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Biology, University of California, Berkeley, Berkeley, United States; 11Department of 
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Abstract Cellular respiration is essential for multiple bacterial pathogens and a validated anti-
biotic target. In addition to driving oxidative phosphorylation, bacterial respiration has a variety of 
ancillary functions that obscure its contribution to pathogenesis. We find here that the intracellular 
pathogen Listeria monocytogenes encodes two respiratory pathways which are partially functionally 
redundant and indispensable for pathogenesis. Loss of respiration decreased NAD+ regeneration, 
but this could be specifically reversed by heterologous expression of a water-forming NADH oxidase 
(NOX). NOX expression fully rescued intracellular growth defects and increased L. monocytogenes 
loads >1000-fold in a mouse infection model. Consistent with NAD+ regeneration maintaining L. 
monocytogenes viability and enabling immune evasion, a respiration-deficient strain exhibited 
elevated bacteriolysis within the host cytosol and NOX expression rescued this phenotype. These 
studies show that NAD+ regeneration represents a major role of L. monocytogenes respiration and 
highlight the nuanced relationship between bacterial metabolism, physiology, and pathogenesis.
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Introduction
Distinct metabolic strategies allow microbes to extract energy from diverse surroundings and colonize 
nearly every part of the earth. Microbial energy metabolisms vary greatly but can be generally catego-
rized as possessing fermentative or respiratory properties. Cellular respiration is classically described 
by a multistep process that initiates with the enzymatic oxidation of organic matter and the accompa-
nying reduction of NAD+ (nicotinamide adenine dinucleotide) to NADH. Respiration of fermentable 
sugars typically starts with glycolysis, which generates pyruvate and NADH. Pyruvate then enters the 
tricarboxylic acid (TCA) cycle, where its oxidation to carbon dioxide is coupled to the production of 
additional NADH. NADH generated by glycolysis and the TCA cycle is then oxidized by NADH dehy-
drogenase to regenerate NAD+ and the resulting electrons are transferred via an electron transport 
chain to a terminal electron acceptor.

While mammals strictly use oxygen as a respiratory electron acceptor, microbes reside in diverse 
oxygen-limited environments and have varying and diverse capabilities to use disparate non-oxygen 
respiratory electron acceptors. Whatever the electron acceptor, electron transfer in the electron trans-
port chain is often coupled to proton pumping across the bacterial inner membrane. This generates a 
proton gradient or proton motive force, which powers a variety of processes, including ATP produc-
tion by ATP synthase.

Respiratory pathways are important for several aspects of bacterial physiology. Respiration’s role 
in establishing the proton motive force allows bacteria to generate ATP from non-fermentable energy 
sources (which are not amenable to ATP production by substrate-level phosphorylation) and increases 
ATP yields from fermentable energy sources. In addition to these roles in ATP production, respiratory 
electron transport chains are directly involved in many other aspects of bacterial physiology, including 
the regulation of cytosolic pH, transmembrane solute transport, ferredoxin-dependent metabolisms, 
protein secretion, protein folding, disulfide formation, and flagellar motility (Bader et  al., 1999; 
Driessen et al., 2000; Driessen and Nouwen, 2008; Manson et al., 1977; Slonczewski et al., 2009; 
Driessen et al., 2000; Tremblay et al., 2013; Wilharm et al., 2004). Beyond the proton motive force, 

eLife digest Cellular respiration is one of the main ways organisms make energy. It works by 
linking the oxidation of an electron donor (like sugar) to the reduction of an electron acceptor (like 
oxygen). Electrons pass between the two molecules along what is known as an ‘electron transport 
chain’. This process generates a force that powers the production of adenosine triphosphate (ATP), a 
molecule that cells use to store energy.

Respiration is a common way for cells to replenish their energy stores, but it is not the only way. A 
simpler process that does not require a separate electron acceptor or an electron transport chain is 
called fermentation. Many bacteria have the capacity to perform both respiration and fermentation 
and do so in a context-dependent manner.

Research has shown that respiration can contribute to bacterial diseases, like tuberculosis and 
listeriosis (a disease caused by the foodborne pathogen Listeria monocytogenes). Indeed, some 
antibiotics even target bacterial respiration. Despite being often discussed in the context of gener-
ating ATP, respiration is also important for many other cellular processes, including maintaining the 
balance of reduced and oxidized nicotinamide adenine dinucleotide (NAD) cofactors. Because of 
these multiple functions, the exact role respiration plays in disease is unknown.

To find out more, Rivera-Lugo, Deng et al. developed strains of the bacterial pathogen Listeria 
monocytogenes that lacked some of the genes used in respiration. The resulting bacteria were still 
able to produce energy, but they became much worse at infecting mammalian cells. The use of a 
genetic tool that restored the balance of reduced and oxidized NAD cofactors revived the ability of 
respiration-deficient L. monocytogenes to infect mammalian cells, indicating that this balance is what 
the bacterium requires to infect.

Research into respiration tends to focus on its role in generating ATP. But these results show that 
for some bacteria, this might not be the most important part of the process. Understanding the other 
roles of respiration could change the way that researchers develop antibacterial drugs in the future. 
This in turn could help with the growing problem of antibiotic resistance.

https://doi.org/10.7554/eLife.75424
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respiration functions to regenerate NAD+, which is essential for enabling the continued function of 
glycolysis and other metabolic processes. By obviating fermentative mechanisms of NAD+ regener-
ation, respiration increases metabolic flexibility, which, among other metabolic consequences, can 
enhance ATP production by substrate-level phosphorylation (Hunt et al., 2010).

