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Abstract— We present an architecture for Web Stream 

Customization (WSC) which allows users to customize their view 

of the Web for optimal interaction and system operation when 

using non-traditional client machines such as wireless palmtops. 

Our Web stream customizers are dynamically deployable and can 

be strategically located to achieve improvements in performance, 

reliability, or security. Customizers provide two points of control 

in the communication path between client and server, supporting 

adaptive system-based and content-based customization.  Our 

architecture exploits HTTP's proxy capabilities, allowing 

Customizers to be seamlessly integrated with the basic Web 

transaction model.  We describe the WSC architecture and its 

implementation, and illustrate its use with three non-trivial, 

adaptive Customizer applications that we have built.  Our 

performance evaluation of the system shows that the overhead 

introduced is small and tolerable, and is outweighed by the 

benefits that Customizers provide. 

 

Keywords: HTTP, Middleware, Proxy, Wireless, Mobile Code 

 

I. INTRODUCTION 

 

To a large degree, the Web has developed on an Internet 

infrastructure consisting of increasingly higher-bandwidth, 

lower-error-rate network links.  The protocols and models of 

user-interaction, which work well under such conditions, are 

often not adequate for many of today’s new wireless Internet 

personal devices.  We must now take greater account of 

problems such as intermittent and lower-bandwidth 

connectivity, smaller displays, stylus-based input mechanisms, 

power restrictions, and limited memory.   

In addition to the changing landscape of user devices, the 

increased popularity of using the Internet for a variety of tasks 

introduces challenges regarding privacy and convenience.  

Although sites that require credit card numbers typically use 

secure connections, there are still many insecure sites that 

require registration that includes personal information such as 

a mailing address, phone number, or e-mail address.  And 

regarding lack of convenience, Web users often find 

themselves deluged with unwanted data such as 

advertisements, which slow down the transfer of legitimate 

information.   

Users would indeed like to be able to customize their view 

of the Web, including removing data they are not interested in 

downloading, filtering images to smaller representations, and 

displaying Web pages in an easy-to-surf format. To limit 

bandwidth usage over a wireless link (which generally has 

lower bandwidth and reliability, and less security due to the 

ease of eavesdropping, than wired portions of the Internet), 

content should be compressed and possibly encrypted at some 

point before the wireless link and then decompressed and 
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decrypted at the client. Provisions should also be made for 

helping users deal with disruption of important transactions 

and masking short-term intermittent disconnections.    

Furthermore, these types of customization should be able to 

dynamically adapt to changes in system conditions or to user 

behavior.  For example, if network throughput is relatively 

high, compression may not be beneficial if it takes too much 

time for a low-powered device to perform the decompression.  

However, as available throughput decreases, the performance 

gain of compressing data prior to transferring it over a slow 

link begins to outweigh this drawback.    

There are many types of Web customization possible, and it 

is useful to broadly characterize them. We define two such 

categories, system-based and content-based, which cover a 

wide range of possible customizations that lead to 

improvements in performance, reliability and security of the 

Web.  By system-based, we mean customizations that mostly 

rely on (and exploit) characteristics of the underlying system, 

including hardware or software aspects of the client, the 

server, and the intervening network connections.   This 

includes static resources and their characteristics, such as the 

client's display size and memory, and dynamic resources such 

as available network throughput, and connectivity. By content-

based, we mean customizations based on the actual content of 

what is being communicated.  Examples include advertisement 

filtering and selective encryption of embedded private 

information. 

 In this paper, we present a new system for Web 

customization based on the concept of Web Stream 

Customizers (WSC), or simply Customizers, and we illustrate 

their use via a set of applications that we have built and found 

useful.   Customizers are distributed web customization 

software modules that are dynamically deployed and used by 

clients during a Web session (although servers and even third 

parties can deploy and use them). Customizers are seamlessly 

integrated with the basic Web transaction model, simplifying 

their programming and operation.  This is because the WSC 

system exploits the Web's proxy capabilities, and makes use of 

standard code mobility mechanisms (with Java as the language 

of choice given its portability). Thus, importantly, Customizers 

will work with standard browsers and Web servers, without 

requiring any modifications to them. 

A key feature of the WSC architecture is that it supports 

cooperative customization at two points along the path 

between client and server.  Many types of customizations, both 

system-based and content-based, require such cooperation and 

distribution of functionality.  For example, data compression 

(e.g., to reduce bandwidth requirements, and perhaps latency) 

requires that compressing be done before the data crosses any 

relatively low-bandwidth links, and that decompressing be 

done afterwards. 

Another key point is that customizers provide client-specific 

customization of server content, effectively adapting the Web 

to new and different sorts of clients.  This even includes the 

ability to dynamically and easily deploy client-specific (or 

application-specific) protocols, such as to deal with 

problematic network connections. The ability to deploy such 

protocols relies on the two-point distributed operation. 
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An alternative approach to adapting the Web is to introduce 

a new system of protocols and document types to address 

specific problems, as typified by the Wireless Access Protocol 

(WAP) for Internet access by wireless clients.  The problem 

with such approaches is that they require changes to actual 

Web servers; those that do not will be effectively inaccessible.  

Considering the vast amount of legacy content in existence 

today, a more flexible and universal way of enhancing the Web 

experience when accessing arbitrary services, working within 

existing Web and Internet structures, is needed. 

The more traditional approach to adaptability that does not 

depend on Web servers to cater to client-specific needs has 

been to use fixed proxy servers, which are indeed supported by 

the HTTP standard.  Web proxies act as intermediaries 

between clients and servers by intercepting client requests and 

forwarding them to servers, eventually returning the server 

response to the client.  All the popular Web browsers have a 

setting that allows the user to specify a proxy to be used for all 

requests.  Proxies have been used for HTML filtering, user 

interface improvements especially for small screens, remote 

caching, and support for disconnected operation and user-

selected background retrieval [4,8,5,6,13].  Although they are 

beneficial, traditional proxies are statically located and often 

too limited to provide the wide range of customization that can 

benefit users, such as those requiring cooperation at both ends 

of a communication link (or a string of them), and even 

moreso if they are to act on a per-request or per-server basis. 

