
UC San Diego
Technical Reports

Title
Dynamic Web Stream Customizers

Permalink
https://escholarship.org/uc/item/4900m7r7

Authors
Steinberg, Jesse
Pasquale, Joseph

Publication Date
2001-12-14

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4900m7r7
https://escholarship.org
http://www.cdlib.org/

 1

Abstract— We present an architecture for Web Stream

Customization (WSC) which allows users to customize their view

of the Web for optimal interaction and system operation when

using non-traditional client machines such as wireless palmtops.

Our Web stream customizers are dynamically deployable and can

be strategically located to achieve improvements in performance,

reliability, or security. Customizers provide two points of control

in the communication path between client and server, supporting

adaptive system-based and content-based customization. Our

architecture exploits HTTP's proxy capabilities, allowing

Customizers to be seamlessly integrated with the basic Web

transaction model. We describe the WSC architecture and its

implementation, and illustrate its use with three non-trivial,

adaptive Customizer applications that we have built. Our

performance evaluation of the system shows that the overhead

introduced is small and tolerable, and is outweighed by the

benefits that Customizers provide.

Keywords: HTTP, Middleware, Proxy, Wireless, Mobile Code

I. INTRODUCTION

To a large degree, the Web has developed on an Internet

infrastructure consisting of increasingly higher-bandwidth,

lower-error-rate network links. The protocols and models of

user-interaction, which work well under such conditions, are

often not adequate for many of today’s new wireless Internet

personal devices. We must now take greater account of

problems such as intermittent and lower-bandwidth

connectivity, smaller displays, stylus-based input mechanisms,

power restrictions, and limited memory.

In addition to the changing landscape of user devices, the

increased popularity of using the Internet for a variety of tasks

introduces challenges regarding privacy and convenience.

Although sites that require credit card numbers typically use

secure connections, there are still many insecure sites that

require registration that includes personal information such as

a mailing address, phone number, or e-mail address. And

regarding lack of convenience, Web users often find

themselves deluged with unwanted data such as

advertisements, which slow down the transfer of legitimate

information.

Users would indeed like to be able to customize their view

of the Web, including removing data they are not interested in

downloading, filtering images to smaller representations, and

displaying Web pages in an easy-to-surf format. To limit

bandwidth usage over a wireless link (which generally has

lower bandwidth and reliability, and less security due to the

ease of eavesdropping, than wired portions of the Internet),

content should be compressed and possibly encrypted at some

point before the wireless link and then decompressed and

Department of Computer Science and Engineering

University Of California, San Diego

Jesse Steinberg and Joseph Pasquale

Dynamic Web Stream Customizers

 2

decrypted at the client. Provisions should also be made for

helping users deal with disruption of important transactions

and masking short-term intermittent disconnections.

Furthermore, these types of customization should be able to

dynamically adapt to changes in system conditions or to user

behavior. For example, if network throughput is relatively

high, compression may not be beneficial if it takes too much

time for a low-powered device to perform the decompression.

However, as available throughput decreases, the performance

gain of compressing data prior to transferring it over a slow

link begins to outweigh this drawback.

There are many types of Web customization possible, and it

is useful to broadly characterize them. We define two such

categories, system-based and content-based, which cover a

wide range of possible customizations that lead to

improvements in performance, reliability and security of the

Web. By system-based, we mean customizations that mostly

rely on (and exploit) characteristics of the underlying system,

including hardware or software aspects of the client, the

server, and the intervening network connections. This

includes static resources and their characteristics, such as the

client's display size and memory, and dynamic resources such

as available network throughput, and connectivity. By content-

based, we mean customizations based on the actual content of

what is being communicated. Examples include advertisement

filtering and selective encryption of embedded private

information.

 In this paper, we present a new system for Web

customization based on the concept of Web Stream

Customizers (WSC), or simply Customizers, and we illustrate

their use via a set of applications that we have built and found

useful. Customizers are distributed web customization

software modules that are dynamically deployed and used by

clients during a Web session (although servers and even third

parties can deploy and use them). Customizers are seamlessly

integrated with the basic Web transaction model, simplifying

their programming and operation. This is because the WSC

system exploits the Web's proxy capabilities, and makes use of

standard code mobility mechanisms (with Java as the language

of choice given its portability). Thus, importantly, Customizers

will work with standard browsers and Web servers, without

requiring any modifications to them.

A key feature of the WSC architecture is that it supports

cooperative customization at two points along the path

between client and server. Many types of customizations, both

system-based and content-based, require such cooperation and

distribution of functionality. For example, data compression

(e.g., to reduce bandwidth requirements, and perhaps latency)

requires that compressing be done before the data crosses any

relatively low-bandwidth links, and that decompressing be

done afterwards.

Another key point is that customizers provide client-specific

customization of server content, effectively adapting the Web

to new and different sorts of clients. This even includes the

ability to dynamically and easily deploy client-specific (or

application-specific) protocols, such as to deal with

problematic network connections. The ability to deploy such

protocols relies on the two-point distributed operation.

 3

An alternative approach to adapting the Web is to introduce

a new system of protocols and document types to address

specific problems, as typified by the Wireless Access Protocol

(WAP) for Internet access by wireless clients. The problem

with such approaches is that they require changes to actual

Web servers; those that do not will be effectively inaccessible.

Considering the vast amount of legacy content in existence

today, a more flexible and universal way of enhancing the Web

experience when accessing arbitrary services, working within

existing Web and Internet structures, is needed.

The more traditional approach to adaptability that does not

depend on Web servers to cater to client-specific needs has

been to use fixed proxy servers, which are indeed supported by

the HTTP standard. Web proxies act as intermediaries

between clients and servers by intercepting client requests and

forwarding them to servers, eventually returning the server

response to the client. All the popular Web browsers have a

setting that allows the user to specify a proxy to be used for all

requests. Proxies have been used for HTML filtering, user

interface improvements especially for small screens, remote

caching, and support for disconnected operation and user-

selected background retrieval [4,8,5,6,13]. Although they are

beneficial, traditional proxies are statically located and often

too limited to provide the wide range of customization that can

benefit users, such as those requiring cooperation at both ends

of a communication link (or a string of them), and even

moreso if they are to act on a per-request or per-server basis.

