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Divergent Paths or Stepping Stones:  

A Comparison of Scientists’ Advising and Founding Activities 

 
This paper investigates the difference in the profiles of university scientists 
who have founded or advised companies. We analyzed commercial activities 
of a sample of 6,138 university life scientists and found that the profiles of 
scientists who become academic entrepreneurs are different from those who 
become company scientific advisors. Founding activity occurs earlier during 
a scientist’s career cycle than advising. Factors such as gender, research 
productivity, social networks and employer characteristics also shape the 
propensity of founding and advising in different patterns. In addition, 
regression analysis shows that being a company scientific advisor decreases 
the risk of becoming an academic founder. Overall, evidence from our 
analysis suggests that founding and advising are two divergent paths for 
commercially oriented university scientists.  

 

 

 

  



1 
 

I. Introduction 

Scholars of university-industry relations have revealed multiple channels through 

which university scientists get involved with commercializing their research.   At a 

minimum, scientists can disclose their research to the technology transfer (licensing) office 

at their universities, which negotiate with industrial firms that wish to license the research 

discovery (Jensen, Thursby and Thursby, 2003; Bercovitz and Feldman, 2008). Over the 

past decades, university scientists are increasingly involved in licensing their technology to 

the industry and sometimes actively involved in the process (Thursby and Thursby, 2002; 

2004). University scientists are also reported as increasingly seeking patent protections for 

their research  ( Henderson, Jaffe, and Trajtenberg, 1998; Owen-Smith and Powell, 2001b; 

Agrawal and Henderson, 2002; Balconi, Breschi and Lissoni, 2004; Fabrizio & DiMinin, 

2004; Stephan, et al., 2004; Azoulay, Ding and Stuart, 2007, 2008; Azoulay, Michigan and 

Sampat, 2007). Alternatively, some university scientists do collaborated research with 

industrial firms in the forms of contract research (Blumenthal et al., 1986; 1996), 

consulting (Jensen, Thursby, and Thursby, 2006) or joint R&D projects (Lam, 2007). In 

the life sciences, there are a significant number of scientists who are members of scientific 

advisory boards in biotech firms (Stuart and Ding, 2006). Finally, academic scientists can 

start their own company to commercialize their discoveries. Over the past few decades, 

there has been an increasing number of university scientists who found for-profit firms 

(Etzkowitz, 1983; Shane and Khurana, 2003; Stuart and Ding, 2006). One limitation of 

these studies on university-industry channels is that most focus on only one of the 

possible routes for scientist involvement in commercial activity (Louis et al., 1989 is an 
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exception).  As a result, though we have accumulated much knowledge about the 

antecedents and consequences of a single commercial activity, we lack comparative 

analysis of various routes of commercial involvement and the relationship among them.  

We believe that a more integrative approach is important for us to better 

understand when and why university scientists embark on commercial activity. First, 

commercial activities such as disclosure, patenting, advising and founding companies call 

for different amount of input of time and effort, and can have different impact on scientist 

productivities and career trajectories. A comparative analysis of profiles of scientists who 

have engaged in different types of activities may help us understand who are inclined to 

engage in a specific activity and at which stage of their career.  Second, each of these 

commercial activities requires different financial and social resources. For example, 

disclosure and patenting might require scientists to simply have research that is worth 

reporting and seeking patent protection. In comparison, to be advisors or founders of 

companies, scientists probably face a higher threshold in terms of human capital, 

academic status and risk tolerance. It is thus necessary to have a comparative analysis of 

how various factors (e.g., researcher human capital, status and social networks) affect the 

likelihood of pursuing different commercial activities. Third, an integrated approach is 

instrumental in revealing the relationship among the activities. For example, does 

relatively “light” commercial involvement such as patenting and consulting trigger more 

intensive commercial involvement such as founding a company, or is it the case that 

scientists sort into different camps—i.e., those who are more entrepreneurial-oriented 
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versus those who are only willing to devote a fraction of their time to commercial 

activities? 

With above interests in mind, in this paper we provide a comparative analysis of 

two types of commercial activities by life sciences researchers—joining a scientific advisory 

board (referred to as SAB in this paper) of a for-profit firm versus founding a company to 

develop a technology. We choose to focus on these two activities for three reasons. First, 

compared to patenting, subsidized research and ad-hoc consulting arrangements, advisory 

and entrepreneurial opportunities allow scientists more involvement with a firm’s 

operations on a regular basis and hence more control over the process of commercial 

development of a technology. Given the degree of involvement, these activities may exert 

significant impact on the trajectories of the relevant industries. Second, we would like to 

resolve the debate on whether joining an SAB and founding a company happens early or 

later in a scientist’s career. The profiles of scientists who found companies vary with the 

theoretical models used to generate predictions. While role identity theory predicts 

academic entrepreneurship transition happens early in a scientist’s career, the academic 

life cycle model suggests that entrepreneurial transition should happen at a late stage of a 

scientist’s career. Thus, we need to know more about the profiles of the participants of 

each of these activities and whether the paths leading to the activities converge. Lastly, 

the choice is partially determined by data availability. While it is possible to survey 

current scientists’ activities and attitudes related to consulting and industry-subsidized 

research, there is no systematic longitudinal data that allow us to adequately analyze the 

relationship across activities. Founding and advising activities, however, are reported in 

  



4 
 

firms’ publicly disseminated corporate documents, hence it is feasible to construct 

historical data to trace them. 

To empirically compare the profiles of advisors and founders and find linkages 

between the two activities, we assembled a data archive with career histories of 

approximately 6,100 life scientists. They have various degrees of involvement in 

commercial science, ranging from no significant commercial involvement, to patenting, 

advising and founding companies. Because the number of scientists participating in 

advising and founding activities is small, we employed a sampling procedure known as the 

“case cohort” design. We analyzed the propensity that a scientist embarks on either 

advising or founding activities using event history models, correcting for possible bias 

caused by the sampling design.  

Among the key findings, we found that timing of advisory and entrepreneurial 

activities differ in a scientist’s career cycle. The hazard of first-time involvement in 

entrepreneurial activity peaks much earlier than that of advisory activity in a scientist’s 

life cycle. This pattern holds true for male and female, older and younger cohort of 

scientists, and for scientists employed at universities with different ranking. Second, we 

also identified differences in antecedents of the two activities including gender, research 

productivity, social network and employer influence. Lastly, in Cox regression analysis of 

whether prior advising activity increases the hazard of a scientist’s transition to 

entrepreneurship, we find no evidence supporting a sequential engagement argument. In 

fact, being a company advisor decreases the likelihood a scientist transitions into an 

academic entrepreneur. 
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II. Scientific Advisors and Founders. 

