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PHASE TRANSITIONS IN GRAVITATIONAL ALLOCATION

Sourav Chatterjee, Ron Peled, Yuval Peres and Dan Romik

Abstract. Given a Poisson point process of unit masses (“stars”) in dimension
d ≥ 3, Newtonian gravity partitions space into domains of attraction (cells) of equal
volume. In earlier work, we showed the diameters of these cells have exponential
tails. Here we analyze the quantitative geometry of the cells and show that their large
deviations occur at the stretched-exponential scale. More precisely, the probability
that mass exp(−Rγ) in a cell travels distance R decays like exp

(−Rfd(γ)
)
where

we identify the functions fd( · ) exactly. These functions are piecewise smooth and
the discontinuities of f ′

d represent phase transitions. In dimension d = 3, the large
deviation is due to a “distant attracting galaxy” but a phase transition occurs when
f3(γ) = 1 (at that point, the fluctuations due to individual stars dominate). When
d ≥ 5, the large deviation is due to a thin tube (a “wormhole”) along which the star
density increases monotonically, until the point fd(γ) = 1 (where again fluctuations
due to individual stars dominate). In dimension 4 we find a double phase transition,
where the transition between low-dimensional behavior (attracting galaxy) and high-
dimensional behavior (wormhole) occurs at γ = 4/3.

As consequences, we determine the tail behavior of the distance from a star to
a uniform point in its cell, and prove a sharp lower bound for the tail probability of
the cell’s diameter, matching our earlier upper bound.

1 Introduction

1.1 The main results. Let d ≥ 3 and let Z be a standard Poisson point process
(“the stars”) in R

d. The (random) gravitational force field function F (x) is defined
by

F (x) =
∑

z∈Z, |z−x|↑

z − x

|z − x|d

(the summands are ordered by increasing distance from x; recall that in [CPPR] it
is proved that the sum converges conditionally a.s. when the summands are ordered
in this way). Then for each z ∈ Z we denote by B(z) its basin of attraction (also
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called its cell) in the gravitational allocation defined in [CPPR]. Loosely speaking,
B(z) is the set of points which flow into z under the gravitational flow

ẋ = F (x) .

Denote also by ψZ the allocation mapping, given by

ψZ(x) =

{
z , x ∈ B(z) for some z ∈ Z ,

∞ , x /∈ ∪z∈ZB(z) .

The gravitational allocation was introduced in our previous paper [CPPR], and
was to a large extent inspired by a less explicit two-dimensional version of gravi-
tational allocation (referred to as “gradient-flow transportation”) defined by Sodin
and Tsirelson [ST] in the context of the point process of zeroes of the Gaussian
entire function. The properties of the two-dimensional gradient-flow transportation
were studied in great detail in the subsequent paper [NSV] by Nazarov, Sodin and
Volberg, and the techniques and ideas of that paper were also an important source
of inspiration and motivational influence on our paper [CPPR] and on the present
paper.

In [CPPR] we showed that all the cells B(z) = ψ−1Z (z) have volume 1 (essentially
a consequence of the divergence theorem, first discovered in a different context in
[ST]), and that ψ−1Z (∞) has volume 0. This means that gravitational allocation is a
fair and translation-equivariant allocation rule. Not only is it a rather natural con-
struction, but we also analyzed it and showed that it has a rather desirable efficiency
property not shared by other known constructions, which is that the allocation cells
are stochastically “small”. More precisely, let X be the random diameter of the
(almost surely well-defined) cell containing the origin. That is,

X := Diam
(
ψ−1Z (ψZ(0))

)
.

Then we showed that for all R ≥ 1 the inequality

P(X > R) ≤ C exp
(−cR(logR)αd

)
(1)

holds, where C, c are some positive constants that depend on d, and αd = (d− 2)/d
if d > 3 or can be taken to be any number less than −4/3 if d = 3 (in which case C, c
will also depend on αd). In other words, the tail decay of the random diameter of the
cell containing the origin is (at least) slightly faster than exponential in the distance
in dimensions 4 and higher, and (at least) almost exponential in dimension 3.

One natural question is whether the bound in (1) is sharp. We answer this ques-
tion affirmatively (up to the lower-order correction terms), and prove the following
result.

Theorem 1.1. For all dimensions d ≥ 3 we have

P(X > R) = exp
(−R1+o(1)

)
as R→∞.

The proof of the lower bound in Theorem 1.1 is based on a precise understanding
of the structure of the cells. Examining the structure in simulations, we see they
have two parts with qualitatively different behavior: A massive central core, which is
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Figure 1: (a) The gradient flow allocation [NSV] (picture by Manjunath
Krishnapur); (b) The gravitational allocation.

hard to move, and relatively “thin” tentacles, which are more flexible. This heuristic
picture is captured by our main result, Theorem 1.2, which pins down the spectrum
of large deviation probabilities for the cell. The R-core of a cell B(z) is defined as
the set B(z) ∩ B(z,R) (where B(z,R) is the Euclidean ball of radius R around z).
The rest of the cell is termed the R-tentacles of the cell.

Theorem 1.2. Let

ZR := Vol
(
ψ−1Z (ψZ(0)) \B(ψZ(0), R)

)
,

the volume of the R-tentacles of the cell containing the origin, and let

f3(γ) =

{
3− 2γ , 0 ≤ γ ≤ 1 ,

1 , γ ≥ 1 ,

f4(γ) =

⎧⎪⎨
⎪⎩
2− γ

2 , 0 ≤ γ ≤ 4
3 ,

4− 2γ , 4
3 ≤ γ ≤ 3

2 ,

1 , γ ≥ 3
2 ,

fd(γ) =

{
1 + 2−γ

d−2 , 0 ≤ γ ≤ 2 ,

1 , γ ≥ 2 ,
(d ≥ 5) .

Then for all dimensions d ≥ 3 and for all γ > 0

P
(
ZR > exp(−Rγ)

)
= exp

(−Rfd(γ)+o(1)
)

as R→∞. Furthermore, there exists a C > 0 such that for all d ≥ 3

P(ZR > R−C) = exp
(−Rfd(0)+o(1)

)
as R→∞.
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Figure 2: The functions f3, f4 and fd (d ≥ 5).

Figure 2 shows the functions f3, f4 and (schematically) fd for d ≥ 5. The points
of non-smoothness in the rate functions are classical signatures of phase transitions.
The above theorem has several surprising features, in particular the double phase
transition in dimension 4, which we now motivate.

One leading scenario causing mass exp(−Rγ) in a cell to travel distance R is
the existence of an attracting galaxy (see Figure 3). More precisely, the “attracting
galaxy” represents a region U of volume Rd having cRd−γ stars beyond its expec-
tation; this event has probability exp

(−Rd−2γ+o(1)
)
for 0 ≤ γ ≤ d/2. However, we

also need to control the stars in a channel of length R and constant cross section in
order for the mass to reach the distant attracting galaxy; obtaining this control (e.g.
by keeping the channel empty of stars) has probability exp

(−R1+o(1)
)
. Taking both

of these into account yields the expression for f3(γ). In high dimensions (d ≥ 5)

Figure 3: An attracting galaxy: Requiring U of volume Rd to have cRd−γ stars
more than expected causes the required pull to the right.

another scenario emerges as the dominant reason for mass exp(−Rγ) in a cell to
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Figure 4: A wormhole. The radius a is R−(2−γ)/(d−2)+o(1). Here the required
pull to the right in V is caused by the increasing density of stars on the curved
part of the boundary of the cylinder U .

travel distance R: The existence of a wormhole, a thin tube of radius R−
2−γ
d−2

+o(1)

surrounded by R1+ 2−γ
d−2

+o(1) stars arranged in rings of increasing density which “pull”

mass through the tube (see Figure 4). This has probability exp(−R1+ 2−γ
d−2

+o(1)). Fine
control of stars within bounded distance of the wormhole is still needed; this has
probability exp(−R1+o(1)) so we obtain the expression for fd(γ), d ≥ 5.

In dimension 4, a wormhole is the dominant scenario when γ < 4/3, but for
γ > 4/3 it is still cheaper to move mass using an attracting galaxy.

A key challenge in proving the lower bounds is approximating smooth mass
distributions using carefully placed discrete stars. This is based on the theory of
Chebyshev-type cubatures which we apply in section 6. In fact, for our applications
some new results in the theory of cubatures were needed; these are developed in [P].

Theorem 1.2 reveals more about the geometry of the cells. Let Y be the distance
from a uniformly chosen point in the cell of the origin to the star of that cell. By
translation equivariance, Y may be written as

Y =
∣∣ψZ(0)∣∣ ,

the distance between the origin and the star of its cell. Clearly, Y ≤ X, but it turns
out that, in dimensions d ≥ 4, it has much lighter tails.
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Theorem 1.3. Let g3 = 1 and gd = 1 + 1
d−1 for d ≥ 4. For all dimensions d ≥ 3

we have
P(Y > R) = exp

(−Rgd+o(1)
)

as R→∞.

The exponent gd is the unique γ satisfying fd(γ) = γ for the function fd of
Theorem 1.2. Surprisingly, in dimension 4 it coincides with the location of the first
phase transition.

The case where a constant fraction of the cell’s volume lies in its R-tentacles is
also quite interesting. A simple lower bound for it is given in the next theorem. In
dimension 3 this bound captures the correct exponent.

Theorem 1.4. (a) For all d ≥ 3 and 0 < a < 1 there exist C(a), c(a) > 0 such
that if R ≥ C(a) we have

P(ZR > a) ≥ C(a) exp
(−c(a)Rd

)
.

(b) For d = 3 we have P(ZR > a) = exp
(−R3+o(1)

)
as R → ∞ for a fixed

0 < a < 1.

1.2 Sketch of the proofs. In this section we sketch the proof of Theorem 1.2.
We prove separately the upper and lower bounds for P(ZR > exp(−Rγ)). The upper
bound for P(ZR > R−C) follows from the other cases and the lower bound is proved
similarly.

Lower bounds. We start with the lower bounds (section 9). To prove the bound
we explicitly construct an event with large enough probability on which the event
ZR > exp(−Rγ) holds. We do this as follows. First, consider the event that a
(solid) “cylinder” of the form V = [−R,R]×Bd−1(0, r) centered at the origin (where
Bd−1(0, r) is a Euclidean ball in R

d−1 with radius r and center at the origin), with
side length 2R and radius r, has the following properties (see Figure 5):

(I) The cylinder V contains no stars and has at each point a force whose first
(“axial”) component is between cR1−γ and CR1−γ for some fixed C, c > 0.

(II) The force at each point of the cylinder’s boundary except, perhaps, for the
“caps” {±R}×Bd−1(0, r), has an outward-pointing normal (“radial”) compo-
nent.

By considering the backward flow of the force and using Liouville’s theorem
(equation (7)) we deduce that if this event (intersected with another, highly prob-
able, event) holds then there is a star close to the origin whose cell has more than
exp(−C̃Rγ) volume outside its c̃R-core. This implies the required lower bound. The
rest of the lower bounds’ proof consists of constructing an explicit event having the
largest possible probability (in the exponential scale) on which the conditions (I),
(II) hold. We remark that a version of the above construction was also implicitly
present in [NSV].

To construct this event we place stars at certain roughly specified locations.
Under this placement the expectation of the force satisfies (I) and (II). We then
still need to prove that the force fluctuations induced by the rest of the stars do
not change this expected picture; this will be explained further below. To place



876 S. CHATTERJEE, R. PELED, Y. PERES AND D. ROMIK GAFA 

Figure 5: An outline of the constructions for the lower bound. Arrows represent
the gravitational force: a positive first-coordinate component (of order R1−γ)
inside the cylinder V and an outward-pointing normal component on the curved
part of the boundary.

the stars, we use the more economical of two constructions according to the regime
of the parameters d and γ. The first construction, the attracting galaxy, is used
for d = 3, 0 ≤ γ ≤ 1 and for d = 4, 4/3 ≤ γ ≤ 3/2. The second construction,
the wormhole, will give the lower bound for d = 4, 0 ≤ γ ≤ 4/3 and for d ≥ 5,
0 ≤ γ ≤ 2. The constructions differ in whether the pull in V is due to “far away”
or “nearby” stars. We now sketch these constructions.

Attracting galaxy. In this construction we take V to be of length 2R and con-
stant radius. We first require that V should be empty of stars which automatically
ensures that (II) is true for the expected force on the curved part of the boundary
of V . We then consider a cylinder U with dimensions of order R located 10R units
right of the origin and require that this cylinder contain order Rd−γ stars more than
its expectation (see Figure 3). These extra stars create the required estimate (I)
(hence the name “attracting galaxy”). The probabilistic cost of this construction is
dominated by placing these extra stars and is exp(−CRd−2γ).

Wormhole. The second construction is more complicated and is done only for

d ≥ 4. Here we take V to be of length 2
3R and radius R−

2−γ
d−2

+o(1). We also consider
U := 3V and require that U should be empty of stars. As before, this ensures that
(II) holds for the expected force on the curved part of the boundary of V . We now
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place stars very close to the boundary (excluding the caps) of U in a way which
approximates a continuous density of stars (see Figure 4). More precisely, we place
the stars so that for any x ∈ V , the force

∑
z

z−x
|z−x|d due to these stars approximately

equals
∫

z−x
|z−x|ddν(z) for a given measure ν. The measure ν we use is the one sup-

ported on the boundary of U , excluding the caps, which is absolutely continuous
with respect to the (d − 1)-dimensional surface area measure and whose density

depends only on the first coordinate, rising linearly from R(2−γ) d−1
d−2

+o(1) at the left
end to twice that at the right end. This placement of stars causes the expected force
in V to satisfy (I) (for d ≥ 4) and leaves the estimate (II) intact. The probabilistic
cost of this construction is dominated by the placement of stars approximating ν

and equals exp
(−R1+ 2−γ

d−2
+o(1)) (which is approximately exp(−ν(Rd))).

The main difficulty in the wormhole construction lies in the approximation of
ν by stars. We require a very precise approximation and rely on a special type of
Chebyshev-type cubature (section 6). To this end, we divide (most of) the boundary

of U into pieces of small diameter R−
2−γ
d−2

−o(1) and equal measure Ro(1) and for each
piece we place stars at positions (zi) near the piece in a way that the discrete measure∑

δzi has approximately the same multi-moments up to a prescribed order as the
measure ν restricted to that piece. By considering the Taylor expansion of the
force (section 7) and using the smallness of the diameter, we observe that such an
approximation suffices to approximate the force in V .

Controlling the fluctuations. As mentioned above, these constructions only
cause the expected force in V to satisfy estimates (I) and (II); we also need to show
that the fluctuations induced by all the stars whose locations were not specified do
not significantly affect this expected force. It turns out that the main contribution
to the force fluctuations comes from stars at distances between Ro(1) and R from the
set V (those more distant typically induce small fluctuations as shown by moderate
deviation estimates and we require that closer stars do not exist). These fluctuations
turn out to be typically too large and to overcome this we prove a small ball estimate
lower bounding the probability that they are all small. Theorem 8.1 (roughly) says
that the fluctuations in the expected force in V from the stars at distances between
Ro(1) and R are smaller than R−d with probability at least exp

(−R1+o(1)
)
. This

theorem is one of the main and difficult components in our proof and a sketch of it
is given in section 8. It again relies on a special type of Chebyshev-type cubatures,
this time showing that the stars lie on an approximate cubature with a lower bounded
probability.

Upper bounds. The proof of the upper bounds (section 4) relies on ideas from
[NSV] but requires a more complicated analysis due to the stronger fluctuations of
the Poisson process.

