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ABSTRACT OF THE DISSERTATION

SEEM: A Kernel-Based Fictitious Domain Method

By

Daniel Joseph Agress

Doctor of Philosophy in Mathematics

University of California, Irvine, 2020

Professor Patrick Guidotti, Chair

This thesis presents SEEM (Smooth Extension Embedding Method), a novel approach to the

solution of boundary value problems within the framework of the fictitious domain method

philosophy. The salient feature of the novel method is that it reduces the whole boundary

value problem to a linear constraint for an appropriate optimization problem formulated in

a larger, simpler set which contains the domain on which the boundary value problem is

posed and which allows for the use of straightforward discretizations. It can also be viewed

as a fully discrete meshfree method which uses a novel class of basis functions, thus building

a bridge between fictitious domain and meshfree methods.

SEEM in essence computes a (discrete) extension of the solution to the boundary value

problem by selecting it as a smooth element of the complete affine family of solutions of the

original equations, which now yield an underdetermined problem for an unknown defined in

the whole fictitious domain. The actual regularity of this extension is determined by that

of the analytic solution and by the choice of objective functional. Numerical experiments

are presented which demonstrate that the method can be stably used to efficiently solve

boundary value problems on general geometries, and that it produces solutions of tunable

(and high) accuracy. Divergence-free and time-dependent problems are considered as well.

xii
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Chapter 1

Introduction

In this thesis, a novel optimization approach is proposed for the resolution of general bound-

ary value problems on complex geometries. The approach is a hybrid of the meshfree col-

location and the fictitious domain methods for solving boundary value problems. As will

be demonstrated, this method not only establishes a direct connection between these two

general approaches but also combines their strengths.

Partial differential equations are ubiquitous in mathematics, science, and engineering. Thus,

the study of numerical methods for PDEs is a fundamental task of applied mathematics

and many classes of methods have been developed and studied. The most established and

commonly used numerical methods for solving boundary value problems are the finite element

method, the finite difference method, and spectral methods. While the finite element method

come with the heavy burden of generating a mesh (which becomes a serious limiting factor

when dealing with some problems, like, for instance, Moving Boundary Problems or in three

space dimensions), straightforward finite difference methods and spectral methods are limited

by the small number of allowable shapes for the domain Ω.

Two widely used methods which seek to avoid these difficulties are known as meshfree collo-

2



cation and fictitious domain methods. In meshfree collocation methods, the solution is sought

as a linear combination of radial basis functions centered at collocation points scattered

throughout the domain Ω and on its boundary Γ. While these methods can achieve very

high orders of convergence, in their simplest implementations, the resulting matrices are

dense and poorly conditioned, see, for example, [9, Chapter 16]. This leads to difficulties

when scaling to denser grids. As described in [9, 27] and as we will explain below, these

methods can also be viewed as a reformulation of BVPs as constrained optimization problems

on Rd.

In fictitious domain methods, the problem is transplanted from the original domain Ω to

an encompassing simple region B, where straightforward discretizations and solvers can be

utilized. The computed solution is an approximation of u within the domain Ω and an

extension of this approximation on B\Ω. A drawback common to many of these methods is

that a lack of regularity across the boundary often leads to a lack of regularity of the global

extension, and hence to a low order of convergence, see [23] for a discussion of this issue

with regards to the Immersed Boundary Method. Additionally, these methods often require

very different treatment of the various types of commonly occurring elliptic operators and

boundary conditions, see [17].

The approach proposed here is a hybrid of these two methods. In a way similar to mesh-

free methods, it reduces the entire boundary value problem to playing the role of a linear

constraint to an optimization problem for an appropriately chosen objective functional de-

fined on a larger domain. However, borrowing from the fictitious domain framework, this

constrained optimization procedure is carried out on a regular grid with straightforward and

efficient discretizations. As we will explain below, this hybrid procedure will combine the

simplicity, speed, and scalability of fictitious domain methods with the high order accuracy

and wide ranging versatility of meshfree collocation methods.

The thesis is composed of four parts. In Part I, we introduce SEEM from the ground up and

3



also describe how the method can be viewed from the perspective of the fictitious domain and

meshfree methods. We will then move on to Part II, where we will give a detailed discussion

of how to define, discretize, and solve the SEEM system. In Part III, we will discuss the

well posedness and convergence of the method. Finally, in Part IV, we will give numerical

experiments which demonstrate the efficacy of the method in different discretization contexts.

1.1 Notation

While the ideas and the formulation readily apply to a wide variety of PDE problems, SEEM

will be illustrated by means of second order boundary value problems of type


Au = f in Ω,

Bu = g on Γ = ∂Ω,

(1.1)

for an elliptic operator A such as, e.g., the Laplacian −∆, and an admissible boundary

operator B such as, e.g., the trace γΓ (Dirichlet problem), the unit outer normal derivative

∂ν (Neumann problem), or a combination thereof (Robin type problem). The full BVP will

be denoted by

Cu = b, where C =

A
B

 and b =

f
g

 .
In this paper, we will consider the PDE operator acting on the Hp spaces. Throughout, we

will use the Hp norm given by

‖u‖Hp(Ω) =

(∫
Ω

|(1−∆)p/2u|2dx
)1/2

.

4



We also define the negative norms

‖u‖H−p(Ω) = sup
‖v‖

H
p
0 (Ω)

=1

〈u, v〉.

We set s = 1/2 for the Dirichlet problem and s = 3/2 for the Robin problem. Acting on

these spaces, we cite the well-known result from the theory of elliptic PDEs that

C : Hp(Ω)→ Hp−2(Ω)×Hp−s(Γ) (1.2)

is a bounded linear operator with bounded inverse, so long as p > s + ε. In the Neumann

case, it is necessary to consider

C : Hp(Ω)/K → R,

where K is the set of constant functions on Ω and

R = {(f, g) ∈ Hp−2(Ω)×Hp−3/2(Γ)
∣∣ ∫

Ω

fdx =

∫
Γ

gdS}.

We will denote the (bounded) inverse of C as C−1 .

In the spirit of fictitious domain methods, the domain Ω is embedded into a simple (square

or rectangular) “container” domain B, for which Ω ⊂ B. Denote by Bm a regular uniform

discretization of B consisting of Nm points, where m is the number of discretization points

along each dimension. (A finite element triangulation or adaptive finite difference grid could

also be used, see Section 10.2.) Ω is then discretized as

Ωm = Ω ∩ Bm and NΩ
m = |Ωm|.

5
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Figure 1.1: Discretizing the domain and its boundary.

The boundary is discretized by taking a set of points

Γm = {yj|j = 1, . . . , NΓ
m} ⊂ Γ.

See Figure 1.1 for two examples of such discretizations.

1.2 Description of the Method

Replace the continuous differential operator by a discrete counterpart A = Am, defined as a

discrete evaluation of A at grid-points Ωm, where Am acts on “discrete functions” defined on

Bm. Similarly, given the discretization Γm, it is possible to discretize the boundary condition

using any kind of interpolation and any kind of discrete differentiation (where needed) based

on the grid Bm and to obtain a corresponding discrete equation Bu = Bmum = gm for the

unknown vector um : Bm → R and a discretization gm : Γm → R of the boundary function

g, defined on Γm. In this way, the continuous boundary value problem (1.1) can be replaced

6



by the discrete underdetermined system given by

Cu = Cmu
m =

A
B

u =

Am
Bm

um =

fm
gm

 = bm = b (1.3)

where fm is a discretization of f at grid points in Bm ∩ Ω. Observe that we shall often

suppress the superscripts and the subscripts in order to simplify the notation. Notice that

um ∈ RNm , fm ∈ RNΩ
m , and gm ∈ RNΓ

m .

In numerical experiments, the dimensions are always chosen in such a way that NΩ
m +NΓ

m <

Nm is satisfied. In addition, care is taken when placing the boundary points Γm to make

sure that all equations in the system are independent of each other, to ensure the problem

remains well posed. We emphasize that the operators Am and Bm can be constructed using

any form of interpolation and discrete differentiation on the regular grid. For example, finite

differences or spectral differentiation could both be used.

To deal with the fact that the system is underdetermined, a common fictitious domain ap-

proach (see Chatper 2) consists in extending the original PDE to the entire larger domain B.

Unfortunately, beyond the obvious difficulty of finding a smooth extension for the given data,

such an extension of the problem will usually introduce a singularity along the boundary Γ

preventing the resulting solution from attaining a high order of convergence. In contrast to

these existing methods, we don’t try to extend or modify the problem to or in the encom-

passing domain B/grid Bm, but rather simply try and find “the best” among the solutions of

the underdetermined problem (1.3). After all, if you use high order Bm-based discretizations

of derivatives and evaluations, the equations should be sufficient to determine a solution that

achieves their order of accuracy (up to what is allowed by the regularity of the data/solution

themselves, of course).

7



A straightforward approach (which works fine when no regularity at all is expected) consists

in finding a minimal norm solution of the problem, i.e. in solving the linearly constrained

optimization problem

argmin{Cu=b}
1

2
‖u‖2

2, (1.4)

where ‖ · ‖2 denotes the Euclidean norm on RNm . This would lead to the so-called normal

equations and to the solution

u = C>
(
CC>

)−1
b. (1.5)

Given that the matrix C = Cm consists of differential operators including the evaluation

(restriction) in the domain Ωm and on the boundary Γm, its transpose then corresponds

to differential operators containing trivial extensions (read extensions by 0) and this leads

to oscillations generated by the lack of regularity, see Figure 1.2. As a matter of fact, the

solution of the continuous optimization problem

argmin{−∆Ωu=f,γΓu=g} ‖u‖2
L2(B)

is simply given by the extension by zero ext0(uf,g) of the unique solution uf,g of the boundary

value problem −∆u = f with the given Dirichlet boundary condition. Even in the case g ≡ 0,

however, the solution generated by the optimization problem takes the form of a difference

of singular solutions which do not even belong to L2. This is the origin of the oscillations

that are observed in numerical implementations. In a one dimensional context a detailed

explanation of this phenomenon is offered in the next remark.

Remark 1.1. We illustrate this point more thoroughly with a one-dimensional example. We

8



reformulate the boundary value problem


−∂xxu = f in (−1, 1),

u(±1) = 0,

as the optimization problem (1.4), which we approach by introducing a Lagrange multiplier

λ =
(
λ(−1,1), λ−1, λ1

)
and reducing it to

argminv,λ

{1

2

∫ π

−π
v2(x) dx+

∫ 1

−1

λ(−1,1)(x)
[
∂xxv + f

]
(x) dx+ λ−1v(−1) + λ1v(1)

}
,

where v : (−π, π)→ R is a periodic function. Taking a variation with respect to v yields the

validity of ∫ π

−π
vϕ dx =

∫
λ(−1,1)(x)∂xxϕ(x) dx− λ−1ϕ(−1) + λ1ϕ(1),

for any and all periodic testfunctions ϕ ∈ C∞π . Taking testfunctions satisfying supp(ϕ) ⊂

(−1, 1)c, one shows that v = 0 in (−1, 1)c. Choosing testfunctions supported in (−1, 1) shows

that ∂xxλ(−1,1) = v in (−1, 1), and, finally, choosing testfunctions with ϕ(±1) = 0 and others

with ∂xϕ(±1) = 0, one obtains the validity of

λ(−1,1)(±1) = 0 and λ±1 = ±λ′(−1,1)(±1).

One can therefore solve for λ(−1,1) to see that λ(−1,1) = SDu, where SD denotes the solution

operator to −∂xx with homogeneous Dirichlet conditions at the end points ±1, and then

determine λ±1. As it holds that

λ = (CC>)−1

f
0

 and v = C>λ,
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it follows that

v =

[
−∂xx ◦ ext0 δ−1 δ1

]
λ(−1,1)

λ−1

λ1


= −∂xx

(
ext0(λ(−1,1))

)
+ λ′(−1,1)(−1)δ−1 − λ′(−1,1)(1)δ1 = ext0(u),

where ext0 denotes the trivial extension (i.e. by zero) of a function defined on (−1, 1) to

(−π, π). The easily verified fact that the dual of the trace at a point is the Dirac distribution

at the point, i.e. that γ′±1 = δ±1, was used to derive the above representation. Thus the

solution v of the optimization problem is the trivial extension of the solution u of the original

boundary value problem but it is obtained as the sum of singular terms with cancellation. In a

discretization, the singular terms are generically not supported on grid points and thus appear

in the numerical solution as oscillations. This is made apparent in Figure 1.2. Moreover,

the exact analytical cancellation cannot be expected to also happen at the discrete level in

general. While we used a differentiated notation for u and v in this argument for clarity of

exposition, the same will not be done in the sequel, so that the same notation will be used

for the solution of the original problem and that of the optimization problem.

Reverting to the general discussion, we observe that, while the solution obtained by the

normal equation (1.5) exhibits oscillations in a discrete computation, “the good” (regular and

non-oscillatory) solution is, however, among those of the underdetermined problem (1.3). It

can be obtained by requiring additional regularity. As already pointed out, the discretizations

Am and Bm are, after all, chosen to be of a desired accuracy and the truncations/trivial

extensions destroy it. Thus enforcing an appropriate degree of regularity should allow for

the recovery of the intrinsic accuracy of the chosen discretizations, again, compatibly with

the expected regularity of the solution itself. We refer to the proposed method as the Smooth

Extension Embedding Method (SEEM) since it implicitly selects a smooth extension of the
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Figure 1.2: A 1D visualization of the oscillations caused by trivial extension with no regu-
larization. The plot shows a region that is only slightly larger than Ω since the oscillations
occur in a neighborhood of ∂Ω.

solution. While this selection is done in a way that is natural from the point of view of

optimization [7, Chapter 10], it has a nice analytic interpretation which will greatly help

with the practical implementation of the method. Let ‖ · ‖S be the discretization of a high

order norm such as, for instance, ‖ · ‖S = ‖(1−∆π)p/2 · ‖2, where −∆π denotes the periodic

Laplacian on [−π, π)d and p ≥ 1. Now the problem becomes

argmin{Cu=b}
1

2
‖u‖2

S, (1.6)

where the indeces have again been dropped for ease of reading. The constrained optimization

problem (1.6) can be reformulated as the unconstrained minimization

argminu∈RNm ,Λ∈RNΛ

1

2
‖u‖2

S + Λ>
(
Cu− b

)
,

upon introduction of Lagrange multipliers Λ ∈ RNΛ , where NΛ = NΩ
m + NΓ

m. A direct
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computation yields the saddle points system

S∗S C>

C 0


u

Λ

 =

0

b

 , (1.7)

where S∗S is the (invertible) operator corresponding to the norm ‖ · ‖S. Many techniques

exist to solve such systems, see [3]. The simplest of these consists in forming the Schur

complement, C(S∗S)−1C>, and in then obtaining the regularized normal equation

u = (S∗S)−1C>
(
C(S∗S)−1C>

)−1
b, (1.8)

Now, recalling that C and C> are truncated differential operators (more precisely containing

differentiations, evaluations on subdomains, and extensions), we see that the effect of the

norm is to replace the operator C>, which, upon being hit by C is the cause of the oscilla-

tions in the straightforward method, by the regularized operator (S∗S)−1C>, which can be

captured numerically to a higher degree of accuracy (no oscillations) when hit by C.

Remark 1.2. To illustrate the effect of regularization in the one dimensional setting of

Remark 1.1, consider the minimizer v corresponding to the objective functional given by the

higher order expression 1
2

[
‖v‖2

2 + ‖∂xv‖2
2

]
. Proceeding in a similar way as in Remark 1.1, v

is seen to be given by

(1− ∂xx)−1
π

{
− ∂xx ◦ ext0

[
SD(u+ f)

]
+
∑
j=−1,1

j
[(
∂xSD(u+ f)

)
(j)− ux(j)

]
δj

}

The singular terms are now regularized. Observe that the index in the regularizer indicates

inversion of the operator in the periodc sense and that SD was defined in Remark 1.1.

Remark 1.3. Formula (1.8) can be used as a starting point without any knowledge of a

norm generating the operator S. One can choose any convenient smoothing kernel acting on

(generalized) functions defined on the box B instead of (S∗S)−1.

12



Remark 1.4. We emphasize that SEEM can easily be implemented in any container domain

which admits:

� Efficient and well-developed discretizations of the differential operators and of the in-

terpolation operators.

� An efficient smoothing operator S which enforces the regularity of functions on the

grid.

We will discuss various choices of discretization in Chapter 4.
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Chapter 2

Fictitious Domain Perspective

As we mentioned, in a fictitious domain method, the original problem on an irregular domain

Ω is embedded into a new problem on a larger regular domain B. If the fictitious domain

method is successful, the computed solution is then an extension of the actual solution on Ω.

The philosophy of fictitious domain methods is to utilize simple and efficient discretizations

which exist for simple domains for more complex domains as well. Example of such domains

are the periodic torus, for which Fourier series can be used, the nonperiodic box with a

regular grid for which finite difference methods can be used, or the sphere, for which spectral

methods can be used. There are several advantages of using a larger, simpler domain.

1. Mesh generation can be an expensive and difficult process. Avoiding it is often desir-

able.

2. The discretizations on the simple domains are often very simple to construct and

implement. In particular, it is straightforward to construct high order discretizations

on a regular grid, while it can be tricky to do so on general meshes.

3. The implementations may be very efficient, as in the case of using the FFT to imple-

ment the discrete Fourier transform.
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4. The simple domains are very well understood from a theoretical perspective. For

example, the eigenfunctions of the Laplace operator on the torus are just trigonometric

functions. This may simplify the analysis of the problem and provide some extra tools,

such as the ability to construct a basis of divergence-free vector fields (see Section 8.6).

Fictitious domain type methods were first introduced in the 1960s by [21], and a wide variety

of strategies have been introduced to impose the PDE defined on the smaller domain on the

full regular grid. Fictitious domain methods must solve three challenges in order to produce

an accurate extension of the solution to the boundary value problem.

