of the other environmental 

covariates, high resistance to gene flow was associated with high elevation, high friction to 

human movement with access to motorized transport, low precipitation and water bodies in 

the land cover layer (results not shown).

4 | DISCUSSION

The results presented in this study support an isolation-by-barrier (IBB) hypothesis, where 

Lake Victoria acts as an obstacle to gene flow between the northern and southern parts 

of our study area. The rmaverick analysis gave the first indication of this conclusion, in 

that samples collected from north and south of the Winam Gulf of Lake Victoria tended 

to have membership in different genetic clusters. The pattern of spatial clustering in the 

first MEMGENE variable showed the same result, with one geographic cluster of genetic 

similarity in the lowlands north of Lake Victoria and the other encompassing the areas 

east and south of the lake. Finally, the resistance surface analysis suggested both that Lake 

Victoria was an important variable in dictating landscape resistance, as seen through the 

ranking of best-fitting surfaces, and that the lake is associated with a high resistance to gene 

flow, as evidenced by the surfaces themselves.

Other studies using data from a similar time period and region have by- and-large shown 

high gene flow (Nderu et al., 2019) leading to little genetic differentiation among parasite 

populations (Ingasia et al., 2016; Nderu et al., 2019; Nelson et al., 2019), although in one 

case this varied somewhat based on the genetic distance measure used (Nelson et al., 2019). 

A study conducted with more recent data (dating to 2018 and 2019) supported the same 

conclusion of little differentiation between populations (Onyango et al., 2021). Our results 

are qualitatively consistent with these findings, but cannot be compared quantitatively as 

these studies used different measures of genetic distance.

Our results are also consistent with previous investigations into the clustering of genetic 

relatedness in this area. Ingasia et al. (2016) showed with PCA that samples from Kisii, 

located in the highlands south of the Winam Gulf, clustered separately from samples 

collected from the lowlands north of the Gulf (Kisumu and Kombewa) and the highlands 

east of the gulf (Kericho). Omedo, Mogeni, Rockett, et al. (2017), using spatial scan 

statistics, identified a cluster of genetic similarity in part of the area north of the Winam 

Gulf, near the border with Uganda. Our findings indicate a distinct population north of the 

Winam Gulf, as well as some evidence of differentiation between highlands and lowlands. 

However, we also found a handful of sites near the Ugandan border that did not cluster with 

the rest of the sites north of the Gulf, but were more similar to samples collected south and 

east of Lake Victoria. These sites may correspond to the cluster found by Omedo, Mogeni, 

Bousema, et al. (2017) and are separated from the rest of Kenya by the Nzoia River, possibly 

explaining why they are distinct from the remainder of the lowlands north of the Gulf. The 

similarity with sites to the south and east of the Lake is less intuitive but may be explained 

by patterns of long-distance human movement, which Wesolowski et al. (2012) found to be 

common in the Lake Victoria region. Another study in this area, Omedo, Mogeni, Bousema, 

et al. (2017), did not find any clustering from PCA, but they were focussed on a small subset 

of our study region (Rachuonyo South).
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Previous studies investigating isolation-by-distance in western Kenya have yielded 

inconsistent results. Qualitative assessments of IBD have found none (Ingasia et al., 2016; 

Nelson et al., 2019), but more formal tests have shown some significant correlations between 

genetic and geographic distance at or below distances of 20 km between sites (Omedo, 

Mogeni, Bousema, et al., 2017; Omedo, Mogeni, Rockett, et al., 2017). This has some 

similarity to our findings, in that we discovered weakly significant correlations between 

geographic and genetic distance in distance classes at or below 60 km. Taken together, this 

suggests that some IBD has occurred in P. falciparum populations in this region, but it is 

only noticeable at relatively short distances (0–60 km, depending on the study and methods) 

and between certain locations.

In terms of IBB and IBR, few studies have been performed on malaria, but those that do 

exist for our study region did not identify Lake Victoria as a barrier to gene flow. Ingasia 

et al. (2016) informally described isolation between highland and lowland populations, 

while Omedo, Mogeni, Rockett, et al. (2017) looked for a barrier more formally and found 

nothing. The first result is not inconsistent with our own. Ingasia et al. (2016) had relatively 

few study sites, with only one each north and south of the Winam Gulf. They may not have 

had the spatial coverage to identify a barrier effect from Lake Victoria, and their finding of 

isolation between highlands and lowlands is supported to some extent by our own clustering 

analyses. The contrasting conclusions on the presence of a barrier in our study and Omedo, 

Mogeni, Rockett, et al. (2017) may also come down to methodological differences. That 

study used a regression framework in which each 10×10 km pixel in the study region was 

treated as a separate variable and barrier effects were assessed for pixels separating site pairs 

where the straight line connecting the two sites passed through the pixel in question. By 

contrast, ResistanceGA fits values of high or low resistance to environmental covariates in 

their entirety (Peterman, 2018), rather than fitting different values in different parts of the 

study region. This makes our approach more suited to assessing the effect of environmental 

features holistically, throughout the study region, whereas the Omedo, Mogeni, Rockett, 

et al. (2017) method would be better suited to identifying barriers associated with small, 

specific geographic features similar in size to the 10×10 km pixels used in their model. 