Bacterial pathogens reside within a host where they must employ fermentative or respiratory metab-
olisms to power growth. Pathogen respiratory processes have been linked to host-pathogen conflict 
in several contexts. Phagocytic cells target bacteria by producing reactive nitrogen species that inhibit 
aerobic respiration (Richardson et al., 2008). Aggregatibacter actinomycetemcomitans, Salmonella 
enterica, Streptococcus agalactiae, and Staphylococcus aureus mutants with impaired aerobic respi-
ration are attenuated in murine models of systemic disease (Craig et al., 2013; Hammer et al., 2013; 
Jones-Carson et al., 2016; Lencina et al., 2018; Lewin et al., 2019; Rivera-Chávez et al., 2016). 
Aerobic respiration is vital for Mycobacterium tuberculosis pathogenesis and persister cell survival, 
making respiratory systems validated anti-tuberculosis drug targets (Cook et al., 2014; Hasenoehrl 
et al., 2020). Respiratory processes that use oxygen, tetrathionate, and nitrate as electron acceptors 
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Figure 1. Respiration impacts L. monocytogenes growth and fermentative output. (A) Proposed respiratory 
electron transport chains in L. monocytogenes. Different NADH dehydrogenases likely transfer electrons to 
distinct but presently unidentified quinones (Qa and Qb). FmnB catalyzes assembly of essential components of the 
electron transport chain, PplA and FrdA, that can transfer electrons to ferric iron and fumarate, respectively. Other 
proteins involved in the terminal electron transfer steps are noted. (B) Optical density of L. monocytogenes strains 
aerobically grown in nutrient-rich media, with the anaerobically grown wildtype strain provided for context. The 
means and standard deviations from three independent experiments are shown. (C) Fermentation products of L. 
monocytogenes strains grown to stationary phase in nutrient-rich media under aerobic and anaerobic conditions. 
Error bars show standard deviations. Results from three independent experiments are shown. (D) Proposed 
pathways for L. monocytogenes sugar metabolism. The predicted number of NADH generated (+) or consumed 
(−) in each step is indicated. PplA, peptide pheromone-encoding lipoprotein A; FrdA, fumarate reductase; 
ΔQC, ΔqoxA/ΔcydAB; ΔQC/fmnB, ΔqoxA/ΔcydAB/fmnB::tn; GLC, glucose; Ack, acetate kinase; Pdh, pyruvate 
dehydrogenase; Pfl, pyruvate formate-lyase; DMK, demethylmenaquinone.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Source data for Figure 1B.

Source data 2. Source data for Figure 1C.

Figure supplement 1. Use of respiratory electron acceptors enhances Listeria monocytogenes growth in nutrient-
rich media.

Figure supplement 1—source data 1. Source data for Figure 1—figure supplement 1A.

Figure supplement 1—source data 2. Source data for Figure 1—figure supplement 1B.

https://doi.org/10.7554/eLife.75424
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are important for the growth of S. enterica and Escherichia coli in the mammalian intestinal lumen 
(Rivera-Chávez et al., 2016; Winter et al., 2010; Winter et al., 2013). While several studies have 
linked respiration in bacterial pathogens to the use of specific electron donors (i.e. non-fermentable 
energy sources) within the intestinal lumen, the particular respiratory functions important for systemic 
bacterial infections remain largely unexplained (Ali et al., 2014; Faber et al., 2017; Gillis et al., 2018; 
Spiga et al., 2017; Thiennimitr et al., 2011).

Listeria monocytogenes is a human pathogen that, after being ingested on contaminated food, can 
gain access to the host cell cytosol and use actin-based motility to spread from cell to cell (Freitag 
et al., 2009). L. monocytogenes has two respiratory-like electron transport chains. One electron trans-
port chain is dedicated to aerobic respiration and uses a menaquinone intermediate and QoxAB (aa3) 
or CydAB (bd) cytochrome oxidases for terminal electron transfer to O2 (Figure 1A; Corbett et al., 
2017). We recently identified a second flavin-based electron transport chain that transfers electrons 
to extracytosolic acceptors (including ferric iron and fumarate) via a putative demethylmenaquinone 
intermediate and can promote growth in anaerobic conditions (Figure 1A; Light et al., 2018; Light 
et al., 2019; Zeng et al., 2021). Final electron transfer steps in this flavin-based electron transport 
mechanism are catalyzed by PplA and FrdA, which are post-translationally linked to an essential 
cofactor by the flavin mononucleotide transferase (FmnB) (Light et al., 2018; Méheust et al., 2021).

L. monocytogenes resembles fermentative microbes in lacking a functional TCA cycle (Trivett and 
Meyer, 1971). Despite thus being unable to completely oxidize sugar substrates, previous studies 
have shown that aerobic respiration is important for the systemic spread of L. monocytogenes (Chen 
et al., 2017; Corbett et al., 2017; Stritzker et al., 2004). Microbes that similarly contain a respiratory 
electron transport chain but lack a TCA cycle are considered to employ a respiro-fermentative metab-
olism (Pedersen et al., 2012). Respiro-fermentative metabolisms tune the cell’s fermentative output 
and often manifest with the respiratory regeneration of NAD+ enabling a shift from the production of 
reduced (e.g. lactic acid and ethanol) to oxidized (e.g. acetic acid) fermentation products. In respiro-
fermentative lactic acid bacteria closely related to L. monocytogenes, cellular respiration results in 
a modest growth enhancement, but is generally dispensable (Duwat et al., 2001; Pedersen et al., 
2012).