1. First, the fictitious domain method must find a way to impose the boundary condition.

In general, the boundary does not line up with the regular grid. Thus, the boundary

conditions cannot just be incorporated into the description of the problem, as they are

in mesh-based methods. Instead, a method to impose them on the regular grid must

be found.

2. Inherent in a fictitious domain formulation is that the problem is underdetermined on

the larger fictitious domain. For a given u defined on Ω, there are many extensions of u

to the fictitious domain B. A fictitious domain method must have a way of specifying

the correct solution from the set of extensions.

3. Depending on how an extension is chosen, the resulting solution will often have low

regularity across the boundary. The accuracy of the discrete solution will be restricted

by the regularity of the computed solution across the boundary. Thus, fictitious domain

methods often have very low orders of convergence. With a poor choice of extension,

the solution will fail to converge even in the L2 sense, see Figure 1.2 for an example of

the oscillations resulting from a poor choice of extension.

A wide variety of methods have been introduced to deal with these issues. Of the most direct
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relevance to SEEM is the “Lagrange multiplier approach,” which we now describe.

2.1 Lagrange Multiplier Approach

The Lagrange multiplier (LM) approach was developed by Glowinski et al. in [14, 13]. The

method is also known as the immersed boundary direct forcing method in the immersed

boundary community, see [23]. We consider a standard Dirichlet problem

−∆u = f on Ω

u = g on Γ.

In the LM formulation, the problem and its data f are extended to the entire fictitious domain

B. We note that this Dirichlet problem can also be viewed as a minimization problem on Ω.

argminu∈H1(Ω)
γΓu=g

∫
Ω

(
1

2
|Du|2 − uf

)
dx.

A natural option for a fictitious domain method is to simply extend the same problem to the

full domain B. We let f̃ be any extension of f to B. We then obtain the new minimization

problem

argminu∈H1
π(B)

γΓu=g

∫
B

(
1

2
|Du|2 − f̃u

)
dx. (2.1)

Remark 2.1. Of course, for a general boundary value problem, the coefficients would also

need to be extended. The extension should be chosen with C1 smoothness to guarantee suffi-

cient regularity of the resulting solution.

The boundary conditions cannot be imposed directly, because the regular grid does not line

up with the boundary. As a result, a Lagrange multiplier formulation is used. Equation 2.1
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is equivalent to minimization problem

argminu∈H1
π(B)

Λ∈L2(Γ)

(1

2
|Du|2 − f̃udx+

∫
Γ

[
ΛΓ (γΓu− g)

]
dy
)
.

This results in the saddle point problem

−∆u+ γ∗ΓΛ = f̃ (2.2)

γΓu = g.

As per the discussion in Chapter 6, it can be shown that the saddle point problem is well

posed and that it admits an H3/2−ε solution which satisfies u
∣∣
Ω
≡ uS. In fact, u

∣∣
B\Ω is given

by the solution to the Dirichlet problem

−∆u = f̃ on B\Ω

u = g on Γ.

However, in general, ∂
∂ν

(
u
∣∣
Ω

)
6= ∂

∂ν

(
u
∣∣
B\Ω

)
, so in general u will only be H3/2−ε. (Here ν is

the outward facing normal vector to Γ.) As we will discuss, this will greatly limit the order of

convergence of the solution. (In general, if a function is of regularity class Hp, an interpolant

will be able to achieve at most p-th order of convergence, without an interpolation scheme

which takes the nature of the singularities in account.)

Remark 2.2. Enforcing boundary conditions with Lagrange multipliers has also been con-

sidered in the finite element method, see [1].

The saddle point problem (2.2) is then discretized, using a regular discretization on the

encompassing fictitious domain B. Many different discretization procedures exists. The chief

difficulty is that the regular grid does not align with the boundary grid, so care must be

taken when constructing the space L2(Γ). We again emphasize that even with careful choice
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of discretization, the convergence order is inherently limited because of the lack of regularity

of the extension of the continuous operators. However, a poor choice of discretization can

destroy even this small order of convergence.

In [14], a regular finite element discretization is used on B while a space of piecewise constant

functions is used to discretize the space of Lagrange multiplier on the boundary (whence

the name “distributed Lagrange multiplier method”). In [13], it is showed that such a

discretization, with three to four regular grid points between each boundary segment, satisfies

a uniform inf-sup condition, and thus obtains a convergence order of h1/2. In the direct

forcing immersed boundary, the problem is discretized by placing discretized deltas at points

around the boundary. Our results of Section 7.2 will imply a convergence of order 1, and,

for a general direct forcing immmersed boundary method, this is the observed convergence.

Other implementations exist where the Lagrange multipliers on the boundary are replaced

by smoother functions located off the boundary in the fictitious domain. This is a way of

preserving smoothness of the solution.

Remark 2.3. We note that in [14], Glowinski observed a superconvergence of order 2 of

the `2 error. This superconvergence is still unexplained, given that the continuous solution is

globally only H3/2−ε. Furthermore, this superconvergence is only obtained with Glowinski’s

specific choices of discretization; with the simpler discretizations of the immersed boundary

direct forcing method, only the predicted first order convergence is observed.

Drawbacks

We now discuss the drawbacks of the Lagrange multiplier formulation.

� The method requires that the original elliptic operator A and/or right-hand-side f

be extended to corresponding objects defined on the whole of B. This is not always

straighforward and simple minded extensions (like the trivial one by zero outside Ω)
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introduce singularities into the problem reducing the overall accuracy of the method.

See [6] regarding methods of creating smooth extensions from Ω to B for the purpose

of implementing fictitious domain methods.

� As we have mentioned a number of times, because the extension is not smooth, only

low orders of convergence can be obtained. Even the optimal second order convergece

of [13] is only obtained by a careful finite element discretization of the boundary, which

sacrifices some of the simplicity of the method. Furthermore, this superconvergence

result is still not explained in the literature.

SEEM

SEEM builds on the fictitious domain formulation. The significant change is that rather

than extending the original problem to the full domain, it instead views the full BVP as a

constraint to an optimization problem on the whole domain. In other words, Equation (2.2)

is replaced by


Spu+A>ΛΩ + B>ΛΓ = 0

Au = f

Bu = g.

The optimization operator Sp can be chosen to be straightforward to solve and to impose

the desired degree of regularity on the solution. This resolves both drawbacks of the ex-

isting fictitious domain methods. First, the BVP problem does not need to be extended;

the existing problem is merely given as a constraint to a well chosen minimization problem.

Second, the method can be made to achieve arbitrarily high orders of convergence by impos-

ing the desired order of regularity on the solution. From a philosophical perspective, SEEM

makes apparent that the real problem that any fictitious domain methods has to solve is
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the selection problem among the infinitely many solutions of the original problem which are

generated as the problem is viewed in a larger domain where it becomes under-determined.

The direct way in which SEEM accomplishes this (introduction of a high order smoother)

clearly shows how the order of accuracy chosen for the interior and boundary operators can

be recovered in the extended problem through an affine shift obtained by a natural (both

from the point of view of PDEs and of optimization) regularization.

2.1.1 Other Smooth Extension Methods

We have found two other examples in the literature which obtain high order fictitious domain

methods by selecting an extension of higher regularity. We describe both of these methods

below.

IBSE

In Immersed Boundary Smooth Extension (IBSE), [23], a smooth extension is generated by

solving an auxilary PDE problem on Ωc.

(1−∆)pξ = 0 on Ωc

∂i

∂νi
ξ =

∂i

∂νi
u on Γ.

In other words, the function ξ solves a 2p order PDE on Ωc and its 1 ≤ i ≤ p− 1 derivatives

match u on Γ. Solving for such an extension will produce a globally Hp solution. (In fact,

the continuous formulation of the IBSE method produces the same extension as SEEM.)

However, rather than obtaining this extension using a minimization procedure, as in SEEM,

both u and ξ are solved for using the Lagrange multiplier fictitious domain method; a coupled

system of u and ξ is then created and solved. The principal drawback of this method is that
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the linear algebra of the resulting coupled system is very complex and difficult to solve. In

[23], the authors resort to forming the explicit matrix for the system by performing the linear

operators column by column and doing an LU factorization of the resulting explicit matrix.

This procedure takes significant preparation time - approximately fifty minutes for a grid of

size 20482 - and which is avoided in our method. However, this method is philosophically

quite close to our method, and many of the issues dealt with in this thesis (e.g. numerical

conditioning and rates of convergence) are discussed in [23] in a similar manner. In [24], the

IBSE method is applied to divergence free problems as well.

Active Penalty Method

In the Active Penalty Method, [22], a smooth extension ξ : B\Ω → R for the solution u is

constructed as follows. One begins by selecting linearly independent smooth functions

fj(x) : R≥0 → R, 0 ≤ j ≤ p

which satisfy

di

dxi
∣∣
x→0+fj(x) = δij.

Given a function u : R≤0 → R, a Cp−1 extension to R can be constructed by defining

ũ(x) =


u(x) if x ≤ 0∑p

i=0 aifi(x) if x > 0,

where ai = di

dxi

∣∣
x→0−

u(x). The ai are chosen so that the normal derivatives up to order p

match across the pont x = 0.

Returning to the BVP on Ω, one takes a smooth tubular neighborhood Γε of Γ = ∂Ω of
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radius ε > 0, and uses the coordinates

{(x, ξ) |x ∈ Γ and ξ ∈ [−ε, ε]}

A smooth extension of u to Ω is then obtained in the form

ũ(x, ξ) =


u(x, ξ) if ε ≤ 0∑p

i=0 ai(x)fi(ξ) if ε > 0,

where

ai(x) =
∂i

∂iξ

∣∣
y=x, ξ→0−

u(y, ξ).

Using this basis, an extension of u is constructed which matches the normal derivative of u

up to order p on Γ. A discrete system is formed which enforces that u has such a form and

thereby imposes Hp regularity on the solution. The drawback of this method is that this

extension is quite difficult to construct for an arbitrary domain Ω. Furthermore, sparsity of

the matrix is lost if the support of the basis functions is held constant.

We conclude by noting that there are many other fictitious domain methods with varying

strengths and weaknesses. We have only discussed those that are most relevant to SEEM.
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Chapter 3

Kernel-Based Collocation Perspective

Meshfree methods using radial basis functions are a widely used method for scattered data

interpolation and for solving PDEs. The survey books [9, 27] describe both the theory and

the implementation of these methods. We give a short overview of some of the theory and

application of kernel-based collocation methods and then describe how SEEM fits into the

general framework of these methods.

3.1 Definitions

A symmetric, positive definite kernel K on a domain Ω is a function

K : Ω× Ω→ R

which satisfies

(i) K(x, y) = K(y, x), x, y ∈ Ω.

(ii)
∑n

i=1

∑n
j=1 cicjK(xi, xj) ≥ 0 for any set of distinct points {x1, . . . , xn} ⊂ Ω and for any
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c ∈ Rn. Equality holds if and only if c = 0.

To each positive definite kernel K there corresponds a unique reproducing kernel Hilbert

space. The latter is a Hilbert space NK of functions defined in Ω which satisfies

(i) K(·, x) ∈ NK for x ∈ Ω.

(ii) f(x) = 〈f,K(·, x)〉 for f ∈ NK.

Two distinct forms of collocation methods exists, symmetric and nonsymmetric.

3.1.1 Nonsymmetric Collocation

In nonsymmetric collocation, two sets of points are chosen, centers {x1, . . . , xn} and colloca-

tion points {z1, . . . , zm}, which are scattered on the interior and the boundary. A function

is then sought of the form

u =
n∑
j=1

αjK(·, xj),

which satisfies the PDE at the collocation points

n∑
j=1

αjCziK(zi, xj) = bi for 1 ≤ i ≤ m.

Here, bi is the right hand side of the BVP operator C evaluated at the point zi. The coefficient

vector α is obtained by inverting (at least in the least squares sense) the collocation matrix

given by

Mij = CziK(zi, xj).

Note that in general, the problem can be overdetermined or underdetermined. Depending on

the choice of kernel and the location of the centers and collocation points, the method may
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or may not be well posed and the solution may or may not converge. Although the theory is

not well understood, the method has achieved some success in the applied community due

to its simple implementation and to successful numerical results

3.1.2 Symmetric Collocation

In symmetric kernel-based collocation, only one set of collocation points {z1, . . . , zm} are

chosen. These point are scattered around the interior and the boundary. A solution is then

sought in the form

ũ(·) =
m∑
j=1

αjCzjK(·, zj).

The coefficients αj are chosen so that C(ũ)(zi) = bi for 1 ≤ i ≤ m. Here bi is the right hand

side of the BVP operator C evaluated at the point zi. In other words,

m∑
j=1

αjCziCzjK(zi, zj) = bi.

Thus, in order to obtain the unknown coefficient vector α, one solves the linear system

Mα = b, where the collocation matrix M is given by

Mij = CziCzjK(zi, zj). (3.1)

As shown in [27, Chapter 13], the solution ũ obtained through this process is the ‖ · ‖NK-

minimizing function satisfying C(ũ)(zi) = bi for 1 ≤ i ≤ m.
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3.2 Meshfree Implementations

In meshfree collocation methods, the kernel K is generally chosen to be of the form

K(x, y) = Φ(|x− y|) = Φ(r),

where Φ : R+ → R is a positive definite function, known as the radial basis functions of the

method. Many choices are available including

(i) Gaussians, where Φ(r) = e−cr
2

for some c > 0.

(ii) Multiquadrics, where Φ(r) =
√

1 + cr2 for c > 0.

These functions are often chosen as kernels because it is easy to perform computations on

them. The corresponding collocation matrix M is computed explicitly by evaluating

Mij = CziΦ(|zi − zj|),

in the case of nonsymmetric collocation and

Mij = CziCzjΦ(|zi − zj|),

in the case of symmetric collocation methods. By using smooth, globally supported kernels,

high rates of convergence are observed, in line with the results in Section 7.2. One of the

advantages of meshfree methods is that the collocation points can be chosen arbitrarily.

This freedom is particularly useful when only scattered data is available. Furthermore, the

simplicity of the formulation of the method is very attractive.
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Drawbacks

There are several significant challenges which arise when one tries to use meshfree collocation

on dense sets of collocation points.

� The most significant problem is that when using globally supported radial basis func-

tions, the resulting collocation matrix is dense. For smooth problems this is not an

issue, because the high order of convergence can achieve high accuracy with very few

collocation points. For less smooth problems, however, where dense grids are necessary

to resolve the solution’s behavior, it becomes impractical to use such dense matrices.

� Additionally, when the radial basis function is smooth, the collocation matrix is very

poorly conditioned, thus severely limiting the size of the set of collocation points, see

[9, Chapter 16].

� Finally, for more complex differential operators, it can be difficult to form the col-

location matrix. This is particularly true when a weak formulation of the problem is

required due to the lack of regularity of the solution. Because of this difficulty, meshfree

methods have rarely even been formulated for problems of weak regularity.

To deal with the first two of these issues, a number of successful strategies have been in-

troduced aimed at speeding up the inversion of the collocation matrix and at reducing its

condition number. Many of these techniques are described in [9]. Given the large variety of

meshfree implementations, we will only briefly address those that are most pertinent to the

proposed method.

a. Globally supported radial basis functions can be replaced by the compactly supported

ones as introduced by Wendland in [26]. In this way, the collocation matrix becomes sparser

and more collocation points can be used. Unfortunately, convergence only occurs if the width

of the compactly supported functions is held constant, see [9, Chapters 41]. Consequently,
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the matrix loses its good sparsity properties as the mesh becomes finer. To remedy this latter

problem, multilevel schemes are used. In these, compactly supported radial basis functions

with varying supports are used. Those with wide support capture the coarse details, while

those with narrow support capture the fine details. The use of such multilevel methods can

improve the accuracy obtained from compactly supported radial basis functions; however,

convergence issues still remain, see [9, Chapter 41].

b. A number of techniques exist which seek to circumvent the issue of the ill conditioning

of the collocation matrix by finding clever ways to compute the interpolant. These include

the Contour-Padé Algorithm ([9, Chapter 17]) and the RBF-QR Method ([11]). We note

that these methods approximate the radial basis functions using the truncation of a series

expansion. SEEM, in contrast, is discrete from the onset.

c. Particularly relevant to us is the NFFT (nonuniform fast Fourier transform) method ([9,

Chapter 28]). In the NFFT Method, the collocation matrix M is evaluated by using the

inverse non-uniform FFT to obtain a Fourier series for the function on the torus. The kernel,

a convolution operator, is then evaluated as a multiplication operator on the torus. Finally,

the non-uniform FFT is applied to obtain the function values at the collocation points. By

using this method, the dense collocation matrix can be evaluated with O(N logN) operations

rather than with O(N2). When combined with efficient preconditioning, this method allows

for the use of substantially larger grids. We will discuss the relationship of this method with

SEEM below.

d. In RBF partition of unity methods (RBF-PUM), see [9, Chapter 29], or RBF finite dif-

ference methods (RBF-FD), see [10], the global RBF method is localized to create sparse

rather than dense matrices. In RBF-PUM, the global basis functions are multiplied by cut-

off functions generated by a partition of unity of the domain. The resulting basis functions

are compactly supported in a small region of the domain, and therefore generate a sparse

matrix. In RBF-FD, a small set of RBF basis functions is chosen at each point. The PDE

operator is evaluated at each point using that point’s chosen RBF functions to generate
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a high order finite difference stencil at each pont. These methods are quite competitive

and are rapidly growing in popularity. However, in localizing the problem, these meth-

ods lose the straightforward representation of the function as a linear combination of RBFs.

Furthermore, the interpretation of the problem as a constrained optimization problem is lost.

3.3 SEEM

We now discuss how SEEM fits into the general framework of kernel-based collocation.

Similar to symmetric meshfree collocation, SEEM starts as an optimization problem

argminCu=b‖u‖S .