Dimensions 5 and higher. Our starting point is an observation coming di-
rectly from Liouville’s theorem which says that in each cell, the volume of the set
of points taking time at least t to travel to the star is exactly exp(−dκdt), where
κd = πd/2/Γ(d/2 + 1) is the volume of the unit ball in R

d. Letting z be the star
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of the cell of the origin, this already implies that if, say, Z4R > exp(−dκdRγ) then
there is a point x in the cell of the origin taking time less than Rγ to travel to z
and satisfying |x− z| > 4R. Next, recalling that the potential U (see (3)) decreases
along flow curves, we consider the flow curve of the point x and divide it into three
parts. The part from x to the first point x1 on which U(x1) = R2−γ , the part from
x1 till the first point x2 where U(x2) = −R2−γ and the part from x2 to z. The
next observation is that a gravitational flow curve cannot travel far if it flows for a
short time with a small potential change. Since x travels to z in less than Rγ time
we deduce from this that the path from x1 to x2 has diameter smaller than

√
2R.

But recalling that |x − z| > 4R, we see that either the first or the third part of
the path must have diameter at least R. Summarizing the above, we have shown
for d ≥ 5 that if Z4R > exp(−dκdRγ) then there is a curve in the cell of the origin
whose diameter is at least R and on which |U(x)| > R2−γ . Using (1) to estimate
the diameter of the cell we may also assume that this curve is not too far from the
origin.

Long curves with atypical potential. The main theorem in the upper
bounds section then says that the probability of a curve as above is at most
exp
(−R1+(2−γ)/(d−2)+o(1)

)
. The reason behind this is that the main contribution

to the probability of |U(x)| > R2−γ comes from having some star at distance
cR−(2−γ)/(d−2) from x. So if this was the only way |U(x)| would be large then
we would have to have at least R1+(2−γ)/(d−2) disjoint (and hence independent) oc-
currences of this which would yield the required bound. The main difficulty is in
showing that indeed, having |U | large along the curve because of many stars fur-
ther away, although it affects |U | at more points, is still less likely than having the
effect come mainly from nearby stars. This is achieved using a multi-scale analysis
in which we partition space into finitely many slabs (Ai) and discretize distance to
finitely many scales (Li) and then for each possibility of assigning a scale Lj(i) to
a slab Ai we estimate the probability that there exists a point in Ai having large
potential due to the effect of stars at distance of order Lj(i) (for the smallest scale
we estimate the probability of many points in Ai to be affected by this scale).

Dimensions 3 and 4. The above approach needs to be slightly modified for
dimensions 3 and 4 since the stationary potential U does not exist. Instead we
work with the potential difference function Udiff which should be thought of as
U(x)− U(y) for two points x, y. Most of the ideas and techniques from dimensions
5 and higher carry over to this case; however, one main difference is that in some
regime of the parameters (namely, when d = 3 or when d = 4 and 4/3 ≤ γ ≤ 3/2)
the main contribution to the potential difference Udiff(y, x) is from stars which are
“far away” (formally: at distance at least of order R(2−γ)/2) from x or y. We
bound this contribution using the large deviation theorems developed in [CPPR]
and find that it is significant with probability at most exp(−cR3−2γ) for d = 3 and
at most exp(−cR4−2γ) for d = 4. In the regime described above this probability
dominates the estimate (this explains the appearance of the first phase transition in
dimension 4).
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1.3 Proofs of Theorems 1.3 and 1.4.

Proof of Theorem 1.3. Fix R > 0 and let dμ denote the distribution of ZR. Then
since Y is the distance between the star of the cell of 0 and a uniformly chosen point
in its cell we have that

P(Y > R) =

∫ 1

0
vdμ(v) =

∫ 1

0
P(ZR > v)dv

=

∫ vR

0
P(ZR > v)dv +

∫ 1

vR

P(ZR > v)dv

for any 0 < vR < 1. Since we also have

vRP(ZR > vR) ≤
∫ vR

0
P(ZR > v)dv +

∫ 1

vR

P(ZR > v)dv

≤ vR + (1− vR)P(ZR > vR) ;

the result follows by choosing vR = exp(−Rgd) and using Theorem 1.2. �

Proof of Theorem 1.4. Part (b) follows from part (a) and Theorem 1.2. For part (a),
fix R > 0, 0 < a < 1 and let NR be the number of stars in B(0, R). Let

E1 :=

{
NR >

1

1− a
Vol
(
B(0, 2R)

)}
,

E2 :=
{
There is no gravitational flow curve connecting ∂B(0, R2d)

and ∂B(0, 2R2d)
}
,

Ex := {The cell containing x has at least a volume in its R-tentacles} .
On the event E1 we note that one of the stars in B(0, R) must have at least a
volume in its R-tentacles. Then if both E1 and E2 occurred then the cell of that
star is contained in B(0, 2R2d). Next, denoting B := B(0, 2R2d) and using Fubini’s
theorem we have

Vol(B)P(ZR > a) =

∫
B
P(Ex)dx = E

∫
B
1Exdx ≥ E1E1∩E2

∫
B
1Exdx ≥ P(E1 ∩ E2) .

The proof is completed by noting that P(E1) ≥ c(a)

Rd/2 exp(−C(a)Rd) (see also Lem-
ma 2.1) and using [CPPR, Th. 3], one of the main results of [CPPR], to obtain
P(Ec

2) ≤ C exp(−cR2d/ logC R). �

2 Notation and Background

In this paper we use C and c for positive real constants which depend only on d
unless explicitly stated otherwise. We may change the values of C and c from line
to line; C may be increased and c may be decreased. Thus, for example, an upper
bound C exp(−cR2d log−C R) valid for large R may turn into exp(−R2d log−C R)
without notice.

We let Vol stand for Lebesgue measure, σm for the m-dimensional area measure
on sets in R

d and | · | for the Euclidean norm. For A,B ⊆ R
d, we write d(A,B) :=

infx∈A
y∈B

|x− y|. For x ∈ R
d and A ⊆ R

d, we abbreviate d(x,A) = d({x}, A).
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Throughout the proof of the lower bounds we will make use of boxes and cylinders
centered around the origin. Our boxes and cylinders will be parallel to the axes and
the boxes will have equal dimensions in the x2, . . . , xd directions. Hence we define

Box(L,W ) :=
{
x ∈ R

d
∣∣ |x1| ≤ L , |xi| ≤W for all 2 ≤ i ≤ d

}
,

Cyl(L,W ) :=
{
x ∈ R

d
∣∣ |x1| ≤ L , x22 + x23 + · · ·+ x2d ≤W 2

}
.

For a cylinder U := Cyl(L,W ) we will write ∂′U := {x ∈ ∂U | |x1| < L}. That is,
the boundary of U excluding the “caps” of the cylinder.

For a vector field G : Rd → R
d, let G(x)i for 1 ≤ i ≤ d be the i’th component of

G(x). Let G(x)n be the cylindrical radial component of G(x), i.e.

G(x)n := G(x) · (0, x2, x3, . . . , xd)

|(0, x2, x3, . . . , xd)| .
Similarly let xi be the i’th coordinate of x.

Recall from [CPPR] that F (x|A) stands for the gravitational force at x as exerted
by the stars in a set A ⊂ R

d and normalized to have mean 0. More precisely, for a
bounded set A it is defined by

F (x|A) :=
∑

z∈Z∩A

z − x

|z − x|d −
∫
A

z − x

|z − x|ddVol(z) , (2)

and for a set A whose complement is bounded it is defined by F (x|A) :=
F (x)− F (x|Ac). Similarly, the gravitational potential at x from stars in A is defined
by

U(x|A) := 1

d− 2

∑
z∈Z∩A

−1
|z − x|d−2 +

1

d− 2

∫
A
|z − x|d−2dVol(z)

for a bounded set A, and, for dimension d ≥ 5, by

U(x|A) = U(x)− U(x|Ac)

for a set whose complement is bounded, where

U(x) =
1

d− 2
lim
T→∞

[ ∑
z∈Z∩B(0,T )

−1
|z − x|d−2 +

dκd
2

T 2

]
− κd

2
|x|2 (3)

is the total gravitational potential; see [CPPR, §7] (U(x) converges only for d ≥ 5.
For d = 3, 4 we define the potential difference function, see section 3.3).

Next, we define g : Rd → R
d by

g(z) :=
z

|z|d . (4)

We will make use of the facts that

|g(z)| = |z|1−d and
∣∣D1g(z)

∣∣ ≤ C|z|−d, (5)

where D1 stands for the first differential. The second fact is shown in [CPPR,
Eq. (10)] and is also a corollary of Theorem 7.1 in this paper. We let α ∈ (N∪{0})d
stand for a multi-index. We write |α| := ∑d

i=1 αi and xα :=
∏d

i=1 x
αi
i for x ∈ R

d.
For any k ≥ 1 we let

PolyDim(k, d) :=

(
k + d

d

)
− 1 ,
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and define the moment map P d
k : Rd → R

PolyDim(k,d) by

P d
k (x) := (xα)α , (6)

where the index runs over all multi-indices with 0 < |α| ≤ k.
Finally, for a given set D ⊆ R

d, we let Diam(D) := supx,y∈D |x−y| stand for the
diameter of D.

We will make use of some deviation inequalities for a Poisson random variable.
The following lemma is standard:

Lemma 2.1. Let X be a Poisson random variable with mean λ > 0. Then,

(i) If t ≥ 2λ then

P(X ≥ t) ≤ e−
1
4
t log( t

λ).

(ii) There exists a δ > 0 such that for all t ∈ [0, δλ] we have

P
(|X − λ| ≥ t

) ≤ 2e−t
2/3λ.

(iii) There exists c > 0 such that if n ≥ λ is an integer then

P(X = n) ≥ c√
n
exp
(−(n− λ)2/λ

)
Proof. Parts (i) and (ii) are proven, for example, in [CPPR, Lem. 4]. For part (iii),
note that Stirling’s approximation gives that for n ≥ 1, n! ≤ C

√
n(n/e)n. Hence

P(X = n) = e−λ
λn

n!
≥ c√

n
exp
(
n− λ− n log(n/λ)

)
.

And using the fact that log(n/λ) = log
(
1 + n−λ

λ

) ≤ n−λ
λ we obtain

P(X = n) ≥ c√
n
exp

(
n− λ− n(n− λ)

λ

)
=

c√
n
exp

(
−(n− λ)2

λ

)
. �

We will use a simple consequence of a version of Liouville’s theorem [A, p. 69,
Lem. 1] (see also [CPPR, §4]).
Lemma 2.2. Let A ⊂ R

d be a measurable set and let At be its image under the
gravitational flow after t time units. Then if no point of A has reached a star during
the evolution then we have

Vol(At) = edκdtVol(A) . (7)

3 Deviation Estimates

3.1 Large deviation estimates. In [CPPR], large deviation estimates
were proven for the potential, force and derivative of the force. More precisely,
in Theorem 17 and Corollary 18, given ∞ ≥ p > q > 0, the quantities
maxx∈B(0,1∧q/2) |U(x|B(0, p) \ B(0, q))|, maxx∈B(0,1∧q/2) |F (x|B(0, p) \ B(0, q))| and
maxx∈B(0,1∧q/2) |D1F (x|B(0, p) \ B(0, q))| were considered and large deviation es-
timates for the their right tails were derived. In this section we assert that these
same large deviation estimates hold also when the potential, force or force derivative
are restricted to a general domain instead of a difference of two balls. In this new
setting, the role of q is played by the closest point to the origin in the domain.
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Theorem 3.1. There exist constants C1, c2, c3 > 0 such that for any measurable set
A which is either bounded or has bounded complement, letting q := minx∈A |x| > 0
and t > 0, we have

P

(
max

x∈B(0,1∧q/2)
∣∣U(x | A)∣∣ ≥ t

)
≤ C1e

−c2qd−2t log(c3t/q2), (8)

P

(
max

x∈B(0,1∧q/2)
∣∣F (x | A)∣∣ ≥ t

)
≤ C1e

−c2qd−1t log(c3tq), (9)

P

(
max

x∈B(0,1∧q/2)
∣∣D1F (x | A)∣∣ ≥ t

)
≤ C1e

−c2qdt log(c3t), (10)

where equation (8) holds in dimensions d ≥ 5, and equations (9) and (10) hold for
all dimensions d ≥ 3.

Proof. This theorem is analogous to Corollary 18 in [CPPR] with the set A replacing
the set R

d \ B(0, q) which appeared there. To prove it, one proves an analogue of
Theorems 16 and 17 of [CPPR] and deduces the current theorem as a corollary, as
is done there. The proofs of these analogues are exactly the same as the original
proofs in [CPPR], with a few notational changes. Since these changes are minor, we
omit the full proofs and merely detail the changes.

In Theorem 16, Bp,q is replaced by B(0, p) ∩ Ac, Wp,q is replaced
by a uniform random point in B(0, p) ∩ Ac, Np,q is replaced by the number of
stars in B(0, p) ∩ Ac and Up,q is replaced by the sum

∑
zi∈B(0,p)∩Ac 1/|zi|d−2.

In Theorem 17, all references to B(0, p) \ B(0, q) are replaced by B(0, p) ∩ Ac,
and all references to B(0, p) ∩ (B(0, 2m+1q) \B(0, 2mq)) are replaced by
B(0, p) ∩ (B(0, 2m+1q) \B(0, 2mq)) ∩Ac. �

3.2 Moderate deviation estimates. In this section, moderate deviation es-
timates will be derived for the force and potential. It is possible to prove such
estimates also for the derivative of the force but we shall not need this.

Theorem 3.2. There exist constants C1, c2, c3 > 0 such that for any measurable
set A which is either bounded or has bounded complement, if q := minx∈A |x| > 0
and t > 0 then

P
(|U(0 | A)| ≥ t

) ≤ C1e
−c2qd−4t2 , (11)

P
(|F (0 | A)| ≥ t

) ≤ C1e
−c2qd−2t2 , (12)

where equation (11) holds in dimensions d ≥ 5 for t ≤ c3q
2, and equation (12) holds

in dimensions d ≥ 3 for t ≤ c3q.

Proof. We shall prove (12); the proof of (11) is similar and is omitted. Define
Am := A ∩ (B(0, 8m+1q) \ B(0, 8mq)) for integer m ≥ 0. Set tm := 2−(m+1)t. Note
that since a.s. F (0 | A) =

∑∞
m=0 F (0 | Am), it is enough to prove that for some

c4 > 0

P
(|F (0 | Am)| ≥ tm

) ≤ C exp
(−c4(8mq)d−2t2m

)
= C exp

(−c423m(d−2)−2(m+1)qd−2t2
)
,

(13)
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since if c4q
d−2t2 ≥ 1 then equation (12) follows from equation (13) by a union

bound, and if c4q
d−2t2 < 1, then equation (12) can be made true just by choosing

the constant C1 large enough.
Let us now prove estimate (13). Fix m ≥ 0. We may assume Am �= ∅ since

otherwise there is nothing to prove. Let (Zi)
∞
i=1 be an IID sequence of uniformly

distributed points in Am that are independent of all other random variables. Let
N ∼ Poisson(Vol(Am)) denote the number of stars in Am and note that given
N = n, these stars are distributed as Z1, . . . , Zn. Hence, recalling the definition of
g from (4), we have

F (0 | Am)
d
=

N∑
i=1

g(Zi)−
∫
Am

g(z)dz

=
N∑
i=1

g(Zi)−Vol(Am)Eg(Z1)

=
N∑
i=1

(
g(Zi)− Eg(Z1)

)
+
(
N −Vol(Am)

)
Eg(Z1) .

It follows that to prove (13), it is enough to show

P

(∣∣∣∣ N∑
i=1

(
g(Zi)− Eg(Z1)

)∣∣∣∣ ≥ tm
2

)
≤ C exp

(−c(8mq)d−2t2m
)
, (14)

P

(∣∣(N −Vol(Am))Eg(Z1)
∣∣ ≥ tm

2

)
≤ C exp

(−c(8mq)d−2t2m
)
. (15)

We start by noting that for z ∈ Am we have

|g(z)| ≤ (8mq)−(d−1). (16)

To prove (14) we use the Bernstein–Hoeffding inequality [H] to obtain

P

(∣∣∣∣ N∑
i=1

(
g(Zi)− Eg(Z1)

)∣∣∣∣ ≥ tm
2

∣∣∣ N) ≤ C exp

(
−c(8

mq)2d−2t2m
N

)
. (17)

Now by averaging on N we deduce that for any ρ > 0

P

(∣∣∣∣ N∑
i=1

(
g(Zi)− Eg(Z1)

)∣∣∣∣ ≥ tm
2

)
≤ C exp

(
−c(8

mq)d−2t2m
ρ

)
+ P
(
N ≥ ρ(8mq)d

)
.