The studies presented here sought to address the role of respiration in L. monocytogenes patho-
genesis. Our results confirm that L. monocytogenes exhibits a respiro-fermentative metabolism and 
show that its two respiratory systems are partially functionally redundant under aerobic conditions. We 
find that the respiration-deficient L. monocytogenes strains exhibit severely attenuated virulence and 
lyse within the cytosol of infected cells. Finally, we selectively abrogate the effect of diminished NAD+ 
regeneration in respiration-deficient L. monocytogenes strains by heterologous expression of a water-
forming NADH oxidase (NOX) and find that this restores virulence. These results thus elucidate the 
basis of L. monocytogenes cellular respiration and demonstrate that NAD+ regeneration represents a 
key function of this activity in L. monocytogenes pathogenesis.

Results
L. monocytogenes’ electron transport chains have distinct roles in 
aerobic and anaerobic growth
We selected previously characterized ΔqoxA/ΔcydAB (ΔQC) and ΔfmnB L. monocytogenes strains 
to study the role of aerobic respiration and extracellular electron transfer, respectively (Chen et al., 
2017; Light et al., 2018). In addition, we generated a ΔqoxA/ΔcydAB/fmnB::tn (ΔQC/fmnB) L. mono-
cytogenes strain to test for functional redundancies of aerobic respiration and extracellular electron 
transfer. Initial studies measured the growth of these strains on nutritionally rich brain heart infusion 
(BHI) media in the presence/absence of electron acceptors.

Compared to anaerobic conditions that lacked an electron acceptor, we found that aeration led to 
a relatively modest increase in growth of wildtype and ΔfmnB strains (Figure 1B and Figure 1—figure 
supplement 1a). This growth enhancement could be attributed to aerobic respiration, as aerobic 
growth of the ΔQC strain resembled anaerobically cultured strains (Figure 1B and Figure 1—figure 
supplement 1a). Similarly, in anaerobic conditions, inclusion of the extracellular electron acceptors, 
ferric iron and fumarate, resulted in a small growth enhancement of wildtype L. monocytogenes 
(Figure  1—figure supplement 1b). This phenotype could be attributed to extracellular electron 

https://doi.org/10.7554/eLife.75424
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transfer, as ferric iron or fumarate failed to stimulate growth of the ΔfmnB strain (Figure 1—figure 
supplement 1b). These findings are consistent with aerobic respiration and extracellular electron 
transfer possessing distinct roles in aerobic and anaerobic environments, respectively.

The ΔQC/fmnB strain exhibited the most striking growth pattern. This strain lacked a pheno-
type under anaerobic conditions but had impaired aerobic growth, even relative to the ΔQC strain 
(Figure 1B). Notably, ΔQC/fmnB was the sole strain tested with a substantially reduced growth rate 
in the presence of oxygen (Figure 1B). These observations suggest that aerobic extracellular electron 
transfer activity can partially compensate for the loss of aerobic respiration and that oxygen inhibits L. 
monocytogenes growth in the absence of both electron transport chains.

Respiration alters L. monocytogenes’ fermentative output
Respiration is classically defined by the complete oxidation of an electron donor (e.g. glucose) to 
carbon dioxide in the TCA cycle. However, L. monocytogenes lacks a TCA cycle and instead converts 
sugars into multiple fermentation products (Romick et  al., 1996). We thus asked how respiration 
impacts L. monocytogenes’ fermentative output. Under anaerobic conditions that lacked an alterna-
tive electron acceptor, L. monocytogenes exhibited a pattern of mixed acid fermentation, with lactic 
acid being most abundant and ethanol, formic acid, and acetic acid being produced at lower levels 
(Figure 1C). By contrast, under aerobic conditions L. monocytogenes almost exclusively produced 
acetic acid (Figure 1C). Consistent with respiration being partially responsible for the distinct aerobic 
vs. anaerobic responses, ΔQC and ΔQC/fmnB strains failed to undergo drastic shifts in fermentative 
output when grown in aerobic conditions. The ΔQC strain mainly produced lactic acid in the presence 
of oxygen, and this trend was even more pronounced in the ΔQC/fmnB strain, which almost exclu-
sively produced lactic acid (Figure 1C). These results show that aerobic respiration induces a shift to 
acetic acid production and support the conclusion that L. monocytogenes’ two electron transport 
chains are partially functionally redundant in aerobic conditions.