Other approaches include combining proxies with mobile

code, or using generalized mobile code systems to customize

the Web [25,18,21,11,9,17,20]. Our work differs in a number

of ways. First, we have focused on a customization system

designed specifically for the Web, allowing us to make a

number of simplifying assumptions regarding the

programming model, the user model, and the system design

and implementation. Second, we use a very restricted form of

mobile code, rather than providing a generalized mobile code

solution which, while more powerful, is less practical and is

more complex in terms of usability and security.

Other unique features of our system include the dynamic

selection of one of multiple, simultaneously active,

Customizers, based on which server is providing the content.

As mentioned above, our Customizers have two components;

one is statically located either on or close to the client, and the

other is dynamically located at a convenient point between the

client and server (typically near the server). Finally, we use a

simple, callback-based programming model, and support user-

controlled deployment, including the strategic placement of the

remote component, through a simple Web interface. We will

elaborate on all these issues in this paper.

 The remainder of this paper is organized as follows:

In Section II we provide an overview of the WSC architecture.

The implementation details are described in Section III. In

Section IV we illustrate some example Customizer

Applications. In Section V we analyze the performance of

Customizers. Section VI details related work, and in Section

VII we present our conclusions.

 4

II. THE WSC ARCHITECTURE

There are three primary goals that drive our design of the

WSC architecture:

• Flexibility: The location of where the remote

customization is carried out, and the type of customization

being done, can all be determined dynamically.

• Ease of deployment: The system does not require

changes to the client's Web browser or any Web servers,

and works within the current Web transaction model using

HTTP and existing mobile code mechanisms.

• User simplicity: The interface allows the user to install,

invoke and configure Customizers via a standard Web

browser using the basic "Web surfing" model of

interaction.

The WSC architecture enables Web customization without

modifying the browser client or any Web servers by

introducing Customizers that operate between them. When a

client generates a Web request, that request is transparently

routed to a specific Customizer, selected based on the URL of

the request. The Customizer then has the opportunity to

modify the request if it so chooses, and then forwards it to the

Web server as indicated by the URL. The response from the

Web server is then routed back to the Customizer, which has

the opportunity to modify it before passing it back to the

client. As one can see, conceptually, the idea is very simple.

The client sees a Customizer as a proxy, which is then viewed

by the Web server as a client. While this simplified view is

shared by other approaches to customization, our system

deviates in the details that now follow.

Actually, a Customizer is comprised of two components: a

local component (LC) and a remote component (RC). The LC

runs on a Local Customizer Server (LC-Server), and the RC

runs on a Remote Customizer Server (RC-Server), as shown in

Figure 1. Thus, when a Customizer is being used, the request

passes from the client to the LC, then to the RC, and then to

the server (and vice-versa for responses in the opposite

direction, from server to RC to LC to client). Examples of

how an LC and RC cooperate will be given throughout this

paper.

Fig. 1. Local and Remote Components of a Customizer

Running on Local and RC-Servers

Why separate a Customizer into two components? The LC

and RC have distinct roles. The LC acts primarily as an

extension of the browser (given that the browser code itself

cannot be modified). The LC runs on an LC-Server, which

tends to be located on or near the client Web device. Given its

close coupling with the client, the LC is generally responsible

for tasks that require knowledge of resource availability and

system conditions at or near the client, which may then be

communicated to the RC (e.g., to improve performance, such

as relaying local system or network performance status). In

addition, the LC will also reverse data transformations done by

 5

the RC, such as compression/decompression or

encryption/decryption.

The RC generally performs location-dependent tasks that

benefit from being near the server (or simply away from the

client), such as compressing response data from a server

before it is transmitted over a low-bandwidth link on the

communication path to the client. The RC runs on an RC-

Server, which tends to be located near, or even on, a Web

server of particular interest.

There will generally be many Customizers, each one being a

separate (LC, RC) pair, simultaneously active on behalf of a

single client. All of the LCs (for that client) will run on a

single LC-Server; since all the LCs originated from that client,

they will all run on that LC-Server. This is in contrast to the

RCs, which will be generally running on different RC-Servers,

as shown in Figure 2.

 Fig. 2. An Example of Using Multiple Customizers

Let us elaborate on the services provided by LC-Servers and

RC-Servers. The LC-Server effectively extends the client

machine by hosting LCs for the browser running on that

machine. It appears to the browser as a Web proxy server.

The browser needs only to have its proxy server settings

configured to point to the LC-Server.

For a particular session of Web browsing, the same LC-

Server is always used. This is to avoid having to frequently

modify the browser's proxy settings in order for it to interface

with the many Customizers that may be active. While the LC-

Server location is static (per session), flexibility is achieved by

allowing multiple RC-Servers to be used during a single

session. A common scenario would be to have a number of

Customizers active at any time, with many RCs running on

various RC-Servers, each with a corresponding LC running on

the LC-Server associated with the client, as shown in Figure 2.

Since there is a single LC-Server per session, in order for

the location of some forms of customization to be chosen

dynamically, the LC-Server must be able to dynamically route

Web requests to different RCs. The LC-Server chooses an RC

on a particular RC-Server based upon the URL of the request.

This will be explained in Section III.

The LC-Server will often be running on the client machine,

co-located with the browser. Running the LC-Server on some

other machine is useful if the client machine is not powerful

enough or is incapable of running the LC-Server process, as

may be the case with a PDA limited to running pre-installed

applications. (Note that even in the case of a limited PDA, we

expect the PDA to be able to at least run a browser capable of

being configured to communicate via a proxy. This is a basic

requirement of our system. It is worth noting that our current

experience with PDAs equipped with browsers, such as the

 6

Compaq iPaq, HP Jornada, and others, is that they all have this

basic capability.)

The role of the RC-Server is to load and run RCs that

benefit from executing at a remote location. An RC-Server can

only be used in conjunction with an LC-Server. As mentioned

above, unlike the LC-Server, a client may be actively using a

number of RC-Servers for handling communication with

different Web servers. Thus, for a single session of Web

browsing, many different RC-Servers may be used for varying

amounts of time. Each of these RC-Servers may have any

number of RCs loaded and running at any time.

 Use of both an LC and RC provides for two points of

control, allowing for flexible distribution of functionality as

determined by the programmer. More generally, the

local/remote combination provides the capability of supporting

custom protocols that optimize transfer over the last one or

more hops, data transformations that need to be reversed such

as compression and encryption, and any other form of

customization that requires both local and remote

functionality, examples of which shall be described in Section

IV.