Hence, using the assumption that t ≤ c3q, (14) will be proven if we show that for
large enough ρ,

P
(
N ≥ ρ(8mq)d

) ≤ exp
(−cρ(8mq)d

)
.

This latter estimate follows immediately from Lemma 2.1 upon recalling that
N ∼ Poisson(Vol(Am)) and Vol(Am) ≤ C(8mq)d.

It remains to prove estimate (15). In view of (16), it is enough to show that

P

(∣∣(N −Vol(Am))
∣∣ ≥ (8mq)d−1tm

2

)
≤ C exp

(−c(8mq)d−2t2m
)
.

We divide into two cases:
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1. If (8mq)d−1tm/2 ≥ 2Vol(Am), we obtain from Lemma 2.1 that

P

(∣∣(N −Vol(Am))
∣∣ ≥ (8mq)d−1tm

2

)
≤ P

(
N ≥ (8mq)d−1tm

2

)
≤ exp

(−c(8mq)d−1tm
) ≤ exp

(−c(8mq)d−2t2m
)
,

where in the last inequality we used the assumption that t ≤ c3q.

2. If (8mq)d−1tm
2 < 2Vol(Am), we obtain from Lemma 2.1

P

(∣∣(N −Vol(Am))
∣∣ ≥ (8mq)d−1tm

2

)
≤ 2 exp

(
−c(8

mq)2d−2t2m
Vol(Am)

)
≤ 2 exp

(−c(8mq)d−2t2m
)
,

where in the last inequality we used the fact that Vol(Am) ≤ C(8mq)d. �

Theorem 3.3. There exist constants C1, c2, c3 > 0 such that for any measurable set
A which is either bounded or has bounded complement, letting q := minx∈A |x| > 0
and t > 0, we have

P

(
max

x∈B(0,1)

∣∣U(x | A)∣∣ ≥ t
)
≤ C1(1 + t−d)e−c2q

d−4t2 , (18)

P

(
max

x∈B(0,1)

∣∣F (x | |A)∣∣ ≥ t
)
≤ C1(1 + t−d)e−c2q

d−2t2 , (19)

where equation (18) holds in dimensions d ≥ 5 for t ≤ c3q
2, and equation (19) holds

in dimensions d ≥ 3 for t ≤ c3q.

Proof. Note that we may assume q > 2 since the estimates hold trivially when
q ≤ 2 by the assumptions on t. We prove (19); the proof of (18) is similar and is
omitted. We wish to use Theorems 3.1 and 3.2. There are two cases to consider;
denote η = 4/c3 where in this appearance only, c3 is the constant appearing in
equation (10), then,

1. If t ≥ η, we obtain

P

(
max

x∈B(0,1)

∣∣F (x | A)∣∣ ≥ t
)

≤ P
(|F (0 | A)| ≥ t/2

)
+ P

(
max

x∈B(0,1)

∣∣D1F (x | A)∣∣ ≥ t/2
)

≤ C exp(−cqd−2t2) + C exp
(−cqdt log(2η−1t))

≤ C exp(−cqd−2t2) + C exp(−cqd) ≤ C exp(−cqd−2t2) ,
where the last inequality follows by the theorem’s assumption that t ≤ c3q.
This proves the theorem for this case.

2. If t < η: Cover the ball B(0, 1) by K balls of radius 0 < r < 1 (to be specified
later) with centers in B(0, 1). This is possible with K ≤ Cr−d balls. Let
x1, x2, . . . , xK be the centers of these balls. A union bound gives

P

(
max

x∈B(0,1)

∣∣F (x | A)∣∣ ≥ t
)

≤
K∑
i=1

(
P
(|F (xi | A)| ≥ t/2

)
+ P

(
max

y∈B(xi,r)

∣∣D1F (y | A)∣∣ ≥ t/2r
))
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≤ K

(
C exp(−cqd−2t2) + C exp

(
−cqd t

r
log

(
2η−1t
r

)))
.

We now choose r = η−1t (which is indeed smaller than 1 since t < η) so that
K ≤ Ct−d and obtain from the previous inequality and the assumption that
t ≤ c3q

P

(
max

x∈B(0,1)

∣∣F (x | A)∣∣ ≥ t
)

≤ Ct−d
(
exp(−cqd−2t2) + exp(−cqd log(2)))

≤ Ct−d exp(−cqd−2t2) ,
which proves the theorem for this case. �

In most of our uses, the set A of the previous theorem will be of the form
B(0, p) \ B(0, q). We now prove an extension of this theorem to “moving annuli”.
This will be convenient in the bounds of section 4.

Theorem 3.4. There exist constants C1, c2, c3, c > 0 such that for all p > q > 0
and t > 0 we have that

P

(
max

x∈B(0,1)

∣∣U(x | B(x, p) \B(x, q))
∣∣ ≥ t
)
≤ C1

(
1 +

ad

td

)
(1 + t−d)e−c2q

d−4t2 , (20)

P

(
max

x∈B(0,1)

∣∣F (x | B(x, p) \B(x, q))
∣∣ ≥ t
)
≤ C1(1 + t−d)2e−c2q

d−2t2 , (21)

where a = p if p < ∞ and a = q if p = ∞, and where equation (20) holds in
dimensions d ≥ 5 for t ≤ c3q

2, and equation (21) holds in dimensions d ≥ 3 for
t ≤ c3q.

Proof. We prove (20); (21) is proven similarly and its proof is omitted. First, we
prove (20) in the limiting case when p = ∞. Let η > 0 be a small constant and fix
x ∈ B(0, η(1 ∧ t/q)). Then∣∣U(x | Rd \B(x, q))− U(x | Rd \B(0, q))

∣∣∣
=
∣∣U(x | B(0, q))− U(x | B(x, q))

∣∣
= −κd|x|2/2− 1

d− 2

∑
zi∈E1

1

|zi − x|d−2 +
1

d− 2

∑
zi∈E2

1

|zi − x|d−2 ,

where E1 = B(0, q) \ B(x, q) and E2 = B(x, q) \ B(0, q). Now, denoting by νq the
number of stars in B

(
0, q + η

(
1 ∧ t/q

)) \B(0, q − η
(
1 ∧ t/q

))
, it follows that∣∣U(x | Rd \B(x, q))

∣∣ ≤ ∣∣U(x | Rd \B(0, q))
∣∣+ Cη

t2

q2
+

νq
(d− 2)(q/2)d−2

.

Since νq is a Poisson random variable with mean ≤ Cηqd−2t, by Lemma 2.1 we
obtain that for t ≤ cq2 and small enough η we have

P

(
max

x∈B(0,η(1∧t/q))
∣∣U(x | Rd \B(x, q))

∣∣ ≥ t
)

≤ P

(
max

x∈B(0,η(1∧t/q))
∣∣U(x | Rd \B(0, q))

∣∣ ≥ t/3
)
+ P

(
νq

(d− 2)(q/2)d−2
≥ t/3

)
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≤ C(1 + t−d)e−cq
d−4t2 + e−cq

d−2t ≤ C(1 + t−d)e−cq
d−4t2 . (22)

We fix η > 0 so that this estimate holds. We now cover the ball B(0, 1) with fewer

than C
(
1 + qd

td

)
balls of radius η

(
1 ∧ t

q

)
and use the above estimate for each such

ball to obtain

P

(
max

x∈B(0,1)

∣∣U(x | Rd \B(x, q))
∣∣ ≥ t
)
≤ C

(
1 +

qd

td

)
(1 + t−d)e−cq

d−4t2 ,

as required for the case p = ∞. Note that we have assumed that q ≥ 1 since the
above estimate holds trivially if q < 1 since t ≤ cq2.

Finally, to prove (20) in the general case, note, using (22) twice and using the
assumption t ≤ cq2 ≤ cp2, that

P

(
max

x∈B(0,1)

∣∣U(x | B(x, p) \B(x, q))
∣∣ ≥ t
)

≤ P

(
max

x∈B(0,1)

∣∣U(x | Rd \B(x, q))
∣∣≥ t

2

)
+P

(
max

x∈B(0,1)

∣∣U(x | Rd \B(x, p))
∣∣≥ t

2

)

≤ C

(
1 +

qd

td

)
(1 + t−d)e−cq

d−4t2 + C

(
1 +

pd

td

)
(1 + t−d)e−cp

d−4t2

≤ C

(
1 +

pd

td

)
(1 + t−d)e−cq

d−4t2 . �

3.3 Large deviations for the potential difference function. Recall from
[CPPR] that in dimensions 3 and 4, the stationary potential function U does not
exist and we must content ourselves with the potential difference function Udiff(x, y).
Udiff exists in all dimensions d ≥ 3 and when d ≥ 5 we have Udiff(x, y) = U(y)−U(x).
In dimensions 3 and 4, recall that the potential difference function is defined by

Udiff(x, y) =
1

d− 2

∑
z∈Z,|z|↑

( −1
|z − y|d−2 −

−1
|z − x|d−2

)
+

κd
2

(|x|2 − |y|2) .
If A ⊂ R

d is a bounded set, define

Udiff(x, y|A) = 1

d− 2

∑
z∈Z∩A,|z|↑

( −1
|z − y|d−2 −

−1
|z − x|d−2

)

− 1

d− 2

∫
A

(|z − x|d−2 − |z − y|d−2)dVol(z) ,
and if the complement of A is bounded define

Udiff(x, y|A) = Udiff(x, y)− Udiff(x, y|A) .
We now state a slight extension of [CPPR, Cor. 34] that will be important in the

proof of the upper bound in the next section. We note that although it was stated
in [CPPR] for finite and infinite p, it was in fact proved (and used) there only for
the case p = ∞. This is also the case which we will need here. The range of t for
this theorem extends slightly beyond what was stated in [CPPR].
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Theorem 3.5. In dimension d = 4, there exist constants C1, c2, c3 > 0 such that
for all x, y ∈ R

d and q > 2 satisfying |x− y| > 3q, we have that

P

(
max

u∈B(x,1), v∈B(y,1)
l
∣∣Udiff(u, v | Rd \ (B(u, q) ∪B(v, q)))

∣∣ > t
)
≤ C1e

−c2q2t log
(

c3t

q2

)

for all t satisfying t ≥ C1q
2 and t ≥ C1q

2 log(C1t/q
2) log(|x− y|/q).

Similarly, in dimension d = 3,there exist constants C1, c2, c3 > 0 such that for all
x, y ∈ R

d, q > 2 and t > 0 satisfying |x− y| > 3q, c3t > q and t < |x− y|q we have
that

P

(
max

u∈B(x,1), v∈B(y,1)

∣∣Udiff(u, v | Rd \ (B(u, q) ∪B(v, q)))
∣∣ > t
)

≤ C1e
− c2t

2

|x−y| + C1e
−c2q2t log

(
c3t
q

)
.

As written above, this theorem differs from that stated in [CPPR] in that it is
valid for the case p =∞ and also in that the upper restriction on t when d = 3 has
been extended from t < |x− y| to all t < |x− y|q. Since the proof given in [CPPR]
works verbatim for this extension as well, we will not repeat it here.

4 Proof of the Main Theorem – Upper Bound

In this section we prove the upper bound for Theorem 1.2. I.e. we show that
P(ZR > exp(−Rγ)) ≤ exp

(−Rfd(γ)+o(1)
)
for γ > 0 and the functions fd given in

the theorem. Note that the upper bound for the case P(ZR > R−C) follows from the
other cases. Also note that the cases where fd(γ) = 1 follow from the main theorem
of [CPPR], hence we shall prove the bound only for the remaining cases. The proof
relies on ideas from [NSV] but requires a more complicated multi-scale analysis due
to the stronger fluctuations of the Poisson process.

The theorem is a consequence of Theorem 4.3 below and the following two simple
lemmas. The first lemma relates the time it takes the gravitational flow to pass a
certain distance and the potential change along that flow. A similar lemma appeared
in [NSV] with a more complicated proof.

Lemma 4.1. Let Γ : [0, t∗]→ R
d be (a segment of) a gravitational flow curve and

let L measure the arc length along Γ. Then for d ≥ 5 we have

L(t∗)2 ≤ t∗
(
U(Γ(0))− U(Γ(t∗))

)
.

and for d = 3 or d = 4 we have for any x ∈ R
d

L(t∗)2 ≤ t∗
(
Udiff(x,Γ(0))− Udiff(x,Γ(t∗))

)
.

Proof. For d ≥ 5 we have

t∗ =
∫
Γ
dt =

∫
Γ

dt

dL
dL =

∫
Γ

1

dL/dt
dL =

∫
Γ

1

|F |dL

= L(t∗)
∫
Γ

1

|F |
dL

L(t∗)
(by convexity)

≥ L(t∗)
(∫

Γ
|F | dL

L(t∗)

)−1
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= L(t∗)2
(∫

Γ
|F |dL
)−1

=
L(t∗)2

U(Γ(0))− U(Γ(t∗))
.

This calculation works also for dimensions 3 and 4 by recalling that for any x ∈ R
d,

∇yU
diff(x, y) = −F (y), hence∫

Γ
|F |dL = Udiff

(
x,Γ(0)

)− Udiff
(
x,Γ(t∗)

)
. �

Our second lemma is a direct consequence of Liouville’s theorem.

Lemma 4.2. Consider the set of points in the cell of the origin taking time at least
t to flow into the star under the gravitational flow. Let Vt be the volume of this set.
Then for any d ≥ 3 we have Vt = exp(−dκdt).
Proof. This was proved in [CPPR, §4] before equation (7) and also follows from
Lemma 2.2 along with the fact that the cell has volume 1. �

The main theorem of this section says that it is very unlikely to have a long curve
with atypically large (positive or negative) potential throughout. We give separate
statements for d = 3, 4 and for d ≥ 5 since the potential function U does not exist
for d = 3, 4. More precisely, let us define for R, δ, ρ > 0

ΩR,δ :=
{∃ continuous path Γ ⊆ B(0, R2d) of diameter at least R

such that |U(x)| ≥ Rδ for all x ∈ Γ
}
,

Ω′R,δ,ρ :=
{∃ continuous path Γ ⊆ B(0, R2d) of diameter at least R

such that |U(x|B(x, ρ))| ≥ Rδ for all x ∈ Γ
}
.

Theorem 4.3. Let hd(δ) = 1 + δ
d−2 . Then for any d ≥ 5, δ > 0, R > 1 and

0 < ε < δ/2(d− 2) there exist C(ε, δ), c(ε, δ) > 0 such that

P(ΩR,δ) ≤ C(ε, δ) exp
(−c(ε, δ)Rhd(δ)−ε) .

Furthermore, for any d ≥ 3, δ > 0, R > 1 and 0 < ε < δ/2(d− 2) there exist C(ε, δ),
c(ε, δ) > 0, c > 0 such that for any 1 ≤ ρ ≤ cRδ/2 we have

P(Ω′R,δ,ρ) ≤ C(ε, δ) exp
(−c(ε, δ)Rhd(δ)−ε) .

We first show how the upper bounds follow from this theorem and the lemmas
above, and then proceed to prove Theorem 4.3.

Proof of the upper bound in Theorem 1.2. We divide into two cases.

Dimension d ≥ 5. Fix d ≥ 5, 0 < γ < 2 and let

Ω :=
{
Z4R > exp(−dκdRγ)

}
.