Here, as we will discuss, the smoothing operator (S∗S)−1 from Equation (1.8) corresponds to

the kernelK in a symmetric collocation method and the smoothing operator S−1 correspoinds

to the kernel K in an unsymmetric collocation method. However, the kernel S is chosen

carefully so that it is straightforward to discretize and invert on a regular grid. For example,

the Sobolev kernel Sp = (1 −∆)p/2 can be easily discretized and inverted on a regular grid

using well developed PDE techniques. Then, rather than trying to solve the continuous

formulation of the problem, the norm ‖ · ‖S and the BVP operator C are discretized, and

produce a new discrete optimization problem

argminCu=b ‖u‖S.
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The resulting Schur complement matrix C(S>S)−1C> is then a discretization of the sym-

metric collocation matrix with coefficients Mij = CziCzjK(zi, zj), where

K(zi, zj) = 〈δi, (S∗S)−1δj〉.

On the other hand, if we consider the pseudoinverse formulation (Section 5.1.1), we see that

the matrix CS−1 from Equation 5.1 is a discretization of the nonsymmetric collocation matrix

with coefficients Mij = CziK(zi, xj), where {x1, . . . , xNm} is the regular grid Bm. Of course,

this matrix is underdetermined so the problem needs to be satisfied in the least squares

sense. From this perspective, SEEM is a nonsymmetric collocation. Namely, in this case

the symmetric and nonsymmetric collocation methods coincide - one with a kernel (S∗S)−1

and one with a kernel S−1. Thus, SEEM can be viewed simultaneously as unsymmetric

kernel-based collocation and symmetric kernel-based collocation.

Contrast with Meshfree Collocation Methods

In general, meshfree collocation methods evaluate the smoothing operator S−1 as well as the

differential operator C explicitly. In SEEM, by contrast, these are evaluated at the discerete

level. By choosing the smoothing kernel to be defined on a finite regular encompassing

domain, it is possible to obtain a straightforward and efficient discretization of the operators.

The obvious drawbacks are that the method is no longer meshfree and that the minimum

distance between collocation points is limited by the distance of the grid points. However,

the clear benefit is that the operators can be easily described using sparse matrices (either

through the use of finite differences, of the FFT, or of other sparse schemes). Furthermore,

the use of regular grid points in the interior allows for simple preconditioning strategies,

which substantially speeds up computations. We also mention the following other benefits

of SEEM over common global RBF methods.
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(i) Since all operators are discretized, other techniques for the solution of saddle point

systems can be used. In general, these alternative methods allow one to solve the

system while avoiding the direct computation of the dense matrix S−1. The availability

of such tools should allow for the choice of denser grids. Another useful tool that

becomes viable is QR-factorization, the use of which is described in Section 5.1.1.

This technique makes it possible to replace the symmetric collocation method by an

equivalent nonsymmetric collocation technique. This results in an improvement of the

conditioning of the matrices and additionally provides a link between the methods of

symmetric and unsymmetric collocation.

(ii) Since all operators are described on a regular grid, their evaluation is very simple.

For instance, one can use the standard finite difference stencil and cubic interpolation

operators at all points. By contrast, in meshfree methods, the values CziCzjΦ(zi, zj)

can sometimes be complicated to compute, particularly for less straightforward differ-

ential operators where many terms need to be evaluated. This issue is discussed in [9,

Chapter 40], for instance.

(iii) Since the kernel matrix is discretized, it can be easily modified and tailored to fit

specific problems. For example, in certain singular problems it may be beneficial to

use weighted Sobolev norms. While such kernels would be quite difficult to compute

explicitly, they can be easily evaluated on a regular grid in the discrete sense. An-

other possible modification would be to use nonquadratic objective functionals. Such

modifications are a subject of current investigation.

While RBF-PUM and RBF-FD are RBF type methods allowing for the use of sparse matrices,

SEEM preserves the global nature of the pure RBF approach. This has advantages from

a theoretical standpoint. Furthermore, we believe that the global formulation will have

applications to a number of problems where an explicit representation of the basis functions

is useful, e.g. divergence-free problems discussed in Section 8.6. Additionally, forming the
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RBF-FD and RBF-PUM matrices can be a complex process. In SEEM, only straightforward

spectral or finite difference discretizations need to be considered.

Remark 3.1. When using a Fourier discretization, SEEM is implemented by imposing Hp

regularity of the numerical solution on the torus. The smoothing operator is evaluated using

the FFT. This allows for the evaluation of all operators in O(N logN) operations. This

implementation is akin to that of the NFFT methods, see [9, Chapter 28], in that both use

the FFT to evaluate the collocation matrix M. Indeed, using NFFT methods and efficient

preconditioning, it is possible to use meshfree methods on dense grids with O(N logN) opera-

tions. However, our method distinguishes itself from these existing NFFT methods in several

important ways. First, because all values are first interpolated to the regular grid, the regu-

lar IFFT can be used, rather than the INFFT (inverse nonuniform fast Fourier transform),

which is more computationally complex. Second, rather than evaluating RBFs as convolu-

tion operators, we use the simple Sobolev kernels, which are more natural for the torus. As

pointed out above, this allows for the use of various other computational tools from the theory

of saddle point problems.

Remark 3.2. SEEM is reminiscent of some of the techniques used in the computation of the

INFFT, see [16, Chapter 5]. Given scattered data {u(xi)}ki=1 on the torus, the INFFT seeks

a Fourier series û which agrees with the data at the given points. As the problem is generally

underdetermined, a Fourier series of minimal Hp-norm is computed instead. The Fourier

implementation in this thesis (Section 4.1.1 and Chapter 8) can be seen as a generalization

of the INFFT algorithm from the simple case of point evaluations of u to the case of general

linear functionals.
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Part II

Numerical Implementation
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Chapter 4

Discretization

We now give a detailed description of the implementation of SEEM. As described in Section

1.2 and Equation (1.4), the original BVP on Ω is rewritten as the optimization problem

argminu∈RNm ,Λ∈RNΛ

1

2
‖u‖2

S + Λ>
(
Cu− b

)
,

on an encompassing domain B, where ‖ · ‖S is a regularizing norm. As discussed in Section

1.2, this leads to the saddle point system

S>S C>

C 0


u

Λ

 =

0

b

 .
We begin by describing different choices of grid and regularizing norm S. We then explain

how to discretize the domain Ω and its boundary Γ. Finally, we discuss how to assemble the

matrices C, C> and S.
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4.1 Choice of Discretization and Regularizing Norm S

We recall that a good choice of discretization Bm and discrete regularizing norm S requires

several conditions to be satisfied.

� The grid Bm must admit straightforward and efficient discretizations of differential

operators and interpolation operators.

� The smoothing operator (S>S)−1 must map a function space of lower regularity to one

of higher regularity. Generally, the smoother will map the Sobolev spaces H−p(B) to

Hp(B) and will be formed by inverting a (pseudo-)differential operator of order p, e.g.

(1−∆)p/2.

� The discretized smoother S (and S>) must be easily invertible on the regular grid.

This will generally be efficiently accomplished using a multilevel algorithm, such as

the FFT or multigrid methods.

We now discuss several options of discretization and norm which can be used to impose

the Hp regularity of the solution. However, we emphasize that the smoothing operators

considered here are by no means exhaustive; other choices exist which are the subject of

ongoing work.

4.1.1 The Periodic Torus using the FFT

We let Bm be a uniform discretization of the d-dimensional torus [−π, π)d and introduce the

regularizing norm

‖u‖Sp = ‖(1−∆π)p/2u‖L2

= ‖F−1 diag
[
(1 + |k|2)p/2

]
F(u)‖L2 ,
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where ∆π is the periodic Laplacian and k ∈ Zd is the vector of frequencies on B. Becuase Sp

is diagonalized by the Fourier transform, this choice of smoother leads to simple and efficient

computation. In particular, we let k ∈ Zdm be the vector of frequencies on the discrete grid

Bm. Then, the discrete norm is given by

‖um‖Sp =
∥∥ (Fm)−1 diag

[
(1 + |k|2)p/2

]
Fmum

∥∥
`2
.

Using the fast Fourier transform, this operator can be inverted efficiently with minimal

memory requirements.

Because we are calculating a periodic extension to the solution, the interior differential

operator A can be efficiently discretized using the FFT. In particular, ∂xiu can be discretized

using (Fm)−1 diag
[√
−1kxi

]
Fm(u). To discretize the boundary interpolation operators, two

options can be used. Spectral interpolation can achieve high order accuracy (provided that

the smoother is high enough order) but requires a large stencil which increases memory

consumption and slows down computations. Alternatively, polynomial interpolation can be

used, where a polynomial scheme of the desired order of convergence is chosen.

Advantages

� Implementing the smoother and differntial operators using the FFT is particularly

simple and efficient.

� Using the FFT, it is straightforward to invert the pseudo-differential operator Sp for

any order p. In particular, fractional orders can be used, and computational complexity

is independent of the chosen smoother. Thus, the smoother can be perfectly tailored

to the regularity of the solution. In fact, one can use an exponential decaying smoother

F−1 diag
[
e−|k|

]
F
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and obtain a spectral order of convergence.

� Because our solution is expressed as a Fourier series, it is straightforward to construct

divergence free or curl free bases. With other discretizations, imposing such a condition

requires special choices of discretization.

Disadvantages

� Because the generated smooth extension of the BVP is periodic, only a small fraction

of the periodic domain can be included in Ω. The rest is needed as a buffer in order to

allow the extension to smoothly morph into a periodic function. This wastes significant

computational resources, because the extended problem is solved on a far larger grid

than strictly necessary for the solution of the oringal BVP. Put differently, the ratio

|Ωm|
|Bm| is much smaller than the geometry of Ω actually requires.

� A second problem is that a 2π-periodic extension of u has far larger optimization

norm than u itself. The derivatives outside Ω are required to be large to allow for the

extension to become periodic. This negatively affects the accuracy of the discretized

solution. Table 4.1 below shows how, in the periodic setting, higher order Sobolev

norms of the extension grow even if the smoother used is chosen to control these higher

order norms. This is reflected in the growth along the columns of the periodic section

of the table. Clearly a norm of the extension is expected to grow if the optimization

norm used is of lower order, explaining the growth along the rows of the table.

� Because we rely heavily on the use of the FFT, it is not possible to have any adaptivity;

only a uniform grid can be used. This also wastes computational resources when the

solution has different orders of regularity in different regions of the domain Ω.
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4.1.2 The Chebyshev Grid

To mitigate for the disadvantages of using a periodic extension, the Fourier grid can be

replaced with a Chebyshev one. When using a Chebyshev grid, no boundary conditions are

imposed, so that a smaller buffer is required and the higher order seminorms do not get too

large. In Table 4.1, we demonstrate this point by comparing the growth of the seminorms

generated by a Fourier extension versus those generated by a Chebyshev extension.

The encompassing domain B = [−1, 1]d is discretized by a product set of the one-dimensional

Chebyshev grid Cm and is given by

Bm =
{

(x1, . . . , xd)
∣∣∣xi ∈ Cm for 1 ≤ i ≤ d

}
,

where

Cm =
{

cos
(
π

2k + 1

2m

) ∣∣∣ 0 ≤ k ≤ m− 1
}
.

Remark 4.1. The grid described above is frequently referred to as the Chebyshev roots grid or

Chebyshev points of the first kind. An alternative choice is the Chebyshev extrema grid, also

known as Chebyshev points of the second kind. Similar rates of convergence are observed with

these points. However, in our numerical experiments, the roots grid appears to possess higher

numerically stability. Furthermore, the regularizer S−1
p described below is only symmetric for

the Chebyshev roots grid, which makes it more convenient for the use in combination with

iterative solvers. Henceforth, the Chebyshev grid will refer to the Chebyshev roots grid.
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Regularizing Norm

We begin by defining the operator

D :=
√

1− x2
∂

∂x
.

An important property of the Chebyshev polynomials is that

(1−D2)p/2Tm = (1 +m2)p/2Tm

holds true for the m-th Chebyshev polynomial Tm. Exploiting this, we define the norm

‖ · ‖2
Sp = ‖(1−

d∑
i=1

D2
i )
p/2 · ‖2

L2
.

Clearly, away from the degeneracies at −1 and 1, this norm imposes Hp regularity on the

function u. In addition, due to the eigenvalue equation, the operator Sp is diagonalized by

the Chebyshev transform. In particular, if we denote the latter by C and let (k)k∈Nd be the

(Chebyshev) frequency vector, we have that

Spu = C−1 diag
[
(1 + |k|2)−p/2

]
Cu.

Thus, Sp can be discretized using the discrete Chebyshev transform Cm,

Sp = (Cm)−1 diag
[
(1 + |k|2)−p/2

]
Cmu,

where k ∈ Nd
m is the vector of Chebyshev frequencies on the discrete grid Bm. As the discrete

Chebyshev transform can be implemented using the FFT, such a regularizing norm allows

for efficient implementation. The numerical experiments of Chapter 9 demonstrate that, as

in the Fourier case, using the Sp norm leads to a p rate of convergence for the error.
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Remark 4.2. In the numerical experiments, the observed rate of convergence for the Sp

smoother is somewhat faster than the expected rate p, which was observed in the Fourier case.

We suspect that this may have to do with the higher density of points near the boundary of

the domain Ω, due to the non-regular spacing of the Chebyshev grid.

Discretization of the Differential and Interpolation Operators

As with the Fourier discretization, the differential and interpolation operators may be im-

plemented using either spectral discretizations or finite difference discretizations. For details

of how to take derivatives spectrally using Cm, the discrete Chebyshev transform, and how

to form interpolation operators using Chebyshev series, we refer to Section 9.1. As before,

the advantage of using spectral interpolation is that it achieves very high orders of accu-

racy when coupled with a high order smoother. The disadvantage is that the large stencil

consumes a lot of memory and hurts efficiency.

Advantages

� Although the implementation of the differential operators is slightly more complicated

than in the Fourier case, the implementation is still straightforward and efficient using

the FFT. It has the advantage over the Fourier case that only a small buffer is required

outside Ω, because the chosen extension does not need to be periodic.

� As with the Fourier discretization, pseudodifferential operators of arbitrary order can

be used and tailored to the regularity of the solution.
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Disadvantages

� Compared to the other methods presented here, the discretizations of the derivatives

are somewhat more complicated. Additionally, because of the nature of the Chebyshev

points, the density of the points is highest on the boundary, which lies outside Ω.

� As with the Fourier discretization, the method does not allow for any adaptivity in the

grid.

Remark 4.3. While we used spectral discretizations based on Fourier series and Chebyshev

polynomial expansions, SEEM can also be implemented with respect to any other spectral

basis. It is enough to embed Ω into a larger domain B for which a full spectral resolution

is known for some canonical self-adjoint and positive definite differential operator D with

compact resolvent. If the operator admits natural discretizations Bm for the domain B,

{ψi}mi=1 for its (orthonormal) eigenfunctions, which are also orthonormal for the appropriate

discrete quadrature rule, and satisfy

Dmψ
m
i = λ2

iψ
m
i ,

for the eigenvalues λ2
• of D, then a good smoothing norm given by

‖ · ‖Sp = ‖C−1
m diag

[
(1 + λ2

•)
p/2
]
Cm · ‖L2 ,

where Cm is the discrete transformation which computes the coefficients of the (discrete

and finite) eigenfunction expansion and λ2
• is the corresponding vector of eigenvalues. The

advantage of using a Fourier or Chebyshev basis is that they allow the use of the FFT for

efficient discretization of the smoothing operator. Another area where spectral discretizations

would be very useful is the implementation of SEEM on a domain Ω which embeds in a sphere.

In this case, a basis of spherical harmonics would be used.
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Chebyshev Extension Fourier Extension
Smoother ‖∇2u‖L2 ‖∇3u‖L2 ‖∇4u‖L2 ‖∇2u‖L2 ‖∇3u‖L2 ‖∇4u‖L2

S2 16.0956 14.5451 319.2180 95.4606 172.2919 488.2472
S3 16.0111 0.5137 2.3840 137.6518 177.6702 281.2872
S4 16.0002 .0064 .0410 153.0669 184.4029 278.7028

Table 4.1: Various norms of the extensions obtained by the optimization procedure based
on different smoothers. The smoothers were used to extend the function u = x2 − y2.

4.1.3 Finite Difference Grids

As a way of introducing some adaptivity, we turn to the use of finite difference discretizations.

We again work in a periodic box [−π, π)d with uniform discretization and consider the

regularizing norm

‖u‖Sp = ‖(1−∆π)p/2u‖L2 ,

Here, p is chosen to be an even integer. In order to discretize the norm, we do not use the

Fourier transform, but rather resort to finite differences. Let D2 be any finite difference

discretization of the Laplacian, e.g. the five point stencil and define the discrete norm

‖u‖Sp = ‖(I −D2)p/2u‖`2 .

Similarly, all differential operators are discretized using finite difference schemes and interpo-

lation operators are implemented using polynomial interpolation. While not quite as efficient

as the FFT, the matrices Sp and S>p can be inverted efficiently using sparse iterative solvers.

Particularly efficient are multigrid solvers with computational complexity O(Nm). When

using a finite difference discretization we can use nested grids rather than a uniform grid. In

particular, we need to define a finite difference scheme which captures the Laplacian to the

desired order on a nested grid. For a concrete example of such a scheme, we refer to Section

10.2. The resulting smoothing operators, S−1
p and (S>p )−1, can still be applied efficiently
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using multigrid methods.

Advantages

� Allows for adaptive refinement of the mesh. Saves significant computational resources

when the solution is less well behaved in some regions of Ω.

� The norm ‖(1 − D2)p/2 · ‖`2 can easily be replaced with a more complex norm. In

particular, if D2
xi

is the second derivative in the xi direction, one could use

‖u‖Sp = ‖(1−
d∑
i=1

ai(x)D2
xi

)u‖`2 ,

for any functions ai(x) defined on the finite difference grid.