Other approaches include combining proxies with mobile 

code, or using generalized mobile code systems to customize 

the Web [25,18,21,11,9,17,20].  Our work differs in a number 

of ways.  First, we have focused on a customization system 

designed specifically for the Web, allowing us to make a 

number of simplifying assumptions regarding the 

programming model, the user model, and the system design 

and implementation.  Second, we use a very restricted form of 

mobile code, rather than providing a generalized mobile code 

solution which, while more powerful, is less practical and is 

more complex in terms of usability and security. 

Other unique features of our system include the dynamic 

selection of one of multiple, simultaneously active, 

Customizers, based on which server is providing the content. 

As mentioned above, our Customizers have two components; 

one is statically located either on or close to the client, and the 

other is dynamically located at a convenient point between the 

client and server (typically near the server).  Finally, we use a 

simple, callback-based programming model, and support user-

controlled deployment, including the strategic placement of the 

remote component, through a simple Web interface.  We will 

elaborate on all these issues in this paper. 

 The remainder of this paper is organized as follows: 

In Section II we provide an overview of the WSC architecture.  

The implementation details are described in Section III.  In 

Section IV we illustrate some example Customizer 

Applications.  In Section V we analyze the performance of 

Customizers.   Section VI details related work, and in Section 

VII we present our conclusions.  
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II. THE WSC ARCHITECTURE 

 

There are three primary goals that drive our design of the 

WSC architecture: 

• Flexibility: The location of where the remote 

customization is carried out, and the type of customization 

being done, can all be determined dynamically.  

• Ease of deployment: The system does not require 

changes to the client's Web browser or any Web servers, 

and works within the current Web transaction model using 

HTTP and existing mobile code mechanisms. 

• User simplicity: The interface allows the user to install, 

invoke and configure Customizers via a standard Web 

browser using the basic "Web surfing" model of 

interaction. 

The WSC architecture enables Web customization without 

modifying the browser client or any Web servers by 

introducing Customizers that operate between them. When a 

client generates a Web request, that request is transparently 

routed to a specific Customizer, selected based on the URL of 

the request.  The Customizer then has the opportunity to 

modify the request if it so chooses, and then forwards it to the 

Web server as indicated by the URL.  The response from the 

Web server is then routed back to the Customizer, which has 

the opportunity to modify it before passing it back to the 

client.  As one can see, conceptually, the idea is very simple. 

The client sees a Customizer as a proxy, which is then viewed 

by the Web server as a client. While this simplified view is 

shared by other approaches to customization, our system 

deviates in the details that now follow. 

Actually, a Customizer is comprised of two components: a 

local component (LC) and a remote component (RC). The LC 

runs on a Local Customizer Server (LC-Server), and the RC 

runs on a Remote Customizer Server (RC-Server), as shown in 

Figure 1. Thus, when a Customizer is being used, the request 

passes from the client to the LC, then to the RC, and then to 

the server (and vice-versa for responses in the opposite 

direction, from server to RC to LC to client).  Examples of 

how an LC and RC cooperate will be given throughout this 

paper. 

 

 

Fig. 1.  Local and Remote Components of a Customizer 

Running on Local and RC-Servers 

 

Why separate a Customizer into two components? The LC 

and RC have distinct roles. The LC acts primarily as an 

extension of the browser (given that the browser code itself 

cannot be modified).  The LC runs on an LC-Server, which 

tends to be located on or near the client Web device. Given its 

close coupling with the client, the LC is generally responsible 

for tasks that require knowledge of resource availability and 

system conditions at or near the client, which may then be 

communicated to the RC (e.g., to improve performance, such 

as relaying local system or network performance status).  In 

addition, the LC will also reverse data transformations done by 
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the RC, such as compression/decompression or 

encryption/decryption.  

The RC generally performs location-dependent tasks that 

benefit from being near the server (or simply away from the 

client), such as compressing response data from a server 

before it is transmitted over a low-bandwidth link on the 

communication path to the client. The RC runs on an RC-

Server, which tends to be located near, or even on, a Web 

server of particular interest. 

There will generally be many Customizers, each one being a 

separate (LC, RC) pair, simultaneously active on behalf of a 

single client. All of the LCs (for that client) will run on a 

single LC-Server; since all the LCs originated from that client, 

they will all run on that LC-Server. This is in contrast to the 

RCs, which will be generally running on different RC-Servers, 

as shown in Figure 2.  

 Fig. 2.  An Example of Using Multiple Customizers 

 

Let us elaborate on the services provided by LC-Servers and 

RC-Servers. The LC-Server effectively extends the client 

machine by hosting LCs for the browser running on that 

machine. It appears to the browser as a Web proxy server.  

The browser needs only to have its proxy server settings 

configured to point to the LC-Server. 

For a particular session of Web browsing, the same LC-

Server is always used.  This is to avoid having to frequently 

modify the browser's proxy settings in order for it to interface 

with the many Customizers that may be active.  While the LC-

Server location is static (per session), flexibility is achieved by 

allowing multiple RC-Servers to be used during a single 

session.  A common scenario would be to have a number of 

Customizers active at any time, with many RCs running on 

various RC-Servers, each with a corresponding LC running on 

the LC-Server associated with the client, as shown in Figure 2. 

Since there is a single LC-Server per session, in order for 

the location of some forms of customization to be chosen 

dynamically, the LC-Server must be able to dynamically route 

Web requests to different RCs.  The LC-Server chooses an RC 

on a particular RC-Server based upon the URL of the request.   

This will be explained in Section III. 