A comparison of fermentative outputs across the experimental conditions also clarifies the basis 
of central energy metabolism in L. monocytogenes. A classical glycolytic metabolism in L. monocyto-
genes likely generates ATP and NADH. In the absence of oxygen or an alternative electron acceptor, 
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Figure 2. Respiration is required for L. monocytogenes virulence. (A) Plaque formation by cell-to-cell spread of L. monocytogenes strains in monolayers 
of mouse L2 fibroblast cells. The mean plaque size of each strain is shown as a percentage relative to the wildtype plaque size. Error bars represent 
standard deviations of the mean plaque size from two independent experiments. Statistical analysis was performed using one-way ANOVA and 
Dunnett’s post-test comparing wildtype to all the other strains. ****, p<0.0001; ns, no significant difference (p>0.05). (B) Intracellular growth of L. 
monocytogenes strains in murine bone marrow-derived macrophages (BMMs). At 1-hour post-infection, infected BMMs were treated with 50 μg/
mL of gentamicin to kill extracellular bacteria. Colony-forming units (CFU) were enumerated at the indicated times. Results are representative of two 
independent experiments. (C) Bacterial burdens in murine spleens and livers 48 hours post-intravenous infection with indicated L. monocytogenes 
strains. The median values of the CFUs are denoted by black bars. The dashed lines represent the limit of detection. Data were combined from two 
independent experiments, n = 10 mice per strain. Statistical significance was evaluated using one-way ANOVA and Dunnett’s post-test using wildtype as 
the control. ****, p<0.0001. ΔQC, ΔqoxA/ΔcydAB; ΔQC/fmnB, ΔqoxA/ΔcydAB/fmnB::tn; Δndh1/ndh2, Δndh1/ndh2::tn.

The online version of this article includes the following source data for figure 2:

Source data 1. Source data for Figure 2A.

Source data 2. Source data for Figure 2B.

Source data 3. Source data for Figure 2C.

https://doi.org/10.7554/eLife.75424
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NAD+ is regenerated by coupling NADH oxidation to the reduction of pyruvate to lactate or ethanol. 
In the presence of oxygen, NADH oxidation is coupled to the reduction of oxygen, and pyruvate is 
converted to acetate. Moreover, the pattern of anaerobic formate production is consistent with aerobic 
acetyl-CoA production through pyruvate dehydrogenase and anaerobic production through pyruvate 
formate-lyase (Figure 1D). Collectively, these observations suggest that L. monocytogenes prioritizes 
balancing NAD+/NADH levels in the absence of an electron acceptor and maximizing ATP production 
in the presence of oxygen. In the absence of oxygen, NAD+/NADH redox homeostasis is achieved by 
minimizing NADH produced in acetyl-CoA biosynthesis and by consuming NADH in lactate/ethanol 
fermentation (Figure 1D). In the presence of oxygen, ATP yields are maximized through respiration 
and increased substrate-level phosphorylation by acetate kinase activity (Figure 1D).

Respiratory capabilities are essential for L. monocytogenes 
pathogenesis
We next asked about the role of cellular respiration in intracellular L. monocytogenes growth and 
pathogenesis. The ΔfmnB mutant deficient for extracellular electron transfer was previously shown to 
resemble the wildtype L. monocytogenes strain in a murine model of infection (Light et al., 2018). 
We found that this mutant also did not differ from wildtype L. monocytogenes in growth in bone 
marrow-derived macrophages (BMMs) and a plaque assay that monitors bacterial growth and cell-
to-cell spread (Figure  2A and B). Consistent with previous reports, the ΔQC strain deficient for 
aerobic respiration was attenuated in the plaque assay and murine model of infection, but resem-
bled wildtype L. monocytogenes in macrophage growth (Figure 2A–C; Chen et al., 2017; Corbett 
et al., 2017). Combining mutations that resulted in the loss of both extracellular electron transfer and 
aerobic respiration produced even more pronounced phenotypes. The ΔQC/fmnB strain did not grow 
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Figure 3. Water-forming NADH oxidase (NOX) restores redox homeostasis in respiration-deficient L. 
monocytogenes strains. (A) Reaction catalyzed by the Lactococcus lactis water-forming NOX, which is the same 
as aerobic respiration without the generation of a proton motive force. (B) NAD+/NADH ratios of parent and 
NOX-complemented L. monocytogenes strains grown aerobically in nutrient-rich media to mid-logarithmic 
phase. Results from three independent experiments are presented as means and standard deviations. Statistical 
significance was calculated using one-way ANOVA and Dunnett’s post-test using the wildtype parent strain as the 
control. ****, p<0.0001; ***, p<0.001; **, p<0.01; ns, not statistically significant (p>0.05). (C) Fermentation products 
of L. monocytogenes strains grown in nutrient-rich media under aerobic conditions. Error bars show standard 
deviations. Results from three independent experiments are shown. ΔQC, ΔqoxA/ΔcydAB; ΔQC/fmnB, ΔqoxA/
ΔcydAB/fmnB::tn; + NOX, strains complemented with L. lactis nox.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Source data for Figure 3B.

Source data 2. Source data for Figure 3C.

Figure supplement 1. NOX expression in respiration-deficient mutants fails to rescue swarming motility.

Figure supplement 1—source data 1. Source data for Figure 3—figure supplement 1.

https://doi.org/10.7554/eLife.75424
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intracellularly in macrophages and fell below the limit of detection in the plaque assay and murine 
infection model (Figure 2A–C). Consistent with this phenotype reflecting a loss of respiratory activity, 
we observed that a mutant that targeted the two respiratory NADH dehydrogenases resulted in a 
similar phenotype in the plaque assay (Figure 2A). These results thus demonstrate that respiratory 
activities are essential for L. monocytogenes virulence, and that the organism’s two respiratory path-
ways are partially functionally redundant within a mammalian host.

