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Abstract

Constraint-based models enable the computation of feasible, optimal, and realized biological 

phenotypes from reaction network reconstructions and constraints on their operation. To date, 

stoichiometric reconstructions have largely focused on metabolism, resulting in genome-scale 

metabolic models (M-Models). Recent expansions in network content to encompass proteome 

synthesis have resulted in models of metabolism and protein expression (ME-Models). ME-

Models advance the predictions possible with constraint-based models from network flux states to 

the spatially resolved molecular composition of a cell. Specifically, ME-Models enable the 

prediction of transcriptome and proteome allocation and limitations, and basal expression states 

and regulatory needs. Continued expansion in reconstruction content and constraints will result in 

an increasingly refined representation of cellular composition and behavior.
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Introduction

Building computational whole cell models has been a long-standing goal of theoretical 

biology. In the 1980s, serious attempts to build large-scale models of a whole bacterium 

were undertaken [1]. A few years later, an attempt to build whole cell models for the human 

red cell represented a culmination of decades of work [2–6]. Perhaps the most 

comprehensive whole organism model appeared in the mid 1990s for the lambda-

bacteriophage [7,8]. Time scale decomposition of these early models showed that their 

effective dynamic order was low [9] and that their dynamic structure was relatively 
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condition invariant [10], motivating the development of constraint-based models that 

minimized the need for kinetic information [11].

After the first full genome sequences appeared, constraint-based models could be scaled up 

to the genome-scale [12]. As the first genome-scale models (GEMs) proved their ability to 

predict biological functions [12,13], a vision was laid out in 2003 [14] that all cellular 

functions could be reconstructed in biochemical terms and seamlessly integrated. A decade 

later, some of this vision has been realized [15–19]. With these achievements, we can now 

assess what might be ahead with genome-scale models over the coming decade. We lay out 

some of our thoughts in this commentary.

The expanding scope of reconstructions: synthesis and function of the 

proteome

To date, stoichiometric reconstructions have largely focused on metabolism, resulting in 

genome-scale metabolic models, M-Models. The processes of enzyme synthesis including 

transcription, translation, protein folding, complex formation, and prosthetic group 

integration were formalized in a gene expression reconstruction [20]. Protein translocation 

and localization pathways [18,21] and DNA replication, repair, and cell division have also 

been reconstructed [19]. These networks have been merged with metabolic reconstructions 

to create integrated reaction networks [15–19] that formalize the primary chemical 

transformations that occur in cell (Figure 1A). Models integrating metabolism with protein 

expression are called ME-models.

To enable prediction of biological phenotypes, stoichiometric reconstructions are combined 

with constraints on their operation. Stoichiometric networks are subject to (dynamic or 

steady-state) mass balance constraints on the production and consumption of molecules. For 

ME-Models, enzyme catalytic constraints are also necessary. In contrast to the typical use of 

kinetic equations to simulate system dynamics, the catalytic constraints in ME-Models are 

approximate stoichiometric relationships between enzyme abundance and catalyzed flux 

(Figure 1B). Adding these catalytic ‘coupling’ constraints [20] enables the computation of 

feasible and optimal proteome and transcriptome states.

Most models encompassing gene expression have used measured expression states as a 

prerequisite for simulations. Often, gene expression measured under a particular condition is 

used to predict other molecular and physiological phenotypes [19,22]. Alternatively, some 

approaches utilize gene expression data under environmental or genetic perturbations to 

build regulatory models [23]. These two approaches can be combined to predict molecular 

and physiological phenotypes subject to a transcriptional regulatory model [24,25]. These 

are undoubtedly invaluable types of models and predictions; similar methods will likely be 

applied to ME-Models (Figure 1C).

ME-Models can predict gene expression with no previous input expression measurements: 

they can compute protein abundances that are required to (optimally) achieve integrated 

physiological functions (Figure 1C). Enzymes have an optimal expression level subject to 

their (biosynthetic) cost and (physiological) benefit [26]. The ME-Model solves this cost-

O’Brien and Palsson Page 2

Curr Opin Biotechnol. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



benefit optimization to compute genome-scale proteome states. Thus, compared to other 

methods for prediction and analysis of gene expression, predictions of gene expression in 

the ME-Model are based on fundamental constraints and optimality principles (as are the 

predictions of flux states in M-Models). ME-models can therefore be used to predict optimal 

expression and regulatory states.