The LC-Server will often be running on the client machine, 

co-located with the browser. Running the LC-Server on some 

other machine is useful if the client machine is not powerful 

enough or is incapable of running the LC-Server process, as 

may be the case with a PDA limited to running pre-installed 

applications.  (Note that even in the case of a limited PDA, we 

expect the PDA to be able to at least run a browser capable of 

being configured to communicate via a proxy. This is a basic 

requirement of our system. It is worth noting that our current 

experience with PDAs equipped with browsers, such as the 



 6 

Compaq iPaq, HP Jornada, and others, is that they all have this 

basic capability.) 

The role of the RC-Server is to load and run RCs that 

benefit from executing at a remote location. An RC-Server can 

only be used in conjunction with an LC-Server.  As mentioned 

above, unlike the LC-Server, a client may be actively using a 

number of RC-Servers for handling communication with 

different Web servers.  Thus, for a single session of Web 

browsing, many different RC-Servers may be used for varying 

amounts of time.   Each of these RC-Servers may have any 

number of RCs loaded and running at any time.     

 Use of both an LC and RC provides for two points of 

control, allowing for flexible distribution of functionality as 

determined by the programmer. More generally, the 

local/remote combination provides the capability of supporting 

custom protocols that optimize transfer over the last one or 

more hops, data transformations that need to be reversed such 

as compression and encryption, and any other form of 

customization that requires both local and remote 

functionality, examples of which shall be described in Section 

IV. 

To summarize these concepts, Figure 3 shows a simple and 

common scenario of using a Customizer for data compression.  

The figure depicts three machines: a wireless notebook client, 

a base station, and a Web server. The user’s client machine is 

running a Web browser, and the base station is running an RC-

Server that can control and service one or more RCs on behalf 

of the user (and other users). The LC-Server is running on the 

client. A Compression RC is running on the RC-Server to 

compress responses from Web servers before they are sent 

across the wireless link.  There is a Decompression LC on the 

LC-Server, which cooperates with the Compression RC by 

decompressing the compressed Web responses to their original 

format so that they can be displayed by the browser.  The 

Compression RC and the Decompression LC together make up 

the single Customizer.  The positioning of the Customizer 

components in this example allows data to be compressed 

before crossing the low-bandwidth wireless link, reducing 

download times.   

 

Fig. 3. A Compression Customizer 

  

III. THE WSC IMPLEMENTATION 

 

We chose to implement the WSC architecture in Java 

because of the widespread availability (actual or potential) of 

Java Virtual Machines, providing a ubiquitous platform to 

support Customizers, and because it supports code mobility for 

the dynamic loading of LCs from an RC-Server to an LC-

Server (this is an important feature of our implementation 

which will be described below).  The Customizer Servers are 

implemented as Java applications, and the LC and RC are 
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made up of one or more Java class files packaged into a Java 

Archive File (jar).  In addition to the architectural goals of 

flexibility, ease of deployment, and user simplicity, ease of 

programming Customizers was another goal of the 

implementation. 

 

A. Customizers and the Server Execution Environment 

 

Both the LC and RC consist of a Java class that implements 

a new interface called the Customizer interface, along with any 

other Java classes they may use, all packaged into a jar file. 

The fundamental method defined by the Customizer interface 

is HandleRequest. It is via this method that the Customizer 

components actually have the opportunity to view and 

customize the Web object that is being requested. 

When a Customizer component is loaded, it actually runs as 

part of a LC-Server or RC-Server, which we will more 

generally refer to as a C-Server. It is the C-Server that invokes 

a component’s HandleRequest method to act on a Web 

request. We chose this “callback” style of invocation for 

numerous reasons, including security, ease of programmability 

of Customizers, and ease of deployment and integration with 

the Web.  Regarding security, we rely on Java language 

mechanisms, including support for a security manager object 

that provides coarse-grained control over what resources 

objects can access.  In the WSC architecture, we rely on the 

security manager to prevent the ability of a Customizer 

component to access resources such as network and disk I/O.  

Only the C-Server is allowed to do network or disk I/O. 

Hence, to allow for HTTP customization under these strict 

restrictions, we adopted the callback style of invocation for the 

Customizer component by a C-Server.  The callback model is 

widely used in Java programming for the Web. For example, 

in the Applet model, there are callback methods such as start() 

and stop() that are called by the runtime system when the 

Applet is started and stopped based on the user entering and 

leaving the Web page. The Java event model for handling user 

interface events uses listener objects to listen for events by the 

user, and methods in the listener object are called when an 

event occurs. Callbacks are also used in the Java Servlet 

programming model [19].    

Using the callback model has the effect that Customizer 

components do not need to participate directly in network 

communication.  Instead, it is the C-Servers that handle all of 

the communication, and pass Web request and response data 

buffers as parameters to a callback function implemented by 

the Customizer components.  

 

B. The LC-Server 

 

The LC-Server effectively links the Web browser to one or 

more Customizers, and handles the loading and configuration 

of Customizers through a Web interface. Recall that all 

requests made by the browser are received and handled by the 

LC-Server, which is viewed as a proxy by the browser.  The 

LC-Server uses this mechanism to intercept the browser's 

requests for Web objects, and then to provide the requests to 

Customizers (by first handing it to the LC portion, and then 
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forwarding to the RC-Server hosting the RC portion).  

Although many Customizers can be active simultaneously with 

the remote components at different locations, the LC-Server is 

fixed, so the browser only needs to be configured once.  This 

also means that the browser's settings do not need to change if 

there are changes to the configuration of particular 

Customizers being used.  

In Section II we described the flow of information when just 

one Customizer is active.   When multiple Customizers are 

active, the LC-Server must have a means of determining which 

Customizers should receive which browser requests, and 

hence, which RC-Servers will be involved in which requests.  

Consequently, each Customizer has associated with it a 

Domain of Applicability (DA), which specifies a set of URLs 

or host domains (i.e., Web servers), and this is stored at the 

LC-Server. When the LC-Server receives an HTTP request 

from the browser, it can determine if a particular Customizer 

should handle the request by checking whether the URL 

associated with the HTTP request is within that Customizer’s 

DA; if so, that Customizer is used, and the request is first 

given to its LC portion, and then sent to the RC-Server hosting 

the corresponding RC portion, as shown in Figure 4. If a URL 

is common to the DAs of multiple Customizers, the current 

policy is to choose the Customizer that was loaded first. If no 

DA contains that URL, the LC-Server sends the request 

directly to the Web Server specified by the URL, bypassing all 

Customizers. 