In this way, one can construct various weighted Sobolev norms. While research in this

direction is ongoing, we expect this to have advantages when the actual solution lies

in a weighted Sobolev space.

Disadvantages

� The use of multigrid solvers on nested grids is less straightforward and efficient to

implement than the FFT on a regular grid.

� The choice of p for the regularizer is much more constrained. First, we require p ∈ 2N

in order for the norm to be defined. Furthermore, higher order norms will become more

difficult to invert, both from an efficiency perspective and from a numerical stability

perspective. In our numerical examples, we will only study the case p = 2 when using

the finite difference method.

Remark 4.4. While we used a finite difference discretization, a finite element discretization

could also be used. This might allow for more flexibility in the construction of the norm.
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However, the simple structure of nested grids is replaced by the significantly more complicated

process of mesh refinement, and the simplicity of the method is hence compromised.

Remark 4.5. Although we discussed the process with periodic boundary conditions, homoge-

nous Dirichlet or Neumann conditions could be chosen and imposed just as easily. Other

boundary conditions could also be considered, with the aim of minimizing the higher order

seminorms of the extension as much as possible.

4.2 Choice of p for the Smoother Sp

We recall that the purpose of the smoother is to enforce the Hp regularity of the selected

solution to the underdetermined problem. Thus, when p is chosen to be larger, a more regular

approximate solution is produced and the true solution can be approximated with a higher

order of convergence. In particular, if u ∈ Hp+2 is the solution, then, using the smoother Sp,

will result in convergence of order p for the L2-error when imposing Dirichlet conditions and

order p− 1 convergence for Neumann or Robin boundary conditions. This is demonstrated

experimentally in Section 8.1. Thus, it is advantageous to use p which gives the optimal order

of convergence for the regularity class of the true solution u. For example, if the true solution

u ∈ H6, one should use the S4 smoother to obtain 4th order convergence of the L2 error for a

Dirichlet problem. Although the order of convergence increases with p, using a higher order

smoother greatly increases the condition number of the resulting matrices. In particular, the

matrix Sp has a condition number which grows like mp (before preconditioning), where m

is the number of grid points along each direction. Thus, using a larger p, generally requires

more iterations for convergence on an equivalent grid. Furthermore, for a given grid size, the

order p of the smoother cannot be pushed too high without hitting the limits of numerical

precision. By way of example, we consider the Fourier smoother given by (1 −∆π)−p/2. In

Fourier space, this corresponds to a multiplication by the function (1 + |k|2)−p/2. If k∗ is the
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largest mode, as soon as |k∗|−p drops below machine precision, which is roughly 1e−16, some

matrix entries can no longer be captured numerically and the benefits of accuracy are lost.

For example, on a grid of size 642, the highest order smoother which can be used is p = 10.

Thus, the smoother must be chosen to balance the greater numerical accuracy obtained with

the numerical issues which arise as p is increased. The latter are discussed more extensively

in Section 5.2.

Remark 4.6. The order of convergence of the solution is constrained by the regularity of

the true solution, the order of the smoother, the interpolation operators, and the differential

operators. In order to avoid wasting computational resources, the order of accuracy of the

various discretizations should be made to match.

4.3 Discretization of the Domain

When discretizing the domain Ω and its boundary Γ, two choices need to be made. First, the

size buffer B\Ω needs to be determined. Clearly, a sufficient number of points need to be left

outside of Ω so that any finite difference operators on the interior of Ω or any interpolation

operators on Γ can be evaluated. Additionally, the buffer needs to be sufficiently large for

the extension to satisfy the boundary conditions on ∂B without exceedingly increasing the

size of the seminorms. When Ω is a disc and periodicity is imposed on B, we observed that

the accuracy of the solution begins to decrease when the radius of the disk becomes larger

than 2.75. We again note that with a Chebyshev or finite difference grid, the need for a large

buffer can be avoided.

Next the distribution of the points Γm on the boundary needs to be addressed. In practice,

it is best for these points to be uniformly distributed over the boundary. In two dimensions,

this can be accomplished easily by equally spacing points along an arc length parametriza-

tion of the curve. In three dimensions, equally distributing the points around a surface is
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more challenging, although straightforward algorithms exist to obtain roughly equally spaced

points on a given surface, for example, see [19].

Remark 4.7. When using the Chebyshev discretization, a slightly better boundary discretiza-

tion, particularly well adaptedto the density of the Chebyshev grid, can be obtained as follows.

If the boundary Γ is a hypersurface contained in B and parametrized by

(
Γ1(z), . . . ,Γd(z)

)
, z ∈ Sd−1,

where Sd−1 is the d−1-dimensional unit sphere, we can create an even distribution of points

{ỹ i}N
Γ
m

i=1 =
{

(ỹ i1, . . . , ỹ
i
d)
∣∣ i = 1, . . . , NΓ

m

}
along

Γ̃ :=
(

arccos(Γ1(z)), . . . , arccos(Γd(z))
)
,

now a hypersurface of [0, π)d. We note that applying the arccos function componentwise to

the points of Bm leaves one with a regular grid on [0, π)d; thus, setting

Γm =
{

(yi1, . . . , y
i
d)
}NΓ

m

i=1
=
{

(cos(ỹ i1), . . . , cos(ỹ id))
}NΓ

m

i=1

produces a boundary discretization of Γ the density of which is proportional to the density of

the Chebyshev points in B. In the two dimensional numerical experiments, this method was

used to discretize the boundary.

A choice also needs to be made concerning the density of boundary points, that is, the value

of NΓ
m. When using an insufficient number of points on the boundary, the accuracy suffers,

while too many points can drive up the condition number, in accordance with the theoretical

discussion in Section 7.1. In practice, we found a density of m
4π

boundary points per unit

length, where m is the number of grid points along one dimension, to be most effective in
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Nm NΩ NΓ Nm NΩ NΓ

162 81 17 2562 20,865 257
322 325 33 5122 83,421 513
642 1,305 65 10242 333,669 1,025

1282 5,209 129 20482 1,335,029 2,049

Table 4.2: Number of collocation points used in the Fourier discretization of the disc of
radius 2 used in the experiment in Section 8.3. Nm is the size of the full computational grid.
NΩ is number of interior collocation points, and NΓ is the number of boundary collocation
points.

two dimensions. This guarantees that one to two regular grid points lie between any two

boundary points and thereby allows the regular grid Bm to easily “distinguish” the different

boundary points and to keep the condition number relatively low. In Figure 1.1, we show

the discretization of the unit disc and of a star shaped domain. For better visualization, we

have only plotted [−1.3, 1.3]2, as opposed to the entire computational domain [−π, π)2. In

three dimensional problems, we have found that with a grid of size m3 points, a boundary

spacing of m2

2π2 per unit area is most effective. In Table 4.2 we list the number of interior and

boundary points used in the experiments in Section 8.3.

4.4 Discretization of the PDE operator

We recall that

C =

A
B


where A is a discretization of the interior differential operator A and B is a discretization

of the boundary operator B. As we explained in the introduction, the advantage of using a

fictitious domain method is that these discretizations can be carried out in a straightforward

and efficient way on a regular grid. We will discuss how to form each of these discretizations.
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4.4.1 Discretization of Interior PDE A

Recall that A is a second order differential operator of the form

Au(x) =
d∑

i,j=1

aij(x)∂i∂ju+
d∑
i=1

bi(x)∂iu+ c(x)u.

To discretize A, we will need to introduce the restriction operator

RΩ : RNm → RNΩ
m ,

mapping a function defined on Bm to its values at the points of Ωm. Denoting the discretiza-

tion of the derivative ∂i on Bm by Di, we let ū be the vector containing the values of the

function u on Bm and āij, b̄i and c̄ be the vectors containing the values of the functions aij,

bi, and c, respectively, at the points of Ωm. The discretization of A is then given by

Aū =
d∑

i,j=1

āijRΩDiDjū+ b̄RΩDiū+ c̄RΩū.

Similarly,

A>w̄ = D>j D
>
i R
>
Ω āijw̄ +D>i R

>
Ω b̄w̄ +R>Ω c̄w̄.

Here, R>Ω is the transpose of RΩ and amounts to an extension by 0 from Ωm to Bm. w̄ is a

vector containing values on Ωm.

As discussed at length in Section 4.1, the derivative matrices Di can be obtained using

any straightforward method on the background grid Bm. In our implementations, we used

spectral differentiation for the Fourier and Chebyshev discretization, and finite difference

discretizations for the nested grids of Section 10.2.
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4.4.2 Discretization of the Boundary Operator B

Recall that B is a boundary operator on Γ given by

Bu = a(y)γΓu+ b(y)∂νu.

B is a discretization of B on the set Γm ⊂ Γ. Since the boundary points Γm do not lie

on the regular grid, interpolation operators are needed when imposing (discrete) boundary

conditions. We let

Iyi : Bm → R

be an interpolant which estimates a grid function at yi. As before, we denote by ā and by b̄

be the vector of values of the coefficients a and b at the points of Γm. Finally, we let ν̄ be

the vector of values of ν at the points Γm. The i-th row of B is then given by

Bi• = āiIyi + b̄i

d∑
j=1

(ν̄i)jIyiDj.

As mentioned in Section 4.1, we have the option of using spectral or polynomial interopo-

lation operators. In practice, spectral interpolants can only be used on sparse grids, when

the number of boundary points is small because of the added memory and computational

costs. Thus, in our experiments we have used spectral interpolants when using high order

regularizers on sparse grids, and cubic interpolation when using lower order regularizers on

dense grids. We note that the computational complexity of the operator B is O(NΓ
m), when

using polynomial interpolation.
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Chapter 5

Linear Algebra

We now take a closer look at the saddle point system

S>S C>

C 0


u

Λ

 =

0

b

 ,
at the core of SEEM. This kind of system arise in many areas of computational mathematics,

particularly in optimization. Many techniques exist for its solution, see [3]; we investigate

several of them below. As the upper left block of the matrix factors in terms of S, additional

more specific techniques are also available. Notice that the solution u satisfies two different

equations.

� The Pseudoinverse Formulation.

u = S−1(CS−1)+b, (5.1)

where (CS−1)+ is the Moore-Penrose pseudoinverse of CS−1.
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� The Schur Complement Formulation.

u = (S>S)−1C>(C(S>S)−1C>)−1b,

where C(S>S)−1C> is the Schur complement matrix.

The problem can be solved directly or iteratively using either formulation. As described

in Chapter 3, the pseudoinverse formulation originates from the treatment of the problem

as an unsymmetric collocation method, while the Schur complement formulation appears

when treating the problem as a symmetric collocation method. As a general rule, methods

which avoid implementing the full Schur complement matrix are more stable because they

avoid the numerical instability stemming from the calculation of (S>S)−1 and only require

the indipendent computation of S−1 and (S>)−1. The condition number of S−1 is only the

square root of that of (S>S)−1.

Occasionally, one may wish to replace the (S>S)−1 matrix of the Schur complement with

another smoothing matrix which cannot be factored. For example, one might want to use

(1 −∆)3 in place of S>S. If one is using a finite difference discretization, it is not possible

to exploit factorization and one would need to invert the full (1 −∆)3. In such a case, the

pseudoinverse formulation would not be available.

5.1 Methods for Solving the System

5.1.1 Direct Methods

We first describe a method to invert the matrices directly, rather than using iterative meth-

ods. In this case, it is clearly advantageous to use the pseudoinverse method because of its
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numerical stability. We seek to solve

u = S−1(CS−1)+b.

Consider the QR decomposition

(S>)−1C> = QR,

where, Q ∈ RNm×(NΩ+NΓ) is orthogonal and satisfyies QTQ = I, while R ∈ R(NΩ+NΓ)×(NΩ+NΓ)

is upper triangular. Recalling that the pseudoinverse of CS−1 is given by Q(R>)−1, we see

that

u = S−1Q(R>)−1.

Owing to the fact that the QR decomposition only involves the matrix CS−1, this method

is the most numerically stable of the available methods. Thus, on sparse grids and with high

order regularizers, where numerical stability becomes an issue, it is the method of choice.

Unfortunately, however, it cannot be used on dense grids where iterative methods must be

used. We note that an SVD decomposition could also be used to calculate the pseudoinverse.

In the numerical experiments of Sections 8.1, 8.2, 8.6, and 9.3, the pseudoinverse method

is used to demonstrate how the order of convergence relates to the order of the smoother.

Using the QR method, we are able to use the p = 10 smoother on sparse grids.

5.1.2 Iterative Methods

Next we address the iterative inversion problem on dense grids. A straightforward method

consists of inverting the Schur complement matrix directly. Because it is a symmetric pos-

itive definite matrix, it can be inverted by means of the conjugate gradient algorithm. As

mentioned previously, all operators can be efficiently evaluated using either the FFT or

mutligrid methods. The Schur complement matrix can therefore be applied implicitly very
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efficiently. Although the matrix Sp is of order 2p and is therefore ill-conditioned for large

grids, natural preconditioning exists which allows the Preconditioned Conjugate Gradient

method (PCG) to converge quickly; see Section 5.2. It follows that the PCG-Schur comple-

ment method can be used to efficiently compute the solution on very dense grids. Although

this method converges quickly on dense grids, it is not the most numerically stable of the

iterative algorithms. Iterative algorithms exist which leverage the fact that the regularizer

is of the form (S>S)−1, to which the pseudoinverse formulation applies. Although these

algorithms ultimately are variants of the CG method, they attain somewhat better stability

properties by avoiding the direct computation of (S>S)−1. Two such methods are the LSQR

algorithm (see [18]) and the CGNE (Craig’s) algorithm (see [20, Chapter 8]). These methods

find the solution of the pseudoinverse equation and achieve the same efficiency as the PCG

method, while limiting the numerical instability. On the other hand, when using the straight

PCG algorithm, one can use the symmetric positive definite matrix described in Section 5.2

as a split preconditioner without actually factoring it. In contrast, when using the LSQR

or CGNE algorithms, one would need to factor the matrix to obtain a split preconditioner

or settle for a less effective right or left preconditioning. Work is ongoing to determine the

optimal solver for various grid sizes and smoothers Sp.

5.1.3 Other Iterative Methods

The methods described above assume that we are able to easily invert S and S>. However,

when using a finite difference discretization, a multigrid method will be required to invert

these. In this case, it may be more efficient to use an inexact Uzawa method, described in [8].

In the inexact Uzawa method, each iteration only requires that we invert S>S approximately.

In practice, this would refer to performing several mutigrid iterations, but not fully inverting

S>S. Work is ongoing to find the optimal strategy to solve the system on dense grids with

large p.
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5.2 Preconditioning for Iterative Methods

5.2.1 The PCG Method

We now discuss the appropriate preconditioner for the PCG algorithm in the Schur com-

plement method. As observed in 5.1.2, the normal matrix C(S>p Sp)
−1C> is ill-conditioned

and requires a good preconditioner to be inverted using the conjugate gradient method.

The ill-conditioning stems from the use of the high order operator S−1
p and from the differ-

ence in order between the boundary and the interior operators. We think of the operator

C(S>p Sp)
−1C> as a block matrix

C(S>p S
−1
p )C> =

Am(S>p Sp)
−1(Am)> Am(S>p Sp)

−1(Bm)>

Bm(S>p Sp)
−1(Am)> Bm(S>p Sp)

−1(Bm)>

 =

C1 C2

CT
2 C3

 ,
and notice that (S>p Sp)

−1 represents an operator of order −2p, Am one of order 2, and C1

corresponds to an operator of order 4 − 2p, whereas C2 to one of order 2 − 2p and C3 to

one of order −2p (when choosing a discrete boundary operator Bm discretizing a continuous

one of order 0). In general, if an operator is of order −2p, the condition number of its

matrix approximation will grow like a polynomial of degree 2p as the grid size increases

(for example, on a grid of size m, the largest eigenvalue of the Laplace operator is of size

m2). Thus, the large order combined with the mismatch in scaling causes a very large

condition number. We describe a simple preconditioner which works effectively for S2, S3,

and S4. The preconditioning consists of finding approximate inverses to the C1 and C3 blocks

independently. Specifically, we use the preconditioner

C̃−1 =

C̃−1
1 0

0 C̃−1
3

 ,
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where C̃−1
1 and C̃−1

3 are approximate inverses to C1 and C3, respectively. The general

philosophy consists in preconditioning each of these two operators so that they become

order 0.

We begin by describing C̃−1
1 . The matrix C1 depends on the order of the smoother we have

chosen. For S2, the matrix C1 is of order 0. Thus, no preconditioning is necessary, and C̃−1
1

can be taken to be the identity. For S3 and S4, the operator C1 is the discretization of a

differential operator of order 4− 2p. We wish to precondition in such a way as to reduce the

order of the operator to 0. Thus, we define the preconditioner

C̃−1
1 u =

(
1−∆Ω

) 2p−4
2 u,

where ∆Ω is the Laplace operator on Ω (applied with Neumann boundary conditions). In

order to implement it, we use the domain discretization Ωm = Bm ∩Ω and a finite difference

scheme to discretize the Laplacian on Ωm. In examples, the five points stencil (seven points

in three dimensions) was chosen.

As for an approximate inverse of the C3 block, we will consider a Dirichlet problem, where

the boundary operator B consists of evaluations on the boundary. The discrete boundary

points belonging to Γm are denoted by yi for 1 ≤ i ≤ NΓ
m. Recall that

Bm : RBm → RΓm and Sp : RBm → RBm .

Here the rows of Bm are discretizations of the delta distribution supported at the various

boundary points. Thus, C3 = Bm(S>p Sp)
−1(Bm)> is a discretization of the collocation matrix

Mij = Kp(yi, yj) = 〈δi, (S∗pSp)−1δj〉.