 Relatively little research has been done on the form and function of firms’ scientific 

advisory boards and their members. These boards have neither fiduciary responsibility nor 

a formal place in a firm’s governance structure. Nevertheless, they have become a quite 

common organizational feature in many high tech industries. Typically these boards are 

formed by the founding scientist very early in the development of the firm and have 

between five and ten members. Board members are rewarded with stock grants and 

consulting fees.   

What types of scientists join these scientific advisory boards? Ding, Murray and 

Stuart (2007) conducted in-depth interviews of about 50 scientists who have either joined 

SABs or are in fields that are often invited to such boards. The data they have collected 

offer some insights about the role of an SAB and who are likely to serve on them. 

Broadly speaking, SABs perform three primary functions for companies. First, 

technology intensive firms rely on these scientific advisors for their expertise, ranging from 

very specific tacit knowledge to general advice on broad scientific strategy and 

experimental design. SAB members support the firm’s internal research activities; during 

board meetings, scientists assess and critique experiments designed by the firm’s internal 

researchers and debate the direction of the next series of experiments. In general, scientific 

advisors often have a combination of deep scientific expertise and a basic understanding of 

business issues. Second, SAB members are also chosen to signal scientific quality to 

external investors. In the interviews, those who have served on SABs often likened their 
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advisory role to “window dressing”. In effect, prestigious academic scientists lend their 

reputations to the early stage firms they advise, which is thought to aid firms in the 

process of attracting resources (Stuart, Hoang, and Hybels 1999; Higgins and Gulati 2003). 

A third function  that advisors are expected to fulfill, is to bridge  their social networks to 

the firm.Advisors assist in identifying other academics that might provide a critical 

resource through collaborative research, and they locate suitable students to be hired by 

the firm (Murray 2004; Stuart, Ozdemir and Ding, 2007). Based on these descriptions, the 

image that emerges for the ideal type of scientific advisor would be a scientist who is at a 

later career stage, having deep expertise in a scientific field, is well-respected for his or her 

knowledge in a field, most likely affiliated with prestigious institutions, and possessing 

extensive collaborative networks in academia. 

The characteristics of a scientist that becomes an entrepreneur1, in comparison, are 

less straight-forward. While some theories suggest that academic entrepreneurs should 

have a different profile and motivated by different factors from advisors, other theories 

and empirical evidence find commonalities between founders and advisors.  

Social psychological research on entrepreneurship suggests that entrepreneurs 

display some unique traits than the general population. For example, Scherer (1982) and 

Sexton and Bowman (1985) found that entrepreneurs have a higher tolerance for 

ambiguity. They also found entrepreneurs generally have higher need for autonomy, 

dominance and independence, and lower need for support and conformity. Shane’s (2004) 
                                                           
1 Though the concept of academic entrepreneurs can be understood rather broadly as including those who engage in 
different types of commercial activities (e.g., patenting, consulting, sponsored research and founding companies) 
(Franzoni and Lissoni, 2007), we used the concept of academic entrepreneur to refer to those who have founded 
companies. 
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study of university-scientist-turned entrepreneurs confirm some of these findings among 

the academic entrepreneur population. He found that those scientists who have managed 

to transition to entrepreneurship have a stronger desire for wealth, a desire to bring the 

technological breakthroughs into practice, and a desire for independence and autonomy. 

The cognitive approach thus will suggest that academic founders have a different social 

psychological and behavior patterns from the advisors.  

A scientist’s transition to entrepreneurship can also be understood from the 

perspective of role identity change (Ibarra, 1999). University scientists have acquired 

strong professional identity given the duration and intensity of their academic training 

and the prevailing norms in most academic institutions. Hence, the transition from 

suspicion to acceptance of commercial activity is not likely a smooth process, during 

which many have experienced role contradictions (Owen-Smith and Powell, 2001a). 

George et al. (2005) analyzed the cognitive micro-process of academic entrepreneurs’ 

transition to entrepreneurship using a combination of both qualitative and quantitative 

data. They found that scientists engage in a sense-making process of recognizing and 

internalizing their new commercial role identity. During the process, scientists are 

motivated by a desire for wealth and concerned with how they will be perceived in their 

new role as an entrepreneur and the level of collegial and institutional support in the 

environment. Assuming that a university scientist’s identification with the role of an 

academician strengthens with the duration and intensity of the socialization process in 

academia, scientists who have stayed in academia for long duration will have a more 

difficult time making the transition to entreprenuership. These scientists have internalized 
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the ethos of the public science more deeply than their junior colleagues, hence face greater 

impediments during the transitional process. This assumption suggests that scientists who 

have successfully made the transition to entrepreneurship are likely to be at an early stage 

of their career, and have internalized the academic value system to a lesser extent.  

A third perspective on the academic-entrepreneur transition is Stephan and Levin’s 

(1996) academic life cycle model. The authors proposed a model that accounts for 

university scientists’ development of human capital and allocation of time and attention 

throughout their career cycle. They argue that academic scientists invest the early part of 

their career on accumulating human capital both for creating an area of expertise and for 

achieving important milestones (e.g., attaining tenure). This suggests that early on most 

university scientists devote the bulk of their attention to basic science research. Once 

these career goals have been reached, scientists then have more opportunities to embark 

on activities that may help gain financial returns on their human capital, among them is 

the creation of ventures to commercialize their research. Some empirical evidence lends 

support to this model (Audretch, 2000; Klofsten and Jones-Evans, 2000). From this 

perspective, we would expect that academic entrepreneurs are scientists who are at a later 

career stage and have more established reputation in their areas. Such a profile is more 

akin to that of a scientific advisor’s than what role identity theory would predict. 