In addition to helping the LC-Server select a Customizer, 

the DA also helps the LC-Server protect a client's privacy 

interests.  For example, a client may only want a particular 

Customizer to know about certain requests.  By matching the 

DA to the client's requirements, this privacy can be ensured by 

rejecting a new Customizer that specifies a conflicting domain.  

Furthermore, there is a provision for allowing an LC-Server to 

impose a sub domain restriction on the Customizer if the URLs 

that the client is willing to show to the Customizer form a 

subset within the Customizer's domain.  For example, a user 

may not want a Customizer to see all of its shopping-related 

Web requests, as it might use those for advertising purposes.  

The user could provide a list of their favorite shopping sites to 

the LC-Server, with instructions not to allow any Customizers 

to handle requests to these sites. 

 

 

Fig. 4. Selecting A Customizer Based on the DA. 

 

C. Installing Customizers  

 

To make using Customizers as simple as possible and 

encourage their deployment, we have integrated Customizer 

installation and invocation into the already familiar Web 

surfing model.    In other words, Customizers can be installed 

and invoked simply by the user clicking on hyperlinks during 

normal browser use.   
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To illustrate this, suppose a Web Server wishes to make 

available to clients a number of Customizers (which were 

specially programmed for this Web Server’s content, 

providing highly content-specific customizations), with the 

remote components running on a nearby RC-Server.  As shown 

in Figure 5a, the Web Server has a page (in standard HTML) 

that contains a list of Customizers.   Each listed Customizer is 

a hyperlink pointing to a special file called a Customizer 

Metafile (CMF), which has a “.cmf” extension.  This file 

provides the following information about a Customizer that is 

used by the LC-Server to load and invoke a Customizer: 

• The hostname of the machine running the RC-Server that 

will run the RC of the Customizer 

• The jar file containing the Java classes implementing the 

Customizer’s components 

• The name of the RC main class so that it can be loaded 

from the jar file 

• The name of the LC main class so that it can be sent to the 

LC-Server 

• Initial configuration parameters for the LC and RC; 

• The DA (Domain of Applicability) 

• Optionally, a URL for the Customizer’s configuration 

page (described below).   

Figure 5b shows the process of loading a Customizer by 

clicking on a hyperlink to a CMF.  In Section II we described 

how the Web browser is set up to use an LC-Server as its 

proxy, and how this allows all Web requests made by the 

browser to go through the LC-Server.   If a user clicks on one 

of the hyperlinks pointing to a CMF, the LC-Server intercepts 

this request, and retrieves the CMF from the Web server.  

Once the LC-Server has received the CMF, it can download 

the LC, associate the DA specified in the CMF with the 

Customizer, and send a message to the browser to inform the 

user that the Customizer was loaded. Future Web requests that 

are in the Customizer’s DA will be sent to the Customizer by 

the LC-Server, as was shown in Figure 4.  

 

 

Fig. 5. Web-based Customizer Loading. 

 

Note that the motivation for the dynamic downloading of 

LCs is that resource-limited, mobile clients can easily use them 

on the fly. Prior knowledge of the client’s location is not 

required, and a client is does not need to store LCs that are not 

being used.    The dynamic loading of the LC is similar to the 

popular Java Applet model of mobile code.  The motivation 

for limiting our design to this basic model is to avoid 

introducing the additional system complexity and security 
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liabilities characteristic of more general mobile code 

mechanisms [7,24]. 

At any time, the client can go to a special Customizer 

control page made available by the LC-Server.  This page has 

two major purposes.  It can be used to directly control the use 

of Customizers, e.g., to turn Customizers on and off, or to 

unload them.  In addition, the Customizer control page 

contains one link for each Customizer which, when clicked, 

will retrieve the configuration page for that Customizer.  This 

page may be a static page simply provided by the Customizer  

(and will probably already be cached at the LC-Server), or the 

Customizer may actually generate it dynamically (since it can 

customize the request for the configuration page).  A 

Customizer's configuration page allows the user to directly 

control parameters that affect the functionality of that 

Customizer.  For example, an Image Filter Customizer could 

provide a configuration page with sliders that allows the user 

to control the extent of both reduction of image resolution and 

reduction of color-depth. 

 

D. WSC Communication  

 

Figure 6 shows how Web requests and responses are 

communicated between the client and server via the LC-Server 

and RC-Server for a typical Web request initiated by the Web 

browser when a Customizer is active.  There are three TCP 

connections involved in a single Web transaction when 

Customizers are being used.  

• Connection 1 is between the Web browser and the LC-

Server.     

• Connection 2 is between the LC-Server and the RC-

Server.  

• Connection 3 is between the RC-Server and the Web 

server. 

Each connection is used in the two phases of 

communication: the request phase where the request from the 

browser is received, and the response phase where the 

response from the Web server is sent back to the host that 

originated the request.  Recall that Customizer components 

have the opportunity to participate in the interaction at both the 

LC-Server and the RC-Server.   

 

Fig. 6.  WSC Communication. 
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The Web browser opens Connection 1 automatically to 

handle a Web request, once it has been set to use the LC-

Server as its proxy.  The browser generates an HTTP request 

and sends it to the LC-Server.  The browser then waits for a 

response in the form of the requested Web object from the LC-

Server (just as it would had it sent the request directly to the 

Web Server). The LC-Server identifies the target LC and 

provides it the opportunity to modify the request.  The LC-

Server then opens Connection 2 to the RC-Server.  It forwards 

the browser's (possibly modified) request to the RC-Server and 

then waits for a response back from the RC-Server.  The RC-

Server works like the LC-Server: after receiving the request, it 

identifies the target RC and provides it the opportunity to 

modify the request.  Then the RC-Server opens Connection 3 

to the Web server specified in the request URL.  It forwards 

the request to the Web server and then awaits a response.  The 

Web server receives the request, generates a response, and 

passes it back to the RC-Server.   The Web Server then closes 

Connection 3. 