To summarize these concepts, Figure 3 shows a simple and

common scenario of using a Customizer for data compression.

The figure depicts three machines: a wireless notebook client,

a base station, and a Web server. The user’s client machine is

running a Web browser, and the base station is running an RC-

Server that can control and service one or more RCs on behalf

of the user (and other users). The LC-Server is running on the

client. A Compression RC is running on the RC-Server to

compress responses from Web servers before they are sent

across the wireless link. There is a Decompression LC on the

LC-Server, which cooperates with the Compression RC by

decompressing the compressed Web responses to their original

format so that they can be displayed by the browser. The

Compression RC and the Decompression LC together make up

the single Customizer. The positioning of the Customizer

components in this example allows data to be compressed

before crossing the low-bandwidth wireless link, reducing

download times.

Fig. 3. A Compression Customizer

III. THE WSC IMPLEMENTATION

We chose to implement the WSC architecture in Java

because of the widespread availability (actual or potential) of

Java Virtual Machines, providing a ubiquitous platform to

support Customizers, and because it supports code mobility for

the dynamic loading of LCs from an RC-Server to an LC-

Server (this is an important feature of our implementation

which will be described below). The Customizer Servers are

implemented as Java applications, and the LC and RC are

 7

made up of one or more Java class files packaged into a Java

Archive File (jar). In addition to the architectural goals of

flexibility, ease of deployment, and user simplicity, ease of

programming Customizers was another goal of the

implementation.

A. Customizers and the Server Execution Environment

Both the LC and RC consist of a Java class that implements

a new interface called the Customizer interface, along with any

other Java classes they may use, all packaged into a jar file.

The fundamental method defined by the Customizer interface

is HandleRequest. It is via this method that the Customizer

components actually have the opportunity to view and

customize the Web object that is being requested.

When a Customizer component is loaded, it actually runs as

part of a LC-Server or RC-Server, which we will more

generally refer to as a C-Server. It is the C-Server that invokes

a component’s HandleRequest method to act on a Web

request. We chose this “callback” style of invocation for

numerous reasons, including security, ease of programmability

of Customizers, and ease of deployment and integration with

the Web. Regarding security, we rely on Java language

mechanisms, including support for a security manager object

that provides coarse-grained control over what resources

objects can access. In the WSC architecture, we rely on the

security manager to prevent the ability of a Customizer

component to access resources such as network and disk I/O.

Only the C-Server is allowed to do network or disk I/O.

Hence, to allow for HTTP customization under these strict

restrictions, we adopted the callback style of invocation for the

Customizer component by a C-Server. The callback model is

widely used in Java programming for the Web. For example,

in the Applet model, there are callback methods such as start()

and stop() that are called by the runtime system when the

Applet is started and stopped based on the user entering and

leaving the Web page. The Java event model for handling user

interface events uses listener objects to listen for events by the

user, and methods in the listener object are called when an

event occurs. Callbacks are also used in the Java Servlet

programming model [19].

Using the callback model has the effect that Customizer

components do not need to participate directly in network

communication. Instead, it is the C-Servers that handle all of

the communication, and pass Web request and response data

buffers as parameters to a callback function implemented by

the Customizer components.

B. The LC-Server

The LC-Server effectively links the Web browser to one or

more Customizers, and handles the loading and configuration

of Customizers through a Web interface. Recall that all

requests made by the browser are received and handled by the

LC-Server, which is viewed as a proxy by the browser. The

LC-Server uses this mechanism to intercept the browser's

requests for Web objects, and then to provide the requests to

Customizers (by first handing it to the LC portion, and then

 8

forwarding to the RC-Server hosting the RC portion).

Although many Customizers can be active simultaneously with

the remote components at different locations, the LC-Server is

fixed, so the browser only needs to be configured once. This

also means that the browser's settings do not need to change if

there are changes to the configuration of particular

Customizers being used.

In Section II we described the flow of information when just

one Customizer is active. When multiple Customizers are

active, the LC-Server must have a means of determining which

Customizers should receive which browser requests, and

hence, which RC-Servers will be involved in which requests.

Consequently, each Customizer has associated with it a

Domain of Applicability (DA), which specifies a set of URLs

or host domains (i.e., Web servers), and this is stored at the

LC-Server. When the LC-Server receives an HTTP request

from the browser, it can determine if a particular Customizer

should handle the request by checking whether the URL

associated with the HTTP request is within that Customizer’s

DA; if so, that Customizer is used, and the request is first

given to its LC portion, and then sent to the RC-Server hosting

the corresponding RC portion, as shown in Figure 4. If a URL

is common to the DAs of multiple Customizers, the current

policy is to choose the Customizer that was loaded first. If no

DA contains that URL, the LC-Server sends the request

directly to the Web Server specified by the URL, bypassing all

Customizers.

In addition to helping the LC-Server select a Customizer,

the DA also helps the LC-Server protect a client's privacy

interests. For example, a client may only want a particular

Customizer to know about certain requests. By matching the

DA to the client's requirements, this privacy can be ensured by

rejecting a new Customizer that specifies a conflicting domain.

Furthermore, there is a provision for allowing an LC-Server to

impose a sub domain restriction on the Customizer if the URLs

that the client is willing to show to the Customizer form a

subset within the Customizer's domain. For example, a user

may not want a Customizer to see all of its shopping-related

Web requests, as it might use those for advertising purposes.

The user could provide a list of their favorite shopping sites to

the LC-Server, with instructions not to allow any Customizers

to handle requests to these sites.

Fig. 4. Selecting A Customizer Based on the DA.

C. Installing Customizers

To make using Customizers as simple as possible and

encourage their deployment, we have integrated Customizer

installation and invocation into the already familiar Web

surfing model. In other words, Customizers can be installed

and invoked simply by the user clicking on hyperlinks during

normal browser use.