A fourth perspective that offers insight into the academic-entrepreneur transition is 

the dynamics of social status. Sociological theory of status argues that individuals 

occupying the middle range of a status hierarchy are less likely to engage in activities 

unsanctioned by the environment. This is because high status provides actors with 
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adequate resources to withstand the risks associated with deviant activities. At the same 

time, when actors are low on a status hierarchy, they have little to lose if they deviate 

from the prescribed norms, hence have more tolerance of the risks associated with novel 

practices yet to be sanctioned by the environment (Phillips and Zuckerman, 2001). During 

the past few decades, venture creation was a controversial behavior for most academicians 

(Bok, 2003). Under such circumstances, one might expect that scientists who engage in 

entrepreneurial activities occupy either the high or the low end of the status spectrum in 

academia, both in terms of their academic reputation and prestige of their employers. This 

perspective, again, suggests an image of academic entrepreneurs that is different from that 

of academic advisors along dimensions including experience, human capital, prestige and 

affiliation.  

To summarize, several theories predict that academic advisors and founders should 

differ in their profiles even though they share some commonalities. While advisors are 

more likely to come out of senior, established scientists, there are reasons for expecting 

founders to emerge from both the senior, established scientists and the younger, less 

established ones. Academic entrepreneurs are expected to be more tolerant of risks and 

uncertainties than those who engage only in advising companies. While advisors’ roles are 

to offer expertise, prestige and academic networks to the firms they serve, founders are 

eager to exploit opportunities to turn their technologies into practice. Indeed, to what 

extent do these two types of scientists differ from each other is an empirical question to 

be answered by the data. 
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III. Data, Estimator and Variables 

Data and Sample Characteristics 

We assembled a data archive with career histories of approximately 6,100 life 

scientists to empirically examine the determinants, timing and rate of SAB versus 

founding activities. Because these commercial activities are rare in the population of 

university scientists, we employed a sampling procedure known as the “case cohort” 

design. This method was developed by biostatisticians and is often used to analyze events 

that are rare in general populations (Prentice, 1986; Prentice & Self, 1988).  

To construct our dataset, we first collected information about all Ph.D. scientific 

advisors and founders at every biotechnology firm that has filed an initial public offering 

(IPO) prospectus (form S1, SB2, or S-18) with the U.S. Securities and Exchange 

Commission.2 A total of 533 U.S.-headquartered biotech firms have filed papers to go 

public between 1972 (when the first biotechnology firm went public) and January, 2002. 

From these companies, we identified 821 unique members of scientific advisory boards 

with Ph.D.s (which constitute our advising event set) and 174 founders with Ph.D.s 

(which constitute our founding event set).3  

                                                           

2 For companies that filed papers to go public after 1995, IPO prospectuses are conveniently available in the SEC’s 
EDGAR database (http://www.sec.gov/edgar.shtml). We acquired the remaining S-1 forms at the SEC’s reading 
room in Washington, D.C. Not every S-1 provided detailed information about founders and advisors; we were only 
able to obtain this information for approximately 70% of the companies. 

3 A disadvantage of this design is that we missed the university researchers to have advised and founded firms that 
have never initiated an IPO procedure. Systematic data about university scientists involved in founding and advising 
private biotech companies over the past three decades are very difficult to collect. Hence, the advising and founding 
activities we analyzed in this paper are limited to relatively more successful biotech companies.  
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We then drew a stratified, random sample of 13,564 doctoral degree holders listed 

in the UMI Proquest Digital Dissertation database, matching the disciplinary composition 

and Ph.D. year distribution with our event set (e.g., 15 percent of biotechnology firm 

advisors are biochemistry Ph.D.s earned in 1975, so the random sample contains 15 

percent biochemistry Ph.D.s earned in 1975). Thus, the randomly drawn sub-cohort of 

scientists resembles the event set scientists in the distribution of subject fields and degree 

years. The majority of scientists in our sample are in the life sciences and Table 1 reports 

the top 15 subjects in the sample. The members of this sample are then prospectively 

followed from the time they earned a Ph.D. degree. We created publication histories for 

all scientists in our database and used the affiliations listed on papers to identify each 

scientist’s employer and, assuming frequent enough publications, to track job changes. 

The final matched sample contains 5,143 scientists in the randomly drawn sub-cohort, 

augmented by the 995 event cases (i.e., founders and SAB members). 

--- INSERT TABLE 1 ABOUT HERE --- 

The Estimator 

We modeled the hazard rate of scientists’ advising or founding biotech startups 

with an adjusted Cox model that employs a pseudo-likelihood estimator (Barlow 1994) to 

account for over-representation of the event observations. Each scientist is considered at 

risk of engaging in commercial science at the later of: (i) the time that he or she is issued 

a Ph.D. degree, or (ii) the year 1961, when the first ever biotechnology company was 
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established. Letting Zi(t) be a vector of covariates for individual i at time t, the individual 

i’s hazard can be written: 

λi (t; Zi) = λ0 (t) ri (t)        (1) 

where  

ri (t) = exp [ β' Zi (t) ]       (2) 

gives the ith individual’s risk score at time t, β is a vector of regression parameters, and 

λ0(t) is an unspecified baseline hazard function. Estimation of β typically is based on the 

partial likelihood: 

∏
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where Yk(t) indicates whether person k is at risk at t and Yi(t) indicates whether person i 

has experienced an event at t. Equation (3), however, produces biased estimates if applied 

to case-cohort data. This occurs because including all events in a population and a 

randomly drawn sub-cohort of (mostly) censored cases causes the proportion of events in 

the dataset to over-represent the proportion of events in the actual population. This in 

turn results in an incorrect computation of the event cases’ contribution to the Cox score 

function.  

To address this problem, biostatisticians have proposed a pseudo-likelihood 

estimator. Letting S denote membership in the sub-cohort, the pseudo-likelihood can be 

written: 
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where the wi(t) and wk(t) in the denominator are weights assigned to each observation in 

the risk set, and all other terms are as defined above. The numerator of the pseudo-

likelihood (eq. 4) is equivalent to that of the partial likelihood (eq. 3). The first term in 

the denominator of equation (4) represents the contribution of the event cases to the 

likelihood and the second term represents the contribution of the randomly drawn sub-

cohort members in the risk set. We use a modification of the weighting scheme proposed 

by Barlow (1994). In it, the event case weight wi(t) is always “1,” and the weights on the 

members of the sub-cohort, wk(t), are 1 / pk, where pk is the probability that member k of 

the matched sample is drawn from the relevant population and remains in our data set. 