Things work in similar fashion in the return direction.  At 

the RC-Server, the RC is given an opportunity to customize 

the Web Server's response, and similarly for the LC at the LC-

Server. Finally, the LC-Server returns the customized Web 

object to the Web browser. The browser can then display the 

response to the user.  Note that we expect most of the action to 

take place in the return direction, as the response, i.e., the 

object being returned, is generally what is of interest for 

customization. 

The details of callback-based invocation of Customizer 

components are shown in Figure 7.  After the browser request 

gets forwarded to the LC-Server, the LC-Server checks the 

URL against its list of DA's for Customizers it has loaded.  If 

the URL matches a DA, the LC-Server buffers the request and 

calls the HandleRequest method of the LC for that DA, with 

the request buffer as a parameter. By default, for security 

reasons, the LC cannot modify the request (which, as discussed 

below, is not the case for the response), although it can see the 

request and make decisions based on its content.   However, a 

trusted LC can be given privileges to modify requests.  This 

model allows the LC-Server, which is part of the standardized 

Customizer system code rather than the LC (which includes 

arbitrary code as written by Customizer programmers), to 

handle all explicit HTTP communication on behalf of the user. 

To send the request to the RC-Server, the LC calls a method 

provided to it by the LC-Server.  This allows the LC-Server to 

handle all network I/O.  The LC-Server then forwards the 

request to the RC-Server.   By giving the LC the responsibility 

of calling or not calling the method, it has the power to decide 

not to forward the request to the RC-Server if it can handle it 

itself, e.g., as would be the case for a cache. (This is to be 

contrasted to the less optimal alternative control structure 

whereby the LC simply returns control to the LC-Server, 

which then automatically forwards it to the RC-Server.)  The 

return value of this method is a buffer containing the response 

that comes back from the Web server via the RC-Server.  
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Fig. 7. The Callback Model 

 

When the RC-Server receives the request from the LC-

Server, it handles the request the same way as the LC-Server 

did.  The request is buffered, and the handleRequest method of 

the RC is called.  Again, only a trusted RC can actually modify 

the request, and the RC may forward the requests to the Web 

Server by calling method provided by the RC-Server or 

generate a response on its own without calling the method.  

The return value of this method is a buffer containing the 

customized response from the Web server, or a response 

generated by the RC. 

 To handle the response, just like for the request, the 

RC-Server actually handles the network I/O, and response 

buffers are passed to the RC.   The RC-Server provides a 

service to the RC for returning the ultimate response to the 

LC-Server. Unlike in the forward path, by default the RC may 

modify the response before it is returned to the LC-Server. 

Once the LC-Server receives the response, it is returned to the 

LC, which also has the opportunity to customize it before it is 

sent to the Web browser. 

Importantly, this basic customization mechanism uses only 

HTTP for communication, and is transparent to the browser.  

Privileged Customizers can use their own protocols to 

customize the request and response freely, while taking 

advantage of the services provided by the C-Servers to get the 

response from the Web server and pass the requests and 

responses along.  Once a Customizer is installed, there is no 

special or additional interaction required by the user, as 

normal use of the Web browser will cause the Customizer to 

be invoked. 

 

IV. APPLICATIONS 

 We now present examples of three types of 

applications with which we have been experimenting: adaptive 

compression, transaction reliability, and privacy.  

 

A. Adaptive Compression 

 

Two examples of adaptive compression Customizers are a 

General Compressor and an Image Filter.  The General 

Compressor is an extension of the Compression Customizer 

example described in Section II.  It performs lossless 

compression on types of content that compress well, in order 

to reduce the amount of data transferred between the RC-

Server and the LC-Server.  This is beneficial when the RC-

Server has a high-bandwidth, reliable connection to the Web 

Server, the LC-Server is on the client, and the client is 

connected via a a link characterized by low-bandwidth or low-

reliability,  as is the case for many types of wireless links. 

This is a content-based form of customization because the 

RC will perform lossless compression only on content types 

amenable to compression such as text documents including 

HTML, plain text, postscript, and scripts (such as Javascript).   
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The RC supports multiple levels of compression so that the 

compression/decompression processing time and the reduction 

in network transfer time can be balanced.   The LC serves two 

functions.  First, it decompresses anything that has been 

compressed by the RC.  Secondly, it measures response times 

so that it can it can tell the RC what level of compression to 

use, if any.  Since the LC may be running on a low-powered 

client, decompression may be a performance bottleneck if the 

network throughput is relatively high.  In this case, too much 

compression will be detrimental to overall performance.  

Hence, by keeping track of the changes in network 

performance, the LC can adapt the compression to the current 

conditions. 

 

 

 

Fig. 8. The Compression Customizer 

 

 

In our current implementation, the LC communicates 

customization parameters to the RC by adding unique HTTP 

headers to requests.  This prevents any changes being made to 

the HTTP communication model supported by the WSC 

architecture.    For example, when sending a document request 

to the RC, a header is added that specifies the desired 

compression level.  All Customizer-specific communication 

described in this and other examples follow this procedure.  

Figure 8 shows the functioning of the General Compressor.  

For the sake of simplicity, C-Servers are not shown and 

communication is depicted logically between the LC and RC. 

 The Image Filter does adaptive lossy compression to 

improve performance by reducing image data.  It is especially 

useful for wireless clients with low-bandwidth connections and 

small displays that cannot display large images with many 

colors.   In this case, the RC should be running at a host with a 

reliable Internet connection that has sufficiently high 

bandwidth.   