Prediction of the molecular composition of a cell

An important distinction between M- and ME-Models is the prediction of cellular biomass 

composition. Instead of having protein and RNA biomass composition as an input (in the 

form of a biomass objective function [27]), biomass composition is an output that is 

predicted by ME-models. The expressed molecular machinery, such as the proteome, must 

support the integrated physiological functions of the cell. Rather than processes being 

coupled stoichiometrically through the biomass function, demands for vitamins and 

cofactors, chaperones, amino acids, nucleotides, tRNAs, etc. are derived directly from the 

computed proteome state.

Furthermore, a recent expansion of the ME-Model to include protein translocation enables 

predictions of a cell’s coarse-grained spatial organization [18]. Protein complexes are 

localized in cellular compartments required for enzyme function. With this expansion in 

scope, aspects of compartmentalized proteome abundance and molecular crowding can be 

assessed [18].

Thus, ME-Models advance the predictions possible with constraint-based models from 

network flux states to the spatially resolved molecular composition of a cell (Figure 2A).

Phenotypic effects of proteome allocation constraints

In addition to satisfying flux balance constraints, ME-Models are subject to proteome 

allocation constraints. While M-Models account for the ‘operating expenses’ (i.e., metabolic 

requirements) to carry flux through pathways, ME-Models also account for the ‘capital 

expenses’ (i.e., enzyme machinery) needed to catalyze all network reactions. Therefore, in 

addition to cellular functions being limited by nutrients, they can also be limited by 

properties of the proteome (i.e., due to limited protein synthesis capacity and enzyme 

catalytic rates). Proteome allocation constraints govern integrated cell functions and, 

combined with growth-optimality assumptions, can explain several aspects of cell behavior 

not encompassed by previous models (Figure 2B).

First, the change in ribosomal protein abundance can be explained by growth-optimization 

subject to proteome allocation constraints [15,17,20,28,29]. At faster growth rates, more 

ribosomes are required to sustain the faster dilution of protein to daughter cells. Previous 

models have taken this growth rate dependent relationship as an observed (and subsequently 

assumed and fixed) phenomenological relationship [30], rather than a prediction.

Second, specific pathway shifts in central carbon metabolism from carbon-limited to carbon-

excess environments (i.e., batch culture or non-carbon limitations), can be explained as a 

consequence of proteome allocation constraints. Specific pathway shifts from carbon-limited 
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to proteome-limited growth are consistent with pathway shifts observed between chemostat 

and batch cultures [17]. Whereas previous approaches required the invocation of multiple 

competing objectives [31], now a single objective of maximal growth rate subject to 

proteome allocation constraints can explain the same phenomenon.

Third, the constraints limiting absolute growth rates and substrate uptake rates have 

remained elusive. Proteome-limitations in the ME-Model result in a maximal growth rate 

and optimal substrate uptake rate that is consistent with experimental data when nutrients are 

available in excess [17]. The limitations placed on substrate uptake by the proteome 

significantly expand the scope of environments that can be simulated with constraint-based 

models to include nutrient-excess and complex media conditions.

Fourth, spatial limitations on the membrane proteome further refine predictions of pathway 

shifts and substrate uptake rates in nutrient-excess environments [18]. Limitations on protein 

synthesis and protein space result in similar phenotypic responses, but have some 

differences in enzyme utilization; membrane proteomics data and experimental evolution 

can help to illuminate which constraints are dominant.

The phenotypic effects of proteome allocation constraints are just beginning to be uncovered 

and will likely change our conception of optimal behavior and pathway use [32].

Gene expression states and molecular phenotypes can now be computed

The prediction of proteome composition is an ambitious endeavor. To date, a few 

predictions of absolute gene expression have been validated. The ME-Model accurately 

predicts ribosomal [15,17] and translocase [18] protein abundances, which have well-known 

catalytic rates. In general, however, catalytic rates of specific enzymes in vivo are not 

known. Nonetheless, the relatively accurate prediction of overall proteome abundance of 

different cellular compartments and functional subsystems is possible [18]. Furthermore, 

genome-scale predicted and measured mRNA abundance correlate significantly [15]. These 

early predictions provide support for the genome-scale prediction of absolute gene 

expression from evolutionary optimality principles (Figure 2B).