It follows that an excellent preconditioner for the C3 block is obtained by inverting the
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explicit collocation matrix. Although this involves solving a collocation problem, seemingly

defeating the whole purpose of discretizing the collocation method as we do in this paper,

several crucial points must be recognized. First, the new collocation problem only resides on

the boundary. Thus, the number of points is only NΓ
m, as opposed to the NΩ

m + NΓ
m points

of the full BVP. This dimensional reduction allows working with far denser grids. Second,

because the matrix C̃−1
3 is only used as a preconditioner, we do not need to actually calculate

the inverse of the collocation matrix: a crude approximation or even any pseudodifferential

operator of the proper order will do. Finally, as we will discuss shortly with regards to the

Robin and Neumann problems, the collocation matrix that is inverted does not depend on

the actual differential and boundary operators arising from the problem so that a standard

one can be used for all such operators.

In all numerical experiments performed later, we make use of few enough boundary points

that it is possible to directly invert the collocation matrix. To build the latter, observe

that (S>S)−1 is given by convolution with a kernel. Thus, it suffices to calculate it at one

point and simply shift its “center” to the different collocation points. A discretization of the

fundamental solutions of the continuous smoother (S∗pSp)−1, given by

h(y) = ((S∗pSp)−1δ)(y),

is computed on a dense grid. In our experiments we use a grid of size 40962 in two dimensions

and 5123 in three dimensions. This solution can be stored in a lookup table. The collocation

matrix is then given by

Mij = h(yi − yj),

where the values are interpolated from those in the lookup table.

For the Neumann and Robin problems, we note that the order of the matrix C3 is decreased

by 2, because C and C> both evaluate one derivative on the boundary. Thus, rather than
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using the function (S∗pSp)−1δ in the collocation matrix, we instead resort to the function

(S∗p−1Sp−1)−1δ.

Using the described preconditioning technique, the PCG method converges fast enough for

an efficient evaluation on very dense grids. Numerically, we show in Section 8.3 that precon-

ditioning is most effective for the S2 smoother. As mentioned above, for a second order BVP,

the matrix corresponding to the interior equations “is” order 0 with no preconditioning. As p

increases, the preconditioning is somewhat less effective. In general, the ill-conditioning can

be somewhat improved by increasing the distance between the boundary points. Another

approach to improving the condition number consists in replacing the smoother with the

parameter dependent (1 − ε∆π)−p/2, where 0 < ε < 1. (In fact, ε should be taken small

enough so that the smallest eigenvalue of S−1
p is greater than machine precision to avoid the

issues described in Section 4.2.) This did not prove necessary for the problems studied here.

We refer to Table 8.6 for actual condition numbers of the preconditioned matrices, as well

as to the numerical experiments for the CPU times of the corresponding computations.
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Part III

Theory
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Chapter 6

Continuous Theory

Our theoretical discussion will have two components. We first study the continuous mini-

mization problem on which SEEM is based, and prove several properties about the continuous

minimizer. We then move to discussing the discretized problem and prove that the problem

is well posed and show some convergence properties.

6.1 The Continuous Problem

We recall that

C =

A
B

 , C : Hp(Ω)→ Hp−2(Ω)×Hp−s(Γ)

is a second order differential operator. Here s = 1
2

in the case of the Dirichlet problem, and

s = 3
2

in the case of the Neumann or Robin problem. (In the Neumann problem, we need to

take the space of mean 0 functions as the domain and add a compatibility condition to the
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codomain.) The original BVP is now expressed as

C u = b, (6.1)

where b = [f ; g]. In the SEEM formulation, we replace the original boundary value problem

with the minimization problem on B ⊃ Ω̄ given by

argminu∈Hp(B)

C̃u=f

‖u‖2
Sp .

Here ‖ · ‖Sp = ‖Sp · ‖L2(B) is a norm equivalent to the Hp norm on B and C̃ = C ◦RΩ, where

RΩ is the restriction operator to Ω. This optimization problem can be reformulated as an

unconstrained problem by introducing a Lagrange multiplier

argminu∈Hp(B)‖u‖2
Sp + 〈Λ, C̃u− b〉,

where Λ ∈ Hp−2(Ω)′ ×Hp−s(Γ)′ = Hp−2(Ω)′ ×Hs−p(Γ). Upon taking variations in u and Λ,

we obtain the saddle point problem


S∗pSpu+ C̃>Λ = 0

C̃u = b.

We reformulate the problem by evaluating against a test function v ∈ Hp(Ω) and p ∈

Hp−2(Ω)′ ×Hs−p(Γ). We get the weak formulation


(u, v)Sp + 〈C̃v,Λ〉 = 0

〈C̃u, p〉 = 〈b, p〉.
(6.2)

We will assume that the operator Sp is chosen so that S∗pSp is a differential operator of order

2p (as opposed to only being a pseudodifferential operator). We now introduce a boundary
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value problem of order 2p on B\Ω. We let uΩ be the unique solution of the original BVP

within Ω. For 0 ≤ i < p, we let gi = ∂iνuΩ, the i-th normal derivative of uΩ, where ν is the

outward facing unit normal. Then we define the BVP


S∗pSpu = 0 on B\Ω

∂iνu = gi on Γ.

(6.3)

Theorem 6.1. If Ω is a smooth domain, then the saddle point problem (6.2) is well posed.

Furthermore, the solution u satisfies the Equation (6.1) on Ω and Equation (6.3) on B\Ω.

Proof. We recall that a saddle point problem is well posed if it satisfies the LBB conditions.

We verify each of these conditions here.

1. We let Z be the null space of C. The first condition, ellipticity, is that

inf
u∈Z

sup
v∈Z

(u, v)Sp ≥ α‖u‖Hp(Ω)‖v‖Hp(Ω).

However, in our construction, we took the ‖ · ‖Sp norm to be equivalent to the Hp

norm, so this inequality is straightforward.

2. The second condition, continuity, is that

∀u, v ∈ Hp, (u, v)Sp ≤ c‖u‖‖v‖Hp ,

∀v ∈ Hp, q ∈ (Hp−2 ×Hp−s)′, 〈C̃v, q〉 ≤ c‖v‖Hp‖q‖(Hp×Hp−s)′ .

This is true because by assumption Sp and C are continuous operators.

3. The inf-sup inequality,

inf
q∈(Hp−2×Hp−s)′

sup
v∈Hp(B)

〈C̃v, q〉
‖v‖‖q‖

= β > 0.
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We fix q ∈ (Hp−2 ×Hp−s)′ and we produce the desired v as follows. We let

R : (Hp−2 ×Hp−s)′ → Hp−2 ×Hp−s

be the Riesz dual. Because Ω is smooth, there exists

EB : Hp(Ω)→ Hp(B),

a bounded operator. We then let

v = EB C−1Rq.

As each of these operators is bounded, we find that ‖v‖Hp ≤ c‖q‖(Hp−2×Hp−s)′ . We then

calculate

〈C̃v, q〉 = 〈C ◦ RΩ ◦ EB ◦ C−1 ◦ Rq, q〉

= 〈Rq, q〉

= ‖q‖2

≤ c−1‖v‖‖q‖.

The first equality follows from the definition of C̃ and v. The second follows from the fact

that RΩ ◦ EB = Id.

We turn to showing the seond part of the theorem. Clearly, given data b, the solution u

satisfies Equation (6.1) on Ω and Γ - this is the constraint equation Cu = b. We now show

that the solution u satisfies Equation (6.3) on B\Ω. We first evaluate Equation (6.2) against

a test function v with supp(v) ⊂ B\Ω. We satisfy

(u, v)Sp + 〈C̃v, q〉 = 0

62



However, because supp(v)∩ Ω̄ = ∅, the second term is 0. As choice of such v is arbitrary, we

find that

S∗pSpu = 0 on B\Ω.

Next, we note that because our solution u lies in Hp(B), for 0 ≤ i ≤ p− 1, ∂iνu (the normal

derivative along Γ) is well defined (in the trace sense). This implies (again in the trace

sense) that the normal derivative taken from Ω is equal to that taken from B\Ω. Thus, u
∣∣
B\Ω

satisfies Equation (6.3).

Corollary 6.1. If 0 < ε < 1/2 and the data b ∈ Hp+1/2−2−ε(Ω) × Hp+1/2−ε−s(Γ), then the

solution u of Equation (6.2) is in Hp+1/2−ε(B).

Remark 6.1. Corollary 6.1 tells us that although we are only minimizing the Hp norm

of the function, if the data is good enough, the solution actually lies in a better space, up

to Hp+1/2−ε. We note that it is impossible to obtain higher regularity than Hp+1/2−ε in

general because the trace of the p-th normal derivative will be different on Γ from Ω and

B\Ω. However, if u ∈ Hp+1/2, the p-th derivative would be well defined on Γ, and this is a

contradiction.

Proof. We note that by elliptic theory, if b ∈ Hp+1/2−ε−2(Ω) × Hp+1/2−ε−s(Γ), then u
∣∣
Ω
∈

Hp+1/2−ε(Ω). Therefore, for 0 ≤ i ≤ p− 1, ∂iν
(
u
∣∣
Ω

)
∈ Hp+1/2−i−ε(Γ). Because u

∣∣
B\Ω satisfies

Equation (6.3), again by elliptic theory, we know that u
∣∣
B\Ω ∈ H2p+1/2−ε(B\Ω). We set

f = (Spu)
∣∣
Ω

. We note that f ∈ H1/2−ε(Ω) by assumption. We let f̃ = EB (f), an H1/2−ε

extension of f to B. Similarly, we set g = (Spu)
∣∣
B\Ω, and we let g̃ = EB (g) ∈ H1/2−ε(B) (it

will in fact have higher regularity than this). We now let

h = f̃χΩ + g̃χB\Ω.
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Then u satisfies

Spu = h.

We cite Theorem 5.1 from [2].

Lemma 6.1. If u ∈ H1/2−ε(B) and v ∈ Hd/2−ε(B) then uv ∈ H1/2−ε(B).

As Ω is a smooth domain by assumption, we know that χΩ, χB\Ω ∈ Hd/2−ε. Thus, by the

lemma, Spu = f̃χΩ + g̃χB\Ω ∈ H1/2−ε(B). This implies that u ∈ Hp+1/2−ε(B).

Remark 6.2. We now give a heuristic for the optimal level of convergence one obtains when

using the Sp regularizing norm. We note that for a general Hp function, the optimal order an

approximation technique could expect is order p. In our case, we assume we have an Hp+1/2−ε

solution of the continuous problem(the optimal case) and that we are using regularizing norm

Sp. In this case, the data is Hp+1/2−ε−2(Ω)×Hp+1/2−ε−s(Γ). We can try to approximate the

data in the weakest regularity for which the BVP is well defined - in Hs+ε−2(Ω)×Hε(Γ). (In

the Neumann case this can be further weakened by imposing the boundary condition weakly,

but we have not yet implemented such a strategy using SEEM.) Doing this, we can hope to

approximate the data to order p+ 1/2− s− 2ε. Thus, order p convergence for the Dirichlet

problem and order p − 1 for the Neumann problem are the optimal rates of convergence we

could expect. In fact, this is the observed rate of convergence for the method.
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Chapter 7

Discrete Theory

The theory of the discretized solution involves two parts:

1. Is the matrix well posed - is there a unique solution for each right hand side f?

2. Does the solution converge to the true solution as the grid is taken finer and finer?

We address each of these questions with regards to the Fourier implementation of SEEM in

the next two sections. We will assume that all interpolation operators are evaluted spectrally,

meaning that the Fourier series representation of the discrete solution satisfies the BVP

exactly at the collocation points.

7.1 Well Posedness

We discuss the question of whether the discrete problem is well posed. We first note that

because Sp is chosen to be a positive definite matrix, the existence of a solution of the full

saddle point system depends on the surjectivity of C, which we now show. The surjectivity
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of C is equivalent to the question of whether the rows of C are linearly independent. We

recall that each row of C corresponds to a collocation point, where either the interior or

the boundary conditions of the BVP are imposed. Intutitively, we would assume that as

the collocation points are brought closer together relative to the background regular grid,

the rows of the matrix will become increasingly more dependent, until the matrix becomes

singular at some point. Conversely, we would assume that as the points become further

apart, the rows of the matrix become increasingly independent. We formalize this result by

proving that if the points are sufficiently distant relative to the regular grid, then the rows

will be linearly independent. The important question of how large a gap is necessary will be

addressed numerically in Remark 7.2.

We will denote the grid distance on the regular grid as hB. We assume that the collocation

points {yi}NΓ
i=1 on Γ have a minimum distance 2hΓ and the collocation points {xi}NΩ

i=1 in the

interior Ω have a minimum distance 2hΩ. For simplicity, we will assume that hΩ ≤ hΓ. We

also require that the interior collocation points are a minimum distance of hΩ from Γ.

Theorem 7.1. Given α < 1, ∃κ ∈ R+ such that if hΓ ≥ hΩ > κhαB, then the matrix C is

onto.

Remark 7.1. The theorem leaves open what happens when α = 1: can the collocation points

be taken to have constant density relative to the regular grid. It also leaves open what the

optimal constant κ might be. Our numerical experiments suggest that the theorem holds for

α = 1 and that the value of κ can be taken to be 1. We will provide some numerical evidence

in Remark 7.2.

Proof. The idea of the proof is to place an approximate delta at each collocation point. The

radius of the approximate delta is chosen so that the approximate deltas do not overlap.

If the points on the regular grid are spaced close enough together, the grid will accurately

approximate each of these approximate deltas. Thus, for any vector v ∈ RNΓ+NΩ , we can use
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a linear combination of these deltas to find a grid function um such that Cum ∼ v. We now

formalize this discussion. We will first need to define some new constants and operators.

� A Choice of Sobolev Space. Fix any ε > 0 and choose p ∈ N such that

α <
p− 3− d/2
p+ d/2

. (7.1)

We recall from Equation (1.2) that

C : Hp(Ω)→ Hp−2(Ω)×Hp−s(Γ).

Here s = 1/2 for the Dirichlet problem, and 3/2 for the Neumann and Robin problems.

� A Projection Operator. We define the projection from Hp(B) onto the space of

trigonomietric polynomials of degree less than m. We will denote this operator by Pm ,

where

Pm u =
∑
|k|<m

ak expikx .

We will use the approximation result

‖(I − Pm )u‖Hk ≤ c‖u‖Hphp−k.

� A Restriction Operator We define the restriction operator

RΩ : Hp(B)→ Hp(Ω)

given by restriction to Ω.

� An Approximate δ Distribution. For a given dimension d, we select a function ϕd
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satisfying 0 ≤ ϕd ∈ C∞(Rd) with supp(ϕd) ∈ B(0, 1),
∫
ϕd = 1, and ϕd(0) = 1.

� An Interpolation Operator. We define the interpolation operators

I 1 : RNΩ → C∞c (Ω),

I 2 : RNΓ → C∞(Γ)

by

I 1(v1) =

NΩ∑
i=1

(v1)iϕd

(
x− xi
hΩ

)
,

I 2(v2) =

NΓ∑
i=1

(v2)iϕd−1

(
y − yi
hΓ

)
.

(We assume that hΓ is small enough so that B(yi, hΓ) is homeomorphic to the Euclidean

ball.) We then define the interpolation operator

I : RNΩ ⊕ RNΓ → Hp−2(Ω)×Hp−s(Γ),

with

I (v1 ⊕ v2) = (I (v1), I (v2)) .

We note that by construction, the supports of the approximate δ distributions do not

overlap. Straightforward computations allow to verify that for s ∈ R+,

‖I 1v1‖Hs ≤ ch
d/2−s
Ω ‖v1‖`2 ,

‖I 2v2‖Hs ≤ ch
(d−1)/2−s
Γ ‖v2‖`2 .

68



� An Inner Product. We introduce a norm on RNΩ given by

‖v1‖K1 = ‖I v1‖Hp−2 .

Similarly, we introduce a norm on RNΓ given by

‖v2‖K2 = ‖I v2‖Hp−s .

Finally, we introduce a norm on RNΩ ⊕ RNΓ given by

‖v1 ⊕ v2‖K =
(
‖v1‖2

K1
+ ‖v2‖2

K2

)1/2
.

This norm defines the magnitude of a vector by using the I operator to generate a

function in Hp−2(Ω)×Hp−s(Γ). We note that this is guaranteed to be a norm because

the supports of the approximate δ distributions do not overlap. We now note that

‖v1‖K1 ≤ ch
d/2+2−p
Ω ‖v1‖l2 ,

‖v2‖K2 ≤ ch
(d−1)/2+s−p
Γ ‖v2‖l2 ,

‖v‖K ≤ c
(
h
d/2+2−p
Ω + h

(d−1)/2+s−p
Γ

)
‖v‖l2 .

We now begin the proof of the surjectivity of C. We consider the matrix

H = CPm EB C−1 I .

We will use the fact that the surjectivity of H implies that of C. To study the surjectivity
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of H, we note that H = H1 −H2, where

H1 = CEB C−1 I,

H2 = C(I − Pm )EB C−1 I.

By construction, H1 is the identity matrix. Thus, it is sufficient to show that ∃0 < β ≤ 1

such that ‖H2‖K ≤ β. We will show that

∀v ∈ RNΩ ⊕ RNΓ , 〈H2v, v〉K ≤
1

2
‖v‖2

K .

We will use the notation v = v1⊕v2 and Hv = w1⊕w2. We note that by the definition of I ,

we are guaranteed that ‖I v‖Hp−2(Ω)×Hp−s(Γ) = ‖v‖K . (This is the definition of the K-norm.)

Because C−1 and EB are bounded operators, we find that

‖EB C−1 I v‖Hp ≤ c‖v‖K ,

where the constant c is determined by the continuous operator and by the choice of extension

operator. We let u = EB C−1 I v. We recall that the number of collocation points Ωm grows

like h−dΩ . We now study w1 = A(I − Pm )u. We find

‖A(I − Pm )u‖`2 ≤ h
−d/2
Ω ‖A(I − Pm )u‖`∞

≤ ch
−d/2
Ω ‖(I − Pm )u‖C2

≤ ch
−d/2
Ω ‖(I − Pm )u‖H2+d/2+ε

≤ ch
−d/2
Ω h

p−2−d/2−ε
B ‖u‖Hp

≤ ch
−d/2
Ω h

p−2−d/2−ε
B ‖v‖K .