 The RC handles the actual filtering.  It provides three 

functions, all of which reduce the amount of data to be 

transferred from the RC to the LC: 

• Scaling down the image size, based on a parameter 

specifying the maximum number of pixels (aspect ratio is 

maintained) 

• Reducing the image color-depth by turning a color image 

into a grayscale image 

• Converting images into formats that yield higher 

compression ratios. 

 

The Image Filter is adaptive, much like the General 

Compressor, and adapts according to both network 

performance and user behavior.  The role of LC is to provide 

information to the RC for adaptation.  For each HTTP request 
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for an image, the LC can set the maximum number of pixels in 

the image if scaling is desired, whether the image should be in 

color or grayscale, and whether or not uncompressed or poorly 

compressed images should be converted into another format.  

Note that both conversion and filtering can be performed on 

the same image.  The LC changes these settings based on user 

behavior and measurements of response times, in order to 

achieve the best performance under changing conditions.  For 

example, if the user is accessing many web sites in parallel, 

each with many images, or if response times are currently very 

slow, the LC can reduce image size and color depth parameters 

sent to the RC so that each image uses less data.  When the 

response times speed up, or the frequency of downloaded 

images reduces, the LC can recommend that filtering be turned 

off entirely. 

The Image Filter RC   also has to modify HTML pages 

containing images.  The reason is that HTML pages often 

contain dimensions for inline images, which tell the browser 

how to layout the page before it receives the actual images. 

When images are scaled to smaller dimensions than those 

specified in the HTML code, the browser will automatically 

scale the images to fit the specified dimensions.  This will 

cause the images to be displayed with a ”fat-pixel” effect.  

Hence, the dimensions specified in the HTML pages, must be 

changed to match the dimensions of the scaled image, so that 

the scaled images are displayed properly.  Note that this may 

change the layout of the page from its designer’s intentions. 

 

 

B. Transaction Reliability 

 

We are experimenting with two examples of Customizers 

which help users deal with unreliable connections, the 

Connection Smoother and the Transaction Recorder. The 

Connection Smoother masks short-duration connection failures 

from clients with unreliable Internet connections.  During 

normal Web surfing, a browser may request a number of 

documents in parallel.  For example, if the user opens a page 

with many inline images, a separate connection may be used to 

request each of the images.  If connectivity is lost while these 

requests are pending, the browser will display broken 

placeholders for inline objects and error messages for main 

objects such as an HTML page.  The user will then have to 

reload the page after connectivity is reestablished.   

Customizers can be used to mask such failures. Consider a 

scenario where the browser and LC are co-located on the same 

client machine (as in Figure 3), and the RC is running on a 

host that has a reliable connection to the Web Server.  The 

connection between the LC and RC may be tenuous, e.g., a 

wireless link.  As part of its normal operation, the RC can 

temporarily store Web objects and have them ready for 

retransmission in case it fails to fully send them to the LC 

running on the client.  When the client's connectivity fails, the 

connection between the LC-Server and the RC-Server is lost, 

but the LC still has an open connection to the Web browser 

since they are on the same host.  The LC continuously retries 

sending the request to the RC in case connectivity is 

reestablished in a short time. If connectivity is reestablished in 
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short order, the object is successfully retrieved and the 

response is sent to the browser, and the user will notice only a 

slight delay in the retrieval of Web objects.   

As an added measure, each retry request contains a storage 

flag that informs the RC to use the previously stored object if 

it has one.  If the storage flag is absent, the RC will request a 

new copy of the Web object from the destination Web server.  

The use of this flag allows normal web-surfing semantics to be 

maintained. Thus, if the user intentionally requests a new 

version of an object after a failure, they will not receive the 

stored version since the storage flag will not be set. 

If the browser's connection times out before connectivity is 

reestablished, the LC can later send a special request to the RC 

which informs it to clear its object storage, since the stale 

objects are no longer needed.  Alternatively, the RC can be 

configured to hold objects in storage for a specific amount of 

time, if it is important that memory usage be kept to a 

minimum.  Figure 9 shows how Web transactions are handled 

by the Connection Smoother. 

 

Fig. 9. The Connection Smoother 

 The Transaction Recorder stores recent Web 

transactions at the RC in case of failure.  Unlike in the 

Connection Smoother, the LC does not automatically retry 

requests if connectivity is lost.  Instead, when connectivity is 

reestablished, the user can bring up the Customizer's 

configuration page, which contains a list of all recorded 

transactions.  This is useful for transactions, which should not 

be repeated such as transfer of money.  As soon as 

connectivity is reestablished the user can easily discover the 

results of the transaction.  If the results are not stored by the 

RC, then it did not receive the request, and hence the 

transaction was never executed.  The configuration page 

allows the user to set the number of recent transactions to be 

stored at any time. 

 A variation of the Transaction Recorder is 

background retrieval of Web objects. The user controls the 

background retrieval by clicking on a link to a Web object, 

and then aborting the transaction by pressing the stop button 

on the Browser.  Instead of the transaction being aborted 

entirely, the response is downloaded to the RC while the user 

is busy reading some other Web page.  This requires 

cooperation by the LC, since only it knows when the browser 

closed a connection as a result of the user pushing the stop 

button (because the RC does not have a direct connection to 

the browser).  If the user turns on background retrieval in the 

configuration page, then when they abort a transaction at the 

client, such as by pushing the stop button on the browser, the 

LC will not abort the transaction until after the request has 

been forwarded to the RC. Hence the RC will store the request.    

The user can then retrieve the object from the Transaction 

Recorder configuration page, which lists all stored objects.  
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This functionality is useful when dealing with slow servers.  

For clients with adequate memory, the objects can be stored at 

the LC.  Background retrieval is not active by default, and 

must be explicitly selected by the user, since it changes the 

semantics of using the Web. 