 9

To illustrate this, suppose a Web Server wishes to make

available to clients a number of Customizers (which were

specially programmed for this Web Server’s content,

providing highly content-specific customizations), with the

remote components running on a nearby RC-Server. As shown

in Figure 5a, the Web Server has a page (in standard HTML)

that contains a list of Customizers. Each listed Customizer is

a hyperlink pointing to a special file called a Customizer

Metafile (CMF), which has a “.cmf” extension. This file

provides the following information about a Customizer that is

used by the LC-Server to load and invoke a Customizer:

• The hostname of the machine running the RC-Server that

will run the RC of the Customizer

• The jar file containing the Java classes implementing the

Customizer’s components

• The name of the RC main class so that it can be loaded

from the jar file

• The name of the LC main class so that it can be sent to the

LC-Server

• Initial configuration parameters for the LC and RC;

• The DA (Domain of Applicability)

• Optionally, a URL for the Customizer’s configuration

page (described below).

Figure 5b shows the process of loading a Customizer by

clicking on a hyperlink to a CMF. In Section II we described

how the Web browser is set up to use an LC-Server as its

proxy, and how this allows all Web requests made by the

browser to go through the LC-Server. If a user clicks on one

of the hyperlinks pointing to a CMF, the LC-Server intercepts

this request, and retrieves the CMF from the Web server.

Once the LC-Server has received the CMF, it can download

the LC, associate the DA specified in the CMF with the

Customizer, and send a message to the browser to inform the

user that the Customizer was loaded. Future Web requests that

are in the Customizer’s DA will be sent to the Customizer by

the LC-Server, as was shown in Figure 4.

Fig. 5. Web-based Customizer Loading.

Note that the motivation for the dynamic downloading of

LCs is that resource-limited, mobile clients can easily use them

on the fly. Prior knowledge of the client’s location is not

required, and a client is does not need to store LCs that are not

being used. The dynamic loading of the LC is similar to the

popular Java Applet model of mobile code. The motivation

for limiting our design to this basic model is to avoid

introducing the additional system complexity and security

 10

liabilities characteristic of more general mobile code

mechanisms [7,24].

At any time, the client can go to a special Customizer

control page made available by the LC-Server. This page has

two major purposes. It can be used to directly control the use

of Customizers, e.g., to turn Customizers on and off, or to

unload them. In addition, the Customizer control page

contains one link for each Customizer which, when clicked,

will retrieve the configuration page for that Customizer. This

page may be a static page simply provided by the Customizer

(and will probably already be cached at the LC-Server), or the

Customizer may actually generate it dynamically (since it can

customize the request for the configuration page). A

Customizer's configuration page allows the user to directly

control parameters that affect the functionality of that

Customizer. For example, an Image Filter Customizer could

provide a configuration page with sliders that allows the user

to control the extent of both reduction of image resolution and

reduction of color-depth.

D. WSC Communication

Figure 6 shows how Web requests and responses are

communicated between the client and server via the LC-Server

and RC-Server for a typical Web request initiated by the Web

browser when a Customizer is active. There are three TCP

connections involved in a single Web transaction when

Customizers are being used.

• Connection 1 is between the Web browser and the LC-

Server.

• Connection 2 is between the LC-Server and the RC-

Server.

• Connection 3 is between the RC-Server and the Web

server.

Each connection is used in the two phases of

communication: the request phase where the request from the

browser is received, and the response phase where the

response from the Web server is sent back to the host that

originated the request. Recall that Customizer components

have the opportunity to participate in the interaction at both the

LC-Server and the RC-Server.

Fig. 6. WSC Communication.

 11

The Web browser opens Connection 1 automatically to

handle a Web request, once it has been set to use the LC-

Server as its proxy. The browser generates an HTTP request

and sends it to the LC-Server. The browser then waits for a

response in the form of the requested Web object from the LC-

Server (just as it would had it sent the request directly to the

Web Server). The LC-Server identifies the target LC and

provides it the opportunity to modify the request. The LC-

Server then opens Connection 2 to the RC-Server. It forwards

the browser's (possibly modified) request to the RC-Server and

then waits for a response back from the RC-Server. The RC-

Server works like the LC-Server: after receiving the request, it

identifies the target RC and provides it the opportunity to

modify the request. Then the RC-Server opens Connection 3

to the Web server specified in the request URL. It forwards

the request to the Web server and then awaits a response. The

Web server receives the request, generates a response, and

passes it back to the RC-Server. The Web Server then closes

Connection 3.

Things work in similar fashion in the return direction. At

the RC-Server, the RC is given an opportunity to customize

the Web Server's response, and similarly for the LC at the LC-

Server. Finally, the LC-Server returns the customized Web

object to the Web browser. The browser can then display the

response to the user. Note that we expect most of the action to

take place in the return direction, as the response, i.e., the

object being returned, is generally what is of interest for

customization.

The details of callback-based invocation of Customizer

components are shown in Figure 7. After the browser request

gets forwarded to the LC-Server, the LC-Server checks the

URL against its list of DA's for Customizers it has loaded. If

the URL matches a DA, the LC-Server buffers the request and

calls the HandleRequest method of the LC for that DA, with

the request buffer as a parameter. By default, for security

reasons, the LC cannot modify the request (which, as discussed

below, is not the case for the response), although it can see the

request and make decisions based on its content. However, a

trusted LC can be given privileges to modify requests. This

model allows the LC-Server, which is part of the standardized

Customizer system code rather than the LC (which includes

arbitrary code as written by Customizer programmers), to

handle all explicit HTTP communication on behalf of the user.

To send the request to the RC-Server, the LC calls a method

provided to it by the LC-Server. This allows the LC-Server to

handle all network I/O. The LC-Server then forwards the

request to the RC-Server. By giving the LC the responsibility

of calling or not calling the method, it has the power to decide

not to forward the request to the RC-Server if it can handle it

itself, e.g., as would be the case for a cache. (This is to be

contrasted to the less optimal alternative control structure

whereby the LC simply returns control to the LC-Server,

which then automatically forwards it to the RC-Server.) The

return value of this method is a buffer containing the response

that comes back from the Web server via the RC-Server.

 12

Fig. 7. The Callback Model

When the RC-Server receives the request from the LC-

Server, it handles the request the same way as the LC-Server

did. The request is buffered, and the handleRequest method of

the RC is called. Again, only a trusted RC can actually modify

the request, and the RC may forward the requests to the Web

Server by calling method provided by the RC-Server or

generate a response on its own without calling the method.

The return value of this method is a buffer containing the

customized response from the Web server, or a response

generated by the RC.

 To handle the response, just like for the request, the

RC-Server actually handles the network I/O, and response

buffers are passed to the RC. The RC-Server provides a

service to the RC for returning the ultimate response to the

LC-Server. Unlike in the forward path, by default the RC may

modify the response before it is returned to the LC-Server.