We also recall that the number of collocation points Γm grows like h−d+1
Γ . We study w2 =

B(I − Pm )u. With j = 0 for the Dirichlet problem and j = 1 for the Neumann or Robin
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problems (equivalently j = s− 1
2
), we calculate

‖B(I − Pm )u‖`2 ≤ h
(−d+1)/2
Γ ‖B(I − Pm )u‖`∞

≤ ch
(−d+1)/2
Γ ‖(I − Pm )u‖Cj

≤ ch
(−d+1)/2
Γ ‖(I − Pm )u‖Hj+d/2+ε

≤ ch
(−d+1)/2
Γ h

p−j−d/2−ε
B ‖u‖Hp

≤ ch
(−d+1)/2
Γ h

p−j−d/2−ε
B ‖v‖K .

Altogether, we obtain the estimate

‖C(I − Pm )EB C−1 v‖l2 ≤ c
(
h
−d/2
Ω h

p−2−d/2−ε
B + h

(−d+1)/2
Γ h

p−j−d/2−ε
B

)
‖v‖K

≤ c
(
h
−d/2
Ω h

p−2−d/2−ε
B + h

(−d+1)/2
Γ h

p−j−d/2−ε
B

)
(
h
d/2+2−p
Ω + h

(d−1)/2+s−p
Γ

)
‖v‖`2

≤ c
(

(h
−d/2
Ω + h

−d/2
Γ )h

p−2−d/2−ε
B

)
(h−pΩ + h−pΓ )‖v‖`2 .

We note that in the last inequality, we have sacrificed on the optimal constants by dropping

several terms with a positive exponents. This was done to simplify the calculation. We next

recall that hΓ ≥ hΩ. Therefore,

‖C(I − Pm )EB C−1 v‖`2 ≤ ch
−p−d/2
Ω h

p−2−d/2−ε
B ‖v‖`2 .

The theorem assumed that hΩ ≥ κhαB. We therefore find that

‖C(I − Pm )EB C−1 v‖`2 ≤ cκ−p−d/2h
α(−p−d/2)
B h

p−2−d/2−ε
B ‖v‖`2 .

We next note that in (7.1), p was chosen sufficiently large to satisfy

α(−p− d/2) + (p− 2− d/2− ε) > 0,
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Figure 7.1: Growth of condition number as the boundary collocation points become closer
spaced relative to the regular grid distance. The x-axis measures hΓ/hB. The domain
considered is the unit disc.

so h
α(−p−d/2)
B h

p−2−d/2−ε
B < 1. Thus, by choosing κ so that cκ−p−d/2 < 1

2
, we obtain the desired

inequality,

‖C(I − Pm )EB C−1 v‖`2 ≤
1

2
‖v‖`2 .

Remark 7.2. Our proof leaves open the question of the optimal constants for how close the

collocation points can be placed together. However, we offer the following numerical result.

We create an interpolation matrix for points equally distributed on the unit disc with distance

hΓ between the points. In Figure 7.1, we plot how the condition number of the resulting matrix

depends on the ratio hΓ/hB, where hB is the grid distance on the background regular grid.

We note that it appears that as long as the distance between the collocation points on the

boundary is greater than the grid distance hB, the condition number remains under control.
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7.2 Convergence Analysis

7.2.1 A Sampling Inequality

For the convergence proofs, we will use a sampling inequality developed for the theory of

meshfree methods. The inequality is taken from [27]. We will assume that a Ω is a bounded

domain and X is a finite discrete set of Ω. We define

hX,Ω := sup
x∈Ω

min
xj∈X
|x− xj|,

the fill distance of X on Ω.

Theorem 7.2. Let u ∈ Hp(Ω), with p > |α|+ d
2
. Assume that

1. u
∣∣
X
≡ 0.

2. Assume that ∃θ ∈ [0, π/2), r > 0 such that ∀x ∈ Ω, the cone

C(x, ξ(x), θ, r) := {x+ λy | y ∈ Rd, ‖y‖`2 = 1, y>ξ(x) > cos(θ), λ ∈ [0, r]} ⊂ Ω.

This is known as an interior cone condition, see [27, Chapter 3].

3. The following relationship holds between the fill distance and the interior cone condi-

tion.

hX,Ω ≤
r sin(θ)

4(1 + sin(θ))p2
.

Then

‖Dαu‖L2(Ω) ≤ chp−|α|‖u‖Hp(Ω).
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Remark 7.3. We note that although the theorem in [27] is cited with regards to subset of Rd,

using partitions of unity it is straightforward to extend the theorem to the compact boundary

manifold Γ, provided that Γ is smooth.

7.2.2 Convergence Proof

We note that our discrete solution uh is an Hp bounded function which satisfies

C (uh)(zi) = bi.

For any such function, we can apply Theorem 7.2 to both the interior and the boundary

right hand sides. The boundedness of C−1 will then imply the convergence of the discrete

solution. For the purposes of this discussion, we will denote h = max{hΩ, hΓ}.

Theorem 7.3. If p > 2 + d
2

and ∃c s.t. ‖u‖Hp(Ω) < c and uh is the Hp(Ω) minimizing

function which satisfies

∀zi ∈ Z, C (uh)(zi) = bi.

Then we have the bound

‖u− uh‖H2(Ω) ≤ chp−2(‖f‖Hp−2(Ω) + ‖g‖Hp−s(Γ)).

Proof. We first note that uh is the Hp minimizing function which satisfies C (u)(zi) = bi.
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Thus,

‖Auh‖Hp−2(Ω) + ‖Buh‖Hp−s(Γ) ≤ c‖uh‖Hp(Ω) (7.2)

≤ c‖u‖Hp(Ω) (7.3)

≤ c(‖f‖Hp−2(Ω) + ‖g‖Hp−s(Γ)). (7.4)

The first and third inequalities are the boundedness of C and C−1 . The second relies on the

minimality of uh. We now note that because C(u − uh)(zi) = 0, the functions A(u − uh)

and B(u − uh) are functions with scattered zeros to which we can apply Theorem 7.2. We

calculate

‖u− uh‖H2 ≤ c(‖A(u− uh)‖L2(Ω) + ‖B(u− uh)‖Hp−s(Γ))

≤ chp−2‖A(u− uh)‖Hp−2 + chp−s‖B(u− uh)‖Hp−s

≤ chp−2(‖f‖Hp−2 + ‖Auh‖Hp−2) + chp−k(‖g‖Hp−s + ‖Buh‖Hp−s)

≤ chp−2(‖f‖Hp−2 + ‖g‖Hp−s).

The first inequality come the from the boundedness of C , while the second is an application

of Theorem 7.2. The third is just the triangle inequality and the definitions of f and g. The

fourth is an application of Equation (7.2).

Remark 7.4. We note again that Theorem (7.3) only guarantees (p− 2) order convergence

when using the pth order Sobolev kernel. In numerical experiments, we observe pth order

convergence instead, provided that the solution u ∈ Hp+2. This has been demonstrated in

Sections 8.1, 8.3, and 8.4. We refer to Remark 6.2 for a discussion of this point.
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Part IV

Numerical Experiments
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Chapter 8

Fourier Torus

We present several numerical experiments to demonstrate the Fourier implementation of

SEEM. As we discussed in Section 4.1.1, in the Fourier discretization, the operator Sp is

given by

Spu = F−1 diag[(1 + |k|2)p/2]F(u),

where F is the discrete Fourier transform and k ∈ Zdm is the vector of frequency vectors

on the grid B. Derivatives in the matrix C are taken spectrally, and interpolation is done

spectrally on sparse grids and with cubic interpolation on dense grids.

We present experiments with the goal of demonstrating the rate of convergence and the nu-

merical efficiency of the method. We first present a Dirichlet problem with analytic solution.

This will allow us to highlight how the rate of convergence depends on p and that the Sp

regularizer attains a p-th order of convergence for the Dirichlet problem. Next, we present

a Robin BVP, also with analytic solution. This will allow us to demonstrate the p− 1-order

convergence which is attained for the Sp regularizer for the Neumann and Robin problems.

Next, we will study two problems of lower global regularity. In these examples, the problem
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will be solved on denser grids using iterative methods, as described in Section 5.1.2. We will

demonstrate how the method remains efficient on dense grids when using the precondition-

ing described in Section 5.2. We will also consider a three dimensional problem, where the

number of grid points is substantially larger. Finally, we will show how our method can be

used to solve the Stokes problem, which seeks a solution in a divergence-free space. In our

method, a basis for such a space can be easily constructed and we discuss how to implement

such a solver.

8.1 A Dirichlet Problem

In our first experiment, we study the function

u = x2 − y2.

We will study a Dirichlet problem on the unit disc, given by


−∆u = 0 in D,

u = x2 − y2 on ∂D.

(8.1)

Since u is an analytic function, any algebraic order of convergence could be attained with

the use of an appropriate order smoother and discretizations. We solve the problem on

sparse grids (up to 1282) using the QR-method of Section 5.1.1. We note that using the

QR formulation allows us to use smoothers with order 2 ≤ p ≤ 10. Beyond p = 10, the

diagonal entries of the S−1
p matrix (in Fourier space) are smaller than machine precision.

We show the errors both in Figure 8.1 and in Tables 8.1 and 8.2. The order is calculated by

comparing the errors on the densest grid to those on the sparsest grids. We observe the p-th

order convergence of both the L2 and L∞ errors.
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Figure 8.1: Convergence of the L2 and L∞ relative errors for different order smoothers solving
Equation (8.1). The dotted reference lines have slope −p.

Grid Size
Relative L2 Error

S2 S4 S6 S8 S10

162 5.00E − 02 3.79E − 03 1.02E − 03 6.78E − 04 7.96E − 04
322 2.41E − 02 6.19E − 04 3.19E − 05 5.74E − 06 3.01E − 06
642 2.29E − 03 1.12E − 05 2.00E − 07 1.55E − 08 2.07E − 09
1282 5.00E − 04 8.58E − 07 4.64E − 09 9.82E − 11 4.40E − 12

Order: 2.21 4.04 5.92 7.57 9.14

Table 8.1: Relative L2 error for Equation (8.1).

Grid Size
Relative L∞ Error

S2 S4 S6 S8 S10

162 5.96E − 02 5.70E − 03 1.62E − 03 1.08E − 03 1.27E − 03
322 4.36E − 02 1.14E − 03 5.11E − 05 9.18E − 06 4.85E − 06
642 4.94E − 03 2.00E − 05 4.57E − 07 3.27E − 08 3.67E − 09
1282 1.53E − 03 2.67E − 06 1.01E − 08 1.77E − 10 8.00E − 12

Order: 1.76 3.69 5.76 7.52 9.08

Table 8.2: Relative L∞ error for Equation (8.1).
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8.2 A Robin Problem

In this experiment, we again study the analytic function

u = x2 − y2.

In this experiment, in addition to showing the order of convergence of the Robin BVP, we

seek to demonstrate the that our method is robust with regards to nonconstant coefficients,

a variety of boundary conditions, and irregular geometries. Therefore, we let

Ω =
{[

1 + .2 cos(5θ)
](

cos(θ), sin(θ)
) ∣∣∣ θ ∈ [0, 2π)

}
.

This is the star-shaped domain shown in Figure 1.1. We study the Robin BVP given by


−
(
(2 + y)∂2

x + (2− x)∂2
y

)
u = −2x− 2y in Ω,

u+ ∂u
∂ν

= g on ∂Ω,

(8.2)

where ∂
∂ν

is the normal derivative on ∂Ω and g = (γΓ + ∂ν) (x2 − y2) is the Robin boundary

operator on ∂Ω applied to u. As in the previous experiment, we solve the problem using

the QR formulation. We show the errors both in Figure 8.2 and in Tables 8.3 and 8.4.

We observe the p − 1-th order convergence of both the L2 and L∞ errors. In particular,

comparing Tables 8.1 and 8.3, we see that the Dirichlet problem converges an order faster

than the Robin problem. As explained in Remark 6.2, this is also true of the Neumann

problem.
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Figure 8.2: Convergence of the L2 and L∞ relative errors for different order smoothers solving
Equation (8.2). The dotted reference lines have slope −p+ 1.

Grid Size S2 S4 S6 S8 S10

162 8.55E − 02 1.31E − 02 2.92E − 03 1.45E − 03 1.27E − 03
322 3.54E − 02 3.05E − 03 1.35E − 04 1.59E − 05 3.44E − 06
642 2.88E − 02 4.68E − 04 1.13E − 05 4.85E − 07 3.23E − 08
1282 3.12E − 03 7.57E − 06 8.37E − 08 2.97E − 09 1.04E − 10

Convergence Rate: 1.59 3.58 5.03 6.3 7.85

Table 8.3: Relative L2 error for Equation (8.2).

Grid Size S2 S4 S6 S8 S10

162 9.83E − 02 1.03E − 02 2.34E − 03 1.11E − 03 9.31E − 04
322 3.04E − 02 2.55E − 03 9.72E − 05 1.31E − 05 3.31E − 06
642 3.13E − 02 5.06E − 04 1.13E − 05 5.22E − 07 3.30E − 08
1282 4.00E − 03 2.16E − 05 1.83E − 07 5.00E − 09 1.65E − 10

Convergence Rate: 1.54 2.97 4.55 5.92 7.48

Table 8.4: Relative L∞ error for Equation (8.2).
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8.3 H6 Regularity

We now study a Dirichlet problem of global H6 regularity. To construct such a function,

we take the inverse Fourier transform of a random sequence of coefficients which decay like

(1 + |k|2)−3 and by restricting the resulting function to the domain Ω. This is done on a

dense grid of sizes 81922. The right-hand-side is obtained by evaluating the interior and

boundary differential operators spectrally at the collocation points. A contour plot of the

(unrestricted) function ca nbe seen in Figure 8.3. A Dirichlet problem is then solved on the

disc of radius 2.

Because this function is of lower global regularity, the fastest order convergence which can

be achieved with a strong formulation is 4-th order. (The interior data is H4(Ω) regularity.)

We therefore use the S2, S3, and S4 smoothers, and achieve 2, 3, and 4-th order convergence

respectively. Because the order of convegence is limited to 4-th order, we will need to

solve the problem on dense grids to get an accurate solution. We therefore use iterative

methods to solve on dense grids. To save memory and computational complexity, we use

cubic interpolation on the boundary. We use this problem to demonstrate the effectiveness

of our preconditioning procedure. We have solved this problem using the PCG method as

described in Section 5.1.2. In Table 8.6, we show the condition number of the preconditioned

matrix, as well as the number of iterations and CPU time to convergence. The computations

were performed using the standard Python packages on an Intel-i7-7700, and we used a

stopping criteria of 1e− 8 for the PCG iterations.
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Figure 8.3: Contour plots of H6 Solution
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Figure 8.4: Relative L2 and L∞ errors for Dirichlet problem with H6 Solution

Grid Size S2 S3 S4

162 1.26E − 03 9.62E − 05 1.13E − 04
322 2.35E − 04 1.21E − 05 5.85E − 06
642 4.66E − 05 1.22E − 06 4.49E − 07
1282 1.02E − 05 1.99E − 07 2.12E − 08
2562 2.24E − 06 2.73E − 08 1.58E − 09
5122 4.44E − 07 4.27E − 09 2.16E − 10

Table 8.5: Relative L2 error for the Dirichlet problem with H6 solution
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Grid Size
PCG Iterations CPU Time Condition Number
S2 S3 S4 S2 S3 S4 S2 S3 S4

162 24 40 66 0.01 0.02 0.04 8 30 214
322 25 39 73 0.01 0.03 0.06 10 37 310
642 28 44 107 0.03 0.05 0.13 12 40 545
1282 29 45 131 0.06 0.11 0.42 14 40 1087
2562 33 48 191 0.48 0.75 2.7 - - -
5122 33 68 368 2.24 5.47 36.27 - - -

Table 8.6: CPU times, number of iterations, and condition number for the preconditioned
Schur complement matrix C̃−1/2(CS−1

p C>)C̃−1/2 when solving Dirichlet problem with H6

solution on the disc with radius 2.

8.4 H3 Regularity

Next consider u ∈ H3 generated using the same technique used in the previous section. A

contour plot of the (unrestricted) function can be seen in Figure 8.5. In this case, −∆u ∈ H1,

and thus cannot be defined pointwise. We therefore need to turn to a weak formulation of

the problem. We proceed as follows. Rather than imposing the pointwise conditions

−∆u(xi) = f(xi), xi ∈ Ωm,

(because f cannot be evaluated at a point), we instead resort to a weak formulation on the

interior. Letting {φi} be the standard finite element basis of piecewise linear functions on

the regular grid Bm, we seek a solution of the form

u =
Nm∑
i=1

ciφi.

We then take the subset of those φi’s the support of which is entirely within the domain Ω.

We denote this set Ωm and set |Ωm| = NΩ
m. The interior conditions

∫
Ω

∇u∇φi =

∫
Ω

fφi,
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are imposed for φi ∈ Ωm. Here, the integral
∫

Ω
fφ is calculated using Fourier series on a

dense grid. The boundary constraint is unchanged from the strong formulation. In line

with our proposed method, we then seek a solution which minimizes the discrete H2 norm,

computed using the discrete Fourier transform of c. Notice that, for a uniform grid, the

differentiation matrix for the basis φi coincides with the standard five point stencil finite

difference discretization. We solve the Dirichlet BVP on the unit disc. The resulting L2 and

L∞ errors, as well as the CPU times are shown in Figure 8.6 and Table 8.7. In Table 8.7,

we also show a comparison with a global RBF method and the RBF-FD method. We note

that in [12], the claim is made that the usage of meshfree methods for second order elliptic

problems is restricted to u ∈ Hp with p > 2 + d
2
, leading to a p − 2 order of convergence

of the L2 error. Here, using a discrete collocation procedure, we are able to treat weaker

solutions as well, leading to second order convergence for an H3 solution as opposed to first

order convergence for the meshfree implementation of [12] for H3+ε

Remark 8.1. Analytically, only nodal basis functions which are compactly supported inside

Ω should be used. Numerically it is, however, better to include any basis functions with

support intersecting Ω. For such basis functions φ, we impose the condition

c

∫
B
∇u∇φ =

∫
Ω

fφ, where c =

∫
Ω
φ∫

B φ
.
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Figure 8.5: Contour plots of H3 Solution
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Figure 8.6: Relative L2 and L∞ errors for Dirichlet problem with H3 solution. The dotted
reference lines have slope −2.