As with false predictions from M-Models [33], discrepancies between predicted and 

observed expression levels have led to discovery (Figure 3A). First, the quantitative 

difference between predicted and measured gross RNA and protein biomass composition has 

led to the realization that translation rate is a hyperbolic function of growth rate [17], which 

has been independently validated [34]. Second, comparing predicted and measured 

abundance of functional subsystems identified the processes of protein folding and metal ion 

and prosthetic group integration as under-predicted [18]. These under-predictions are 

consistent with known knowledge gaps of chaperone targets [35] and metal ion usage by 

proteins [36] and prioritizes these processes for further reconstruction.

Given the discordance between measured RNA and protein abundances [37], the moderate 

correlation between genome-scale predicted and measured gene product abundance is 

unsurprising. The factors contributing to the discrepancy between RNA and protein 

abundances are beginning to be uncovered [38,39], aided by diverse data types on the 

O’Brien and Palsson Page 4

Curr Opin Biotechnol. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



various steps of gene expression, including promoter activity [40,41], RNA abundance, 

RNA degradation rates, ribosome occupancy [42], and protein abundance [43]. These data 

types and gene-specific rates on the steps of gene expression can readily be integrated into 

ME-Models. Parameterizing the steps of gene expression with these data types, biophysical 

models [44,45] or synthetic ‘parts characterization’ [46–49] will help understand the gap 

between RNA and protein abundance as well as in silico and in vivo gene expression levels.

Precise prediction of protein abundance is also limited by knowledge of enzyme catalytic 

rates. However, even though data on individual enzyme rates is noisy and sparse [50,51], 

statistics on the distributions of catalytic rates are robust [52], enabling confident 

distributions of expression levels to be computed. Furthermore, model-driven approaches 

can be used to infer catalytic rates that are consistent with in vivo data [53–55]. These efforts 

will iteratively result in more precise predictions of protein expression.

Bottom-up prediction of gene expression will truly test our understanding of the biological 

demand and activity of enzymes. We believe that quantitative proteome levels will not fully 

be understood until we are able to predict them from the bottom-up with GEMs. Given the 

early successful uses of ME-models it seems clear that there is much more discovery that 

lies ahead. Just as the community has become accustomed to flux balances, and thus the uses 

of metabolic networks, ME-models are likely to help us understand how the composition of 

the proteome is optimally balanced.

Defining and understanding regulatory needs

Prediction of regulatory needs during shifts in homeostatic states is another important 

challenge for ME-Models. Differential expression data is more abundantly available than 

absolute expression data, and will aide in ME-Model validation and model-driven discovery. 

We anticipate that this comparison and, more generally, a physiological needs perspective 

on gene expression will help reveal the principles underlying transcriptional regulation.

Recent examples of bottom-up prediction of differential expression include the use of an M-

Model to predict transcriptional changes after redox shifts [56] and the use of a ME-Model 

to predict differential expression after a shift in carbon sources [15]. Furthermore, the 

principle of simplest pathway structure can predict gene co-expression and transcriptional 

regulatory relationships [57]. These examples provide evidence that transcriptional 

regulation is somewhat predictable based on optimality principles.

There are various reasons as to why transcriptional regulation may seem non-optimal [58]. 

First, there could be errors in the reaction network reconstruction, which can be rectified by 

systematic comparison of computational predictions and experimental data [33]. Second, 

discrepancies could be due to constraints or optimality principles that are not yet modeled or 

understood (such as proteome constraints added in moving from M- to ME-Models). Third, 

the environmental history of the organism may have coupled seemingly unrelated biological 

processes [59], or be optimized for fluctuating rather than static environments [60–63]. 

Finally, it is likely that transcriptional regulation is ‘moderately efficient’ rather than 

perfectly optimal. Enumerating and classifying these discrepancies can drive biological 

discovery as has occurred through classifying the false predictions of gene essentiality 
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[33,64]. Identified discrepancies can provide insight into organismal physiology and 

prioritize the development of explicit transcriptional regulatory models.

Parallel to the prediction of transcriptional regulation with constraint-based models, a 

physiological perspective has revealed striking simplicity and optimality in transcriptional 

regulation [56,65]. In several studies, the mass fractions of large protein subsystems and the 

activity of transcription factors have been shown to change linearly with growth rate or 

specific metabolic fluxes [66–69]. Furthermore, linear models covering several genes have 

been shown to capture the variation in their expression with relative accuracy [41,70]. The 

simplicity of these regulatory relationships (despite the complex topology and biophysical 

relationships [71] underlying regulatory networks) provides promise for accurate genome-

scale regulatory models. However, the cross-talk and competition between transcription 

factors is still not generally understood; in the meantime, top-down approaches [23] may be 

necessary to capture the essence of these more complex relationships.