Let TR be theR-tentacles for the cell of the origin, i.e. TR:=ψ−1Z (ψZ(0))\B(ψZ(0), R).
By Lemma 4.2, if Ω occurred then there is a x ∈ T4R with τx ≤ Rγ where τx denotes
the travel time of x to the star ψZ(0). Consider Γ : [0, τx] → R

d, Γ(0) = x, the
gravitational flow curve of x, and define

τ1 := min
(
τ | U(Γ(τ)) ≤ R2−γ) ,

τ2 := min
(
τ | U(Γ(τ)) ≤ −R2−γ) .
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Noting that τ2 − τ1 ≤ τx ≤ Rγ and applying Lemma 4.1 we deduce that
|Γ(τ2)− Γ(τ1)| ≤

√
2R. Hence, since x ∈ T4R we finally deduce that either∣∣Γ(0)− Γ(τ1)

∣∣ ≥ R or
∣∣Γ(τ2)− Γ(τx)

∣∣ ≥ R .

To summarize the above discussion, let

Ω1 := {The diameter of the cell containing the origin is more than R2d} ,
and note that on Ωc

1, the cell of the origin is contained in B(0, R2d). Then we have
shown that

Ω ⊆ Ω1 ∪ ΩR,2−γ .

Since by (1), the main theorem of [CPPR], we have

P(Ω1) ≤ C exp
(−cR2d logαd(R)

)
; (23)

it remains to apply Theorem 4.3 and observe that the exponent functions satisfy
fd(γ) = hd(2− γ).

Dimensions 3 and 4. Fix d = 3 or d = 4 and fix γ > 0 satisfying fd(γ) > 1. For
η > 0 let

ρ3 := R(2−γ)/2 log−1/2−η(R) ,

ρ4 := ηR(2−γ)/2.

Define an event

Ω2 :=
{∃x ∈ B(0, R2d) such that ∀y ∈ B(0, R2d) with 6R ≤ |x− y| ≤ 7R

we have |U(y|B(y, ρd))| ≥ R2−γ} .
We note that if R > C then Ω2 ⊆ Ω′R,2−γ,ρd . In particular, if η < c then by

Theorem 4.3 we have for ε < 2−γ
4 ,

P(Ω2) ≤ C(ε, γ) exp
(−c(ε, γ)Rhd(2−γ)−ε) . (24)

Define also the event

Ω3 :=
{∃x, y ∈ B(0, R2d) with 2R ≤ |x− y| ≤ 11R such that

|Udiff(y, x|Rd \ (B(x, ρd) ∪B(y, ρd))| ≥ R2−γ} .
We note that by the large deviation theorem, Theorem 3.5, we have that if 0 < γ < 2,
0 < η < 1 and R > C(γ, η) then

P(Ω3) ≤
{
C exp

[− c(η)R4−2γ log−1−2η(R) log log(R)
]
, d = 4 ,

C exp(−cR3−2γ) , d = 3 .
(25)

We fix η so that (24) and (25) hold. We now proceed as in the case d ≥ 5 and let

Ω4 :=
{
Z4R > exp

(−1
2dκdR

γ
)}

.

Assume that Ωc
1 ∩ Ωc

2 ∩ Ωc
3 ∩ Ω4 occurred (Ω1 is as for the case d ≥ 5). Let TR be

the R-tentacles for the cell of the origin, i.e. TR := ψ−1Z (ψZ(0)) \ B(ψZ(0), R). By
Lemma 4.2, since Ω4 occurred there is a x ∈ T4R with τx ≤ 1

2R
γ where τx denotes
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the travel time of x to the star ψZ(0). Since Ωc
2 occurred there exists y ∈ B(0, R2d)

with 6R ≤ |x− y| ≤ 7R and ∣∣U(y|B(y, ρd))
∣∣ ≤ R2−γ . (26)

Now consider Γ : [0, τx] → R
d, Γ(0) = x, the gravitational flow curve of x, and

define

τ1 := min
(
τ | Udiff(y,Γ(τ)) ≤ 3R2−γ) ,

τ2 := min
(
τ | Udiff(y,Γ(τ)) ≤ −3R2−γ) .

Noting that τ2−τ1≤ τx≤ 1
2R

γ and applying Lemma 4.1 we deduce that |Γ(τ2)−Γ(τ1)|
≤ √3R. Hence, since x ∈ T4R we deduce that either∣∣Γ(0)− Γ(τ1)

∣∣ ≥ R or
∣∣Γ(τ2)− Γ(τx)

∣∣ ≥ R . (27)

Assume the former and let τ ′1 := min(τ | |Γ(0)−Γ(τ)| = R), then since Ωc
3 occurred

we know that for any w ∈ Γ([0, τ ′1]) we have∣∣Udiff(y, w|Rd \ (B(w, ρd) ∪B(y, ρd))
∣∣ < R2−γ .

Combining this with (26) we finally obtain for every w ∈ Γ([0, τ ′1]) that U(w|B(w, ρd))
≥ R2−γ , so that in particular Ω′R,2−γ,ρd occurred. Similarly if the second option in
(27) occurred then we would also conclude that Ω′R,2−γ,ρd occurred.

Summarizing the above discussion we have shown that

Ω4 ⊆ Ω1 ∪ Ω2 ∪ Ω3 ∪ Ω′R,2−γ,ρd .
Hence, the required bound for Ω4 follows from (23), (24), (25) and Theorem 4.3. �

The probability of a long curve with atypical potential. We now prove
Theorem 4.3. Let Q(x, L) = x + [−L,L]d denote the cube centered at x with side
lengths 2L. Fix δ > 0 and consider the event

ER,δ :=
{∃ a continuous path Γ from ∂Q(0, R) to ∂Q(0, 2R)

such that |U(x)| ≥ Rδ for every x ∈ Γ
}
.

Also let

E′R,δ,ρ :=
{∃ a continuous path Γ from ∂Q(0, R) to ∂Q(0, 2R)

such that |U(x|B(x, ρ))| ≥ Rδ for every x ∈ Γ
}
.

We will prove

Theorem 4.4. Suppose d ≥ 5 and δ > 0, and let ER,δ be defined as above. Then
for any 0 < α < δ/2(d− 2), there exist C(δ, α), c(δ, α) > 0 such that for all R > 0,

P(ER,δ) ≤ C(δ, α) exp
(−c(δ, α)R1+ δ

d−2
−α) .

Moreover, for d = 3 or 4, we have that, for any δ > 0 and any 0 < α < δ/2(d− 2),
there exist C(δ, α), c(δ, α), c > 0 such that, for all R > 0 and 1 ≤ ρ ≤ cRδ/2, we have

P (E′R,δ,ρ) ≤ C(δ, α) exp
(−c(δ, α)R1+ δ

d−2
−α) .

It is straightforward to see by covering B(0, R2d) by Rc boxes Q(0, cR) that ΩR,δ

is contained in RC translates of EcR,δ and that Ω′R,δ,ρ is contained in RC translates
of E′cR,δ,ρ. Hence, Theorem 4.3 follows from the above theorem.
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Proof. In the following, C and c will stand for generic positive constants, which
may depend on d, δ, and α (where applicable), and nothing else. We will use C for
constants whose values can be increased, and c for constants whose values can be
decreased, without altering the conclusions. For instance, “assume R > C” means
“assume R is bigger than a constant depending only on d, δ, and α”, an assumption
that will be implicit in some of our inequalities.

We know the following from [CPPR, Th. 19]: If d ≥ 5, then for any 0 < q < p <∞
and any t ≥ p2,

P

(
max

x∈B(0,1∧q/2)
∣∣U(x | B(x, p)\B(x, q))

∣∣ ≥ t
)
≤ Ce−cq

d−2t log(ct/q2). (28)

Moreover, by the same theorem, the above bound holds for any t if p =∞. If d = 3
or 4, then by [CPPR, Th. 36], we have that the large deviation bound (28) holds for
t ≥ Cp2 provided that t also satisfies

t ≥ Cq2 log

(
Ct

q2

)
log

(
p

q

)
in dimension d = 4 ; (29)

t ≥ Cq2
(
log

(
Ct

q2

))2
log

(
p

q

)
and

t ≥ Cpq log

(
Ct

q2

)
in dimension d = 3 .

(30)

We have the moderate deviation estimate for d ≥ 5 from Theorem 3.4:

P

(
max

x∈B(0,1)

∣∣U(x | B(x, p)\B(x, q))
∣∣ ≥ t
)

≤ C
(
1 + (a/(t ∧ q2))d

)(
1 + (t ∧ q2)−d

)
e−cq

d−4(t∧q2)2 , (31)

where a = p if p <∞ and a = q if p =∞. Now, let

r = R−
δ

d−2
+α.

Let A be the “square annulus” Q(0, 2R)\Q(0, R). Let M be a positive real number,
to be chosen later. Divide A into N := R/Mr concentric square annuli of width Mr,
and call them A1, . . . , AN . (Here we assume that M is chosen such that N is an
integer. Eventually, the only other requirements on M will be that it is “large
enough” but smaller than Rα/2, so this assumption causes no conflict.) Formally,

Ai = Q(0, R+ iMr)
∖
Q
(
0, R+ (i− 1)Mr

)
.

If d ≥ 5, let

E0 =
{∃x ∈ A such that |U(x | Rd\B(x,R

1
d−4 ))| ≥ Rδ/2

}
.

Let S be a collection of points such that ∪x∈SB(x, 1) ⊇ A. If δ > 2
d−4 , then by (28)

we have

P(E0) ≤
∑
x∈S

P

(
max

y∈B(x,1)

∣∣U(y | Rd\B(y,R
1

d−4 ))
∣∣ ≥ Rδ/2

)

≤ |S|Ce−cR
d−2
d−4

+δ
logR,
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provided R > C. On the other hand, if δ ≤ 2
d−4 , then by (31) we have that for

R > C,

P(E0) ≤
∑
x∈S

P

(
max

y∈B(x,1)

∣∣U(y | Rd\B(y,R
1

d−4 ))
∣∣ ≥ Rδ/2

)
≤ |S|CRCe−cR

1+2δ
.

Now, S can be chosen such that |S| ≤ CRd. Consequently, we see that in all
situations, if R > C then we have

P(E0) ≤ Ce−cR
1+δ

. (32)

Next, if d ≥ 5, let �1 = R
1

d−4 . If d = 3 or 4, let �1 = ρ. Let �2, . . . , �K be a
sequence of numbers such that Rα/2 ≤ �j/�j+1 ≤ Rα for j = 1, . . . ,K − 1, with

�K = r = R−
δ

d−2
+α. Clearly, it is possible to find such �j with K being an integer

bounded by a constant that depends only on d, δ, and α. That is, in our notation,
K ≤ C. For each i = 1, . . . , N and j = 1, . . . ,K − 1, let

Ej
i :=

{
∃x ∈ Ai such that

∣∣U(x | B(x, �j)\B(x, �j+1))
∣∣ ≥ Rδ

4(K − 1)

}
.

Now, choosing M > 2 and defining the slightly smaller annulus

A′i = Q(0, R+ iMr − r)\Q(0, R+ (i− 1)Mr + r)

for each i = 1, . . . , N , we consider the collection Ci of boxes of the grid rZd which
are fully contained in Ai. A contiguous sequence of boxes from Ci is said to cross A′i
if the union of the sequence contains a continuous path crossing A′i. Define

EK
i :=
{
∃ a contiguous sequence of boxes from Ci crossing A′i

such that max
x∈B
∣∣U(x | B(x, r))

∣∣ for each box B exceeds Rδ/4
}
.

Now, since α < δ
d−2 and R > C, maxx∈B |U(x | B(x, r))| > Rδ/4 can happen only

if B + B(0, r) contains a star, the probability of which is ≤ Crd. Note that in any
self-avoiding chain of L boxes, there are at least cL boxes B such that B + B(0, r)
are mutually disjoint. However, L has to be at least M−2 in any crossing. Also note
that there are at most (R/r)d−1CL chains of length L that cross A′i. Combining all
these observations, we see that if M > C and R > C, we have

P(EK
i ) ≤ (R/r)d

∑
L≥M−2

CLrcdL

≤ (R/r)d(Cr)cdM ≤ e−cM logR.

(33)

(Note that we are using, somewhat subtly, the fact that r < R−c since α < δ
d−2 .)

Now, with the above definitions, we clearly have that for d ≥ 5,

ER,δ ⊆ E0 ∪
( N⋂

i=1

K⋃
j=1

Ej
i

)
. (34)
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For d = 3 and 4, we have

E′R,δ,ρ ⊆
N⋂
i=1

K⋃
j=1

Ej
i . (35)

We already have the bound (32) for P(E0). Let us now bound the probability of the
other term. First, note that

P

( N⋂
i=1

K⋃
j=1

Ej
i

)
= P

( ⋃
J :{1,...,N}→{1,...,K}

N⋂
i=1

E
J(i)
i

)

≤
∑

J :{1,...,N}→{1,...,K}
P

( N⋂
i=1

E
J(i)
i

) (36)

(the union and sum are over all functions J : {1, . . . , N} → {1, . . . ,K}). Let us
now get some bounds for P(Ej

i ). We already have a bound (33) for P(EK
i ), so let

us consider j ≤ K − 1. Suppose C�j ≤ Rδ/2. Then for d ≥ 5, by the large deviation
bound (28) (and the same technique as in bounding P(E0)), we have

P(Ej
i ) ≤ C(R/r)de−c


d−2
j+1R

δ logR

≤ C(R/r)de−c
j+1R
(− δ

d−2
+α)(d−3)+δ

logR

≤ C(R/r)de−c
jR
δ

d−2
+α(d−4)

logR.

Again, if C�j > Rδ/2 and d ≥ 5, we have Rδ ∧ �2j+1 ≥ Rδ ∧ (�2jR
−2α) ≥ cRδ−2α, and

therefore, we can use (31) to get

P(Ej
i ) ≤ CRCe−c


d−4
j+1R

2δ−4α

≤ CRCe−c

d−4
j R2δ−dα

≤ CRCe−c
jR
δ(d−1)

2 −dα

.

Since α < δ/4, we have

δ(d− 1)

2
− dα >

δ

d− 2
+ α(d− 4) ,

and therefore we can combine the last two relations to conclude that when d ≥ 5,
for any 1 ≤ j ≤ K − 1 and any i (and R > C),

P(Ej
i ) ≤ CRCe−c
jR

δ
d−2

+α(d−4)
logR.

Since �j ≥ R
α
2 R−

δ
d−2

+α, if R > C this reduces to

P(Ej
i ) ≤ Ce−c
jR

δ
d−2

+α(d−4)
logR. (37)

Next, let us consider d = 3, 4. Since cRδ ≥ ρ2 ≥ �2j (where in this place only, we may
take c depending only on d), we can still apply the large deviation bound (28) for
bounding P(Ej

i ), provided that (30) holds when d = 3 and (29) holds when d = 4,
with t = Rδ/4(K − 1), p = �j and q = �j+1. It is easy to see that this happens
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when R > C, since �j+1 ≤ �jR
−α/2 and α > 0. Thus, for R > C, we have that for

d = 3, 4,

P(Ej
i ) ≤ C(R/r)de−c


d−2
j+1R

δ logR

≤ C(R/r)de−c
j+1R
(− δ

d−2
+α)(d−3)+δ

logR

≤ C(R/r)de−c
jR
δ

d−2
+α(d−4)

logR.

Thus, (37) holds for d = 3, 4 as well.
Now fix a map J : {1, . . . , N} → {1, . . . ,K}. We adopt the following proce-

dure for choosing S ⊆ {1, . . . , N} such that the events
(
E

J(i)
i

)
i∈S are mutually

independent. First, order the indices 1, . . . , N as w1, . . . , wN such that �J(w1) ≥
�J(w2) ≥ · · · ≥ �J(wN ). Begin constructing S by putting w1 in S. Suppose we have
inspected w1, . . . , wi−1. Put wi in S according to the following rule. If the annulus
Awi +B(0, �J(wi)) intersects the union of annuli Awj +B(0, �J(wj)) for wj that have
already been included in S, then leave i out, otherwise add it to S. Then by con-
struction, the annuli {Ai + B(0, �J(i))}i∈S are disjoint. Since the event Ej

i depends

only on the stars in the annulus Ai+B(0, �j), the events
(
E

J(i)
i

)
i∈S are independent.