In combination, then, these findings suggest that mixing is fairly homogeneous in the land 

areas of this study region, but that Lake Victoria, when considered as a single unit, does act 

as a barrier to gene flow between the northern and southern sides of the Winam Gulf.

Previous work on human movement in this area suggests relatively frequent travel within 

the Lake Victoria region (Blanford et al., 2015; Wesolowski et al., 2012). These studies did 

not clearly show Lake Victoria to be a barrier to movement, but they were intended for 

regional analyses and lacked the resolution to address this question in detail. One study, 

based on mobile phone data, does seem to indicate less connectivity with populations near 

the Ugandan border than in the rest of the Lake Victoria region (Wesolowski et al., 2012). 

This is consistent with the results of our clustering analyses and may explain the negative 

correlations revealed with the Mantel correlograms, but again, the resolution of that human 

movement study was such that we cannot be certain of this explanation.

In terms of vector populations, most research has considered Kenya as a whole and focussed 

on the differentiation between western and coastal Kenya (e.g. Ogola et al., 2019). Of the 
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groups that studied western Kenya in particular, the results have been inconsistent. In one 

case, significant population structuring was found in Anopheles gambiae s. l. in the Lake 

Victoria region and, while other landscape factors were found to be more important, a 

landscape genetics analysis did show Lake Victoria to be an area of relatively low gene flow 

(Hemming-Schroeder et al., 2020). On the contrary, a more recent study done with the same 

species identified little genetic differentiation in this region and no apparent barrier in Lake 

Victoria, although no formal landscape genetics analysis was done (Onyango et al., 2022). 

However, only four study sites were used in this case, only one of which was south of the 

Winam Gulf, so it is likely this work lacked the spatial coverage to address these questions 

in detail. From this, we believe it likely that a large part of the barrier effect we discovered 

from Lake Victoria in P. falciparum genetics can be explained by the difficulty mosquitoes 

have traversing this large body of water.

Taken as a whole, these results indicate low overall genetic differentiation in the Lake 

Victoria region, but with some separation of populations north and south of the lake that is 

explained by the presence of the lake as a geographic barrier to gene flow. The resistance 

surface results suggest that both host and vector factors are important determinants of 

transmission, as friction to human movement and temperature, which will disproportionately 

affect mosquitoes, were both in the highest ranking surfaces.

This work is the most spatially comprehensive landscape genetics study done in malaria 

to date, and we have identified landscape impacts on gene flow, specifically a barrier 

effect from Lake Victoria, which have not been documented previously. However, this 

study does have certain limitations. First, while polygenomic microsatellites are relatively 

informative genetic markers, our study only used eight. Subsequent studies conducted with 

more genomic depth would be useful to confirm our findings. On a related subject, while 

our study has large sample sizes overall, some of the study locations only have a handful 

of samples, in particular south and east of Lake Victoria (Figure 2), which may bias our 

spatial analyses in those areas. In addition, the two separate genotyping methods used in our 

data set do represent a source of inconsistency. We have characterized the level of agreement 

between the two methods, but we did not attempt to repeat genotyping due to the age of the 

samples. Also, many of the environmental inputs used are proxies for the true variable of 

interest (e.g., LST as a proxy for near-surface air temperature). The data products selected 

are all well-correlated with those variables, but as more direct measures become available 

it will be important to repeat this and other landscape genetics analyses to confirm their 

findings. On the subject of spatial covariates, no information on spatial coverage of malaria 

control measures was included, despite the importance of these factors in driving population 

structure. There are no quality data on subnational spatial heterogeneity of coverage for most 

interventions, and for the one exception, insecticide-treated nets, little spatial heterogeneity 

was observed in our study area (Bertozzi-Villa et al., 2021). For this reason, these data 

were not included in our analyses. Finally, our conclusions rest on the assumption that the 

environmental data we used is reflective of the state of the landscape that is relevant to 

its impact on gene flow. In other words, we have implicitly assumed that the environment 

in 2012 and 2013, contemporaneous with sample collection, has the greatest impact on 

gene flow. In reality, the state of the environment prior to sample collection likely has 

had some impact. The relationship between contemporaneous and historical environmental 
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variation and gene flow is a topic that deserves further research to characterize the lag time 

corresponding to the strongest correlation.

The results of this study have implications in a few different areas. For the sake of 

planning interventions, the populations around Lake Victoria are sufficiently connected that 

blanket control measures remain appropriate. However, it is probable that if interventions 

further reduce transmission in this area, these populations will become more distinct and 

interventions conducted in one area will have less impact on the other. In this situation, 

it would be recommended to consider populations north and south of the Winam Gulf as 

separate entities when targeting interventions.