 

C.  Privacy 

 

 The Selective Encryptor Customizer encrypts 

sensitive information that passes over insecure HTTP 

connections.  Most e-commerce sites use secure connections 

for all transactions involving credit cards.  However, many 

websites freely transfer other potentially sensitive information 

such as e-mail addresses, mailing addresses, and phone 

numbers over insecure connections.  The Selective Encryptor 

uses encryption to protect that selective information from any 

host along the path from the RC to the LC.  Since wireless 

networks are generally more prone to eavesdropping than 

wired networks, the encryption can be done at a location on 

the wired network before the data passes through the wireless 

network.  The Selective Encryptor is even more beneficial 

when the RC-Server and the Web server are both in a trusted 

security domain.   Note that the information will not be 

protected by the Customizer between the Web server and the 

RC, or between the LC and the client if they are on different 

hosts.   

 

 

Fig. 10. The Selective Encryptor 

 

As this is a content-based customization, the Selective 

Encryptor only encrypts requests and responses that it detects 

contain sensitive information.  The user supplies strings to 

search for in text data including form submission, such as their 

mailing address.  The LC can encrypt requests, and decrypt 

responses which were encrypted by the RC, while the RC 

decrypts requests that were encrypted by the LC and encrypts 

responses.  Figure 10 shows how the Selective Encryptor is 

used to encrypt private data in Web requests, such as data from 

a form submitted by the user.  

 

V. PERFORMANCE OF OUR WSC IMPLEMENTATION 

 

The performance advantages derived from the ability to do 

remote customization can be negated if the underlying 

execution and communication mechanisms are slow.  The use 

of Customizers introduces overhead because there are now two 

additional service points between Web client and Web server 

that operate in both directions. While we would like this 
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overhead to be low in absolute terms, the primary goal is that it 

should be low relative to typical Web transaction times. 

We first conducted some simple Web experiments to 

determine typical Web transaction times from our site to some 

major popular sites.  We are located on a university campus 

that has excellent Internet connectivity, as one of the major 

NAPs is on our campus, and our path to the NAP is high-

speed.  All our experiments were conducted at times when 

there was very low network traffic. We used high-speed PCs, 

based on 933 MHz Pentium III processors running Solaris x86 

release 2.8, for clients, so that client delay would be low. 

Consequently, we expected the end-to-end Web transaction 

times to be relatively low and therefore good targets for 

comparison with Customizer overhead times. 

We conducted three experiments (without using 

Customizers), where in each experiment, a client made 1000 

requests directly to a Web server in an outside domain 

(pausing for 2 seconds between requests to assure quiescence).  

The three Web sites contacted were: 

 

http://www.yahoo.com/, 

http://www.suntimes.com/index/, 

http://www.cnn.com/ 

 

These sites were selected because they are popular and they 

are located in three different geographic regions. (We used   

numeric IP addresses to avoid name-server delays; this is one 

of many examples of trying to reduce all sources of 

superfluous delays.) 

The results of these experiments are as follows.  The raw 

response times ranged from 126ms to as much as 24.5 

seconds; however, the majority of response times were less 

than 500ms.  To factor out anomalies, we discounted all 

response times longer than 1 second so that the average 

response times are somewhat more representative of 

reasonably good scenarios. (Recall that our goal is to simply 

determine good-case Web transaction times so that we can 

determine the impact of Customizer overheads.) Table 1 shows 

the average response times with 95% confidence intervals for 

the three Web sites.  

 

TABLE 1 

 BASIC WEB TRANSACTION DELAYS 

 

Web Site Average Response Time (ms) 

http://www.yahoo.com/ 138 ±  0.8 

http://www.suntimes.com/index/ 404±  1.6 

http://www.cnn.com/ 475 ±  5.4 

 

 

Yahoo had an average response time of 138ms, which was 

the best of the group.  This is to be expected given that Yahoo 

is the geographically closest site to us.  The two other sites are 

significantly more distant, and this is evident in the 

measurements, both of which averaged between 400-500ms.  

Consequently, if the total overhead introduced by Customizers 

is a small fraction of these average times, we can reasonably 

conclude that this overhead is acceptable. In a second set of 

experiments, we determined the basic overhead of a 
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Customizer by measuring the delay of a “null Customizer,” 

i.e., a Customizer that does not modify the request or response, 

but simply forwards them.  We used a test program that acts 

like a Web browser, and makes requests to a local Customizer-

test environment, with Local and Remote Customizer Servers 

in place, a null RC installed on the RC-Server, and a null LC 

installed on the LC-Server. 

In the test environment, the client, LC-Server, RC-Server 

and Web server each ran on a different machine, all of which 

were PCs based on 933 MHz Pentium III processors running 

Solaris x86 release 2.8 (the same used for clients in the 

previously described Web transaction experiments).  All the 

machines were connected to an unloaded 100Mbps switched 

Ethernet LAN. The test browser program made 10000 total 

requests to the Web server’s index page (i.e., a minimal 62-

byte HTML page), pausing 50ms between requests to achieve 

quiescence between measurements. 

Table 2 summarizes the results of these experiments. The 

average response time using Customizers was 6.5ms. Of this, 

we were able to attribute 4.8ms to actual overhead due to 

Customizers, as the average communication overhead between 

the client and LC-Server was 2.2ms, that between the LC-

Server and RC-Server was 2.5ms, and the Customizer 

processing overhead was 0.1ms, leaving 1.7ms out of the 

6.5ms for the non-Customizer portion of the Web transaction 

processing and communication. We also conducted a similar 

experiment, but without Customizers, and measured an 

average response time of 1.7ms, which provides experimental 

verification of our calculation. 

 

TABLE 2 

BASIC CUSTOMIZER DELAY RESULTS. 

Measurement Time (ms) 

Response Time Using Customizers  6.5 ±  0.02 

Client to LC-Server Communication Overhead 2.2 ±  0.01  

LC-Server to RC-Server Communication Overhead 2.5 ±  0.01 

Customizer Processing Overhead 0.1 

Response Time For Direct Client To Server Requests 1.7 ±  0.02 

 

 

While one might say that 4.8ms of overhead relative to 

1.7ms for a basic Web transaction is high, this is only for the 

case where everything resides on a high-speed LAN with high-

performance clients and Web servers, and the content being 

retrieved is minimal (62 bytes). What is important is that 

4.8ms is small relative to human perception times, and is small 

relative to real Web transaction times where the delays are in 

the range of 100-500ms. This does not even take into account 

that this overhead is likely to be outweighed by the 

performance gains of using Customizers that actually do useful 

work (unlike null Customizers), such as reducing the amount 

of data being sent over the network or reducing the number of 

requests made to the end servers.  