In particular,

P

( N⋂
i=1

E
J(i)
i

)
≤ P

(⋂
i∈S

E
J(i)
i

)
=
∏
i∈S

P
(
E

J(i)
i

)
. (38)

Now, the annulus Ai+B(0, �J(i)) has “width” 2�J(i)+Mr (that is, it is contained in
Ai+Q(0, �J(i))). Our construction of S guarantees that for each i �∈ S, Ai+B(0, �J(i))
intersects Aj + B(0, �J(j)) for some j ∈ S such that �J(j) ≥ �J(i). Since the annuli
are concentric, it follows that

Ai +B
(
0, �J(i)

) ⊆ Aj +B
(
0, 3�J(j) +Mr

)
.

Thus, the union of the annuli {Ai+B(0, 3�J(i)+Mr)}i∈S covers the “square annulus”

Q(0, 2R)\Q(0, R). Now observe that �K = r and if Rα/2 > M , we have �j ≥ Mr
for all j < K. Thus, defining S′ = {i ∈ S : J(i) < K} and S′′ = S\S′, we get that
when Rα/2 > M > C,

R ≤
∑
i∈S

(
3�J(i) +Mr

) ≤ 4
∑
i∈S′

�J(i) + 4|S′′|Mr .

Thus, at least one of the two terms in the rightmost sum has to be ≥ R/2. First,
suppose 4|S′′|Mr ≥ R/2. Then, from the bound (33), we have∏

i∈S′′
P
(
E

J(i)
i

) ≤ (e−cM logR)
R

8Mr ≤ e−cR
1+ δ

d−2
−α

logR. (39)

On the other hand, if

4
∑
i∈S′

�J(i) ≥ R
2 ,
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then by (37) we have that, for R > C,∏
i∈S′

P
(
E

J(i)
i

) ≤ CNe−cR
δ

d−2
+α(d−4) ∑

i∈S′ 
J(i) logR

≤ CNe−cR
1+ δ

d−2
+α(d−4)

logR.

(40)

From (36), (38), (39) and (40), we see that if d ≥ 3 and Rα/2 > M > C then

P

( N⋂
i=1

K⋃
j=1

Ej
i

)
≤

∑
J :{1,...,N}→{1,...,K}

P

( N⋂
i=1

E
J(i)
i

)

≤ CNe−cR
1+ δ

d−2
−α

logR

≤ e(CM−1−c logR)R
1+ δ

d−2
−α

.

The proof is finished by combining the above bound with (32), (34) and (35). �

5 Expectation of the Force in an Empty Box

Recall from section 2 the notation G(x)i and xi. We prove

Proposition 5.1. Let d ≥ 2, L,W > 0 and V := Box(L,W ). Let

Ω := {V contains no stars} .
Finally let G(x) := E(F (x)|Ω). Then there exist C, c > 0 independent of L and W
such that

(i) On the event Ω, F (x|V ) is non-random and equals G.
(ii) |G(x)1| ≤ CL−(d−2)W d−1 when |x1| ≤ L/2.
(iii) For x ∈ V and 2 ≤ i ≤ d,

G(x)i ≥ cxi

(
1−
(

CW

W + L

)d−1)
when xi ≥ 0 ,

G(x)i ≤ cxi

(
1−
(

CW

W + L

)d−1)
when xi ≤ 0 .

Proof. Recalling that
F (x) = F (x|V ) + F (x|V c) ,

that F (x|V c) is independent of Ω, and that the force is always normalized to have
mean 0, we obtain G(x) = E(F (x|V )|Ω). But by its definition, on the event Ω

F (x|V ) = −
∫
V

z − x

|z − x|ddz (41)

which is non-random. This proves part (i).

Now fix x with |x1| ≤ L/2. Note that when evaluating the first coordinate of
formula (41) we may “cancel out” corresponding parts of the box to the left of x and
to its right. More precisely, on the event Ω, if we assume without loss of generality
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that x1 ≥ 0 then

F (x|V )1 = −
∫
V 1
x

z1 − x1
|z − x|ddz

where V 1
x := {z | −L ≤ z1 < 2x1 − L, |zi| ≤ W for all 2 ≤ i ≤ d}. Hence, since

|x1| ≤ L/2,∣∣F (x|V )1
∣∣ ≤ ( 2L)(d−1)Vol(V 1

x ) ≤
(
2
L

)(d−1)
LW d−1 = CL−(d−2)W d−1,

proving part (ii).

We now prove the first part of (iii), the second part follows by symmetry. Fix
2 ≤ i ≤ d and x with xi ≥ 0. Similarly to part (ii),

F (x|V )i =

∫
V i
x

xi − zi
|z − x|ddz

where

V i
x :=
{
z | −L ≤ z1 ≤ L , −W ≤ zi < 2xi −W , |zj | ≤W for 2 ≤ j ≤ d , j �= i

}
.

Let also

Ṽ i
x :=
{
z | −L ≤ z1 ≤ L , −W ≤ zi < xi −W , |zj | ≤W for 2 ≤ j ≤ d , j �= i

}
,

and note that Ṽ i
x ⊆ V i

x . Consider the vertical slice {z | z1 = a} ∩ Ṽ i
x . On this slice

we have
xi − zi
|z − x|d ≥

W(
(x1 − a)2 +

∑d
j=2(W + |xj |)2

)d/2 ≥ W

((x1 − a)2 + 4(d− 1)W 2)d/2
.

Hence, by integrating over Ṽ i
x and estimating the volume of such a slice, we obtain

F (x|V )i ≥ xiW
d−2
∫ L

−L
W

((x1 − a)2 + 4(d− 1)W 2)d/2
da

≥ xiW
d−1
∫ L

−L
1

((x1 − a)2 + 4(d− 1)W 2)d/2
da

≥ xiW
d−1
∫ L

0

1

(4(d− 1)W 2 + a2)d/2
da

≥ xiW
d−1
∫ L

0

1

(2
√
d− 1W + a)d

da

= cxi

(
1−
(

CW

W + L

)d−1)
. �

6 Chebyshev-type Cubatures

In the construction of our lower bounds, we will need quantitative theorems estimat-
ing how well the Poisson process can approximate a given continuous distribution.
The sense of the approximation we will need is that the empirical measure formed
by the points of the Poisson process (in some region) has the same (or almost the
same) moments up to some prescribed order as the continuous distribution (in that
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region). Such an approximation is called a Chebyshev-type cubature, see [P] for
more information. Specifically, we will need the following:

1. In section 8 we will need the fact that, when putting many independent uniform
points in a cube, we can lower bound the probability that these points form
an approximate Chebyshev-type cubature for the uniform distribution on the
cube. This is achieved by showing that when taking sufficiently many points,
the moments (up to the given order) of the normalized empirical measure of
these points, form a random vector which has a positive density at the point
corresponding to the moments of the uniform distribution on the cube.

2. In section 9.2 we will need a “local” approximate Chebyshev-type cubature
formula for a certain measure on the surface of a cylinder. The “local” part
refers to the fact that we will actually need to partition the cylinder into
patches of small diameter and equal measure, and on each patch construct an
approximate Chebyshev-type cubature formula (for the measure restricted to
that patch) such that the number of points in each of these formulas is equal,
and not too large.

The theorems we need are proven in [P] and we cite them below. Recall that P d
k

and PolyDim(k, d) were defined in section 2.

Theorem 6.1. Fix k ≥ 1 and let (Xi)
∞
i=1 be an IID sequence of RV’s uniform

on [−1, 1]d. Let Mi := P d
k (Xi) and S̄n := 1√

n

∑n
i=1(Mi − EM1). Then there exists

N0 = N0(k, d) > 0, a = a(k, d) > 0 and t = t(k, d) > 0 such that for all n > N0,
S̄n is absolutely continuous with respect to Lebesgue measure in R

PolyDim(k,d) and
its density fn(x) satisfies fn(x) ≥ a for |x| ≤ t.

To state our theorem for the cylinder we make a few more definitions. Given
L,W > 0 and a dimension d ≥ 1, let

PL,W :=
{
x ∈ R

d
∣∣ |x1| ≤ L , x22 + · · ·+ x2d = W 2

}
(the curved part of the boundary of a length 2L cylinder of radius W , nearly iden-
tical to ∂′Cyl(L,W )). Let νL,W be the measure supported on PL,W and absolutely
continuous with respect to σd−1 with density V (x1, . . . , xd) = v(x1) = 1+ x1+L

2L . I.e.
the density increases linearly from 1 to 2 as x1 increases from −L to L. Define for
d, k ≥ 1 and δ > 0,

m0(d, k, δ) := Smallest integer m ≥ 1 satisfying

(
ke

m+ 1

)m+1

≤ δ

2d2k
. (42)

Theorem 6.2. For each d ≥ 3 there exists C > 0 such that for each k ≥ 1, L > C,
W > 0, 0 < τ < W and 0 < δ < W k, we have an integer K = K(L,W, τ, d) > 0 and
measurable subsets D1, . . . , DK ⊆ P2L,W satisfying the following properties:

(I) ν2L,W (Di ∩Dj) = 0 for each i �= j and ν2L,W
(
PL,W \ (∪K

i=1Di

))
= 0.

(II) Diam(Di) ≤ Cτ , ν2L,W (Di) = τd−1 for all i, and K ≤ CLW d−2τ−(d−1).
(III) For n = nd−1

1 , where n1 can be any integer satisfying n1 ≥ Cm0(d−2,k,δ/(4LW )k),
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and for each 1 ≤ i ≤ K, there exist (wDi,j)
n
j=1 ⊆ Di such that∣∣∣∣ 1n

n∑
j=1

h(wDi,j)−
1

ν2L,W (Di)

∫
Di

h(w)dν2L,W (w)

∣∣∣∣ ≤ δ

for all h : Rd → R of the form h(w) = (w−y)α for y ∈ P2L,W and a multi-index
α with |α| ≤ k.

7 The Taylor Expansion of the Force

In this section we consider the function g introduced in (4) and develop it in a Taylor
series around a fixed y �= 0. For each multi-index α ∈ (N∪ {0})d let aα ∈ R

d denote
the Taylor coefficient of g around y.

Theorem 7.1. There exists C20 > 0 such that

1. For each multi-index α we have

|aα| ≤ C20

|y|d−1
(
2d

|y|
)|α|

.

2. For any integer k ≥ 1 and any z with |z − y| ≤ 1
C20
|y| we have∣∣∣g(z)− ∑

|α|≤k
aα(z − y)α

∣∣∣ ≤ C20k
d

|y|d−1
(
2d|z − y|
|y|

)k+1

.

Proof. Recall that g(z) = z/
(∑d

j=1 z
2
j

)d/2
. For the rest of the proof, we will consider

z and y as vectors in C
d. Note that g(z) is analytic around y with domain of

analyticity containing the poly-disc Ω := {z ∈ C
d | |zj − yj | ≤ |y|/2d} (in the sense

that each coordinate of it is such a function). We will use the Cauchy estimates to
estimate aα:

|aα| =
∣∣∣∣ 1

(2πi)d

∮
|z1−y1|=|y|/2d

· · ·
∮
|zd−yd|=|y|/2d

g(z)
∏d

j=1 dzj∏d
j=1(zj − yj)αi+1

∣∣∣∣
≤ 1

(|y|/2d)|α| max
z∈Ω

|g(z)| ≤
(
2d

|y|
)|α| C1

|y|d−1 .

It follows that for any z satisfying |z − y| ≤ |y|/d3d we have∣∣∣g(z)− ∑
|α|≤k

aα(z − y)α
∣∣∣ ≤ C1

∑
|α|>k

(2d)|α|

|y||α|+d−1

d∏
j=1

|zj − yj |αj

≤ C1

∑
|α|>k

(2d)|α|

|y||α|+d−1 |z − y||α|

≤ C1

|y|d−1
∞∑

l=k+1

(l + 1)d
(
2d|z − y|
|y|

)l

≤ C2k
d

|y|d−1
(
2d|z − y|
|y|

)k+1

,
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where the last inequality follows since d|z− y| ≤ |y|/3d, so the sum is dominated by
a geometric series. The theorem follows with C20 = max(C1, C2, d3

d). �
The following “deterministic” proposition which is a corollary of the previous

theorem is what we shall be using in the following sections.

Proposition 7.2. Let U ⊆ R
d be bounded measurable and let Y1, . . . , Yn be

d-dimensional random vectors with P(Yi ∈ U) = 1 for all i. Fix y ∈ U and consider
the event

Ey,r,t :=

{
max

{x||x−y|≥r}

∣∣∣∣ n∑
j=1

g(Yj − x)− E

n∑
j=1

g(Yj − x)

∣∣∣∣ ≤ t

}
.

Let ρ := supz∈U |z − y|, fix an integer k > 0 and let Mj := P d
k (Yj − y). There exists

c30 > 0 such that if we let C20 be the constant from Theorem 7.1 and if we assume
that

r > C20ρ, (43)

t >
3C20nk

d

rd−1

(
2dρ

r

)k+1

, (44)

then Ey,r,t ⊇ Ωy,r,t where

Ωy,r,t :=

{∣∣∣∣ n∑
j=1

Mj − E

n∑
j=1

Mj

∣∣∣∣ ≤ c30tr
d−1

PolyDim(k, d)1/2

(
r

2d+ r

)k }
.

Proof. Assume (43), (44) and that Ωy,r,t occurred and fix x ∈ R
d with |x−y| ≥ r. By

translating the set U if necessary we assume without loss of generality that x = 0.
Note that this implies that |y| ≥ r. We develop the function g(z) in a Taylor series
around y. Taking z ∈ U and noting that |y| ≥ r > C20ρ ≥ C20|z − y| we obtain by
Theorem 7.1 that∣∣∣g(z)− ∑

|α|≤k
aα(z − y)α

∣∣∣ ≤ C20k
d

rd−1

(
2dρ

r

)k+1

<
t

3n
.

Hence ∣∣∣∣ n∑
j=1

g(Yj)−
n∑

j=1

∑
|α|≤k

aα(Yj − y)α
∣∣∣∣ < t

3
. (45)

For |α| ≤ k we have by Theorem 7.1 that

|aα| ≤ C20

rd−1

(
2d

r

)|α|
≤ C20

rd−1

(
2d

r
+ 1

)k
.

Using the Cauchy–Schwartz inequality and Ωy,r,t, this implies that as long as c30 <
1/3C20 we have∣∣∣∣ n∑

j=1

∑
|α|≤k

aα(Yj − y)α − E

n∑
j=1

∑
|α|≤k

aα(Yj − y)α
∣∣∣∣

≤
∑

0<|α|≤k
|aα|
∣∣∣∣ n∑
j=1

(Yj − y)α − E(Yj − y)α
∣∣∣∣ < t

3
. (46)
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Finally, using (45) again and the triangle inequality∣∣∣∣E n∑
j=1

g(Yj)− E

n∑
j=1

∑
|α|≤k

aα(Yj − y)α
∣∣∣∣ < t

3
. (47)

Putting (45), (46) and (47) together we get∣∣∣∣ n∑
j=1

g(Yj)− E

n∑
j=1

g(Yj)

∣∣∣∣ < t

as required. �

8 Small Ball Estimate for the “Cosmic Background Noise”

In this section we take a box V0 which is very long on one side and short on the other
sides. We take V+ to be a “concentric” cube which is very long on all dimensions. We
consider the force in the small box V0 from the stars in V+\2V0, and we prove a lower
bound for the probability that this force is extremely close to its expectation. More
precisely, throughout this section we fix 0 < ε < 1/2(d− 2). Let p1 := �logR/log 2�,
p2 := �ε logR/log 2� and define

V0 := Box(2p1 , 22p2) ,

V+ := Box(2p1+1, 2p1+1) .