For the modelling community, our results indicate that geographic distance is a poor 

proxy for transmission and that both vector and host factors can be important drivers of 

transmission at a moderate spatial scale. The first is an important finding because geographic 

distance is frequently used as a proxy for connectivity in models (Lee et al., 2021). More 

work is required to identify the best alternatives, but measures that represent heterogeneous 

patterns of transmission are necessary. In terms of the drivers of transmission, our study was 

performed at a reasonably coarse spatial scale, making it a surprise that an environmental 

variable that primarily impacts vector activity, LST, proved to be one of the most important 

explanatory variables. Further research is recommended to better understand how spatial 

scale impacts the drivers of transmission in vector-borne diseases, especially with respect to 

which scales are primarily governed by vector or host factors.

Finally, and most broadly, this study has demonstrated that landscape genetics analysis of 

vector-borne disease, when conducted with a large number of spatial locations, is capable 

of revealing and explaining barriers to gene flow in fairly high transmission settings that 

lack strong population structure. In future molecular epidemiology studies, we recommend 

that sensitive methods, such as MEMGENE (Galpern et al., 2014), first be used to 

characterize spatial heterogeneity in genetic variation. If significant variation is discovered, 

we recommend the use of landscape genetics methods, in particular resistance surface 

analysis, to explain the drivers of this structure. Doing so will extend and contextualize 

the results of traditional population genetics analyses and thus yield more insights into the 

spatial determinants of transmission.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Map with pie charts showing average admixture coefficients (i.e., proportion membership 

in each cluster) for the samples from each study location, as estimated by rmaverick. The 

scatterpie R package (Yu, 2021) was used to create the pie charts. Country boundaries 

are included for context, obtained with the rnaturalearth R package (South, 2017). The 

background is Esri’s World Shaded Relief layer (© 2009 ESRI).

Hubbard et al. Page 18

Mol Ecol. Author manuscript; available in PMC 2023 December 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 2. 
Map showing sample site locations with the point colour scaled according to the first 

MEMGENE variable and the size representing the number of samples gathered at that 

location. Country boundaries are included for context, obtained with the rnaturalearth R 

package (South, 2017). The background is Esri’s World Shaded Relief layer (© 2009 ESRI).
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FIGURE 3. 
Mantel correlogram showing the correlation between genetic and geographic distance (a). In 

this type of plot, the x-axis is a series of geographic distance classes and the y-axis is the 

correlation between genetic and geographic distance in samples separated by this distance 

class. Point shape indicates the significance level of each correlation. For reference, the 

distance-distance plot of geographic versus genetic distance is also included (b). Note that 

only distance classes with adequate numbers of samples for analysis were included in the 

Mantel correlogram, which is why the x-axes do not have the same extent.
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FIGURE 4. 
The three best-fitting resistance surfaces, ranked in order of fit: a composite surface of LST 

and the Lake Victoria binary layer (a), a single surface modelled off the Lake Victoria 

binary layer (b), and a single surface modelled off the friction to human movement data 

set that does not assume access to motorized transport (c). Resistance values are log10 

transformed, and study site locations are shown for context. The surfaces were visualized 

with the landscapetools (Sciaini et al., 2018) and patchwork (Pedersen, 2020) R packages.
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TABLE 1

Spatial covariates included in resistance surface analysis.

Variable Data set Spatial resolution
Temporal 
resolution Citation

Rainfall Climate Hazards Group InfraRed 
Precipitation with Station (CHIRPS) data

0.05 degree Daily Funk et al. (2015)

Land surface 
temperature (LST)

MYD11A2.061 1 km 8 days Wan et al. (2021)

Elevation NASADEM 1 arc second Static NASA JPL. (2020)

Land cover MCD12Q1 500 m Annual Friedl & Sulla-Menashe. 
(2019)

Lake Victoria binary 
layer

Derived from MCD12Q1 500 m Annual NA

Human mobility Global human movement friction surface 
with access to motorized transport

1 km Static (2019) Weiss et al. (2020)

Human mobility Global human movement friction surface 
without access to motorized transport

1 km Static (2019) Weiss et al. (2020)
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TABLE 2

Fit statistics for top 10 best-fitting resistance surfaces.

Surface K AICc Rm
2 Rc

2

Lake Victoria and Land Surface Temperature 6 −1828.47 0.136461 0.495123

Lake Victoria 3 −1827.51 0.0674234 0.478118

Friction to Human Movement (w/o motorized) 4 −1826.23 0.0861454 0.48676

Elevation and Lake Victoria 6 −1823.91 0.130084 0.495179

Lake Victoria and Friction to Human Movement (w/o motorized) 6 −1822.71 0.0901474 0.491937

Land Surface Temperature 4 −1821.96 0.163029 0.515629

Land Surface Temperature and Friction to Human Movement (w/o motorized) 7 −1821.3 0.165838 0.518301

Lake Victoria and Precipitation 6 −1821.29 0.0501707 0.489653

Elevation and Friction to Human Movement (w/o motorized) 7 −1820.45 0.201408 0.53808

Lake Victoria and Friction to Human Movement (w/ motorized) 6 −1819.93 0.0672178 0.478748
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