Importantly, the explicit representation of transcription in the ME-Model allows for the 

molecular details of transcription factor targets to be combined with the physiological 

principles underlying transcription factor activity. This will enable new approaches to model 

transcriptional regulation that move beyond binary representations of transcription factor 

activity [25]. Regulatory model development can be prioritized by the physiological 

importance of regulatory shifts and failure modes identified through comparison of predicted 

and measured differential expression.

Though we have focused on transcriptional regulation here, optimality and physiological 

principles will likely apply to translational (e.g., by sRNAs) and post-translational regulation 

(e.g., by post-translational modifications and allosteric interactions) as well. These 

regulatory networks have received less attention, partially due to the difficulty in identifying 

the underlying interactions networks (compared to transcriptional regulatory networks [72]). 

However, new computational [73,74] and experimental [45,75] methods are emerging, and 

optimality principles are being uncovered [76,77] to elucidate these regulatory networks. 

Like transcriptional regulation, we anticipate that the explicit representation of enzyme 

abundance and activity in ME-Models will aid in the genome-scale modeling of post-

transcriptional regulation.

Seeking a comprehensive biophysical representation of cellular 

composition

The conceptual change in GEMs to enable the prediction of proteome abundance, 

localization, and limitations affords numerous opportunities for model application and 

expansion. The E. coli ME-Model currently encompasses ~80% of the proteome and 

transcriptome by mass in environments of exponential growth [17]; this equates to ~60% of 

the cell’s entire mass. While the requirements for biosynthesis of a whole cell are 

encompassed by the model, not all molecular abundances are predicted; gaps include: 1) the 

non-ME proteome, 2) the cell envelope, 3) metabolite concentrations, 4) DNA replication 

and gene copy number, and 5) glycogen. We briefly cover factors that may enable prediction 

of these molecular abundances deemed most important (Figure 3B).

O’Brien and Palsson Page 6

Curr Opin Biotechnol. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Metabolite concentrations are beginning to be predicted with genome-scale models using 

thermodynamic considerations. By extending a method to ensure metabolic fluxes are 

thermodynamically feasible [78], thermodynamic constraints were used to predict steady-

state metabolite concentrations that are consistent with a given flux state [79]. Later, an 

objective to minimize metabolite concentrations over the thermodynamically feasible space 

was shown to increase prediction accuracy [80]. Additional constraints on osmolarity, 

metabolite toxicity, and correlations observed between metabolite concentrations and their 

enzyme affinities [81] and chemical properties [82] may improve predictions further. Then, 

the effects of these concentrations on enzyme and transcription factor activity may be 

accounted for in future genome-scale models.

A first requirement for the prediction of cell envelope composition is the prediction of cell 

size and shape, which determines the surface area of the cell that must be covered. The 

consistent growth rate dependence of cell size [83] suggests that simple principles may 

underlie the determination of cell size (for example, the balance between cytosolic and 

membrane proteome abundance [84]). However, the constraints underlying the exact 

composition of membrane lipid, glycans, LPS, and murein (together accounting for 15% of 

cell dry weight) are not well understood. Perhaps data on cell envelope composition will 

aide in understanding when and how it varies across environments and strains (an important 

characteristic of particular E. coli serotypes).

Expanding the proteome coverage to the remaining 20% of the proteome not encompassed 

by the ME-Model will require expansion of reconstruction content. Proteome abundance can 

be used to prioritize model expansion [85]. Many of these non-ME proteins can be broadly 

categorized as non-growth and stress response genes (e.g., biofilm and flagella formation 

and pH, osmolarity, and temperature responses). Therefore, modeling of stress responses is 

important to increase the coverage of the proteome and environments that can be simulated. 

Importantly, the ME-Model already accounts for the biosynthetic costs of synthesizing stress 

response proteins; however, the constraints imposed by environmental stresses will be 

needed to understand the protein’s physiological benefit.