Once the LC-Server receives the response, it is returned to the

LC, which also has the opportunity to customize it before it is

sent to the Web browser.

Importantly, this basic customization mechanism uses only

HTTP for communication, and is transparent to the browser.

Privileged Customizers can use their own protocols to

customize the request and response freely, while taking

advantage of the services provided by the C-Servers to get the

response from the Web server and pass the requests and

responses along. Once a Customizer is installed, there is no

special or additional interaction required by the user, as

normal use of the Web browser will cause the Customizer to

be invoked.

IV. APPLICATIONS

 We now present examples of three types of

applications with which we have been experimenting: adaptive

compression, transaction reliability, and privacy.

A. Adaptive Compression

Two examples of adaptive compression Customizers are a

General Compressor and an Image Filter. The General

Compressor is an extension of the Compression Customizer

example described in Section II. It performs lossless

compression on types of content that compress well, in order

to reduce the amount of data transferred between the RC-

Server and the LC-Server. This is beneficial when the RC-

Server has a high-bandwidth, reliable connection to the Web

Server, the LC-Server is on the client, and the client is

connected via a a link characterized by low-bandwidth or low-

reliability, as is the case for many types of wireless links.

This is a content-based form of customization because the

RC will perform lossless compression only on content types

amenable to compression such as text documents including

HTML, plain text, postscript, and scripts (such as Javascript).

 13

The RC supports multiple levels of compression so that the

compression/decompression processing time and the reduction

in network transfer time can be balanced. The LC serves two

functions. First, it decompresses anything that has been

compressed by the RC. Secondly, it measures response times

so that it can it can tell the RC what level of compression to

use, if any. Since the LC may be running on a low-powered

client, decompression may be a performance bottleneck if the

network throughput is relatively high. In this case, too much

compression will be detrimental to overall performance.

Hence, by keeping track of the changes in network

performance, the LC can adapt the compression to the current

conditions.

Fig. 8. The Compression Customizer

In our current implementation, the LC communicates

customization parameters to the RC by adding unique HTTP

headers to requests. This prevents any changes being made to

the HTTP communication model supported by the WSC

architecture. For example, when sending a document request

to the RC, a header is added that specifies the desired

compression level. All Customizer-specific communication

described in this and other examples follow this procedure.

Figure 8 shows the functioning of the General Compressor.

For the sake of simplicity, C-Servers are not shown and

communication is depicted logically between the LC and RC.

 The Image Filter does adaptive lossy compression to

improve performance by reducing image data. It is especially

useful for wireless clients with low-bandwidth connections and

small displays that cannot display large images with many

colors. In this case, the RC should be running at a host with a

reliable Internet connection that has sufficiently high

bandwidth.

 The RC handles the actual filtering. It provides three

functions, all of which reduce the amount of data to be

transferred from the RC to the LC:

• Scaling down the image size, based on a parameter

specifying the maximum number of pixels (aspect ratio is

maintained)

• Reducing the image color-depth by turning a color image

into a grayscale image

• Converting images into formats that yield higher

compression ratios.

The Image Filter is adaptive, much like the General

Compressor, and adapts according to both network

performance and user behavior. The role of LC is to provide

information to the RC for adaptation. For each HTTP request

 14

for an image, the LC can set the maximum number of pixels in

the image if scaling is desired, whether the image should be in

color or grayscale, and whether or not uncompressed or poorly

compressed images should be converted into another format.

Note that both conversion and filtering can be performed on

the same image. The LC changes these settings based on user

behavior and measurements of response times, in order to

achieve the best performance under changing conditions. For

example, if the user is accessing many web sites in parallel,

each with many images, or if response times are currently very

slow, the LC can reduce image size and color depth parameters

sent to the RC so that each image uses less data. When the

response times speed up, or the frequency of downloaded

images reduces, the LC can recommend that filtering be turned

off entirely.

The Image Filter RC also has to modify HTML pages

containing images. The reason is that HTML pages often

contain dimensions for inline images, which tell the browser

how to layout the page before it receives the actual images.

When images are scaled to smaller dimensions than those

specified in the HTML code, the browser will automatically

scale the images to fit the specified dimensions. This will

cause the images to be displayed with a ”fat-pixel” effect.

Hence, the dimensions specified in the HTML pages, must be

changed to match the dimensions of the scaled image, so that

the scaled images are displayed properly. Note that this may

change the layout of the page from its designer’s intentions.

B. Transaction Reliability

We are experimenting with two examples of Customizers

which help users deal with unreliable connections, the

Connection Smoother and the Transaction Recorder. The

Connection Smoother masks short-duration connection failures

from clients with unreliable Internet connections. During

normal Web surfing, a browser may request a number of

documents in parallel. For example, if the user opens a page

with many inline images, a separate connection may be used to

request each of the images. If connectivity is lost while these

requests are pending, the browser will display broken

placeholders for inline objects and error messages for main

objects such as an HTML page. The user will then have to

reload the page after connectivity is reestablished.

Customizers can be used to mask such failures. Consider a

scenario where the browser and LC are co-located on the same

client machine (as in Figure 3), and the RC is running on a

host that has a reliable connection to the Web Server. The

connection between the LC and RC may be tenuous, e.g., a

wireless link. As part of its normal operation, the RC can

temporarily store Web objects and have them ready for

retransmission in case it fails to fully send them to the LC

running on the client. When the client's connectivity fails, the

connection between the LC-Server and the RC-Server is lost,

but the LC still has an open connection to the Web browser

since they are on the same host. The LC continuously retries

sending the request to the RC in case connectivity is

reestablished in a short time. If connectivity is reestablished in

 15

short order, the object is successfully retrieved and the

response is sent to the browser, and the user will notice only a

slight delay in the retrieval of Web objects.

As an added measure, each retry request contains a storage

flag that informs the RC to use the previously stored object if

it has one. If the storage flag is absent, the RC will request a

new copy of the Web object from the destination Web server.

The use of this flag allows normal web-surfing semantics to be

maintained. Thus, if the user intentionally requests a new

version of an object after a failure, they will not receive the

stored version since the storage flag will not be set.