Grid Size L2 Error L2 Order L∞ Error PCG Iterations CPU Time
162 4.04E − 02 - 6.66E − 02 25 0.24
322 1.21E − 02 1.74 1.69E − 02 27 0.18
642 3.61E − 03 1.75 5.82E − 03 28 1.36
1282 1.03E − 03 1.81 1.73E − 03 29 0.54
2562 2.79E − 04 1.89 5.49E − 04 31 0.85
5122 7.45E − 05 1.91 1.60E − 04 31 2.2
10242 1.92E − 05 1.95 4.18E − 05 34 11.4
20482 4.12E − 06 2.22 9.56E − 06 45 59.84

Table 8.7: Relative L2 and L∞ errors, as well as PCG iterations and CPU times for the
Dirichlet problem with H3 solution
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Figure 8.7: Convergence of the L2 and L∞ errors for different order smoothers solving
Equation (8.3). The dotted reference lines have slope −p.

8.5 A Three Dimensional Problem

We present a three dimensional Dirichlet problem. Again, we will use an analytic solution

to demonstrate the different rates of convergence of the different smoothers. We set our

domain Ω to be the unit sphere embedded in the three dimensional torus. The boundary

is discretized by the well known Fibonacci lattice which comes close to distributing points

uniformly. With a box discretization consisting of m3 points, we use m2

2π2 points for the

discretization of the boundary. The problem considered is


−∆u = 1 in Ω,

u = 0 on ∂Ω.

(8.3)

The exact solution is 1−r2

6
. We see in Figure 8.7 that the rate of convergence achieved is

similar to that of the two dimensional problem. We note that because we are calculating

explicit matrices for the pseudoinverse method, RAM limitations prevented us from using a

grid larger than 483. We also compute solutions on denser grids using the Schur complement

method, and record the number of iterations and CPU times. We note that when using the

Schur complement method, we have decreased the density of boundary points to m2

64π2 points

per unit area to improve the conditioning of the matrices.

87



Grid Size S2 S4 S6 S8 S10

163 1.85E − 02 1.84E − 03 4.36E − 04 1.67E − 04 9.43E − 05
323 3.35E − 03 1.08E − 04 2.30E − 06 3.96E − 07 1.40E − 07
483 1.28E − 03 1.13E − 05 3.84E − 07 1.96E − 08 1.71E − 09

Convergence Rate: 2.43 4.63 6.4 8.23 9.94

Table 8.8: Relative L2 error solving Equation (8.3).

Grid Size S2 S4 S6 S8 S10

163 1.70E − 02 1.29E − 03 4.63E − 04 1.85E − 04 9.79E − 05
323 4.48E − 03 1.37E − 04 3.13E − 06 6.62E − 07 2.05E − 07
483 1.69E − 03 2.96E − 05 1.17E − 06 7.59E − 08 6.06E − 09

Convergence Rate: 2.1 3.44 5.44 7.1 8.82

Table 8.9: Relative L∞ error solving Equation (8.3).

Grid Size
PCG Iterations CPU Time
S2 S3 S4 S2 S3 S4

162 13 21 27 0.03 0.03 0.08
322 17 27 53 0.25 0.18 0.63
642 21 30 55 2.6 3.37 7.27
1282 22 32 196 13.52 25.75 185.51

Table 8.10: CPU times and number of iterations for the PCG method solving Equation (8.3).
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8.6 The Stokes Equation

One of the advantages of fictitious domain methods is that the solution can be represensted

as a linear combination of simple and well understood basis functions, e.g. as a Fourier

series. A potential use of this is in imposing the divergence-free condition to solve the Stokes

problem. The Stokes problem is given by

−∆u +∇p = f on Ω (8.4)

u = g on Γ

−∇ · u = 0 on Ω.

In general, it is difficult to create a basis of divergence-free vector fields for solving the Stokes

equation. See [28] for examples of solving the Stokes equation using RBF-type divergence-

free basis functions. Furthermore, with most discretization schemes, it is necessary to have

different discretizations of the velocity space and the pressure space, a so called “stable-pair,”

see [5]. If one is not careful in the discretization, the discrete gradient will have a kernel, and

the discrete problem will become ill-posed. Many numerical schemes exist to address this

issue, including the MAC scheme [15], which places the finite difference points in different

locations for each component of the velocity as well as the pressure.

Using SEEM, we are able to discretize the Stokes equation on an arbitrary domain using

Fourier series. As the gradient operator can be diagonalized in Fourier space, it is straight-

forward to generate a basis for the divergence-free vector fields on the torus. This method

relies on the fact that divergence-free vector fields on Ω can be extended to divergence-free

vector fields on the entire torus. In particular, in two dimensions, for example, we take
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vector fields of the forma0,0 +
m∑

kx=0

m∑
ky=0

akx,kykye
ikxxeikyy, b0,0 −

m∑
kx=0

m∑
ky=0

bkx,kykxe
ikxxeikyy

 .

It is straightforward to see that such vector fields are divergence-free, and, using the Helmholtz

decomposition, that these are a basis for the divergence-free vector fields.

We introduce the projection operator Pdiv that maps a vector field onto its divergence-free

component. In two dimensions, if

u =

 m∑
kx=0

m∑
ky=0

akx,kye
ikxxeikyy,

m∑
kx=0

m∑
ky=0

bkx,kye
ikxxeikyy

 .

then

Pdivu =

(
a0,0 +

ky(kyakx,ky − kxbkx,ky)
k2
x + k2

y

eikxxeikyy, b0,0 +
kx(kxbkx,ky − kyakx,kY )

k2
x + k2

y

eikxxeikyy
)

Proposition 8.1. The Stokes equation (8.4) is equivalent to the problem

−∆v = f on Ω

Pdivv = g on Γ,

where

u = Pdivv.

Proof. We choose φ such that ∆φ = p. We will seek a solution u which is divergence-free on

all of B rather than just on Ω. This can be done because divergence-free vector fields can be
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smoothly extended from Ω to B. The Stokes equation is then given by

−∆u +∇∆φ = f on Ω

−∇ · u = 0 on Ω

u = g on Γ.

As ∇ and ∆ commute, we obtain the formulation

−∆(u +∇φ) = f on Ω

−∇ · u = 0 on Ω

u = g on Γ.

We set v = u +∇φ and using the Helmholtz decomposition, we recognize that u = Pdivv.

Thus, the two formulations are equivalent.

Using this formulation, we are able to very easily use SEEM to solve the Stokes problem.

We introduce the notation Px and Py to represent projection onto the x and y components

of the velocity. We define the SEEM PDE and smoother matrices given by

C =



−∆ΩmPx

−∆ΩmPy

γΓmPxPdiv

γΓmPyPdiv


and Sp =

(1−∆)p/2 0

0 (1−∆)p/2,



where ∆Ωm is the discretized Laplacian evaluated at the interior grid points and γΓm is the

trace operator evaluated on the discrete boundary, as described in Section 4.4. We then find
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that

u = (S>p Sp)
−1C>(C(S>p Sp)

−1C>)−1b, (8.5)

where b is the vector of evaluatoins of f and g on the discrete interior and boundary, respec-

tively. We consider a Dirichlet problem posed on Ω, the unit disc, given by



−∆u +∇p = 0 on Ω

−∇ · u = 0 on Ω

u1 = 20xy3 on Γ

u2 = 5x4 − 5y4 on Γ.

(8.6)

The solution is given by


u1 = 20xy3

u2 = 5x4 − 5y4

p = 60x2y − 20y3 + c.

In light of Proposition 8.1, we solve

u
λ

 =

Sp C>

C 0


0

b

 ,

where C, Sp, and b are the matrices and vector described in Equation (8.5). Note that there

is no need for us to explicitly calculate the pressure. We solve the system using both the QR

methods and the PCG methods. For the PCG method, we use the preconditioner described

in Section 5.2 applied to the x and y components independently. In Table 8.11 and Figure

8.8, we record the L2 error of the u1 and u2 components of the velocity. In Table 8.12, we
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Figure 8.8: Plots of relative L2 errors of u1 and u2 for the Stokes problem, Equation (8.6).
The dotted reference lines have slope −p.

Grid Size S2 S4 S6 S8 S10

162 5.00E − 01 2.75E − 01 1.87E − 01 2.48E − 01 3.20E − 01
322 4.82E − 02 5.78E − 03 7.83E − 04 1.16E − 04 1.17E − 04
642 8.45E − 03 2.16E − 04 4.72E − 06 3.58E − 07 6.76E − 08
1282 1.61E − 03 1.00E − 05 8.06E − 08 1.60E − 09 6.23E − 11

Convergence Rate: 2.4 4.44 5.87 7.8 10.1

Table 8.11: Relative L2 error of u1 for the Stokes problem, Equation (8.6).

record the number of iterations and CPU time to convergence of the PCG method.

Remark 8.2. A more effective preconditioner could potentially be constructed by taking the

form of the Pdiv operator into account while building the part of the preconditioner relating

to the boundary. Work is currently being done in this direction.

Grid Size
PCG Iterations CPU Time
S2 S3 S4 S2 S3 S4

162 24 44 85 0.03 0.08 0.21
322 36 70 157 0.07 0.18 0.59
642 44 50 124 0.16 0.27 0.81
1282 50 59 184 0.52 0.7 3.46
2562 58 63 264 9.52 5.31 38.75
5122 63 70 423 21.56 40.81 283.43

Table 8.12: CPU times and number of iterations for the PCG method solving the Stokes
problem, Equation (8.6).
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Chapter 9

Chebyshev Box

Before we describe some numerical implementations, we give a brief description of some of

the properties of Chebyshev polynomials. We refer to [25] for a more detailed discussion.

9.1 The Chebyshev Polynomials

Setting B = [−1, 1], the Chebyshev polynomials of the first kind are given by

Tm(x) = cos
(
m arccos(x)

)
, x ∈ B, m ∈ N.

The Chebyshev roots

For fixed m ∈ N, the m roots of Tm(x) are given by

xk = cos
(
π

2k − 1

2m

)
, 0 ≤ k ≤ m− 1.
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The Chebyshev grid comprising all roots of Tm, given by {xk | k = 0, . . . ,m − 1}, is well

adapted to the spectral calculation of derivatives. In higher dimensions, a tensor product

of one-dimensional Chebyshev grids can be used. Such a tensor product (of the appropriate

dimension) will be denoted as Bm.

Orthogonality relations

The sequence (Tm)m∈N forms an orthogonal basis for L2(B) with respect to the measure

dx√
1−x2 . More specifically, for i, j ∈ N,

∫ 1

−1

Ti(x)Tj(x)
dx√

1− x2
=


0, if i 6= j,

π, if i = j = 0,

π/2, if i = j 6= 0.

The Chebyshev functions restricted to Bm also satisfy a discrete orthogonality relation.

Indeed, for 0 ≤ i, j ≤ m− 1, one has that

m−1∑
k=0

Ti(xk)Tj(xk) =


0, if i 6= j,

m, if i = j = 0,

m
2
, if i = j 6= 0.
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The Chebyshev transform

Because (Tm)m∈N forms an orthogonal basis of L2(B), any function u ∈ L2(B) can be devel-

oped in a “Chebyshev series”. We set

ck =
pk
π

∫ 1

−1

u(x)Tk(x)
dx√

1− x2
, where pk =


1, if k = 0,

2, if k 6= 0.

so that

u(x) =
∞∑
m=0

ckTk(x).

It is also possible to define the Chebyshev transform, denoted by C, which maps a function

to the sequence of its Chebyshev coefficients.

C(u) = (ck)k∈N.

The discrete orthogonality relation also yields a discrete version of a Chebyshev expansion.

Given u : Bm → R, let

ck =
pk
m

m−1∑
i=0

uiTk(xi) for pk =


1, if k = 0,

2, if k 6= 0.

Then u can be written as a discrete Chebyshev series

u(x) =
m−1∑
k=0

ckTk(x).

As in the continuous case, we can define the discrete Chebyshev transform Cm, which maps

u to its discrete Chebyshev series, i.e., we set

Cm(u) = (ck)k=0,...,m−1 =: c.
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The discrete Chebyshev transform, Cm, as well as its inverse C−1
m , can be implemented

efficiently using an FFT algorithm, in the form of the discrete cosine transform. More

specifically,

Cm(u)k = akDCT(u)k for ak =


1

2m
, if k = 0,

1
m
, if k > 0,

and

Cm
−1(c) = IDCT( c̃ ) for c̃k =


ck, if k = 0,

ck/2, if k > 0.

In dimension larger than one, C and Cm will denote the continuous and discrete one-variable

Chebyshev transforms applied successively in each direction. Numerically, this can be ac-

complished with the use of DCTN, where the factors ak and bk are raised to the power of the

dimension.

Derivative formulæ

Discrete derivatives can be efficiently evaluated on the Chebyshev grid using the DCT and

DST. We denote by • the discrete frequency vector (k)k∈{0,...,m−1} or the continuous variable

x depending on the context, and let M [f ] represent multiplication by the discrete function

f . We also define a shifting operator R with

Rij = δi+1,j,

so that R is the matrix with ones on the superdiagonal. Then, given a function u =

(ui)i∈{0,...,m−1} defined on the Chebyshev grid Bm, a spectrally accurate discrete derivative

Du can be calculated using the matrix given by

D = M
[ 1√

1− •2

]
◦ IDST ◦ R ◦M

[ •
2m

]
◦ DCT.
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Similarly, we can compute

D2 = M
[ −1

1− •2

]
◦ IDCT◦M

[
− •

2

2m

]
◦DCT+M

[ •
(1− •2)3/2

]
◦ IDST◦R◦M

[
− •

2m

]
◦DCT.

Of course, a corresponding operator can be formed in higher dimensions, where the DCT,

DST as well as the frequency vector • are taken along the desired direction of differentiation.

In the body of the paper, the derivative operator in the xi direction is denoted as Di.

Eigenvalue equation

Setting D = M
[√

1− x2
•
]
◦ ∂
∂x

, the Chebyshev polynomials satisfy the eigenvalue equation

−D2Tm = m2Tm. (9.1)

Similarly, given the Chebyshev grid Bm, the discrete Chebyshev functions Tj(x•) satisfy a

discrete eigenvalue equation. Defining Dm = M
[√

1− x2
•
]
◦D, Tj(x•) satisfies

−D2
mTj(x•) = j2Tj(x•), j ∈ {0, . . . ,m− 1}.

This implies that

(1−D2
m)−p/2 = C−1

m ◦M
[
(1 + | • |2)−p/2

]
◦ Cm.

Interpolation operators

Functions defined on the Chebyshev grid can be interpolated at arbitrary points in B. Such

interpolation can be stably computed by means of the barycentric interpolation formulæ
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described in [4]. Define first the vector w by

wk = (−1)k sin
(2k − 1

2m

)
, 0 ≤ k ≤ m− 1.

If y ∈ B and (xi)i∈{0,...,m−1} is the vector of points in Bm, a spectrally accurate interpolation

of a discrete function u defined on the Chebyshev grid Bm can be obtained by

u(y) = δy · u where (δy)i =
1∑m−1

k=0
wk
y−xk

wi
y − xi

.

To calculate the interpolation of the first derivative, which will be used in the Neumann

problem, we use the derivative of the above formula,

Du(y) = δy ◦D where (δy ◦D)i = − 1∑m−1
k=0

wk
y−xk

wi
(y − xi)2

+

∑m−1
k=0

wk
(y−xk)2(∑m−1

k=0
wk
y−xk

)2

wi
y − xi

.

To interpolate in several dimensions, we use a tensor product of the given interpolants, which

are denoted by δy and (δy · ∇). To calculate a directional derivative of the grid function u in

the direction ν at the point y, we use (δy ◦ ∇u) · νy.

9.2 Discretizing the matrices C and Sp

We now briefly descirbe how to use the described Chebyshev discretizations to form the

matrices C and Sp, which form the basis of SEEM.

Construction of C

We note that in Section 4.4, C is formed using derivative discretizations Di and interpo-

latin operators δyi . We can therefore discretize C using the derivative discretizations and
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interpolation operators used in the previous section. As usual, we can use spectral or fi-

nite difference discretizations. We will use spectral discretizations when using high order

smoothers to obtain high orders of convergence, and finite difference discretization when

using low lorder smoothers on dense grids, allowing the interpolation matrices to be sparse.

Construction of S−1

Recall from Section 4.1.2 that we utilize the smoothers

S−1
p = C−1 diag

[
(1 + |k|2)−p/2

]
C

Here k = (k)k∈Nd is the Chebyshev frequency vector on the d dimensional box B. This

operator can be discretized simply and efficiently using the discrete Chebyshev transform Cm.

When k = (k)k∈{0,...,m−1}d is the discrete Chebyshev frequency vector on the d dimensional

grid Bm, we define the discrete smoothers as

S−1
p = C−1

m diag
[
(1 + |k|2)−p/2

]
Cm.