Expression of NOX restores NAD+ levels in L. monocytogenes 
respiration mutants
Cellular respiration both regenerates NAD+ and establishes a proton motive force that is important for 
various aspects of bacterial physiology. The involvement of respiration in these two distinct processes 
can confound the analysis of respiration-impaired phenotypes. However, the heterologous expression 
of water-forming NADH oxidase (NOX) has been used to decouple these functionalities in mamma-
lian cells (Figure 3A; Titov et al., 2016). Because NOX regenerates NAD+ without pumping protons 
across the membrane, its introduction to a respiration-deficient cell can correct the NAD+/NADH 
imbalance, thereby isolating the role of the proton motive force in the phenotype (Lopez de Felipe 
et al., 1998; Titov et al., 2016).

To address which aspect of cellular respiration was important for L. monocytogenes pathogenesis, 
we introduced the previously characterized Lactococcus lactis water-forming NOX to the genome of 
respiration-deficient L. monocytogenes strains (Heux et al., 2006; Neves et al., 2002a; Neves et al., 
2002b). We confirmed that the ΔQC and ΔQC/fmnB strains exhibited decreased NAD+/NADH levels 
and that constitutive expression of NOX rescued this phenotype (Figure 3B). Consistent with the 
altered fermentative output of the ΔQC/fmnB strain resulting from impaired NAD+ regeneration, we 
observed that NOX expression restored the predominance of acetic acid production to the aerobically 
grown cells (Figure 3C).

To confirm that NOX expression specifically impacts NAD+/NADH-dependent phenotypes, we 
tested the effect of NOX expression on bacterial motility. Consistent with respiration impacting 
flagellar function through the proton motive force, we found that ΔQC/fmnB exhibited impaired 
bacterial motility and that this phenotype was resilient to NOX expression (Manson et  al., 1977; 
Figure 3—figure supplement 1). These experiments thus provide evidence that NOX expression 
provides a tool to specifically manipulate the NAD+/NADH ratio in L. monocytogenes.

Respiration is critical for regenerating NAD+ during L. monocytogenes 
pathogenesis
We next sought to dissect the relative importance of respiration in generating a proton motive force 
versus maintaining redox homeostasis for L. monocytogenes virulence. We tested NOX-expressing 
ΔQC and ΔQC/fmnB strains for macrophage growth, plaque formation, and in the murine infection 
model. Expression of NOX almost fully rescued the plaque and macrophage growth phenotypes of 
the ΔQC and ΔQC/fmnB strains (Figure 4A and B). NOX expression also partially rescued L. monocy-
togenes virulence in the murine infection model (Figure 4C). Notably, NOX expression had a greater 
impact on the L. monocytogenes load in the spleen than the liver, suggesting distinct functions of 
respiration for L. monocytogenes colonization of these two organs (Figure 4C). These results thus 
suggest that NAD+ regeneration represents the primary role of respiration in L. monocytogenes 
pathogenesis to an organ-specific extent.

Impaired redox homeostasis is associated with increased cytosolic L. 
monocytogenes lysis
We next asked why respiration-mediated redox homeostasis was critical for L. monocytogenes patho-
genesis. We reasoned that previous descriptions of L. monocytogenes quinone biosynthesis mutants 
might provide a clue. Quinones are a family of redox-active cofactors that have essential functions in 
respiratory electron transport chains (Collins and Jones, 1981). Our previous studies suggested that 
distinct quinones function in flavin-based electron transfer and aerobic respiration (Light et al., 2018). 
A separate set of studies found that L. monocytogenes quinone biosynthesis mutants exhibited diver-
gent phenotypes. L. monocytogenes strains defective in upstream steps of the quinone biosynthesis 
pathway (menB, menC, menD, menE, and menF) exhibited increased bacteriolysis in the cytosol of 

https://doi.org/10.7554/eLife.75424
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host cells and were severely attenuated for virulence (Figure 5A). By contrast, L. monocytogenes 
strains defective in downstream steps of the quinone biosynthesis pathway (menA and menG) did not 
exhibit increased cytosolic bacteriolysis and had less severe virulence phenotypes (Chen et al., 2019, 
Chen et al., 2017; Smith et al., 2021; Figure 5A). These divergent phenotypic responses resemble 
the loss of aerobic respiration versus the loss of aerobic respiration plus flavin-based electron transfer 
observed in our studies. The distinct virulence phenotype of quinone biosynthesis mutants could thus 
be explained by the upstream portion of the quinone biosynthesis pathway being required for both 
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Figure 4. NOX expression restores virulence to respiration-deficient L. monocytogenes strains. (A) Plaque 
formation by cell-to-cell spread of L. monocytogenes strains in monolayers of mouse L2 fibroblast cells. The mean 
plaque size of each strain is shown as a percentage relative to the wildtype plaque size. Error bars represent 
standard deviations of the mean plaque size from two independent experiments. Statistical analysis was performed 
using the unpaired two-tailed t test. ****, p<0.0001; ns, no significant difference (p>0.05). (B) Intracellular growth of 
L. monocytogenes strains in murine bone marrow-derived macrophages (BMMs). At 1-hour post-infection, infected 
BMMs were treated with 50 μg/mL of gentamicin to kill extracellular bacteria. Colony-forming units (CFU) were 
enumerated at the indicated times. Results are representative of three independent experiments. (C) Bacterial 
burdens in murine spleens and livers 48 hours post-intravenous infection with indicated L. monocytogenes strains. 
The median values of the CFUs are denoted by black bars. The dashed lines represent the limit of detection. 
Data were combined from two independent experiments, n = 10 mice per strain, but for the wildtype +NOX 
strain (n = 9 mice). Statistical significance was evaluated using one-way ANOVA and Dunnett’s post-test using the 
wildtype control strain to compare with the NOX-complemented strains. Significance between the parental and 
the NOX-complemented strains was determined using the unpaired two-tailed t test. ****, p<0.0001; **, p<0.01; 
ns, no significant difference (p>0.05). ΔQC, ΔqoxA/ΔcydAB; ΔQC/fmnB, ΔqoxA/ΔcydAB/fmnB::tn; Δndh1/ndh2, 
Δndh1/ndh2::tn; + NOX, strains complemented with Lactococcus lactis nox.