 

 

 

VI. RELATED WORK 
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The most widespread method for adapting the Web to users’ 

needs is to use a proxy.  Traditionally proxies have been used 

primarily for security (firewalls and anonymity), and 

improving performance via caching [15].  However, there are 

a number of systems designed to use a single remote proxy for 

customizing the Web, with communication initiated through 

the browser’s proxy mechanism.  This includes image and 

video filtering, HTTP request modifications, HTML filtering, 

user interface improvements especially for small screens, 

remote caching, and support for disconnected operation and 

user-selected background retrieval [4, 8, 5, 6, 13].  Other 

systems have made use of the two-proxy (local and remote) 

concept, for such customizations as filtering, prefetching and 

intelligent cache management at the local proxy [13, 14].  

Research that is closest to ours combines the use of proxies 

with mobile code to support dynamic downloading of filters to 

a remote proxy.  Zenel uses both high-level and low-level 

proxies [25], and in [10] object migration is used to move an 

application running on a proxy to a new host in order to follow 

the movements of a mobile client. There are also 

customization systems that do not use proxies per se, but rather 

use more general mobile code mechanisms to support remote 

processing at arbitrary hosts, typically at the servers 

themselves [18, 21]. Going a step further, there are mobile 

agent systems that provide a highly generalized framework for 

code mobility [11, 9, 17, 20] that could be applied to Web 

customization.  

An alternative to application-layer mobile code is to have 

code mobility in the routers, as in the Active Networks 

approach taken in [23].  Active Networks technology is 

complimentary to application-layer solutions such as proxy-

based customization and Customizers, and is better suited to 

customization of network protocols rather than user-level data 

objects and application-layer protocols. 

A related issue is adaptability, where information is 

provided to the client application, typically from the operating 

system, to help it adapt to changes in resource availability and 

network connectivity [1, 3, 16].    Some of these systems 

include applications using an adaptable interface, including 

adaptable protocols. Kunz and Black have introduced a proxy-

based customization system that combines many of the above 

approaches [12].  They use both high and low-level proxies, 

system support for client software to be made aware of 

resource availability for adaptation, and the Objectspace 

Voyager mobile code system for dynamic distribution of code. 

Our work differs from that of others in a number of ways.  

First, We have focused on a customization system designed 

specifically for the Web, allowing us to make a number of 

simplifying assumptions regarding the programming model, 

the user model, and the system design and implementation.  

Second, we use a very restricted and therefore more simplified 

form of mobile code, rather than providing a generalized 

mobile code solution which, while more powerful, is less 

practical and is more complex in terms of usability and 

security.  Other unique features of our system include the use 

of an LC-Server that supports dynamic selection of multiple, 

simultaneously active, RCs.  RCs can make use of LCs running 

on the LC-Server.  We use a simple, callback-based 
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programming model for Customizers, and allow user-

controlled selection of the Customizers, including the location 

of the RC, through a Web interface.   

Our work is premised on the idea that Web applications 

would greatly benefit from the remote customization 

capabilities of our system.  In fact, there exists a large body of 

research results verifying the benefits of remote Customization 

of Web data using proxies, mobile code, or some combination 

thereof. In [13] performance improvements of 25%-50% were 

reported for Web browsing over a cellular link.  They used 

local and remote persistent caching, persistent connections 

between client and proxy as well as DNS prefetching to reduce 

round-trip delay, and prefetching of inline images to improve 

link utilization.  Zenel showed a 50% reduction in delay using 

HTTP protocol and text content compression for files larger 

than 16K over a dial-up connection [25].    He also found a 

significant improvement in TCP throughput over error-prone 

connections using a version of Snoop TCP [2].  Loon and 

Bharghavan used user profile-based prefetching cooperating 

with a cache, in a system with both a local and remote proxy, 

and found that Web surfing waiting times can be reduced by a 

factor of 3-7 depending upon the time of day.  According to 

[22], using remote processing to reduce the number of 

connections across a wireless link when browsing pages with 

images, can reduce response time significantly as the number 

of images in a page increases.  For a page with 16 images, the 

average waiting time is reduced by approximately 30%.  They 

also did experiments with remote compression and showed a 

48% compression rate of .au audio files and a 94% 

compression rate for .mid audio files.  In the PowerBrowser 

project, which uses a proxy filter to modify HTML pages into 

a special format to improve information retrieval time on a 

PDA with a stylus, the authors showed a 45% savings in time 

to complete tasks involving finding information on the Web 

[6].   Fox et al show a major reduction in end-to-end latency 

over a dial-up connection for image distillation that reduces 

the size and color-depth of images [8].     

 

VII. CONCLUSIONS  

 

We have presented a new Web customization architecture 

which is designed to be flexible, deployable, and user-friendly, 

and is tightly integrated with the existing Web model. The 

architecture provides a general customization framework that 

supports both content-based and system-based customization, 

and supports a variety of client-directed customization 

techniques.  

The primary advantage of the WSC architecture is that it 

allows requested server content to be modified by having it 

processed by dynamically-deployed Customizers, selectively 

located between client and server. Because of their distributed 

operation by local and remote components, Customizers allow 

communication stream content and its transmission control to 

be effectively enhanced over selective portions of the 

communication path that require special considerations in 

terms of performance, reliability, and security. 

We also presented three useful applications. We are 

currently gaining experience with using the applications.  We 
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have demonstrated that the system overhead is low relative to 

typical Web transaction times, and thus the benefits of using 

Customizers are worthwhile. 
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