Protein structures will aide in formalizing the constraints on the proteome. Genome-scale 

models integrated with protein structures (GEM-PRO) enable simulation of the effects of 

temperature: structure-based predictions of protein thermostability and the subsequent 

limitations on metabolic fluxes result in accurate predictions of growth and nutrient 

supplementations at high temperatures [86]. As other cellular stresses (e.g., pH) also affect 

protein catalytic capacity, protein structures may enable the simulation of other 

physiochemical stresses as well. Protein structures combined with ME-Models will also 

approach a more detailed biophysical representation of a cell. Spatial resolution can be 

refined further with protein-protein interaction data [87] (or prediction of protein-protein 

interactions with protein structures themselves [88]). Spatial considerations may be 

important for understanding co-localization of sequential catalytic steps [89,90] and the 

effects of molecular crowding [91,92] in the cytosol and membranes.
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Conclusion

Building whole cell computational models has been a long-standing goal. Genome-scale 

metabolic models, M-Models, have become widely used due to the numerous actionable 

predictions they can make [93], and the ease of draft model construction from readily 

available genome sequences and annotations [94]. Here we reviewed recent advancements 

expanding the scope of whole cell computational models to encompass the synthesis and 

localization of the proteome. The constraint-based philosophy underlying ME-Models 

parallels that of M-Models. However, the expanded scope of components and constraints 

enables the prediction of enzyme abundance and activity. Already, ME-Models have 

revealed how constraints on proteome allocation explain aspects of cell behavior that have 

remained elusive or require invocation of phenomenological relationships. Furthermore, 

several cases demonstrate that ME-Models enable accurate prediction of protein abundance 

and differential expression. As the basic capabilities of M-Models to predict flux states have 

led to numerous applications, future work will capitalize on the new capabilities of GEMs to 

compute proteome allocation and limitations. Optimality-based predictions will no doubt be 

imperfect, but they form a strong conceptual base to drive biological discovery, 

bioengineering, and further model development.
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• Models of metabolism and gene expression (ME-Models) now exist for model 

organisms.

• ME-Models account for ~80% of the proteome mass.

• ME-Models enable prediction of proteome allocation and limitations.

• ME-Models enable prediction of basal expression states and regulatory needs.

• Increased scope and resolution will be achieved with further model expansion.
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Figure 1. The expanding scope of reconstructions: synthesis and function of the proteome
A) Stoichiometric reconstructions represent the chemical transformations that can occur in a 

cell and form the base of whole cell models. Recent reconstructions represent all of the 

major steps in the central dogma of molecular biology in biochemical detail [15–19].

B) Constraints on network operation are utilized to predict functional states. For 

reconstructions that encompass enzyme synthesis and function, catalytic constraints are 

necessary [15,20]. Catalytic constraints relate enzyme abundance to its dilution (to daughter 

cells), degradation, and catalyzed flux with kinetic and/or thermodynamic relationships.

C) Several general approaches exist to predict and model gene expression. Mechanistic/

biophysical approaches first start from bottom-up reconstructions of transcription factor 
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interactions and promoter architectures [56], aided by high-throughput data types [95]; 

models of regulatory logic can then be reconstructed and imposed [71,96]. Constraint-based 

models are built from reconstructions of biochemical networks and constraints on their 

operation and can then be used to compute feasible and optimal physiological states [15–

18]. Importantly, the constraint-based approach enables prediction of gene expression states 

without any previous gene expression measurements. Inferential/statistical approaches are 

based on large gene expression datasets across environmental and genetic perturbations to 

identify co-regulated gene sets and their expression under novel perturbations. These general 

approaches can also be combined into hybrid models [24,25]. Finally, we distinguish 

approaches that predict gene expression from those that use gene expression data from a 

particular state to predict other phenotypes [19,22]—another important capability of 

genome-scale models.
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Figure 2. Prediction of spatially resolved proteome allocation and limitations
A) The expanded scope of reconstruction content advances the predictions possible with 

constraint-based models from network flux states (with M-Models) to the spatially resolved 

molecular composition of a cell (with ME-Models).

B) ME-Models predict the gross macromolecular composition of the cell and the detailed 

allocation of the proteome. Additionally, the effects of proteome limitations can be 

accounted for, including the prediction of optimal substrate uptake rates and specific 

pathway shifts from carbon-limited to carbon-excess environments.

O’Brien and Palsson Page 17

Curr Opin Biotechnol. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Iterative model validation and biological discovery enabled by expanded scope
A) The prediction of basal gene expression states and regulatory needs upon environmental 

shifts enables comparisons to gene expression datasets. Like M-Model predictions of gene 

essentiality [64] and metabolic flux [97], comparison of in silico and in vivo gene expression 

states will enable model validation and biological discovery.

B) To increase the scope and resolution of predicted cellular composition and organization, 

there are several prioritized areas for model expansion. These include metabolite 
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concentrations, the non-ME proteome, cell envelope composition, and the spatial 

organization and physiochemical constraints on the proteome (aided by protein structures).
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