Our goal is that with the application of different weights, the contribution of the event 

and matched sample observations will be more in line with the (true) underlying 

population.4

Variables 

 We analyzed two commercial activities by university scientists: (i) founding one or 

more for-profit companies, and (ii) joining companies’ scientific advisory boards. We 

identified advising and founding information from biotech firms’ IPO prospectus 

documents. Most firms report their founders in their IPO prospectuses. Even though this 
                                                           
4 The Pseudo-likelihood estimator for Cox model is similar to the weighted exogenous maximum likelihood 
sampling (WESML) estimator proposed by Manski and Lerman (1977). In the empirical example, Manski and 
Lehman used a logistic model that incorporate weights to adjust for the over-sampling of events. 
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is not legally required, research-intensive firms such as biotechs often opt to report them 

to increase their legitimacy, particularly when university-affiliated scientists are involved 

in the founding process. For companies that do not report founder information in the 

prospectuses, we conducted a thorough web search to fill in the missing information. We 

used the date of firm incorporation as the year in which a scientist founded the firm. 

Hence, for an entrepreneurial scientist, the incorporation year of the first firm he or she 

founded is the year of his or her first-time transition to entrepreneurship. 

In comparison, there is more information about company SAB members, if the 

company has an SAB. However, for SAB members, the difficulty is that most 

prospectuses do not provide information on when a scientist joined the SAB. We assume 

that an SAB member joins at the time of firm founding, thus when a scientist joins his or 

her first SAB, we coded him or her as experiencing the first SAB event when the firm he 

or she joined was founded. 

  We constructed several measures of individual level variables that may affect 

commercial activities. We coded gender based on scientists’ first names. From the Web of 

Science we retrieved annual research publication count (publication flow) for each 

scientist. We counted all papers on which a scientist is listed as an author. We also 

computed each scientist’s cumulative research publication count (publication stock) and 

updated the measure annually. To measure a scientist’s standing in academia, we 

computed the total citation count a scientist has received.  The Web of Science database 

supplies the total citation count for each published article at the time we downloaded 

these data (i.e., 2002). Thus, we know the total number of citations garnered by all 
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articles in our database between the date of publication and calendar year 2002. However, 

to compute annually updated citation counts we need to know the total number of 

citations each article has received up to any given year. We therefore must distribute each 

paper’s total citations backward through time. We did so by assuming that the arrival of 

citations follows an exponential distribution with hazard rate (i.e., inverse mean) equal to 

0.1. The bibliometric literature suggests that citations accumulate according to an 

exponential distribution (Redner 1998). We assume that this distribution is true of the 

typical paper in our database.  

 We included several measures for the commercial orientation of scientists’ research. 

First, using the informative keywords reflected in the titles of scientists’ research papers, 

we computed a patentability score to proxy the extent of commercial appeal of a 

scientist’s research. The details of this measure are described in Appendix 1. Second, since 

collaboration with company scientists often indicate projects to solve industrial problems, 

we counted the total number of company scientists with whom a scientist has coauthored 

by a given year, and again updated this variable every year. Third, we gathered scientists’ 

patents from NBER patent database and computed yearly updated patent application 

flow and stock. High research patentability score, high number of industrial collaborators, 

and more patent applications are associated with stronger commercial orientation of a 

scientist’s research. 

We also included two measure of a scientist’s network structure. First, as a general 

measure of a scientist’s academic network, we computed the total number of coauthors he 

has accumulated in his research publications. Having more coauthors indicates an 
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extensive social network in academia. Second, we counted and annually updated the 

number of scientist-turned-entrepreneurs (i.e., university scientists in our sample who 

have already become founders) with whom a scientist has co-authored publications. 

At the institutional level, we included three measures of a scientist’s employing 

university. First, we enter a dichotomous measure of the ranking of a scientists’ employer, 

which is a dummy variable indicating whether or not a scientists’ employer was ranked in 

the Top 20. Specifically, we collected the Gourman Report rankings for all institutions in 

our dataset. Gourman rankings are available at the field level and were issued for the first 

time in 1980. We assigned universities the 1980 ranking for all years prior to 1980 (and 

updated them every other year for the subsequent period). Second, we used the AUTM 

surveys (AUTM, 2003) to create a technology transfer office (TTO) dummy variable, 

which is set to one in all years when a scientist’s employing university has an active TTO. 

Finally, we counted the number of patent applications filed by a scientist’s employer 

university and used the employer patent count as a more nuanced measure of how 

effective the university’s TTO is in facilitating the transfer of academic science to the 

commercial sector. 

 To control for period-specific effects, we created a series of dummies of 3-calender-

year windows. These dummies and the Ph.D. subject field dummies are included in all 

models. 

 

IV. Results 
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We conduct the following comparison of scientists’ advising and founding activities. 

First, we draw unconditional hazard graphs that reveal the timing of scientists’ first-time 

engagement in advising or founding activity. Second, we run Cox proportional hazard 

models that estimate the effects of individual, peer and institutional factors on the 

likelihood that a scientist engages in one of the activities. Table 2 reports descriptive 

statistics. 

--- INSERT TABLE 2 & FIGURE 1 ABOUT HERE --- 

Unconditional Hazard Profiles 

 When do scientists start engaging in advising and founding activities? Figure 1 

summarizes unconditional hazard of the first time commercial engagement, broken out by 

activity type. In the founding graph of the top row, we present the risk that a scientist 

founds a company at different stages of his professional life cycle. The graph for advising 

activity in the first row presents the risk that a scientist becomes a SAB member at 

different stages of his professional life cycle. Kernel smoothing method is used in drawing 

the unconditional hazard graphs.  

The graphs suggest that the two activities take place at different points in a 

scientist’s career cycle. As we have expected, advising tends to happen at a later 

professional age, as the role of a scientific advisor requires that the scientist has 

established his human capital and reputation in the academic community and has 

accumulated significant academic networks. In comparison, those who found companies to 

commercialize their discoveries are relatively younger—the hazard of founding a company 
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peaks at around 12 years after the Ph.D. is granted while the hazard of joining a SAB 

peaks at a much later point, about 31 years after the Ph.D grant. In addition, the 

propensity to advise companies climbs up gradually as a scientist gets more experienced. 

For founding activity, however, the propensity increases relatively more precipitately 

during a scientist’s career, but decreases gradually once it has peaked. 