We note that
R ≤ 2p1 ≤ 2R ,

Rε ≤ 2p2 ≤ 2Rε .
(48)

The idea is that 2p1 is approximately R and 2p2 is approximately Rε, but for technical
reasons we need these dimensions to be integer powers of 2. We shall prove

Theorem 8.1. There exists C(ε) such that for R ≥ C(ε),

P

(
max
x∈V0

∣∣F (x | V+ \ 2V0)
∣∣ ≤ 1

Rd

)
≥ exp

(−C(ε)R1+(d−2)ε logR
)
.

We remark that the fact that the bound on |F (x | V+\2V0)| given by the theorem
is 1/Rd is not essential for proving the theorem, putting a higher power of 1/R there
would only affect the constants in the probabilistic estimate.

Sketch of proof. The proof works by dividing V+ \ 2V0 into CR1+(d−2)ε cubes with
the diameter of each cube a little smaller than its distance from V0. We then rely on
Theorem 6.1 (where most of the work is) to say that for each cube, with probability
at least R−C , the stars in the cube approximate Lebesgue measure in the cube, in
the sense that if (zi) are these stars then

∑
δzi has all its multi-moments up to

some prescribed order being very close to the corresponding multi-moments of the
Lebesgue measure. By considering the Taylor expansion of the force (section 7)
and using the diameter condition we observe that such an approximation suffices to
control the force in V0.
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For the rest of the proof we fix a constant A = A(ε) > 0, large enough as
needed for the proof of Proposition 8.4 below. Recalling that for y ∈ R

d, we have
d(y, V0) = minx∈V0 |x− y|, we start with a definition.

Definition 8.2. We call a cube B = y+ [−a/2, a/2]d ⊂ R
d dominated by V0 if the

side length a of B is an integer and satisfies A ≤ a ≤ 2−p2d(y, V0).

Note that from the definition, if B is dominated by V0 then its center y has to
satisfy d(y, V0) ≥ A2p2 .

Theorem 8.1 will follow from the following two propositions.

Proposition 8.3. There exists C(ε) such that for R ≥ C(ε), the set V+ \ 2V0 may
be partitioned into n ≤ 23dR1+(d−2)ε cubes (Bi)

n
i=1 which are dominated by V0 (the

cubes are disjoint except for their boundaries).

Proposition 8.4. There exists C(ε) > 0 such that for R ≥ C(ε) and any cube
B ⊆ V+, dominated by V0,

P

(
max
x∈V0

∣∣F (x | B)
∣∣ ≤ 1

Rd+2

)
≥ R−C(ε).

We first show how the theorem follows from these two propositions, then we
prove Proposition 8.3 and finally Proposition 8.4.

Proof of Theorem 8.1. We use Proposition 8.3 to obtain the cubes (Bi)
n
i=1 which

partition V+ \ 2V0. We have (except on the negligible event where the boundary of
some Bi contains a star)

F (x | V+ \ 2V0) =

n∑
i=1

F (x | Bi) .

For each 1 ≤ i ≤ n, define the event

Ei :=

{
max
x∈V0

∣∣F (x | Bi)
∣∣ ≤ 1

Rd+2

}
.

Since the boxes are dominated by V0, Proposition 8.4 gives that as long as R ≥ C(ε),
for each i

P(Ei) ≥ R−C(ε).

Define E := {maxx∈V0 |F (x | V+ \ 2V0)| ≤ 1/Rd} and note that E ⊇ ∩n
i=1Ei if R

is large enough since n ≤ 23dR1+(d−2)ε and ε < 1/2(d− 2). Noting further that
the events Ei are independent since they depend only on the points of the Poisson
process in disjoint boxes, we deduce

P(E) ≥ R−C(ε)n ≥ exp
(−C(ε)23dR1+(d−2)ε logR

)
as required. �

8.1 Proof of Proposition 8.3. For this proof, we shall consider Zd as a grid of
cubes of side length 1, and aZd as the stretched grid with side length a. The cubes
(Bi)

n
i=1 which we shall exhibit will be a subset of the cubes of aiZ

d for various values
of ai. Indeed, let us fix a sequence of scales

si := 22p2+i for 1 ≤ i ≤ p1 − 2p2 + 1 ,
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and a sequence of side lengths

ai := 2p2+i−1 for 1 ≤ i ≤ p1 − 2p2 + 1 .

Consider the boxes Vi := Box(2p1+1, si), note that V1 = 2V0 and Vp1−2p2+1 = V+.
For 1 ≤ i ≤ p1 − 2p2 let Ci be the subset of cubes aiZ

d which are fully contained
in Vi+1 \ Vi. Finally, the set of cubes (Bj)

n
j=1 is the union of all the Ci. It is

straightforward to see that the (Bj)
n
j=1 partition the set V+ \ 2V0 (except that their

boundaries may overlap). It remains to check that the cubes are dominated by V0

and to check the estimate on n. To check the former we note that the cubes have
their sides parallel to the axes by construction and that their side lengths ai are
integers larger than A once R is large enough (as a function of ε). In addition, note
that for any point y ∈ Vi+1 \ Vi we have d(y, V0) ≥ si − 22p2 ≥ si/2. Hence, in
particular, the center y of each cube Bi in Ci satisfies this, from whence it follows
that the side length ai of the cube satisfies ai = 2−p2−1si ≤ 2−p2d(y, V0), proving
that the cube is dominated by V0. To check the estimate on n we note that by (48)

|Ci| ≤ Vol(Vi+1)

adi
= 2p1+1sd−1i+1 a

−d
i ≤ R2(d−2)p2+2d−i+1.

Hence n =
∑p1−2p2

i=1 |Ci| ≤ R2(d−2)p2+2d+1 ≤ 23dR1+(d−2)ε as required.

8.2 Proof of Proposition 8.4. Let B be a cube which is dominated by V0. Let
y be the center point of B, let a be the side length of B and let v := ad be the
volume of B. Let N be the number of stars in B and define the event (recalling that
v is an integer)

Ω1 := {N = v} .
Then by Lemma 2.1 and the assumption that B ⊆ V+,

P(Ω1) ≥ c√
v
≥ c

Rd/2
. (49)

We condition on the event Ω1 and let Y1, . . . , Yv be the stars in B in uniform random
order (so that (Yi)

v
i=1 are distributed as IID uniform vectors in B). Recalling the

definition of g from (4), we note that for any x ∈ R
d, on the event Ω1 we have

F (x | B) =

v∑
i=1

g(Yi − x)− vEg(Y1 − x) =

v∑
i=1

g(Yi − x)− E

v∑
i=1

g(Yi − x) .

Hence, denoting r := d(y, V0), t := 1/Rd+2 and

E :=

{
max

{x||x−y|≥r}

∣∣∣∣ v∑
i=1

g(Yi − x)− E

v∑
i=1

g(Yi − x)

∣∣∣∣ ≤ t

}
,

we see that to prove the proposition it will be enough to show that for large enough R
(as a function of ε)

P(E | Ω1) ≥ R−C(ε), (50)

since by (49) the price of conditioning on Ω1 is also at most a bounded negative
power of R. We shall use Proposition 7.2 with U = B, n = v and k =

⌈
2d+3
ε

⌉
to

prove this estimate. The proposition implies that under conditions (43), (44) we
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have
E ∩ Ω1 ⊇ Ω2 ∩ Ω1 . (51)

where

Ω2 :=

{∣∣∣∣ v∑
j=1

Mj − E

v∑
j=1

Mj

∣∣∣∣ ≤ c30tr
d−1

PolyDim(k, d)1/2

(
r

2d+ r

)k}
.

and Mj := P d
k (Yj − y). Let us first check the conditions. Note that

r = d(y, V0) ≥ a2p2 ≥ Rεa

by the fact that B is dominated by V0, so condition (43) certainly holds if R is large
enough (as a function of ε). To check condition (44) we need to verify that

t =
1

Rd+2
>

3C20nk
d

rd−1

(
2dρ

r

)k+1

, (52)

where ρ = supz∈B |z − y| = ca. Noting that ρ/r ≤ CR−ε, that r > A2p2 ≥ ARε by
the fact that B is dominated by V0 and that since B ⊆ V+ we have n = v ≤ CRd

we see that (52) holds if R is large enough (as a function of ε) by our choice of k.
We deduce from (50) and (51) that the proposition will be proved by showing

that for large enough R (as a function of ε)

P(Ω2 | Ω1) ≥ R−C(ε). (53)

Define the affine transformation T that transforms the cube B into the cube [−1, 1]d.
Note that T (Y1), . . . , T (Yv) are uniform on [−1, 1]d. Define M̃j := P d

k (T (Yj)). Noting
that for each α we have (Yj − y)α = a|α|T (Yj)α, we deduce that for each 0 < |α| ≤ k∣∣(Yj − y)α − E(Yj − y)α

∣∣ = a|α|
∣∣T (Yj)α − ET (Yj)

α
∣∣ ≤ ak

∣∣T (Yj)α − ET (Yj)
α
∣∣ ,

since a ≥ A and we may take A ≥ 1. It follows that∣∣∣∣ v∑
j=1

Mj −
v∑

j=1

EMj

∣∣∣∣ ≤ ak
∣∣∣∣ v∑
j=1

M̃j −
v∑

j=1

EM̃j

∣∣∣∣ .
Hence (53) will follow from

P(Ω3 | Ω1) ≥ R−C(ε) (54)

where

Ω3 :=

{∣∣∣∣ v∑
j=1

M̃j −
v∑

j=1

EM̃j

∣∣∣∣ ≤ c30tr
d−1

PolyDim(k, d)1/2

(
r

(2d+ r)a

)k }
.

Note that for R large enough as a function of ε,

c30tr
d−1

PolyDim(k, d)1/2

(
r

(2d+ r)a

)k
≥ R−C̃(ε)

where C̃(ε) > 0. Hence, estimate (54) follows from Theorem 6.1 as long as v >
N0(k, d). Recalling that v = ad ≥ Ad by the fact that B is dominated by V0, we see
this happens as long as A is chosen large enough as a function of ε.
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9 Proof of the Main Theorem – Lower Bound

Consider the cell of the allocation containing the origin, and let ZR be the volume
of this cell remaining after the intersection of it with a ball of radius R around the
star was removed. In a formula,

ZR := Vol
(
ψ−1Z (ψZ(0)) \B(ψZ(0), R)

)
.

We aim to give a lower bound for P(ZR > exp(−Rγ)) for various values of γ. We will
do this by explicitly constructing an event on which ZR > exp(−Rγ) and estimating
the probability of our construction. Recall from section 2 the definitions of F (x)1,
F (x)n and ∂′. The main proposition we shall need (a version of which was also
implicitly used in [NSV], see also Figure 5) is

Proposition 9.1. Let V := Cyl(R,M) for some M > 0 and for ξ > 0 let

Eξ
1 :=
{∀x ∈ V ξR1−γ ≥ F (x)1 ≥ ξ−1R1−γ} ∩ { min

x∈∂′V
F (x)n > 0

}
. (55)

Then there exist C(ξ), c(ξ) > 0 so that if V ⊆ Box(R2d, R2d) and R ≥ C(ξ) then

P

(
Zc(ξ)R >

Md−1

RC(ξ)
exp
(−C(ξ)Rγ

)) ≥ P(Eξ
1)− exp

(−R2d log−C(ξ)R
)

RC(ξ)
.

We remark that if Eξ
1 occurs then in particular V contains no stars. The proof

is based on Liouville’s theorem and also uses Fubini’s theorem and the upper bound
from [CPPR, Th. 3].

Proof. Consider a “slab” of V ,

W :=
{
x | |x1| ≤ 1

} ∩ V .

Noting that Vol(W ) ≥ cMd−1, we let Eσ
2 be the event that there is a star whose

cell intersects W in a set of volume at least Md−1/Rσ, and in addition, that the cell
of this star is fully contained in Box(Rσ, Rσ). To estimate the probability of Eσ

2 ,
define

Ω3 :=
{
There are not more than 4d+1R2d2 stars in Box(2R2d, 2R2d)

}
,

Ω4 :=
{
There is no gravitational flow curve connecting

∂ Box(R2d, R2d) and ∂ Box(2R2d, 2R2d)
}
,

Ω5 :=
{
There is no gravitational flow curve connecting

∂ Box(2R2d, 2R2d) and ∂ Box(4R2d, 4R2d)
}
.

We note that since V ⊆ Box(R2d, R2d) we have Eσ
2 ⊇ Ω3 ∩ Ω4 ∩ Ω5 if R ≥ C and σ

is a large enough constant. By Lemma 2.1 we have P(Ω3) ≥ 1−C exp(−cR2d2) and
by [CPPR, Th. 3], one of the main results of [CPPR], we know that P(Ω4 ∩ Ω5)
≥ 1− C exp(−cR2d/ logC(R)). This implies that for large enough σ, P(Eσ

2 ) ≥
1− C exp(−cR2d/ logC(R)). Fixing such σ we see that for R ≥ C we have

P(Eξ
1 ∩ Eσ

2 ) ≥ P(Eξ
1)− exp(−R2d log−C R) .

Now let Eτ
3 be the event that there is a star z whose cell is completely contained

in Box(Rτ , Rτ ), such that the volume of its cell minus B(z, τ−1R) is larger than
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Md−1

Rτ e−τRγ
. We will show that for τ ≥ C(ξ),

Eτ
3 ⊇ Eξ

1 ∩ Eσ
2 .

Indeed, assume that Eξ
1 and Eσ

2 have both occurred. Let A ⊆ W be a measurable
set of volume at least Md−1R−σ which is allocated to a star z whose cell is fully con-
tained in Box(Rσ, Rσ). Let At be the backward flow of A for t time units through the
gravitational flow, i.e. At consists of all points from which if you flow along the grav-
itational flow curve for t time units, you end up in A. Recall that by Lemma 2.2, the
version of Liouville’s theorem, Vol(At) = e−dκdtVol(A) ≥ Md−1e−dκdtR−σ. Since

the force in V satisfies the estimates given by Eξ
1 , we deduce that if t = c1(ξ)R

γ

for a small enough c1(ξ) > 0, then At ⊆ {−R < x1 < −c2(ξ)R} ∩ V for a suitable
c2(ξ) > 0. Since either A or At must then lie outside a ball of radius c3(ξ)R around
z for some c3(ξ) > 0, we deduce that the event Eτ

3 for τ ≥ C(ξ) has occurred. In
conclusion, fixing such a τ and taking R ≥ C we have

P(Eτ
3 ) ≥ P(Eξ

1)− exp(−R2d log−C R) .

To conclude, we use a Fubini-type argument to say that if with some probability,
a cell not too far from the origin satisfies a certain property, then the cell containing
the origin satisfies the same property with a probability which is not much lower.
More precisely, let Ex

4 for x ∈ R
d be the event that the cell containing x has volume

larger than exp(−τRγ)R−τ outside a ball of radius τ−1R around its star. Let B :=
Box(Rτ , Rτ ), then by translation equivariance

Vol(B)P(E0
4) =

∫
B
P(Ex

4 )dx = E

∫
B
1Ex

4
dx ≥ E1Eτ

3

∫
B
1Ex

4
dx ≥ P(Eτ

3 ) .

Hence for R ≥ C,

P(E0
4) ≥

P(Eξ
1)− exp(−R2d log−C R)

RC(ξ)

for some C(ξ) > 0. This is the required estimate. �

In the rest of the section we shall present two constructions which lower bound
the probability of the event Eξ

1 for different regimes of d and γ. The first construction
(“attracting galaxy”) will give the lower bound for Theorem 1.2 for d = 3, 0 ≤ γ ≤ 1
and for d = 4, 4/3 ≤ γ ≤ 3/2. The second construction (“wormhole”) will give the
lower bound for d = 4, 0 ≤ γ ≤ 4/3 and for d ≥ 5, 0 ≤ γ ≤ 2. The constructions
differ in whether the required estimate on F (x)1 is due to the effects of “far away”
stars or “nearby” stars.