If the browser's connection times out before connectivity is

reestablished, the LC can later send a special request to the RC

which informs it to clear its object storage, since the stale

objects are no longer needed. Alternatively, the RC can be

configured to hold objects in storage for a specific amount of

time, if it is important that memory usage be kept to a

minimum. Figure 9 shows how Web transactions are handled

by the Connection Smoother.

Fig. 9. The Connection Smoother

 The Transaction Recorder stores recent Web

transactions at the RC in case of failure. Unlike in the

Connection Smoother, the LC does not automatically retry

requests if connectivity is lost. Instead, when connectivity is

reestablished, the user can bring up the Customizer's

configuration page, which contains a list of all recorded

transactions. This is useful for transactions, which should not

be repeated such as transfer of money. As soon as

connectivity is reestablished the user can easily discover the

results of the transaction. If the results are not stored by the

RC, then it did not receive the request, and hence the

transaction was never executed. The configuration page

allows the user to set the number of recent transactions to be

stored at any time.

 A variation of the Transaction Recorder is

background retrieval of Web objects. The user controls the

background retrieval by clicking on a link to a Web object,

and then aborting the transaction by pressing the stop button

on the Browser. Instead of the transaction being aborted

entirely, the response is downloaded to the RC while the user

is busy reading some other Web page. This requires

cooperation by the LC, since only it knows when the browser

closed a connection as a result of the user pushing the stop

button (because the RC does not have a direct connection to

the browser). If the user turns on background retrieval in the

configuration page, then when they abort a transaction at the

client, such as by pushing the stop button on the browser, the

LC will not abort the transaction until after the request has

been forwarded to the RC. Hence the RC will store the request.

The user can then retrieve the object from the Transaction

Recorder configuration page, which lists all stored objects.

 16

This functionality is useful when dealing with slow servers.

For clients with adequate memory, the objects can be stored at

the LC. Background retrieval is not active by default, and

must be explicitly selected by the user, since it changes the

semantics of using the Web.

C. Privacy

 The Selective Encryptor Customizer encrypts

sensitive information that passes over insecure HTTP

connections. Most e-commerce sites use secure connections

for all transactions involving credit cards. However, many

websites freely transfer other potentially sensitive information

such as e-mail addresses, mailing addresses, and phone

numbers over insecure connections. The Selective Encryptor

uses encryption to protect that selective information from any

host along the path from the RC to the LC. Since wireless

networks are generally more prone to eavesdropping than

wired networks, the encryption can be done at a location on

the wired network before the data passes through the wireless

network. The Selective Encryptor is even more beneficial

when the RC-Server and the Web server are both in a trusted

security domain. Note that the information will not be

protected by the Customizer between the Web server and the

RC, or between the LC and the client if they are on different

hosts.

Fig. 10. The Selective Encryptor

As this is a content-based customization, the Selective

Encryptor only encrypts requests and responses that it detects

contain sensitive information. The user supplies strings to

search for in text data including form submission, such as their

mailing address. The LC can encrypt requests, and decrypt

responses which were encrypted by the RC, while the RC

decrypts requests that were encrypted by the LC and encrypts

responses. Figure 10 shows how the Selective Encryptor is

used to encrypt private data in Web requests, such as data from

a form submitted by the user.

V. PERFORMANCE OF OUR WSC IMPLEMENTATION

The performance advantages derived from the ability to do

remote customization can be negated if the underlying

execution and communication mechanisms are slow. The use

of Customizers introduces overhead because there are now two

additional service points between Web client and Web server

that operate in both directions. While we would like this

 17

overhead to be low in absolute terms, the primary goal is that it

should be low relative to typical Web transaction times.

We first conducted some simple Web experiments to

determine typical Web transaction times from our site to some

major popular sites. We are located on a university campus

that has excellent Internet connectivity, as one of the major

NAPs is on our campus, and our path to the NAP is high-

speed. All our experiments were conducted at times when

there was very low network traffic. We used high-speed PCs,

based on 933 MHz Pentium III processors running Solaris x86

release 2.8, for clients, so that client delay would be low.

Consequently, we expected the end-to-end Web transaction

times to be relatively low and therefore good targets for

comparison with Customizer overhead times.

We conducted three experiments (without using

Customizers), where in each experiment, a client made 1000

requests directly to a Web server in an outside domain

(pausing for 2 seconds between requests to assure quiescence).

The three Web sites contacted were:

http://www.yahoo.com/,

http://www.suntimes.com/index/,

http://www.cnn.com/

These sites were selected because they are popular and they

are located in three different geographic regions. (We used

numeric IP addresses to avoid name-server delays; this is one

of many examples of trying to reduce all sources of

superfluous delays.)

The results of these experiments are as follows. The raw

response times ranged from 126ms to as much as 24.5

seconds; however, the majority of response times were less

than 500ms. To factor out anomalies, we discounted all

response times longer than 1 second so that the average

response times are somewhat more representative of

reasonably good scenarios. (Recall that our goal is to simply

determine good-case Web transaction times so that we can

determine the impact of Customizer overheads.) Table 1 shows

the average response times with 95% confidence intervals for

the three Web sites.

TABLE 1

 BASIC WEB TRANSACTION DELAYS

Web Site Average Response Time (ms)

http://www.yahoo.com/ 138 ± 0.8

http://www.suntimes.com/index/ 404± 1.6

http://www.cnn.com/ 475 ± 5.4

Yahoo had an average response time of 138ms, which was

the best of the group. This is to be expected given that Yahoo

is the geographically closest site to us. The two other sites are

significantly more distant, and this is evident in the

measurements, both of which averaged between 400-500ms.

Consequently, if the total overhead introduced by Customizers

is a small fraction of these average times, we can reasonably

conclude that this overhead is acceptable. In a second set of

experiments, we determined the basic overhead of a

 18

Customizer by measuring the delay of a “null Customizer,”

i.e., a Customizer that does not modify the request or response,

but simply forwards them. We used a test program that acts

like a Web browser, and makes requests to a local Customizer-

test environment, with Local and Remote Customizer Servers

in place, a null RC installed on the RC-Server, and a null LC

installed on the LC-Server.

In the test environment, the client, LC-Server, RC-Server

and Web server each ran on a different machine, all of which

were PCs based on 933 MHz Pentium III processors running

Solaris x86 release 2.8 (the same used for clients in the

previously described Web transaction experiments). All the

machines were connected to an unloaded 100Mbps switched

Ethernet LAN. The test browser program made 10000 total

requests to the Web server’s index page (i.e., a minimal 62-

byte HTML page), pausing 50ms between requests to achieve

quiescence between measurements.