The next few sub-graphs in Figure 1 break down the comparison by cohort, gender 

and employer prestige. First, we ask whether the career cycle effect on SAB and founding 

activities is stable over time. Past research has suggested vintage effects on scientists’ 

research productivity (Levin and Stephan, 1991; Levin and Stephan, 1992) and 

commercial orientations (Ding, Murray and Stuart, 2006). We examined the hazard 

curves separately for two different Ph.D. cohorts—those who obtained their Ph.D. in or 

before 1973 and those with a Ph.D. between 1974 and 1984.5 The hazard of both founding 

and advising companies for the younger cohort increases faster than the older cohort of 

scientists, and they peak at an earlier professional age. The hazard of founding activity of 

the younger cohort peaks around 10 years after the Ph.D. is granted, much earlier than 

the 16th year point of peak hazard for the older cohorts. A similar trend is found for the 

hazard of advising companies. It seems that the younger cohorts are more open to 

commercial opportunities overall. However, founding events tend to take place at an 

earlier career stage than advising, which is consistent with the earlier finding. 

                                                           
5 The year 1973 is chosen as a cutoff because it is the median value of the Ph.D. year variable. In drawing these 
graphs, we excluded scientists with a Ph.D. degree after 1984 because the window of observation might not be long 
enough to draw the hazard graph properly. 
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The two graphs in the third row of Figure 1 break down the hazard rate of the two 

events by gender. Consistent with prior research (Ding, Murray and Stuart, 2007; Murray 

and Graham, 2007), women are much less likely to either found or advise companies. For 

both activities, the hazard rate of women scientists never passes those of men. The general 

pattern in the overall sample—that founding tends to happen earlier than advising, 

remains valid for both men and women scientists. However, it is worth noting that the 

hazard of women’s advising activity peaks much earlier than men’s (for women, the 

hazard of advising peaks around 20th year after the Ph.D. is granted, which predates the 

33-year-or-so wait time for male scientists to reach peak hazard). This could have to do 

with the demographics of women advisors. Ding et al. (2006) found that female scientists 

who venture into the commercial arena (e.g., patenting research discoveries) are more 

likely to come from the younger cohort, who seems to be less hesitant at commercial 

engagement at an earlier career stage.   

The last row in Figure 1 compares the hazard of founding and advising across 

scientists employed by universities with different prestige. For a scientist working at a 

university ranked below top 20, the hazard of founding companies arrives at its peak 

around the 13th year after the Ph.D. is granted, much earlier than that of advising 

companies, which peaks close to the end of a scientist’s career. However, for a scientist 

who works at a top-20 university, though the actual shape of the hazard curves differ by 

activity type, the peaks of both hazards arrive at a similar career stage—between the 25th 

and 30th year after the Ph.D. grant. It is also interesting to note that though overall 

hazards of founding and advising are lower for lower ranked university scientists, the 
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shape of the hazard curves for these scientists are quite different from the curves of their 

counterparts employed in higher ranked universities. For founding events, scientists 

working at lower ranked universities are at their highest risk much earlier than those 

working in top ranked schools. In contrast, for advising events, scientists working at lower 

ranked universities are at their highest risk somewhat later than their counterparts in top 

schools. Two reasons might explain this observation. One, lower ranking university 

scientists have less vested interests. They stand to lose less in transitioning towards 

entrepreneurship, hence might have more incentives to make the transition early on in 

their career. Two, advisors are invited based on their deep expertise, academic reputation 

and extensive social networks. Higher ranking university scientists have more 

opportunities to obtain these credentials and meet the requirements for an advisor faster 

than scientists working for less well-known employers. 

To summarize, in comparing unconditional hazard curves, we find that founding 

activities tend to take place at an earlier stage of a scientist’s professional life cycle than 

advising. Moreover, the sub-graphs in the last row also hint to us that founders and 

advisors are likely to command different levels of human or social capital. 

 

Antecedents of Founding and Advising Companies 

 In this section, we assess the impact of factors that can potentially influence 

scientists’ propensity to advise or found a biotech company. Table 3 reports Cox 

proportional hazard models of founding and advising companies, with weights included to 

adjust for case cohort sampling design. Models 1a and 2a use the full sample as the risk 
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pool. Models 1b and 2b replicate the results in 1a and 2a with a restricted sample—all 

advising scientists (i.e., those who advised one or more companies in their life time, 

regardless of the timing of their first advising activity) have been excluded in the 

estimation of model 1b and all founding scientists (i.e., those who founded one or more 

companies in their life time, regardless of the timing of their first founding activity) have 

been excluded from the risk pool of model 2b. These models are estimated to ensure that 

different specifications of the risk set do not lead to significant difference in the results. 

Because the set of results of models 1a and 2a do not differ substantially from those of 

models 1b and 2b, we focus on comparing the results of 1a and 2a in the following section. 

--- INSERT TABLE 3 & FIGURE 2 ABOUT HERE --- 

 Our first observation is that the directions of the effects of most of the included 

variables do not differ between founding and advising activities. Figure 2 presents the 

standardized coefficients of models 1a and 2a in Table 3. Except for the effects of 

publication stock and number of coauthors, most factors either increase the probability of 

both founding and advising activities or decrease these probabilities.  

 However, when examining the strength of effects of these factors, we find that 

several of them show notable differences. Among the factors that significantly shape the 

propensity of founding or advising activity, the impact of gender is one of the strongest. 

The chance of a female scientist to become a founder is only 22% than that of a male 

scientist while the propensity of a female scientist to become a company advisor is only 

37% than that of her male colleagues. Though in both areas female lag behind male 
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scientists, the gender gap for advising, a less deviant and risky activity for university 

scientists, is about one third narrower than the gender gap in founding.  

Next, research productivity affects advising and founding differently. 

Contemporaneous research productivity (publication flow) has a weakly significant and 

positive effect on founding but no significant effect on advising. The magnitude of the 

effect of publication flow is also much higher in the founding model than in the advising 

model. This suggests that contemporaneous productivity is more important for founders 

than for advisors. In contrast, long-term research productivity reflected in publication 

stock has significant effect on advising and no effect on founding. This might be due to 

the fact that scientists found companies to capture the scientific opportunities in their 

recent surge of scientific discoveries. Hence, when a scientist has a good run of research 

and made some potentially commercially valuable discoveries, he is more likely to 

capitalize on the scientific breakthrough and make the transition into entrepreneurship. In 

comparison, advisors are sought after for their deep expertise and academic reputation. 