The constructions have the following in common. We fix 0 < ε < 1/10d and as
in section 8 let p1 := �logR/log 2�, p2 := �ε logR/log 2� and

V0 := Box(2p1 , 22p2) ,

V+ := Box(2p1+1, 2p1+1) .

9.1 First lower bound construction – attracting galaxy. In this section
we shall prove
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Theorem 9.2. For all dimensions d ≥ 3 and 0 < ε < 1/10d, there exist
C, c, C(ε) > 0 such that for all R ≥ C(ε) and 0 ≤ γ ≤ d−1

2

P
(
ZR > exp(−CRγ)/RC

) ≥ c exp
(−CR1+2ε(d−1) − CRd−2γ) .

In addition to the common parts of the constructions, we define two more sets
(see also Figure 3):

V− := Cyl(R,M) ,

U := Cyl(R, ηR) + 10Re1 ,

where e1 is a unit vector in the first coordinate direction, M is a very large constant
chosen in Corollary 9.4 below, and 0.5 < η = η(R) < 1 is some number chosen so
that Vol(U) is an integer (we assume R is large). To ensure that V− ⊆ V0, with
some margin, we always assume below that R is large enough so that

R2ε ≥ 2M . (56)

We define two events:

Ω1 := {2V0 contains no stars} ,
Ωk
2 :=
{
U contains exactly Vol(U) + k stars

}
,

where k ≥ 0 is an integer. Note that

P(Ω1) = exp
(−Vol(2V0)

) ≥ exp
(−CR1+2ε(d−1)) . (57)

and by Lemma 2.1

P(Ωk
2) ≥

c√
Rd + k

exp

(
−C k2

Rd

)
. (58)

We divide the force into four parts

F (x) = F (x | 2V0)︸ ︷︷ ︸
F 1(x)

+F (x | V+ \ 2V0)︸ ︷︷ ︸
F 2(x)

+F
(
x | Rd \ (V+ ∪ U)

)︸ ︷︷ ︸
F 3(x)

+F (x | U)︸ ︷︷ ︸
F 4(x)

.

We state a proposition we shall use when proving Theorem 9.2.

Proposition 9.3. For 0 < ε < 1/10d, there exist C10, C11, C, c, C(ε), c(ε) > 0
such that if R ≥ C(ε), M ≥ 1 and relation (56) holds, then,

1. On the event Ω1, we have deterministically that

∀x ∈ V−
∣∣F 1(x)1

∣∣ < C

Rd−5/2 ,

∀x ∈ ∂′V− F 1(x)n > cM .

2.

P

(
max
x∈V−

∣∣F 2(x)
∣∣ ≤ 1

Rd

)
≥ c(ε) exp

(−C(ε)R1+ε(d−2) logR
)
.

3.

P

(
max
x∈V−

∣∣F 3(x)
∣∣ ≤ C10 log

1/2(R)

R(d−2)/2

)
≥ 1

2
.
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4. For all integers k such that C11 log
1/2(R)Rd/2 < k < M−1Rd

P

[{
∀x ∈ V− C

k

Rd−1 > F 4(x)1 > c
k

Rd−1

}
⋂{

max
x∈∂′V−

|F 4(x)n| ≤ C

} ∣∣∣∣ Ωk
2

]
≥ c .

We first show how this proposition is used and then we present its proof.

Corollary 9.4. We may choose ξ, C, c > 0, the constant M from the definition of
V− (independently of R and ε) and C(ε) > 0 such that for all 0 ≤ γ ≤ d−1

2 , letting

Eξ
1 :=
{∀x ∈ V− ξR1−γ ≥ F (x)1 ≥ ξ−1R1−γ} ∩ { min

x∈∂′V−
F (x)n > 0

}
,

we have for R ≥ C(ε) that

P(Eξ
1) ≥ c exp

(−CR1+2ε(d−1) − CRd−2γ) . (59)

Proof. Choose k = 1
2M

−1�Rd−γ� (M will be chosen shortly below). Note that Ω1

and Ωk
2 are independent. By (57) and (58) we have

P(Ω1 ∩ Ωk
2) ≥

c√
Rd + k

exp

(
−CR1+2ε(d−1) − C

k2

Rd

)
≥ c exp

(−CR1+2ε(d−1) − CRd−2γ) (60)

for R ≥ C. Note that if we let F1 := σ(F 1,Ω1), F2 := σ(F 2), F3 := σ(F 3) and
F4 := σ(F 4,Ωk

2) where σ( · ) denotes the σ-field generated by a family of events
and/or random variables, then F1, F2, F3, and F4 are independent σ-fields. Hence,
by Proposition 9.3 (combining all 4 parts) we see that we may chooseM large enough
and then ξ large enough as a function of M such that if R ≥ C(ε) then

P(Eξ
1 | Ω1 ∩ Ωk

2) ≥ c(ε) exp
(−C(ε)R1+ε(d−2) logR

)
.

Fixing ξ and M for which this estimate holds, we conclude using (60) that for
R ≥ C(ε)

P(Eξ
1) ≥ c exp

(−CR1+2ε(d−1) − CRd−2γ)
as required. �

Theorem 9.2 follows from this corollary by a straightforward application of
Proposition 9.1 taking V− as V . We conclude the first construction by proving
Proposition 9.3.

Proof of Proposition 9.3. We prove the four statements in the proposition:

1. Using Proposition 5.1 we see that on the event Ω1, F
1(x) can be written as

F 1(x) = E(F (x) | Ω1) and satisfies that, for each x ∈ Vt,∣∣F 1(x)1
∣∣ ≤ CR−(d−2)R2ε(d−1) < CR−(d−5/2).

Noting additionally that F 1(x)n = 1
|x|
∑d

i=2 xiF
1(x)i, it follows from Proposi-

tion 5.1 that on the event Ω1, for each x ∈ ∂V−,

F 1(x)n ≥ 1

M

d∑
i=2

cx2i

(
1−
(

CR2ε

R2ε +R

)d−1)
> cM .
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2. This follows from Theorem 8.1 since V− ⊆ V0 by (56).
3. Let A := R

d \ (V+ ∪ U). By our assumption (56) on the relation between M
and R, we have d(V−, A) ≥ cR. Hence for each x ∈ V− and each D > 1, we
have by the moderate deviation Theorem 3.3 that

P

(
max

y∈B(x,1)

∣∣F (x | A)∣∣ > D log1/2(R)

R(d−2)/2

)
≤ Rd2 exp

(−cD2 log(R)
)

= Rd2−cD2
,

for R ≥ C. Since V− may be covered by less than CMd−1R balls of radius 1,
we obtain by a union bound

P

(
max

y∈B(x,1)

∣∣F (x | A)∣∣ > D log1/2(R)

R(d−2)/2

)
≤ CMd−1Rd2+1−cD2

.

Hence we may choose D to be a large enough constant so that this latter
probability is less than 1/2 (using again the relation (56)). This proves the
claim.

4. Let Ω′2 := {U contains exactly Vol(U) stars} (recall that Vol(U) is an integer).
Note that by Lemma 2.1,

P(Ω′2) ≥
c√

Vol(U)
≥ c

Rd/2
. (61)

Let Z1, . . . Zk be IID random uniform points in U independent of the Poisson
point process (and in particular, independent of F 4). Define

F 5(x) :=

k∑
i=1

Zi − x

|Zi − x|d .

Then we have the following equality in distribution: F 4 conditioned on Ωk
2 is

equal in distribution to F 4 conditioned on Ω′2 plus F 5. This follows directly
from the definition (2) of the force F . Let us define

ΩA
6 :=

{
max
x∈V−

∣∣F 4(x)
∣∣ ≤ A log1/2(R)

R(d−2)/2

}
,

ΩA,k
7 :=

{
∀x ∈ V− A

k

Rd−1 > F 5(x)1 > A−1
k

Rd−1

}
,

ΩA,k
8 :=

{
max

x∈∂′V−

∣∣F 5(x)n
∣∣ ≤ A
}
.

We will show that for large enough A > 1 (independent of k):

P(ΩA
6 ) ≥ 1− c

Rd
, (62)

P(ΩA,k
7 ) = 1 , (63)

P(ΩA,k
8 ) ≥ 1− CMd−2R exp(−cRd−2) . (64)

Fixing such A, we claim that the estimate we want to prove follows from these
claims. To see this, first note that by (61) and (62), we have P(ΩA

6 ,Ω
′
2) ≥

P(Ω′2)/2 for R ≥ C. Hence P(ΩA
6 | Ω′2) ≥ 1/2 for such R. Now use the equality
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in distribution asserted above and the assumption that C11 log
1/2(R)Rd/2 <

k < Rd to estimate

P

[{
∀x ∈ V− 2A

k

Rd−1 > F 4(x)1 >
A−1k
2Rd−1

}
⋂{

max
x∈∂′V−

∣∣F 4(x)n
∣∣ ≤ 2A

}
| Ωk

2

]
≥ P(ΩA

6 | Ω′2)P(ΩA,k
7 ,ΩA,k

8 ) ≥ c

for R ≥ C(A) and C11 ≥ 2A2. It remains to prove (62), (63) and (64).
Estimate (62) follows directly from the moderate deviation Theorem 3.3 by
covering V− by less than RC balls of radius 1. To see (63), fix x ∈ V− and note
that for z ∈ U we have |z − x| ≤ CR and z1 − x1 ≥ cR. Hence

F 5(x)1 =

k∑
i=1

Zi,1 − x1
|Zi − x|d ≥

ck

Rd−1 .

Similarly since |z − x| ≥ cR and z1 − x1 ≤ CR for z ∈ U , we obtain F 5(x)1 ≤
Ck/Rd−1.
Finally, we prove (64). We start by estimating EF 5(x)n for x ∈ ∂′V−. Note
that by rotational symmetry it is enough to do so for such x with x2 = M
and x3 = · · · = xd = 0. Fix such an x, and observe that by considering the
cancellation in the integrand we have

EF 5(x)n = EF 5(x)2 =
k

Vol(U)

∫
U

z2 − x2
|z − x|ddz

=
k

Vol(U)

∫
U\(UM∪U ′M )

z2 − x2
|z − x|ddz ,

where UM := {z ∈ U |z2 ≥M} and U ′M is the reflection of UM in the {z2 = M}
hyperplane (see Figure 6). Observe that UM ∪ U ′M is contained in U and

Figure 6: UM and U ′
M .

contains a translated copy of Cyl(R, ηR−M). From this and the assumption
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that k < M−1Rd, we obtain∣∣EF 5(x)n
∣∣ ≤ Ck

Vol(U)Rd−1 Vol
(
U \ (UM ∪ U ′M )

)
≤ CkRd−1M

Vol(U)Rd−1 ≤
CkM

Rd
≤ C .

(65)

We use Bernstein–Hoeffding’s inequality [H] to bound the deviation from the
expectation. Using again that for z ∈ U we have

∣∣ z2−x2

|z−x|d
∣∣ ≤ C

Rd−1 , we deduce

that

P
(|F 5(x)− EF 5(x)| ≥ t

) ≤ C exp

(
−ct2R2d−2

k

)
≤ C exp(−ct2Rd−2) .

Combining this with (65) we see that

P
(|F 5(x)| ≥ ρ

) ≤ C exp(−cρ2Rd−2)
for large enough ρ. Fix such a ρ. Now use estimate (5) to deduce that for
every x ∈ V−, |D1F

5(x)| ≤ Ck/Rd ≤ C. Since we may cover ∂′V− by not
more than CMd−2R balls of radius 1, a union bound gives

P

(
max

x∈∂′V−

∣∣F 5(x)n
∣∣ ≥ ρ+ C

)
≤ CMd−2R exp(−cρ2Rd−2) ,

finishing the proof of (64) and thus the proposition. �

9.2 Second lower bound construction – wormhole. In this section, we shall
prove

Theorem 9.5. For all dimensions d ≥ 4 and 0 < ε < 1/10d, there exist
C, c, C(ε, γ) > 0 such that for all 0 ≤ γ ≤ 2 and R ≥ C(ε, γ),

P
(
ZR > exp(−CRγ)/RC

) ≥ c exp
(−CR1+2ε(d−1) − CR1+ 2−γ

d−2
+2ε(d−3) logR

)
.

In addition to the common parts of the constructions, we define (see also Figure 4)

W := λR−
2−γ
d−2

+2ε,

U := Cyl(R,W ) ,

where 0 < λ < 1 is a small constant depending only on d whose value will be
determined in the sequel. We always assume that U ⊆ V0, which occurs for small
enough λ. We also consider a layer around the boundary of the set U ,

ρ := R−3d ,
∂′ρU :=

{
x | d(x, ∂′U) ≤ ρ

}
.

We divide the force into four parts

F (x) = F (x | 2V0 \ ∂′ρU)︸ ︷︷ ︸
F 1(x)

+F (x | V+ \ 2V0)︸ ︷︷ ︸
F 2(x)

+F (x | Rd \ V+)︸ ︷︷ ︸
F 3(x)

+F (x | ∂′ρU)︸ ︷︷ ︸
F 4(x)

and further divide

F 4(x) =
∑

z∈Z∩∂′ρU

z − x

|z − x|d︸ ︷︷ ︸
F 4,1(x)

−
∫
∂′ρU

z − x

|z − x|ddz︸ ︷︷ ︸
F 4,2(x)

.
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Define the event

Ω1 := {2V0 \ ∂′ρU contains no stars} ,
and note that

P(Ω1) ≥ exp
(−Vol(2V0)

) ≥ exp
(−CR1+2ε(d−1)) . (66)

As in the previous section, we lower bound the probabilities that F 2 and F 3 give a
negligible contribution to the force uniformly on 1

3U and we estimate the contribution
of F 1 − F 4,2.

Proposition 9.6. For 0 < ε < 1/10d, there exist C10, C11, C, c, C(ε), c(ε) > 0
such that if R ≥ C(ε) then

1. On the event Ω1, we have deterministically that

∀x ∈ 1

3
U
∣∣F 1(x)1 − F 4,2(x)1

∣∣ < C

Rd−5/2 ,

∀x ∈ 1

3
∂′U F 1(x)n − F 4,2(x)n > cW .

2.

P

(
max
x∈ 1

3
U

∣∣F 2(x)
∣∣ ≤ 1

Rd

)
≥ c(ε) exp

(−C(ε)R1+ε(d−2) logR
)
.

3.

P

(
max
x∈ 1

3
U

∣∣F 3(x)
∣∣ ≤ C10 log

1/2(R)

R(d−2)/2

)
≥ 1

2
.

The proof of the proposition is the same as the proofs of parts 1 to 3 of Propo-
sition 9.3 with 1

3U replacing V− and with R
d \ V+ replacing R

d \ (V+ ∪U) in part 3.
It remains to control F 4,1. For a finite set A ⊆ Closure(∂′U) let

ΩA
2 :=
{
There exists a bijection T : A→ (Z ∩ ∂′ρU) with d(x, T (x)) ≤ ρ ∀x ∈ A

}
.

We note that

Lemma 9.7. Let X be a random variable with Poisson(Vol(∂′ρU)) distribution. For
any finite set A ⊆ Closure(∂′U),

P(ΩA
2 ) ≥ P

(
X = |A|)(Vol(B(0, ρ))

Vol(∂′ρU)

)|A|
.