9.3 Experiments

We now present two experiments using the Chebyshev discretization. We first present a

Dirichlet problem on the unit disc, and then present a parabolic problem in spacetime.
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|Bm| Nm
Ω Nm

Γ

L2 Error
S2 S4 S6 S8 S10 S12

82 24 10 3.42E-02 2.31E-02 1.13E-02 3.83E-03 1.04E-03 2.38E-04
162 104 19 3.81E-03 1.04E-04 1.05E-05 4.93E-07 1.59E-08 4.51E-10
242 240 29 1.37E-03 9.70E-06 7.75E-08 1.75E-09 2.71E-11 8.83E-12
322 408 38 1.13E-03 9.55E-06 3.20E-08 7.54E-11 1.62E-12 5.24E-12
362 520 43 4.67E-04 4.07E-06 1.75E-08 3.69E-11 7.58E-13 1.77E-11

Rate of Convergence: 2.85 5.75 8.89 12.27 13.99 10.91

Table 9.1: Relative L2 and L∞ errors for Equation (9.2).
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Figure 9.1: Convergence of the relative L2 error and L∞ errors for Equation (9.2).

9.3.1 A Dirichlet Problem

On Ω = {(x, y)
∣∣√x2 + y2 ≤ .95}, we consider the Dirichlet problem


−∆u = −6x− 6y in Ω1,

u = x3 + y3 on ∂Ω1.

(9.2)

The exact solution is x3 + y3. We solve the problem using the pseudoinverse method, with

explicit matrices. The sizes of the different discretizations considered, together with the L2

and L∞ errors, are listed in Table 9.1. A graph of the L2 and L∞ errors are show in Figure

9.1. In Table 9.2, we demonstrate number of iterations and time to convergence for the PCG

algorithm using Schur complement method.
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|Bm| PCG Iterations CPU Times
S2 S3 S4 S2 S3 S4

162 36 26 37 0.05 0.03 0.05
322 60 41 60 0.1 0.06 0.11
642 94 67 106 0.37 0.2 0.33
1282 122 97 173 1.11 0.94 1.64
2562 149 118 328 7.26 5.41 14.9

Table 9.2: PCG Iterations and CPU times for the Chebyshev Discretization.

9.3.2 A Parabolic Problem

We next describe a procedure to solve a time dependent problem using SEEM. This example

is considered to show both that SEEM is effective for a wide variety of PDEs and to show

that it is effective in three dimensions. Since we are calculating the solution across a space-

time cylinder (and not marching in time, although this could also be done), the problem is

effectively a three dimensional problem. We consider the parabolic cylinder Ω× [0, 2], where

Ω is the star-shaped domain shown in Figure 1.1. Define j0(r) to be the 0-th Bessel function

of the first kind. Letting r denote the Euclidean distance from 0, consider the radial function

u(r, t) = e−tj0(r)− e−
t
4 j0

(r
2

)
.

The function u then satisfies the parabolic BVP


ut −∆u = 0 in Ω× (0, 2],

u = j0(r)− j0( r
2
) in Ω× {0},

u = e−tj0(r)− e− t4 j0( r
2
) on Γ× (0, 2].

(9.3)

To discretize the domain, we again use the Chebyshev grid Bm described in Section 9.1. As

for the time interval [0, 2], we use a (shifted) Chebyshev extrema grid,

BnE = {tj}nj=0, where tj = − cos
(πj
n

)
+ 1.

102



In this section n = 10 is chosen in all of the experiments. The full discretization of the

parabolic cylinder [−1, 1]2 × [0, 2] is then given by Bm × BnE. The choice to use the extrema

grid rather than the standard Chebyshev (roots) grid in the time variable was made because

imposing the boundary condition at t = 0 is slightly more straightforward, since the boundary

point t = 0 lies on the grid. For a description of how to construct the time differentiation

matrix, Dt, we refer to [25]. With the discretization Bm × BnE, the interior of the parabolic

cylinder is given by Ωm × B̃nE, where

B̃nE =
{
ti ∈ BnE

∣∣ ti > 0
}
.

The discretized “bottom” boundary of the cylinder is given by Ωm × {0}, whereas the dis-

cretization of the lateral boundary Γ×(0, 2] is simply given by Γm×B̃nE. Letting RKm denote

the evaluation operator on the discrete set Km, we can define the matrices

A = RΩm×B̃nE
◦ (Dt −D2

x1
−D2

x2
),

B1 = RΩm×{0},

B2 = RΓm×B̃nE
.

Notice that evaluation of a function on the above sets simply amounts to their restriction to

the sets since Ωm × B̃nE and Ωm × {0} are sets of regular grid points. However, because Γm

does not contain regular grid points in general, the evaluation matrix RΓm×B̃nE
will require

the use of the interpolation operators described in Sections 4.4 and 9.1. If b1 and b2 represent

the evaluations of the function e−tj0(r)− e− t4 j0

(
r
2

)
at the points of Ωm×{0} and Γm× B̃nE,

respectively, the BVP is fully discretized by the matrix equation Cu = b where

C =

[
A B1 B2

]>
and b =

[
0 b1 b2

]>
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As we do for elliptic problems, the problem is converted to a constrained optimization prob-

lem

argmin{Cu=b}
1

2
‖u‖2

S,

where ‖ · ‖S is a smoothing norm. In the parabolic case, ‖ · ‖S needs to be a space-time norm

over Bm × BnE. We recall from Sections 4.1.2 and 9.1 the operator

(Dm)2 = C−1
m diag

[
|k|2
]
Cm.

The operators Dmi and Dmt represent applying the operator in the xi and t directions, respec-

tively. Motivated by our choice of smoothing norm used in the elliptic case and described in

Section 4.1.2, the norm given by

‖u‖Sp =
∥∥∥(1−

2∑
i=1

(Dmi )2 − (Dmt )2
)p/2

(u)
∥∥∥,

is used in order to enforce space-time regularity of the numerical solution. As with the

norms described in the elliptic case, this norm has the benefit of simple implementation

using the discrete Chebyshev transform. We remark that while this norm is clearly effective,

as demonstrated by our numerical experiments, it is not natural from the point of view of

parabolic PDEs and may not be the optimal one to use; we are continuing to investigate the

best choice of smoother in the parabolic case.

As in the elliptic case, the problem then reduces to finding

u = S−1
p (CS−1

p )+f.

The solution is obtained using a QR decomposition of S−1
p C>, as described in Section 5.1.1.

(A PCG method could also be used to obtain the solution on denser grids.) The numerical

results for the initial boundary value problem are summarized in Table 9.4 and Figure 9.2.
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Figure 9.2: Convergence of the relative L2 error and L∞ errors for Equation (9.3).

|Bm × BnE| |Ωm × B̃nE| Ωm × {0}| |Γm × B̃nE|
102 × 11 = 1100 280 28 130
142 × 11 = 2156 500 50 180
182 × 11 = 3564 860 86 230
242 × 11 = 6336 1540 154 300

Table 9.3: Grid sizes Equation (9.3).

|Bm × BnE|
L2 Error

S2 S4 S6 S8 S10

102 × 11 5.30E-04 1.77E-05 3.69E-06 6.91E-07 2.48E-07
142 × 11 3.63E-04 5.56E-06 6.95E-07 5.36E-08 2.51E-08
182 × 11 1.70E-04 1.39E-06 9.84E-08 3.53E-09 2.23E-09
242 × 11 1.02E-04 3.78E-07 1.20E-08 4.36E-10 1.23E-10

Rate of Convergence: 1.88 4.39 6.54 8.42 8.69

Table 9.4: Relative L2 error for Equation (9.3).
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Chapter 10

Finite Difference Box

As mentioned in Section 4.1.3, using a finite difference discretization is somewhat less ef-

ficient than the use of spectral discretization. However, its advantage is that it allows for

adaptive grids, does not require periodic boundary conditions on B, and makes it easier to

use smoothers which have nonconstant coefficients.

10.1 A Dirichlet Problem on a Regular Grid

When discretizing

Sp = (1−∆)p/2,

we require that p ∈ 2N. In the following experiments, we restrict ourselves to the case p = 2,

which will allow for second order convergence. Although p = 4 could also be considered,

we have not yet successfully implemented this smoother due to numerical stability issues.

We let our fictitious domain B be given by [0, 1]2 and take a regular discretization Bm

on B. In this case, we will discretize the operator S2 = 1 − ∆ using the standard five
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Figure 10.1: Relative L2 and L∞ errors for Equation (10.1). The dotted reference lines have
slope −2.

point stencil. We impose periodic boundary conditions for simplicity, although Dirichlet or

Neumann conditions on the boundary of the box could also be used. We discretize the BVP

C using the five point stencil and cubic interpolation. We consider the domain

D = {(x, y)|
√

(x− .5)2 + (y − .5)2 < .3}.

We study the Dirchlet problem


−∆u = 0 in D,

u = (x−.5)2−(y−.5)2

4
on ∂D.

(10.1)

We solve the problem using the Schur complement formulation, using PCG iterations on the

Schur complement matrix to obtain the solution. Although the matrix S2 would typically be

inverted using a fast multigrid solver to allow for computation on dense grids, for simplicity

we have used a sparse LU factorization solver. We show the L2 and L∞ errors in Figure 10.1

and in Table 10.1. Additionally, show CPU time in Table 10.1.
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Grids L2 Error L∞ Error CPU Time PCG Iterations
162 0.000995001 0.0020617 0.0789979 25
322 0.000245965 0.000637346 0.230005 29
642 1.42839e-05 0.00010667 1.604 34
1282 1.05004e-05 4.56741e-05 15.051 34
2562 2.94656e-06 1.18771e-05 101.894 36

Table 10.1: Relative L2 and L∞ errors as well as PCG iterations and CPU times for Equation
(10.1).

10.2 A Dirichlet Problem on Nested Grids

We now give a short discussion of the potential of using nested grids to obtain the benefits of

adaptivity in SEEM. We present one experiment, although much work is still needed before

the method can be widely used. For simplicity, we will restrict ourselves to the case where

two grids only intersect if one is twice as dense as the other (this restricts the number of

special boundary stencils needed). By way of example, we consider Figure 10.2. Here, we

have placed a regular grid on [0, 1)2 with grid distance hs = 1
16

. In the region [ 7
16
, 9

16
]2, we

have placed a denser grid with grid distance hd = 1
32

.

On points which are interior to either the sparse or the dense grid, we can simply use the

five points stencil. On the interface between the dense and sparse grids, we need to calculate

a stencil which accurately captures the Laplacian. The way we have structured the nested

grids, we only need to consider the stencil at two types of points. We refer to Figure 10.4.

We see there are two kinds of boundary points in a two grid discretization: those like A

which lie in both the sparse and dense grid, and those like B which lie only in the dense

grid. While multiple choices of finite difference stencil are available, for simplicity we have

used the following. For points of type A, we simply use the five point stencil on the sparse

grid, shown in green. For the points of type B, we use a seven point stencil which include

the point B and the six points nearest to it on the sparse grid, again shown in green. The

weights are −2
h2
d

at the point B, 1
8h2
d

at each of the corner points, and 3
h2
d

at each of the points
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directly above and below B, where hd is the grid distance on the dense grid.

While several methods could be used for the boundary interpolation operator, we use a

straightforward cubic interpolation with a sixteen point stencil. At any point where cubic

interpolation is possible using the fine grid, that is, if the point is at least hd from the dense

grid boundary, we apply cubic interpolation on the dense grid. Otherwise, we use cubic

interpolation on the sparse grid.

Once we have a discretization of the Laplacian and of the interpolation operators, we are

able to construct the S2 and C matrices used in SEEM. The S2 matrix is formed by simply

taking 1 − ∆ using the discretization just described. The C matrix is formed by applying

the Laplace discretization to the interior and the interpolation operators to the boundary.

We now demonstrate how such nested grids can be used to solve a problem with a singularity

more efficiently. We consider the function u =
√

(x− .5)2 + (y − .5)2, which is smooth away

from the singularity at (.5, .5). We let

Ω = {(x, y)|
√

(x− .5)2 + (y − .5)2 < .3}

and consider the Dirichlet problem


−∆u = − 1√

(x−.5)2+(y−.5)2
on Ω

u =
√

(x− .5)2 + (y − .5)2 on Γ.

(10.2)

We note that the Laplacian is not defined at (.5, .5) so we do not impose the interior condition

at that point. Incidentally, an advantage of the SEEM formulation is that we do not need to

impose the condition at any points where it is inconvenient to do so. Due to the nature of

the solution, the error is concentrated at (.5, .5). We demonstrate this in Figure 10.3, where

we plot the error of the discrete SEEM solution calculated on the grid of size 1282. Thus, it
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Figure 10.2: Example of a two level nested grid with a discretization of the disc of radius .3
centered at (.5, .5).

is logical that refining the grid at (.5, .5) will improve the accuracy of the solution. We solve

the problem on grids with the following four levels of refinement.

1. Grid 1: Uniform grid with mesh size h.

2. Grid 2: Add refinement with mesh size h
2

on [3
8
, 5

8
]2.

3. Grid 3: Add refinement with mesh size h
4

on [ 7
16
, 9

16
]2.

4. Grid 4: Add refinement with mesh size h
8

on [15
32
, 17

32
]2.

In Tables 10.2 and 10.3 and Figure 10.5, we plot the L2 and L∞ errors, comparing the

unrefined grids with grids of several levels of refinement. In Table 10.4, we show how using

nested grids is computationally more efficient than using a denser regular grid.
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Figure 10.3: Error in the computed solution on a regular grid for Equation (10.2). We note
that the error is concentrated at the singularity at (.5, .5), making the problem suitable for
the use of an adaptive grid.

A

B

Figure 10.4: Finite difference stencils at the interface between grids.

Base Grid Grid 1 Grid 2 Grid 3 Grid 4
162 1.38E − 01 3.82E − 02 1.49E − 02 7.22E − 03
322 6.40E − 02 1.89E − 02 7.85E − 03 3.73E − 03
642 3.26E − 02 1.02E − 02 4.48E − 03 2.24E − 03
1282 1.61E − 02 5.10E − 03 2.24E − 03 1.09E − 03
2562 8.08E − 03 2.58E − 03 1.14E − 03 5.60E − 04

Table 10.2: Relative L2 error for Equation (10.2).
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Figure 10.5: Relative L2 and L∞ errors for Equation (10.2) on grids with increasing levels
of refinement. The x-axis represents the number of points in the base uniform grid. Each
subsequent grid has an additional layer of refinement.

Base Grid Grid 1 Grid 2 Grid 3 Grid 4
162 4.49E − 01 2.64E − 01 1.56E − 01 9.14E − 02
322 2.54E − 01 1.47E − 01 8.44E − 02 4.79E − 02
642 1.48E − 01 8.43E − 02 4.77E − 02 2.68E − 02
1282 8.44E − 02 4.75E − 02 2.65E − 02 1.47E − 02
2562 4.76E − 02 2.65E − 02 1.47E − 02 8.03E − 03

Table 10.3: Relative L∞ error for Equation (10.2).

Base Grid
PCG Iterations CPU Times

Grid 1 Grid 2 Grid 3 Grid 4 Grid 1 Grid 2 Grid 3 Grid 4
162 25 25 25 24 0.07 0.09 0.1 0.11
322 25 28 27 28 0.4 0.34 0.38 0.46
642 29 28 29 29 1.95 2.23 2.46 2.86
1282 30 25 21 26 18.8 11.97 12.68 17.1
2562 32 31 35 30 93.63 119.77 146.51 147.22

Table 10.4: PCG iterations and CPU time to convergence for Equation (10.2).

112



Chapter 11

Conclusion

In this thesis, we have described the smooth selection embedding method (SEEM) and how

it fits within the general framework of fictitious domain and meshfree methods. We have

detailed how it can be implemented using Fourier series, Chebyshev series, and finite dif-

ference discretizations. We also showed that the SEEM system generated with a Fourier

discretization is well-posed and that the numerical solution converges to the actual solution.

We have offered numerical experiments which demonstrate the effectiveness of the method,

both for smooth problems and problems of lower global regularity. Divergence free and time

dependent problems have also been studied. We now give our perspective on the overall

advantages and disadvantages of SEEM.

Advantages of SEEM

� SEEM allows for the use of straightforward and efficient discretizations for PDEs on

complex domains. For example, one can implement SEEM using only the five point

stencil and polynomial interpolation, with no need to create a mesh for the domain,

form a stiffness matrix, or create complicated finite difference stencils near the bound-
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ary.

� The method’s performance is quite competitive. In particular, it achieves high orders

of convergence and can be efficiently implemented on dense grids.

� The SEEM formulation is natural and straightforward from both a PDE and optimiza-

tion perspective. This is particularly true when compared with other fictitious domain

formulations. In addition, SEEM falls under the well studied and robust theoretical

framework of kernel methods.

� SEEM is flexible in that it can be used with many choices of discretization and of

kernel. For example, spectral discretizations can be used on arbitrary shaped domains,

providing advantages in divergence free problems.

Disadvantages of SEEM

The advantages of SEEM come with some significant computational costs.

� The method trades an elliptic problem with a saddle point problem. From a linear

algebra perpsective, a saddle point problem is inherently more difficult to solve than

an elliptic problem. In particular, when solving saddle point problems iteratively, an

elliptic problem will need to be solved at each step of the iteration. Thus, we expect

our method to be somewhat less efficient than other methods, such as the finite element

method, which do not require a saddle point formulation.

� SEEM exchanges a second order BVP for a problem of order −2p. Thus, the method

introduces significant numerical stability issues and implementing the method requires

significant preconditioning. The preconditioning implemented in this thesis is limited

to cases where a matrix of size NΓ×NΓ can be LU-factored. For grids denser than this,

alternative preconditioning needs to be developed. Such preconditioning will likely be
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somewhat complex and less effective than the method we have implemented so far.

Moreover, even with preconditioning, hard limits on grid depth exist due to the limits

of machine precision on ill-conditioned problems.

� Inherent in a fictitious domain formulation is that extra computation will be needed

on the encompassing domain B. In addition, fictitious domain formulations assume

that the solution can be smoothly extended to the domain B, which is not the case for

all domains Ω.

Despite these difficulties, our work in this thesis demonstrates that SEEM is a useful and

effective method for solving boundary value problems.
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