Hence, when a scientist enjoys high level of research publication stock, it makes him a 

more attractive candidate for the role of a scientific advisor. Total citation count seems to 

affect equally founding and advising. 

 How does scientists’ research orientation affect founding and advising? Among the 

variables, research patentability score increase both founding and advising propensities. 

One standard deviation increase in research patentability score raises the probability of 

founding by 26 percent and the probability of advising by 29 percent. The other factor 

that significantly affects both founding and advising is scientists’ patent flow. This factor 
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increases the propensity of founding by 8.2 percent and the propensity of advising by 6.5 

percent. The number of industry coauthors and patent stock do not affect the two 

commercial activities significantly. Hence, overall scientists’ research orientation has 

similar effect on founding and advising.  

 A scientist’s social network is important in explaining academic scientists’ 

commercial engagement (Shane and Cable, 2002; Stuart and Ding, 2006). In our models, 

two variables have been included. Among them, the effect of the number of academic 

coauthors (measuring the overall extensiveness of a scientist’s academic network) differs 

substantially between founding and advising. While the variable has no effect on founding, 

a good academic network helps increase the propensity to become an advisor significantly 

(one standard deviation increase in the number of academic coauthors raises the hazard of 

advising by 9 percent). However, the effect of the more instrumental type of network—

ties to coauthors who have already transitioned to entrepreneurship—shows a different 

pattern for the two activities. One standard deviation increase in the variable “number of 

academic entrepreneurs (AE) coauthors” raises the hazard of founding by 19 percent while 

one standard deviation increase in this variable raises the hazard of advising by only 14 

percent, slightly lower than that for founding. This confirms our expectation that 

scientific advisors and academic entrepreneurs need to bring different types of human and 

social capital into their new roles. One key value of advisors is to help a firm with their 

extensive academic networks in evaluating scientific projects and hiring key employees. 

Hence, maintaining an extensive academic network is crucial for advisors. Founders, on 

the other hand, benefit more from task-specific social network ties. Knowing other 
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university-scientist-turned entrepreneurs provides access to information on how to 

navigate through patent process, negotiate with the TTO office, negotiate contracts with 

potential business partners, or how to manage a new venture. Thus, having 

entrepreneurial coauthors may reduce the hurdles in the process of the entrepreneurial 

transition and significantly increases the propensity of founding a firm. 

 Finally, the institutional environment may affect how scientists perceive 

commercial activities (Krimsky, 2003; Kenny and Goe, 2004). In our models, all 

institutional variables appear to affect the propensity of founding and advising. The effect 

of employer patent count is the same on founding and advising. However, employer 

ranking and institutional support for commercial activity show different impact on 

founding and advising. Being employed by the top 20 universities helps increase the 

propensity of founding by 57 percent and advising by 105 percent. The effect of a 

prestigious employer on advising is about twice that on founding. Consistent with 

previous research (Colyvas, 2007), being employed by universities with a technology office 

raises the probability of founding by 68 percent and the probability of advising by 36 

percent. Thus founding activity seems to benefit from university institutional support 

while the advising activity seems to benefit more from university prestige. 

  To summarize, we find that antecedents of scientists’ commercial activities differ 

by the activity type. First, women scientists are less likely than men to become either 

founders or advisors, but the negative effect of gender is stronger for founding than 

advising. Second, research productivity affects the two activities differently. While the 

surge in contemporaneous research productivity is associated higher risk of founding firms, 

  



25 
 

high level of long-term research productivity is associated with higher risk of advising 

firms. Third, founding and advising are also affected by a scientist’s social network. 

Having network ties with other scientists who have already become entrepreneurs 

increases the propensity of founding more than advising, but it is the general academic 

network that helps scientific advisors most. Lastly, institutional support at a scientist’s 

employing university (e.g., having a technology transfer office) raises his propensity of 

founding a firm about twice as much as that of advising a firm while the university 

employer’s prestige increases a scientist’s advising risk twice as much as it does to the 

founding risk. 

Are Advisors More Likely to Found Companies? 

In this section, we explore whether advisors are more likely to become founders, or 

whether scientists focus on one activity and ignore the other. Among all scientists in the 

sample who have founded or advised companies, 71 (7%) of them have engaged in both 

founded and advised companies. It is likely that becoming an advisor triggers scientist’s 

interests in becoming an entrepreneur. Or it is likely that scientists tend to use an 

advisory opportunity as a way to learn how to start up his or her own company.  

--- INSERT TABLE 4 ABOUT HERE --- 

Table 4 reports results from the adjusted Cox model of hazard of founding a firm. 

The first model in this table uses the full sample and the same set of variables as in Table 

3. The new variable included in this model is a “SAB dummy”, which indicates whether a 

scientist has been a scientific advisor at any point during his career. The result of model 1 
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in this table suggests that those scientists who have or will become advisors are less likely 

to become company founders. Being an advisor lowers the risk of founding a company by 

half.  

Model 2 uses a different indicator of a scientist’s advising activity. We included a 

“SAB regime dummy” which is coded 1 in years after a scientist has advised a company. 

This is to test whether the actual advising experience increases the likelihood of founding 

a firm. Because the randomly selected university scientists can dilute the risk pool, we 

used a restricted sample of all scientists who have experienced either a founding or 

advising activity in this model. The result of model 2 suggests that once a scientist has 

advised a company and entered the advisory regime, his probability to become a founder 

is reduced by half when compared to other commercially oriented scientists.  

In both models, being a SAB or the experience of SAB appear to have a negative 

effect on a scientist’s propensity to found a company. Together, the results suggest that 

the founding and advising are two separate paths and those scientists who are likely to 

advise companies are no more likely to found companies than the group of scientists who 

have never been an advisor. 

 

IV. Conclusion  

We investigated the question whether university scientists who have become 

company scientific advisors differ in profile from those who have become company 

founders. We constructed a case cohort sample that consists of (i) all Ph.D.-trained 

university scientists who have been reported in biotech firms’ IPO documents as either 
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founders or scientific advisory board members, and (ii) a stratified random sample of 

scientists who are university faculty members, from corresponding Ph.D. years and fields. 

We follow the career development, research productivity and commercial activity of the 

combined sample of approximately 6100 scientists. We analyze the timing and 

determinants of advising and founding activities of these scientists. 