The online version of this article includes the following source data for figure 4:

Source data 1. Source data for Figure 4A.

Source data 2. Source data for Figure 4B.

Source data 3. Source data for Figure 4C.

https://doi.org/10.7554/eLife.75424
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aerobic respiration and flavin-based electron transfer, with the downstream portion of the pathway 
only being required for aerobic respiration (Figure 5A).

Based on the proposed roles of quinones in respiration, we hypothesized that the severe pheno-
types previously described for the upstream quinone biosynthesis mutants were due to an imbalance 
in the NAD+/NADH ratio. To address this hypothesis, we first confirmed that the ΔmenB strain, which 
is defective in upstream quinone biosynthesis, exhibited a phenotype similar to the ΔQC/fmnB strain 
for plaque formation and in the murine infection model (Figure 5B and C). We next tested the effect 
of NOX expression on virulence phenotypes for the ΔmenB strain. NOX expression rescued ΔmenB 
phenotypes for plaque formation and in the murine infection model to a strikingly similar extent as the 
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Figure 5. Impaired redox homeostasis accounts for elevated bacteriolysis of a respiration-deficient L. monocytogenes strain in the cytosol of 
infected cells. (A) Proposed L. monocytogenes quinone biosynthesis pathway. Arrows indicate the number of enzymes that catalyze each reaction. An 
unidentified demethylmenaquinone (DMK) is proposed to be required for the flavin-based electron transfer pathway and MK7 required for aerobic 
respiration. Loss of the upstream portion of the pathway is anticipated to impact both electron transport chains. (B) Plaque formation by cell-to-cell 
spread of L. monocytogenes strains in monolayers of mouse L2 fibroblast cells. The mean plaque size of each strain is shown as a percentage relative to 
the wildtype plaque size. Error bars represent standard deviations of the mean plaque size from two independent experiments. Statistical analysis was 
performed using the unpaired two-tailed t test. ****, p<0.0001. (C) Bacterial burdens in murine spleens and livers 48 hours post-intravenous infection 
with indicated L. monocytogenes strains. The median values of the CFUs are denoted by black bars. The dashed lines represent the limit of detection. 
Data were combined from two independent experiments, n = 10 mice per strain. Statistical significance was evaluated using one-way ANOVA and 
Dunnett’s post-test using the wildtype strain as the control to compare with the NOX-complemented strain. Significance between the parental and the 
NOX-complemented strain was determined using the unpaired two-tailed t test. ****, p<0.0001. (D) Bacteriolysis of L. monocytogenes strains in bone 
marrow-derived macrophages. The data are normalized to wildtype bacteriolysis levels and presented as means and standard deviations from three 
independent experiments. Statistical significance was calculated using one-way ANOVA and Dunnett’s post-test using the wildtype parent strain as the 
control. ****, p<0.0001; ns, no significant difference (p>0.05).

The online version of this article includes the following source data for figure 5:

Source data 1. Source data for Figure 5B.

Source data 2. Source data for Figure 5C.

Source data 3. Source data for Figure 5D.

https://doi.org/10.7554/eLife.75424
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ΔQC/fmnB strain (Figure 5B and C). These results thus provide evidence that quinone biosynthesis 
is essential for respiration and that the severity of the ΔmenB phenotype is largely due to the role of 
respiration in regenerating NAD+.

Numerous adaptations allow L. monocytogenes to colonize the host cytosol, including resistance 
to bacteriolysis. Minimizing bacteriolysis within the host cytosol is important to the pathogen because 
it can activate the host’s innate immune responses, including pyroptosis, a form of programmed cell 
death, which severely reduces L. monocytogenes virulence (Sauer et al., 2010). L. monocytogenes 
strains deficient for the upstream quinone biosynthesis steps were previously identified as having 
an increased susceptibility to bacteriolysis in the macrophage cytosol (Chen et al., 2017). We thus 
hypothesized that decreased virulence of respiration-deficient strains might relate to increased cyto-
solic bacteriolysis.

Using a previously described luciferase-based assay to quantify cytosolic plasmid release, we 
confirmed that the ΔmenB strain exhibited increased intracellular bacteriolysis (Figure  5D; Sauer 
et al., 2010). We further found that NOX expression rescued ΔmenB bacteriolysis, but not a compa-
rable bacteriolysis phenotype in a ΔglmR strain that was previously shown to result from unrelated 
deficiencies in cell wall biosynthesis (Figure 5D; Pensinger et al., 2021). These studies thus show 
that efficient NAD+ regeneration is essential for limiting cytosolic bacteriolysis and suggest a model 
whereby respiration-mediated NAD+ regeneration promotes virulence, in part, by maintaining cell 
viability and facilitating evasion of innate immunity (Figure 6).