Table 2 summarizes the results of these experiments. The

average response time using Customizers was 6.5ms. Of this,

we were able to attribute 4.8ms to actual overhead due to

Customizers, as the average communication overhead between

the client and LC-Server was 2.2ms, that between the LC-

Server and RC-Server was 2.5ms, and the Customizer

processing overhead was 0.1ms, leaving 1.7ms out of the

6.5ms for the non-Customizer portion of the Web transaction

processing and communication. We also conducted a similar

experiment, but without Customizers, and measured an

average response time of 1.7ms, which provides experimental

verification of our calculation.

TABLE 2

BASIC CUSTOMIZER DELAY RESULTS.

Measurement Time (ms)

Response Time Using Customizers 6.5 ± 0.02

Client to LC-Server Communication Overhead 2.2 ± 0.01

LC-Server to RC-Server Communication Overhead 2.5 ± 0.01

Customizer Processing Overhead 0.1

Response Time For Direct Client To Server Requests 1.7 ± 0.02

While one might say that 4.8ms of overhead relative to

1.7ms for a basic Web transaction is high, this is only for the

case where everything resides on a high-speed LAN with high-

performance clients and Web servers, and the content being

retrieved is minimal (62 bytes). What is important is that

4.8ms is small relative to human perception times, and is small

relative to real Web transaction times where the delays are in

the range of 100-500ms. This does not even take into account

that this overhead is likely to be outweighed by the

performance gains of using Customizers that actually do useful

work (unlike null Customizers), such as reducing the amount

of data being sent over the network or reducing the number of

requests made to the end servers.

VI. RELATED WORK

 19

The most widespread method for adapting the Web to users’

needs is to use a proxy. Traditionally proxies have been used

primarily for security (firewalls and anonymity), and

improving performance via caching [15]. However, there are

a number of systems designed to use a single remote proxy for

customizing the Web, with communication initiated through

the browser’s proxy mechanism. This includes image and

video filtering, HTTP request modifications, HTML filtering,

user interface improvements especially for small screens,

remote caching, and support for disconnected operation and

user-selected background retrieval [4, 8, 5, 6, 13]. Other

systems have made use of the two-proxy (local and remote)

concept, for such customizations as filtering, prefetching and

intelligent cache management at the local proxy [13, 14].

Research that is closest to ours combines the use of proxies

with mobile code to support dynamic downloading of filters to

a remote proxy. Zenel uses both high-level and low-level

proxies [25], and in [10] object migration is used to move an

application running on a proxy to a new host in order to follow

the movements of a mobile client. There are also

customization systems that do not use proxies per se, but rather

use more general mobile code mechanisms to support remote

processing at arbitrary hosts, typically at the servers

themselves [18, 21]. Going a step further, there are mobile

agent systems that provide a highly generalized framework for

code mobility [11, 9, 17, 20] that could be applied to Web

customization.

An alternative to application-layer mobile code is to have

code mobility in the routers, as in the Active Networks

approach taken in [23]. Active Networks technology is

complimentary to application-layer solutions such as proxy-

based customization and Customizers, and is better suited to

customization of network protocols rather than user-level data

objects and application-layer protocols.

A related issue is adaptability, where information is

provided to the client application, typically from the operating

system, to help it adapt to changes in resource availability and

network connectivity [1, 3, 16]. Some of these systems

include applications using an adaptable interface, including

adaptable protocols. Kunz and Black have introduced a proxy-

based customization system that combines many of the above

approaches [12]. They use both high and low-level proxies,

system support for client software to be made aware of

resource availability for adaptation, and the Objectspace

Voyager mobile code system for dynamic distribution of code.

Our work differs from that of others in a number of ways.

First, We have focused on a customization system designed

specifically for the Web, allowing us to make a number of

simplifying assumptions regarding the programming model,

the user model, and the system design and implementation.

Second, we use a very restricted and therefore more simplified

form of mobile code, rather than providing a generalized

mobile code solution which, while more powerful, is less

practical and is more complex in terms of usability and

security. Other unique features of our system include the use

of an LC-Server that supports dynamic selection of multiple,

simultaneously active, RCs. RCs can make use of LCs running

on the LC-Server. We use a simple, callback-based

 20

programming model for Customizers, and allow user-

controlled selection of the Customizers, including the location

of the RC, through a Web interface.

Our work is premised on the idea that Web applications

would greatly benefit from the remote customization

capabilities of our system. In fact, there exists a large body of

research results verifying the benefits of remote Customization

of Web data using proxies, mobile code, or some combination

thereof. In [13] performance improvements of 25%-50% were

reported for Web browsing over a cellular link. They used

local and remote persistent caching, persistent connections

between client and proxy as well as DNS prefetching to reduce

round-trip delay, and prefetching of inline images to improve

link utilization. Zenel showed a 50% reduction in delay using

HTTP protocol and text content compression for files larger

than 16K over a dial-up connection [25]. He also found a

significant improvement in TCP throughput over error-prone

connections using a version of Snoop TCP [2]. Loon and

Bharghavan used user profile-based prefetching cooperating

with a cache, in a system with both a local and remote proxy,

and found that Web surfing waiting times can be reduced by a

factor of 3-7 depending upon the time of day. According to

[22], using remote processing to reduce the number of

connections across a wireless link when browsing pages with

images, can reduce response time significantly as the number

of images in a page increases. For a page with 16 images, the

average waiting time is reduced by approximately 30%. They

also did experiments with remote compression and showed a

48% compression rate of .au audio files and a 94%

compression rate for .mid audio files. In the PowerBrowser

project, which uses a proxy filter to modify HTML pages into

a special format to improve information retrieval time on a

PDA with a stylus, the authors showed a 45% savings in time

to complete tasks involving finding information on the Web

[6]. Fox et al show a major reduction in end-to-end latency

over a dial-up connection for image distillation that reduces

the size and color-depth of images [8].

VII. CONCLUSIONS

We have presented a new Web customization architecture

which is designed to be flexible, deployable, and user-friendly,

and is tightly integrated with the existing Web model. The

architecture provides a general customization framework that

supports both content-based and system-based customization,

and supports a variety of client-directed customization

techniques.