Our results find differences in the effects of scientists’ career cycle and various 

determinants of founding and advising activities. First, examining the timing of founding 

and advising activities during scientists’ career cycle reflected in unconditional hazard 

graphs, we found that the probability of founding rises relatively faster than that of 

advising and peaks much earlier in one’s  career cycle. Next, Cox regression analysis 

suggests that human capital, social capital and institutional characteristics affect founding 

and advising differently. The gender gap is more significant for founding than for advising. 

Contemporaneous research productivity boosts founding while long-term research 

productivity boosts advising. Different types of social networks and institutional support 

also contribute differently to  advising and founding activities. Lastly, regressions that 

assess the effect of scientists’ advising experience show that being an advisor negatively 

influences the propensity to become a founder. Together, these results lend more support 

to the view that founding and advising represents divergent paths for commercially-

oriented scientist, rather than the view that one is a stepping stone for another.
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Table 1 

Top 15 Scientific Disciplines Spawning Biotechnology 
Company Scientific Advisors 

UMI Subject 
Code 

UMI Subject Description Match Sample 
Frequency 

487; 303 Biochemistry 1,161 (22.5%) 

306 Biology, General 608 (11.8%) 

410 Biology, Microbiology 503 (9.7%) 

369 Biology, Genetics 301 (5.8%) 

419 Health Sciences, Pharmacology 298 (5.8%) 

490 Chemistry, Organic 288 (5.6%) 

433 Biology, Animal Physiology 253 (4.9%) 

786 Biophysics, General 234 (4.5%) 

301 Bacteriology 192 (3.7%) 

982 Health Sciences, Immunology 181 (3.5%) 

307 Biology, Molecular 114 (2.2%) 

485 Chemistry, General 98 (1.9%) 

472 Biology, Zoology 74 (1.4%) 

494 Chemistry, Physical 71 (1.4%) 

571 Health Sciences, Pathology 71 (1.4%) 

Legend:This table reports the 15 disciplines that produced the most 
biotechnology company SAB members. This table also reports the number of 
scientists (and proportions of the overall total) in our random sample. The 
proportions are set to match the disciplinary composition of the SAB members 
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Table 2 

Descriptive Statistics 

 Mean Std. Dev. Min. Max. N 

Publication flow 2.214 3.595 0 157 121094 

Publication stock 28.91 55.45 0 2262 121094 

Total citation count  16.01 21.42 0  647.4 121094 

Research patentability score 0.048 0.085 0 4.112 121094 

Number of industry coauthors 2.025 9.548 0 453 121094 

Patent Flow 0.069 0.462 0 36 121094 

Patent Stock 0.594 3.404 0 142 121094 

Number of coauthors  21.16 36.54 0 1134 121094 

Number of AE coauthors 0.222 0.873 0 32 121094 

Employer in top 20 0.274 0.446 0 1 121094 

Employer has TTO 0.469 0.499 0 1 121094 

Employer patent count 81.73 187.2 0 2189 121094 

Experience (Career Age) 13.58 9.920 0 45 121094 

Female 0.177 0.382 0 1 6138 
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Table 3 Cox Proportional Hazard Model of Advising and Founding Firms 

     (1a)     (1b)     (2a)     (2b) 
  Founding  Founding  Advising  Advising 

-1.553 -1.342 -0.981 -0.937 
Female 

(0.437)** (0.382)** (0.185)** (0.185)**

0.061 0.062 0.009 0.006 
Publication flow t-1 (0.036)† (0.043) (0.016) (0.016) 

-0.002 0.001 0.006 0.006 
Publication stock t-2 (0.004) (0.003) (0.001)** (0.001)**

0.012 0.013 0.013 0.013 
Total citation count t-1 (0.001)** (0.002)** (0.002)** (0.002)**

2.820 3.573 3.927 3.939 
Research patentability score t-1 (0.247)** (0.643)** (0.264)** (0.270)**

0.004 -0.021 -0.024 -0.021 
Number of industry coauthorst-1 (0.017) (0.036) (0.017) (0.016) 

0.192 0.188 0.177 0.185 
Patent flow t-1 (0.041)** (0.041)** (0.028)** (0.028)**

0.014 0.016 0.009 0.006 
Patent stock t-2 (0.012) (0.012) (0.008) (0.008) 

-0.0004 -0.001 0.003 0.003 
Number of coauthors t-1 (0.003) (0.003) (0.001)* (0.001)*

0.205 0.401 0.254 0.260 
Number of AE coauthors t-1 (0.064)** (0.085)** (0.066)** (0.067)**

0.448 0.346 0.716 0.691 
Employer in top 20 

(0.208)* (0.211) (0.116)** (0.118)**

0.520 0.508 0.311 0.284 
Employer has TTO 

(0.212)* (0.218)* (0.110)** (0.111)*

0.001 0.002 0.001 0.001 
Employer patent count 

(0.0004)** (0.0004)** (0.0003)** (0.0003)**

Risk pool excluding  Advising 
scientists 

 Founding 
scientists 

Number of subjects 6138 5381 6138 5995 
Number of events 174 174 821 786 
Time at risk 119885 97772 111953 109444 

Notes: 
(1) All models control for 3-year period dummies and Ph.D. field dummies. 
(2) Founding-event-specific Barlow weights are applied to Model 1a and 1b to adjust for over-
sampling of founders; advising-event-specific Barlow weights are applied to Model 2a and 2b to 
adjust for over-sampling of advisors. 
(3) Robust standard errors in parentheses;  
(4) † significant at 10%; * significant at 5%; ** significant at 1%  
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Table 4 
Cox Proportional Hazard Model of Founding Firms 

     (1)     (2) 
-1.430 -1.342 

female 
(0.391)** (0.644)**

0.047 0.034 
Publication flow t-1 (0.032) (0.039) 

-0.001 -0.007 
Publication Stock t-2 (0.003) (0.004)†

0.011 0.001 
Total citation count t-1 (0.002)** (0.002) 

2.148 0.417 
Research patentability score t-1 (0.239)** (0.499) 

0.007 0.006 
Number of industry coauthors t-1 (0.006) (0.004) 

0.195 0.187 
Patent flow t-1 (0.045)** (0.065)**

0.003 0.011 
Patent stock t-2 (0.016) (0.028) 

0.0005 -0.001 
Number of coauthors t-1 (0.002) (0.003) 

0.088 0.003 
Number of AE coauthors t-1 (0.058) (0.085) 

0.402 -0.286 
Employer in top 20 

(0.198)* (0.271) 
0.571 0.153 

Employer has TTO 
(0.203)** (0.244) 
0.001 0.001 

Employer patent count 
(0.0004)** (0.0004)†

-0.687  
SAB dummy 

(0.309) *  
 -0.729 

SAB regime dummy 
 (0.298) *

Risk pool All Founders and Advisors 
Number of subjects 6138 936 
Number of events 174 174 
Time at risk 119889 24728 
Notes: 
(1) All models control for 3-year period dummies and Ph.D. field dummies. 
(2) Founding-event-specific Barlow weights are applied to all models. 
(3) Robust standard errors in parentheses.  
(4) † significant at 10%; * significant at 5%; ** significant at 1%.   