Discussion
Cellular respiration is one of the most fundamental aspects of bacterial metabolism and a validated 
antibiotic target. Despite its importance, the role of cellular respiration in systemic bacterial patho-
genesis has remained largely unexplained. The studies reported here address the basis of respira-
tion in the pathogen L. monocytogenes, identifying two electron transport chains that are partially 
functionally redundant and essential for pathogenesis. We find that restoring NAD+ regeneration to 
respiration-deficient L. monocytogenes strains through the heterologous expression of NOX prevents 
bacteriolysis within the host cytosol and rescues pathogenesis. These findings thus support the 
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and be virulent. On the right, an intracellular bacterium unable to regenerate NAD+, by lacking the electron 
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conclusion that NAD+ regeneration represents a major role of L. monocytogenes respiration during 
pathogenesis.

Our results clarify several aspects of the basis and significance of energy metabolism in L. mono-
cytogenes. In particular, our studies establish the relationship between L. monocytogenes’ two elec-
tron transport chains – confirming previous observations that flavin-based electron transfer enhances 
anaerobic L. monocytogenes growth and revealing a novel aerobic function of this pathway (Light 
et al., 2018; Zeng et al., 2021). While the benefit of flavin-based electron transfer was only apparent 
in the absence of aerobic respiration, identifying the substrates and functions of aerobic activation of 
this pathway may provide an interesting avenue for future studies.

Our studies further reveal that L. monocytogenes employs a respiro-fermentative metabolic 
strategy characterized by production of the reduced fermentation products lactate and ethanol in the 
absence of an electron acceptor and acetate when a respiratory pathway is activated. This respiro-
fermentative metabolism is consistent with the proton motive force being less central to L. monocyto-
genes energy metabolism and with a primary role of respiration being to unleash ATP production via 
acetate kinase catalyzed substrate-level phosphorylation (Figure 1D).

The importance of cellular respiration for non-proton motive force-related processes is further 
supported by observations about the ability of heterologous NOX overexpression to rescue the 
severe pathogenesis phenotypes of respiration-deficient L. monocytogenes strains. NOX expression 
fully rescued in vitro growth defects and partially rescued virulence in the mouse model of disease, 
suggesting that NAD+ regeneration represents the sole function of respiration in some cell types and a 
major (but not sole) function of respiration in systemic disease. These findings suggest that a presently 
unaccounted for proton motive force-dependent aspect of microbial physiology is likely important 
for systemic disease. Considering the significance of cellular respiration as an antibiotic target, these 
insights into the role respiration be relevant for future drug development strategies.

While our studies provide evidence that NAD+ regeneration is critical for preventing intracellular 
bacteriolysis, some ambiguity remains regarding the molecular mechanism linking NAD+/NADH 

Table 1. Bacterial strains used in this study.

Strains Strain number Reference

Listeria monocytogenes (wildtype) 10403S Bécavin et al., 2014

ΔcydAB/ΔqoxA DP-L6624 Chen et al., 2017

ΔcydAB/ΔqoxA/fmnB::tn DP-L7190 This study

ΔfmnB DP-L7195 This study

Wildtype + pPL2 NOX DP-L7188 This study

ΔcydAB/ΔqoxA + pPL2 NOX DP-L7189 This study

ΔcydAB/ΔqoxA/fmnB::tn + pPL2 NOX DP-L7191 This study

ΔflaA DP-L5986 Nguyen et al., 2020

Δndh1/ndh2::tn DP-L6626 This study

Δndh1/ndh2::tn + pPL2 NOX DP-L7253 This study

Wildtype + pBHE573 JDS18 Sauer et al., 2010

Wildtype + pPL2 NOX + pBHE573 JDS2328 This study

ΔmenB + pBHE573 JDS1191 Chen et al., 2017

ΔmenB + pPL2 NOX + pBHE573 JDS2333 This study

Δhly + pBHE573 JDS19 Sauer et al., 2010

ΔglmR + pBHE573 JDS21 Sauer et al., 2010

ΔglmR + pPL2 NOX + pBHE573 JDS2329 This study

Escherichia coli SM10

pPL2-NOX DP-E7206 This study

pBHE573 JDS17 Sauer et al., 2010

https://doi.org/10.7554/eLife.75424
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imbalance to the loss of L. monocytogenes virulence. One potential clue comes from a recent study 
of the transcriptional regulator Rex. Rex senses a low NAD+/NADH ratio and derepresses reductive 
fermentation pathways, including those that produce lactate and ethanol, and a L. monocytogenes 
strain deficient in Rex exhibited decreased virulence (Halsey et al., 2021). Activation of part of the 
Rex regulon may at least partially account for the NAD+/NADH-dependent phenotypes observed in 
our studies. The centrality of NAD+ regeneration to L. monocytogenes also falls in line with relatively 
recent studies of mammalian respiration. Several studies have shown that the inability of respiration-
deficient mammalian cells to regenerate NAD+ impacts anabolic metabolisms and inhibits growth 
(Birsoy et al., 2015; Li et al., 2020; Sullivan et al., 2015; Titov et al., 2016). Our discovery of a 
similar role of respiration in a bacterial pathogen thus suggests that the importance of respiration for 
NAD+ regeneration is a fundamental property conserved across the kingdoms of life.