Proof. To prove the lemma, enumerate the points in A by x1, . . . , x|A| and note that

ΩA
2 occurs if there are exactly |A| stars in ∂′ρU and if the i-th star falls in B(xi, ρ). �

The main proposition of this section is

Proposition 9.8. For d ≥ 4, there exist C, c, C(ε) > 0 and a finite set

A ⊆ Closure(∂′U) with |A| ≤ CR1+ 2−γ
d−2

+2ε(d−3) such that if R ≥ C(ε) and if ΩA
2

occurred then

1. For all x ∈ 1
3U we have cλR1−γ ≤ F 4,1(x)1 ≤ CλR1−γ .

2. For all x ∈ 1
3∂
′U we have |F 4,1(x)n| ≤ Cλd−2R−(d−2)+

2−γ
d−2

+2ε(d−3).
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Corollary 9.9. We may choose ξ, C, c > 0, the constant 0 < λ < 1 from the
definition of W (independently of R and ε) and C(ε, γ) > 0 such that for all d ≥ 4
and 0 ≤ γ < 2, letting

Eξ
1 :=
{∀x ∈ 1

3U ξR1−γ ≥ F (x)1 ≥ ξ−1R1−γ} ∩ { min
x∈ 1

3
∂′U

F (x)n > 0
}
,

we have for R ≥ C(ε, γ) that

P(Eξ
1) ≥ c exp

(−CR1+2ε(d−1) − CR1+ 2−γ
d−2

+2ε(d−3) logR
)
. (67)

We remark that the requirement that R ≥ C(ε, γ) may be weakened to R ≥ C(ε)
and the requirement 0 ≤ γ < 2 strengthened to 0 ≤ γ ≤ 2 by choosing the parame-
ters a little differently in Proposition 9.8 and obtaining F 4(x)1 of a larger order of
magnitude for a higher probabilistic cost. Since this complicates the proof slightly
and does not contribute much to the final result we do not describe this improvement.

Proof of Corollary 9.9. We let A be the set from Proposition 9.8 and note that by
(66) and Lemma 9.7 we have for R ≥ C that

P(Ω1 ∩ ΩA
2 ) ≥ c exp

(−CR1+2ε(d−1) − CR1+ 2−γ
d−2

+2ε(d−3) logR
)
.

Note that if we let F1 := σ(F 1,Ω1), F2 := σ(F 2), F3 := σ(F 3) and F4 := σ(F 4,ΩA
2 )

(where as before σ( · ) denotes the generated σ-field), then the Fi’s are independent
σ-fields. Hence, by Proposition 9.6 (combining all 3 parts) and Proposition 9.8 we
see that for large enough ξ and R ≥ C(ε) we have that

P(Eξ
1 | Ω1 ∩ ΩA

2 ) ≥ c(ε) exp
(−C(ε)R1+ε(d−2) logR

)
,

provided that the error terms affecting F (x)1 for x ∈ 1
3U and F (x)n for x ∈ 1

3∂
′U

do not dominate the main terms. This occurs, for example, when

cW > 2max

(
R−d,

C10 log
1/2(R)

R(d−2)/2 , Cλd−2R−(d−2)+
2−γ
d−2

+2ε(d−3)
)
,

cλR1−γ > 2max

(
C

Rd−5/2 , R
−d,

C10 log
1/2(R)

R(d−2)/2

)
,

which when d ≥ 5 happens for R ≥ C(ε) and for d = 4 happens when λ is sufficiently
small and R ≥ C(ε, γ). This concludes the proof. �

Theorem 9.5 for d ≥ 4 and 0 ≤ γ < 2 follows from this Corollary by a straight-
forward application of Proposition 9.1 taking 1

3U as V . The case of γ = 2 follows
from the other cases since {ZR > exp(−CR2)/RC} ⊇ {ZR > exp(−CRγ)/RC} for
all 0 ≤ γ < 2. Proposition 9.8 will be proved over the next 3 subsections.

9.2.1 Continuous version of Proposition 9.8. In this section we shall
formulate and prove a continuous version of Proposition 9.8. The proposition will
then be proved in the next section by approximating this continuous version.

Recall the definition of νL,W from before Theorem 6.2. Set

β := R(2−γ) d−1
d−2

−2ε,
ν := βνR,W .
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Note that ν is supported on Closure(∂′U), but gives full mass to ∂′U . We define the
“gravitational force from the mass distribution ν” as

G(x) :=

∫
∂′U

z − x

|z − x|ddν(z) .

We note that if the stars in ∂′ρU were “placed according to the distribution ν”, then
F 4,1(x) would equal G(x).

Lemma 9.10. 1. Fix M > 0, let V := {x | x22 + x23 + · · ·x2d ≤M2} and define

H ′
M (x) :=

∫
∂V

z − x

|z − x|ddσd−1(z) ,

then for each x ∈ V ◦, the interior of V , the integral defining H ′
M (x) converges

absolutely and H ′
M (x) = 0.

2. There exists C > 0 such that for each x ∈ 1
3∂
′U ,∣∣G(x)n

∣∣ ≤ CβW d−2R−(d−2).

Note that claim 1 above says that for an infinite cylinder V , the surface area
measure (σd−1)∣∣V is the potential-theoretic equilibrium measure.

We continue with an estimate of the first component of the gravitational force
G from ν in U .

Lemma 9.11. For dimensions d ≥ 4 there exist C, c > 0 such that if R ≥ C, for
each x ∈ 1

3U
cλR1−γ ≤ G(x)1 ≤ CλR1−γ .

Proof of Lemma 9.10. 1. Fix x ∈ V ◦. H ′
M (x) converges absolutely since the

contribution to the norm of the integral from all the z with |z1−x1| = L is less than
CMd−2L−(d−1). We have H ′

M (x)1 = 0 by symmetry. Finally, H ′
M (x)n = 0 follows

from rotational symmetry and the divergence theorem.

2. Fix x ∈ 1
3∂
′U . By rotating the coordinate system we may assume WLOG

that x is such that G(x)n = G(x)2. Let Ũ :=
{
z |
√
z22 + z23 + · · · z2d = W

}
,

P1 := {z ∈ Ũ | |x1 − z1| ≤ R/2} and P2 := {z ∈ Ũ | |x1 − z1| > R/2}. By the
linearity of the density of ν we have

G(x)n =

∫
P1

z2 − x2
|z − x|ddν(z) +

∫
∂′U\P1

z2 − x2
|z − x|ddν(z)

= Cxβ

∫
P1

z2 − x2
|z − x|ddσd−1(z) +

∫
∂′U\P1

z2 − x2
|z − x|ddν(z)

for some 1 ≤ Cx ≤ 2, and by the previous part,

Cxβ

∣∣∣∣
∫
P1

z2 − x2
|z − x|ddσd−1(z)

∣∣∣∣ = Cxβ

∣∣∣∣
∫
P2

z2 − x2
|z − x|ddσd−1(z)

∣∣∣∣
≤ Cxβ

∫ ∞
R/2

CW d−2L−(d−1)dL ≤ CβW d−2R−(d−2).
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Similarly∣∣∣∣
∫
∂′U\P

z − x

|z − x|ddν(z)
∣∣∣∣ ≤ Cβ

∫ ∞
R/2

CW d−2L−(d−1)dL ≤ CβW d−2R−(d−2),

as required. �

Proof of Lemma 9.11. Fix x ∈ 1
3U and define Ct := ∂′U ∩ {x1 = t}. By definition

G(x)1 = β

∫ R

−R

(
1 +

t+R

2R

)∫
Ct

z1 − x1
|z − x|ddσd−2(z)dt

= β

(∫ x1−R/2

−R
· · ·+
∫ R

x1+R/2
· · ·︸ ︷︷ ︸

G1(x)

+

∫ x1+R/2

x1−R/2
· · ·︸ ︷︷ ︸

G2(x)

)
.

We first estimate G1(x) by ∣∣G1(x)
∣∣ ≤ CW d−2R−(d−2).

We continue by noting that the contribution to G2(x) from Cx1−s cancels with some
of the contribution from Cx1+s, giving

G2(x) =

∫ R/2

0

s

R

∫
Cx1+s

z1 − x1
|z − x|ddσd−2(z)ds =

∫ W

0
· · ·︸ ︷︷ ︸

G3(x)

+

∫ R/2

W
· · ·︸ ︷︷ ︸

G4(x)

.

We note that if z ∈ Cx1+s for 0 ≤ s ≤W then cW−ds ≤ z1−x1

|z−x|d ≤ CW−ds. Since∫ W

0

s

R

∫
Cx1+s

W−dsdσd−2(z)ds = cWR−1

for some constant c > 0, we deduce that

cWR−1 ≤ G3(x) ≤ CWR−1.

Similarly, if z ∈ Cx1+s for W ≤ s ≤ R/2 we have cs−(d−1) ≤ z1−x1

|z−x|d ≤ Cs−(d−1).
Since when d ≥ 4 and R ≥ C we have∫ R/2

W

s

R

∫
Cx1+s

s−(d−1)dσd−2(z)ds = cWR−1

for some constant c > 0, we deduce that

cWR−1 ≤ G4(x) ≤ CWR−1.

Putting all the above estimates together and noting that when R ≥ C we have
|G1(x)| ≤ 1

2 |G2(x)| for all d ≥ 4, we obtain

cβWR−1 ≤ G(x)1 ≤ CβWR−1

which concludes the proof since βWR−1 = λR1−γ . �
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9.2.2 Discrete approximation. In this section we approximate the contin-
uous distribution ν of the previous section by a measure ν ′ of the form ν ′ =

∑
z∈A δz

for a set A ⊆ Closure(∂′U). Our approximation will be such that the force exerted
by ν and by ν ′ on points in 1

3U will remain approximately the same. This is done
by using Theorem 6.2 and Proposition 7.2.

We introduce parameters (W was already introduced)

L =
R

2
, W = λR−

2−γ
d−2

+2ε,

r =
W

100
, t = R−d,

τ = ηWR−ε, δ = rd−1
(

r

2d+ r

)k
tR−εd,

k = M(ε) , , n = βτd−1,
where M(ε) > 0 is a constant depending only on ε and d, chosen large enough for the
following calculations, and 1/2 < η < 1 is chosen so that n = nd−1

1 for an integer n1.
We recall that in the notation of Theorem 6.2, Closure(∂′U) is the cylinder

P2L,W . We use the theorem for the measure ν2L,W with the above parameters
L,W, τ, δ, k and n (one checks that if R ≥ C(ε), this choice of n satisfies part (III)
of the theorem) to obtain D1, . . . , DK ⊆ Closure(∂′U) and points (wDi,j)

n
j=1 ⊆ Di

satisfying the properties of the theorem.
We now fix 1 ≤ i ≤ K and define the measure ν ′i :=

∑n
j=1 δwDi,j

whose support

is in Di. By part (III) of the theorem we have for each h : Rd → R which is of
the form h(w) = (w − y)α for some y ∈ Closure(∂′U), and some multi-index α with
|α| ≤ k that ∣∣∣∣

∫
h(w)dν ′i(w)−

n

ν2L,W (Di)

∫
Di

h(w)dν2L,W (w)

∣∣∣∣ ≤ δn .

But, by part (II) of the theorem, n
ν2L,W (Di)

ν2L,W = ν. Hence∣∣∣∣
∫

h(w)dν ′i(w)−
∫
Di

h(w)dν(w)

∣∣∣∣ ≤ δn . (68)

We now apply Proposition 7.2 with the set U of the proposition being Di and
with the variables Y1, . . . , Yn of the proposition being IID samples from ν restricted
to Di and normalized to be a probability measure. Fix a point y ∈ Di and let
Mj := P d

k (Yj − y). We note that if Yj = wDi,j for 1 ≤ j ≤ n then by (68) we have∣∣∣∣ n∑
j=1

Mj − E

n∑
j=1

Mj

∣∣∣∣ =
∣∣∣∣
∫

h(w)dν ′i(w)−
∫
Di

h(w)dν(w)

∣∣∣∣ ≤ δn .

Since we also have for R ≥ C(ε), d ≥ 4 and the above choices of r and t that δn ≤
c30trd−1

PolyDim(k,d)1/2

(
r

2d+r

)k
and conditions (43) and (44) hold (by part (II) of Theorem

6.2, supz∈Di
|z − y| ≤ Cτ), we deduce from the proposition that

max
x∈ 1

3
U

∣∣∣∣ n∑
j=1

g(Yj − x)− E

n∑
j=1

g(Yj − x)

∣∣∣∣ ≤ t ,
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when Yj = wDi,j for 1 ≤ j ≤ n. In other words

max
x∈ 1

3
U

∣∣∣∣
∫

w − x

|w − x|ddν
′
i(w)−

∫
Di

w − x

|w − x|ddν(w)
∣∣∣∣ ≤ t .

Finally, defining the set A := {wDi,j}i=1...K
j=1...n

and the measure ν ′ =
∑K

i=1 ν
′
i =∑

w∈A δw we obtain

max
x∈ 1

3
U

∣∣∣∣
∫

w − x

|w − x|ddν
′(w)−

∫
∪K
i=1Di

w − x

|w − x|ddν(w)
∣∣∣∣ ≤ tK . (69)

By part (II) of Theorem 6.2, we have (for d ≥ 4)

K ≤ CLW d−2τ−(d−1) ≤ CR1+ 2−γ
d−2

−ε(d−1) ≤ CR2. (70)

And also
|A| = nK ≤ CβW d−2R ≤ CR1+ 2−γ

d−2
+2ε(d−3). (71)

To end this section, we prove

Lemma 9.12. There exists C,C(ε) > 0 such that if R ≥ C(ε) then

max
x∈ 1

3
U

∣∣∣∣
∫

w − x

|w − x|ddν
′(w)−

∫
∂′U

w − x

|w − x|ddν(w)
∣∣∣∣ ≤ CβW d−2R−(d−2).

Proof. By (69) and (70) we have

max
x∈ 1

3
U

∣∣∣∣
∫

w − x

|w − x|ddν
′(w)−

∫
∪K
i=1Di

w − x

|w − x|ddν(w)
∣∣∣∣ ≤ CR−(d−2).

Since for R ≥ C(ε) we have βW d−2 ≥ 1, it is enough to prove that

max
x∈ 1

3
U

∣∣∣∣
∫
∂′U\∪K

i=1Di

w − x

|w − x|ddν(w)
∣∣∣∣ ≤ CβW d−2R−(d−2).

By part (I) of Theorem 6.2 we know that up to ν-measure 0, ∂′U\∪K
i=1Di is contained

in {x ∈ ∂′U | |x1| ≥ R/2}. Hence, just as in the previous section,

max
x∈ 1

3
U

∣∣∣∣
∫
∂′U\∪K

i=1Di

w − x

|w − x|ddν(w)
∣∣∣∣ ≤ Cβ

∫ ∞
R/2

W d−2L−(d−1)dL

≤ CβW d−2R−(d−2). �

9.2.3 Proof of Proposition 9.8. For the set A, we take the set constructed
in the previous section. It remains to show that it fulfills the properties in the
proposition. Assume that ΩA

2 occurred and enumerate the points inA by w1, . . . , w|A|
and the stars in ∂′ρU by Y1, . . . , Y|A| in such a way that d(wi, Yi) ≤ ρ for all i. By
definition we have that

F 4,1(x) =

|A|∑
i=1

Yi − x

|Yi − x|d .

Fix x ∈ 1
3U . We recall from (5) that |D1g(x)| =

∣∣D1
x
|x|d
∣∣ ≤ C|x|−d. We now estimate∣∣∣∣

|A|∑
i=1

Yi − x

|Yi − x|d −
|A|∑
i=1

wi − x

|wi − x|d
∣∣∣∣ ≤ CW−dρ|A| ≤ CR−d
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for R ≥ C, by our choice of ρ and by (71).
It follows from this and Lemma 9.12 that

max
x∈ 1

3
U

∣∣F 4,1(x)−G(x)
∣∣ ≤ CβW d−2R−(d−2).

Since by Lemmas 9.10 and 9.11 we have for each x ∈ 1
3U

cλR1−γ ≤G(x)1 ≤ CλR1−γ

and for x ∈ 1
3∂
′U ∣∣G(x)n

∣∣ ≤ CβW d−2R−(d−2)

the proposition is proven. �
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