  



37 
 

  

.0005

.001

.0015

.002

1 5 9 13 17 21 25 29 33

Experience

Founding

.002

.004

.006

.008

.01

.012

1 6 11 16 21 26 31 36 41

Experience

Advising

0

.001

.002

.003

.004

1 4 7 10 13 16 19

Ph.D. year prior to 1973 Ph.D. year 1974-1984

0

.005

.01

.015

1 4 7 10 13 16 19

Ph.D. year <= 1973 Ph.D. year 1974-1984

.0005

.001

.0015

.002

.0025

1 5 9 13 17 21 25 29

Male Female

0

.005

.01

.015

1 6 11 16 21 26 31 36 41

Male Female

.0005

.001

.0015

.002

.0025

.003

1 5 9 13 17 21 25 29

Below top 20 In top 20

0

.005

.01

.015

.02

1 6 11 16 21 26 31 36 41

Below top 20 In top 20

Figure 1: Comparison of Unconditional Hazards
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Figure 2 
Antecedents of Advising and Founding Activities: Comparison of Standardized Coefficients 

 
Legend: Figure 2 compares the standardized coefficients reported in Table 3. The value for each variable 
is obtained by multiplying the raw coefficient for the variable with its standard deviation. The exceptions 
are made for the three dummy variables: “female”, “employer in top 20”, and “employer has TTO”. The 
values for these variables presented in the graph are obtained by multiplying raw coefficients with value 
1. The values for the variable “female” are also rescaled (divided by 3) for this presentation purpose.
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Appendix 1 

We attempt to measure patentability directly by using the title words in scientists’ 
publications. We first identify the areas in which the scientists have conducted research, 
and then apply weights to thesis (or subject) areas based on an endogenous-to-the-sample 
measure. This measure is endogenous to the extent that other scientists working in these 
subject areas have patented their discoveries. Intuitively, we use the publications of 
scientists that have already applied for patent rights as the benchmark for patentable 
research, and then compare the research of each scientist in our dataset to this benchmark 
to generate a research patentability score for each scientist-year. Specifically, the research 
patentability (RP) score for scientist i in year t is defined as: 

 
where j = 1, . . . , J indexes each of the scientific keywords appearing in the titles of the 
journal articles published by scientist i in year t,  is the number of times each of the 
keywords j has appeared in scientist i’s articles published in year t, and  is a weight for 
each keyword that measures the frequency with which word j is used in the titles of 
articles published by scientists who have entered the patenting regime in year t or earlier, 
relative to those who have not entered the patenting regime as of year t (the calculation 
of   is detailed below). Intuitively, the patentability of a scientist’s research can change 
because of a change in the direction of the research of that scientist, or because other 
patenters’ research increasingly comes to resemble that of the scientist. The former effect 
is captured by the ratio ; the latter by the weights . Because the benchmark in 

year t − 1 is used to weight title words in year t, year-to-year changes in the research 
patentability score will only reflect actions of the scientist (through their choices of title 
keywords), rather than contemporaneous changes in the benchmark. 

Finally, to capture the idea that the inherent patentability of past research might 
still influence the current propensity to patent, we compute a depreciated stock of the 
research patentability score using a perpetual inventory model. Through the impact of the 
depreciation rate , this formulation captures the fact that the recent substantive research 
orientation of a scientist’s work should influence current behavior more strongly than 
scientific trajectories that unfolded in the more distant past: 
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Keyword Weights 

 , the patentability weight for each keyword j in year t is defined as: 

 
where  denotes the number of times keyword j has appeared in articles published up 
to year t by scientist s, is the subset of scientists in our sample that have already 
applied for one or more patents as of year t, and is the subset of scientists in our 
sample that have not yet applied for any patent as of year t. The weight is also indexed 
by scientist i, because i’s publications are taken out of the set of articles used to compute 
the formula above. 

To create the numerator of , we first create a row-normalized matrix with each 
scientist in the patenting regime listed in a row and each of the keywords used to describe 
their papers up to year t listed in a column. The  cell in the matrix, , corresponds 

to the proportion of title keywords for scientist s that corresponds to keyword j. We then 
take the column sums from this matrix, i.e., we sum the contributions of individual 
patenting scientists for keyword j. Turning next to the denominator, we proceed in a 
similar manner, except that the articles considered only belong to the set of scientists who 
have not applied for patents as of year t. The numerator is then deflated by the frequency 
of use for j by non-patenters (in the rare case of keywords exclusively used by patenters, 
we substitute the number 1 for the frequency). 

The weights  are large for keywords that have appeared with disproportionate 
frequency as descriptors of papers written by scientists already in the patenting regime, 
relative to scientists not yet in the patenting regime. 

Two things should be noted about the construction of these weights. First,  = 0 
for all keywords that have never appeared in the titles of papers written by scientists that 
have patented before t. Second, the articles written by scientist i him/herself do not 
contribute at all to the weights . Therefore, no scientist can directly influence year-to-
year changes in these weights. The final step for each scientist i in the dataset is to 
produce a list of the keywords in the individual’s papers published in year t, calculate the 
proportion of the total represented by each keyword j, apply the appropriate keyword 
weight  and sum over keywords to produce a composite score. The resulting variable 
increases in the degree to which keywords in the titles of a focal scientist’s papers have 
appeared relatively more frequently in the titles of other academics who have applied for 
patents. This score is to measure the research patentability of scientists’ areas of 
specialization. 

 

  