Materials and methods
Bacterial culture and strains
All strains of L. monocytogenes used in this study were derived from the wildtype 10403S (streptomycin-
resistant) strain (see Table 1 for references and additional details). The L. lactis water-forming nox 
(NCBI accession WP_010905313.1) was cloned into the pPL2 vector downstream of the constitutive 
Phyper promoter and integrated into the L. monocytogenes genome via conjugation, as previously 
described (Lauer et al., 2002; Shen and Higgins, 2005). The ΔQC/fmnB strain was generated from 
ΔQC and fmnB::tn strains using generalized transduction protocols with phage U153, as previously 
described (Hodgson, 2000; Reniere et al., 2016).

L. monocytogenes cells were grown at 37°C in filter-sterilized BHI media. Growth curves were 
spectrophotometrically measured by optical density at a wavelength of 600 nm (OD600). An anaerobic 
chamber (Coy Laboratory Products) with an environment of 2% H2 balanced in N2 was used for anaer-
obic experiments. Media was supplemented with 50 mM ferric ammonium citrate or 50 mM fumarate 
for experiments that addressed the effect of electron acceptors on L. monocytogenes growth.

Plaque assays
L. monocytogenes strains were grown overnight slanted at 30°C and were diluted in sterile phosphate-
buffered saline (PBS). Six-well plates containing 1.2 × 106 mouse L2 fibroblast cells per well were 
infected with the L. monocytogenes strains at a multiplicity of infection (MOI) of approximately 0.1. At 
1-hour post-infection, the L2 cells were washed with PBS and overlaid with Dulbecco’s Modified Eagle 
Medium (DMEM) containing 0.7% agarose and gentamicin (10 µg/mL) to kill extracellular bacteria, 
and then plates were incubated at 37°C with 5% CO2. At 72-hour post-infection, L2 cells were overlaid 
with a staining mixture containing DMEM, 0.7% agarose, neutral red (Sigma), and gentamicin (10 µg/
mL), and plaques were scanned and analyzed using ImageJ, as previously described (Reniere et al., 
2016; Sun et al., 1990).

Intracellular macrophage growth curves
L. monocytogenes strains were grown overnight slanted at 30°C and were diluted in sterile PBS. A 
total of 3 × 106 BMMs from C57BL/6 mice were seeded in 60 mm non-TC treated dishes containing 14 
12 mm glass coverslips in each dish and infected at an MOI of 0.25 as previously described (Portnoy 
et al., 1988; Reniere et al., 2016).

Mouse virulence experiments
L. monocytogenes strains were grown at 37°C with shaking at 200 r.p.m. to mid-logarithmic phase. 
Bacteria were collected and washed in PBS and resuspended at a concentration of 5 × 105 colony-
forming units (CFU) per 200 μL of sterile PBS. The 8-week-old female CD-1 mice (Charles River) were 
then injected with 1 × 105 CFU via the tail vein. At 48 hours post-infection, spleens and livers were 
collected, homogenized, and plated to determine the number of CFU per organ.

NAD+/NADH assay
L. monocytogenes strains were grown at 37°C with shaking at 200 r.p.m. to mid-logarithmic phase. 
Cultures were centrifuged and then resuspended in PBS. Resuspended bacteria were then lysed by 

https://doi.org/10.7554/eLife.75424
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vortexing with 0.1-mm-diameter zirconia–silica beads for 10 min. Lysates were used to measure NAD+ 
and NADH levels using the NAD/NADH-Glo assay (Promega, G9071) by following the manufacturer’s 
protocol.

Fermentation product measurements
Organic acids and ethanol were measured by high-performance liquid chromatography (Agilent, 
1260 Infinity), using a standard analytical system (Shimadzu, Kyoto, Japan) equipped with an Aminex 
Organic Acid Analysis column (Bio-Rad, HPX-87H 300 × 7.8 mm) heated at 60°C. The eluent was 
5 mM of sulfuric acid, used at a flow rate of 0.6 mL/min. We used a refractive index detector 1260 
Infinity II RID and a 1260 Infinity II variable wavelength detector. A five-point calibration curve based 
on peak area was generated and used to calculate concentrations in the unknown samples.

Motility assay
L. monocytogenes strains were grown overnight slanted at 30°C and were diluted in sterile PBS. 
Cultures were normalized to an OD600 of 1.0 and 1 μL of cultures were inoculated on semisolid BHI 
0.3% agar. Mutant swarming diameters relative to wildtype were quantified following 48 hours incu-
bation at 30°C.

Intracellular bacteriolysis assay
Bacteriolysis assays were performed as previously described (Chen et al., 2017). Briefly, immortalized 
Ifnar-/- macrophages were plated at a concentration of 5 × 105 cells per well in a 24-well plate. Cultures 
of L. monocytogenes strains were grown overnight slanted at 30°C and diluted to a final concentration 
of 5 × 108 CFU per mL. Diluted cultures were then used to infect macrophages at an MOI of 10. At 
1-hour post-infection, wells were aspirated, and the media was replaced with media containing 50 μg/
mL gentamicin. At 6 hours post-infection, media was aspirated, and macrophages were lysed using 
TNT lysis buffer (20  mM Tris, 200  mM NaCl, 1% Triton [pH 8.0]). Lysate was then transferred to 96-well 
plates and assayed for luciferase activity by luminometry (Synergy HT; BioTek, Winooski, VT).
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