The primary advantage of the WSC architecture is that it

allows requested server content to be modified by having it

processed by dynamically-deployed Customizers, selectively

located between client and server. Because of their distributed

operation by local and remote components, Customizers allow

communication stream content and its transmission control to

be effectively enhanced over selective portions of the

communication path that require special considerations in

terms of performance, reliability, and security.

We also presented three useful applications. We are

currently gaining experience with using the applications. We

 21

have demonstrated that the system overhead is low relative to

typical Web transaction times, and thus the benefits of using

Customizers are worthwhile.

REFERENCES

[1] David Andersen, Deepak Bansal, Dorothy Curtis,

Srinivasan Seshan, and Hari Balakrishnan. System support

for bandwidth management and content adaptation in

Internet applications. In Proceedings of 4th Symposium

on Operating Systems Design and Implementation, pages

213-226, San Diego, CA, October 2000. USENIX

Association.

[2] Hari Balakrishnan, Srinivasan Seshan, Elan Amir, and

Randy Katz. Improving TCP/IP performance over

wireless networks. In Proceedings of the 1st MOBICOM,

Berkeley, CA, November 1995.

[3] Vaduvur Bharghavan and Vijay Gupta. A Framework

for Application Adaptation in Mobile Computing

Environments. Proceedings of IEEE Compsac'97,

November 1997.

[4] H. Bharadvaj, A. Joshi, and S. Auephanwiriyakul. An

active transcoding proxy to support mobile web access.

In Proceedings of IEEE Symposium on Reliable

Distributed Systems, 1998.

[5] C. Brooks, M. S. Mazer, S. Meeks, and J. Miller.

Application-specific proxy servers as HTTP stream

transducers. In 4th Intl. World Wide Web Conference,

pages 539--548, December 1995.

[6] Buyukkokten, O., Garcia-Molina, H., Paepcke, A.,

Winograd, T. Power Browser: Efficient Web Browsing for

PDAs. In Proceedings of CHI 2000.

[7] W. M. Farmer, J.D. Guttman and V. Swarup. Security

for mobile agents: Issues and requirements. In National

Information Systems Security Conference, National

Institute of Standards and Technology, October 1996.

[8] A. Fox, S. Gribble, Y. Chawathe and E. A. Brewer.

Adapting to Network and Client Variation Using Active

Proxies: Lessons and Perspectives. IEEE Personal

Communications, Special Issue on Adaptation, August

1998.

[9] Robert S. Gray. Agent Tcl: A transportable agent

system. In Proceedings of the CIKM Workshop on

Intelligent Information Agents, Fourth International

Conference on Information and Knowledge Management

(CIKM 95), Baltimore, Maryland, December 1995.

[10] A. Hokimoto and T. Nakajima, "An Approach for

Constructing Mobile Applications Using Service

Proxies," Proceedings of the 16th International

Conference on Distributed Computing Systems, May

1996.

[11] D. Johansen, R. van Renesse, and F. B.Schnieder.

Operating system support for mobile agents. In

Proceedings of 5th IEEE Workshop on Hot Topics in

Operating Systems, Nov. 1994.

[12] Thomas Kunz and James P. Black, An architecture

for adaptive mobile applications, Proceedings of Wireless

99, the 11th International Conference on Wireless

Communications, Calgary, Alberta, Canada, July 1999,

pp. 27-38.

[13] M. Liljeberg, T. Alanko, M. Kojo, H. Laamanen, and

K. Raatikainen. Optimizing World-Wide Web for Weakly-

Connected Mobile Workstations: An Indirect Approach.

In Proc. 2nd International Workshop on Services in

Distributed and Networked Environments (SDNE), pages

132--139, Whistler, Canada, June 1995.

[14] Tong Sau Loon and Vaduvur Bharghavan. Alleviating

the latency and bandwidth problems in www browsing. In

Proceedings of the 1997 USENIX Symposium on Internet

Technology and Systems, December 1997. URL:

http://timely.crhc.uiuc.edu/.

[15] A. Luotonen and K. Altis. World-Wide Web proxies.

Computer Networks and ISDN Systems, 27(2), 1994.

[16] B. Noble, System support for mobile, adaptive

applications, IEEE Personal Computing Systems, vol. 7,

no. 1, p. 44-9, Feb. 2000.

[17] Peine H., Stolpmann T., The Architecture of the Ara

Platform for Mobile Agents, In: Rothermel K., Popescu-

Zeletin R. (Eds.), Mobile Agents, Proc. of MA'97,

Springer Verlag, Berlin, April 7-8, LNCS 1219, pp 50-61.

[18] S. Perret and A. Duda. Implementation of MAP: A

system for mobile assistant programming. In Proc. IEEE

International Conference on Parallel and Distributed

Systems, Tokyo, June 1996.

[19] Java Servlet Technology Whitepaper.

http://java.sun.com/products/servlet/whitepaper.html.

September 2000.

[20] M. Straßer, J. Baumann, and F. Hohl. Mole - A Java

Based Mobile Agent System. In Proceedings of the

ECOOP'96 workshop on Mobile Object Systems, 1996.

[21] A. Vahdat, M. Dahlin, T. Anderson, A. Aggarwal,

"Active Names: Flexible Location and Transport of Wide-

Area Resources," In Proceedings of the Second Usenix

Symposium on Internet Technologies and Systems,

Boulder, CO, October 1999.

[22] Y. Villate, D. Gil, A. Goni, and A. Illarramendi.

Mobile agents for providing mobile computers with data

services. In Proceedings of the Ninth IFIP/IEEE

International Workshop on Distributed Systems:

Operations and Management (DSOM 98), 1998.

[23] David J. Wetherall, John Guttag, and David L.

Tennenhouse. ANTS: A Toolkit for Building and

Dynamically Deploying Network Protocols. In IEEE

OPENARCH, April 1998.

[24] Bennet S. Yee. A Sanctuary for Mobile Agents.

DARPA Workshop on Foundations for Secure Mobile

Code, Monterey, CA, USA, March 1997.

[25] B. Zenel and D. Duchamp. A general purpose proxy

filtering mechanism applied to the mobile environment. In

 22

Proceedings of the Third Annual ACM/IEEE International

Conference on Mobile Computing and Networking, pages

248--259, Budapest, Hungary

