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Abstract

Multi-voxel pattern analysis (MVPA) is a popular analytical
technique in neuroscience that involves identifying patterns in
fMRI BOLD signal data that are predictive of task conditions.
But the technique is also frequently used to make inferences
about the regions of the brain that are most important to the
tasks in question, and our analysis shows that this is a
mistake. MVPA does not provide a reliable guide to what
information is being used by the brain during cognitive tasks,
nor where that information is. This is due in part to inherent
run to run variability in the decision space generated by the
classifier, but there are also several other issues, discussed
here, that make inference from the characteristics of the
learned models to relevant brain activity deeply problematic.
These issues have significant implications both for many
papers already published, and for how the field uses this
technique in the future.

Keywords: neuroscience, machine learning, inference,

philosophical issues.

Introduction

Multi-voxel pattern analysis (MVPA) is an increasingly
popular analytical technique in neuroscience. MVPA
involves searching through the Blood Oxygenation Level
Dependent (BOLD) signal data produced in fMRI
experiments to identify patterns that are highly predictive of
task conditions. To illustrate, consider a simple experiment
in which participants are asked to view pictures representing
various object categories (e.g. faces, houses, chairs, shoes,
etc.). One early MVPA study showed it was possible to
determine, by looking only at BOLD data, which class of
object an experimental participant was viewing when that
data was collected (Haxby et al., 2001). The technique has
since been used to predict the orientation of lines being
viewed by a participant (Haynes & Rees, 2005), to
differentiate between lying and truth-telling (Davatzikos et
al., 2005), and to predict which action a participant was
about to take (Haynes et al., 2007), among many other
things (see Pereira, Mitchell & Botvinick, 2009; Norman et
al., 2006; Haynes & Rees, 2006 for reviews of the technique
and its applications).

This is indeed impressive, and we expect that MVPA will
have many important experimental and diagnostic
applications (Lao et al., 2004). It has become commonplace
to make certain inferences about the way differences in
BOLD signal patterns correspond to differences in mental
states. For instance, by finding the set of voxels that are
most predictive of a certain task outcome, studies have
claimed to discover the “cognitive states associated with
perception of tools and dwellings” (Shinkareva et al., 2008),

“localizable task-specific representations of freely chosen
intentions” (Haynes at al., 2007), and the regions of the
brain that “contain information” (Preston et al., 2008)
relevant to the cognitive or perceptual task under
investigation.

To put it bluntly, however, such inferences are at best
misleading and at worst entirely unwarranted. The issues
dovetail with, but are distinct from, the more general
concerns about the unreliability of “reverse inference” from
neuroimaging data (Poldrack, 2006), and have significant
implications both for how we ought to interpret some of the
many papers already published, and for how the field
applies this technique in the future.

Of course, not every MVPA study is governed by the
logic that we will criticize here. For instance, Mitchell et al.
(2008) take something like the opposite approach, and see if
they can predict the pattern of brain activity that will be
caused by listening to novel words. Here the point of the
study is not to discover which brain regions are responsible
for understanding; rather, they are testing the hypothesis that
meanings of words are based on sets of “semantic features”
that can be inferred from word co-occurrence in language
corpora. McDuff, Frankel & Norman (2009) are likewise
focused on hypothesis testing, in their case about the
characteristics of targeted memory retrieval. We think that
MVPA has a very promising future both as a diagnostic
tool, and as a useful dependent variable—in part because the
technique is sensitive to contingencies beyond classical
single-voxel effects—but that for the reasons outlined in this
paper it is a very poor tool for reliably localizing
information or identifying cognitive states.

Information and the brain

There are three general ways in which information could
inhere in the BOLD signal. First, the information could be
non-local, that is, carried by irreducibly relational features
of the signal like regional co-variance. We might expect this
to occur when large-scale neural synchrony is the relevant
aspect of brain activity (Varela, et al., 2001; Gross et al.,
2004). Second, it could be local and distributed, that is, the
information could be carried by the activity of individual
voxels, and the information-carrying voxels could be spread
throughout the brain. We might expect this for cognitive
processes that require the cooperation of many different
brain regions. Third, the information could be local and
concentrated, that is, carried by individual voxels that are
grouped together in one or a few clumps. This might
happen when the work done by local neural circuits is most
important to the cognitive task(s) in question. In this essay,
we will consider the performance of MVPA in all three
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situations, and discuss what can, and cannot, be inferred
from features of the learned model in each case.

Local, distributed information

Consider the problem of differentiating between the
following two patterns of hypothetical voxel-level activation
data, each presented with two versions of the same pattern
type (see Figure 1). In this simple example each of the 25
“voxels” can be in one of two states (active or inactive, if
you like). Suppose “brain scans” like these had been
observed during an experiment in which participants were
asked to classify pictures as “living” or “non-living”. If
these judgments reliably corresponded to the two patterns,
respectively, could we use MVPA to read the mind of the

participants?
Pattern type 1, version 2

Pattern type 1, version 1
Pattern type 2, version 2

Pattern type 2, version 1
Figure 1: Simple patterns for use in MVPA test

Now, when the ratio of pattern versions within each pattern
type is 1:1, every voxel is in both of its possible states in
every task condition. That is: no voxel is by itself predictive
of any cognitive state, and thus in this condition all
information is non-local. In this condition linear MVPA
cannot distinguish between these two patterns; it is blind to
non-local information (Kamitani & Tong, 2005; Norman et
al. 2006). For linear classifiers, since the evidence provided
by each voxel is integrated separately, linear MVPA is
successful only when there are individual voxels that are
sensitive to the difference between classes. In general, a
(binary) linear classifier over an input space of dimension n
looks like this:

n
prediction = sign (b + Z Wi * X;)

i=1
where the i weight is w; and the i™ component of the input
vector (the list of numbers that describe the patterns to be
classified) is x; and the bias value is b. If the sum above is
positive, the instance is classified one way; if it is negative,
the instance is classified the other way.

However, manipulating the version ratio changes the
situation from one in which no voxel is more informative
than any other—a situation in which linear classifiers fail—
to one in which there is indeed a set of voxels, scattered
through the patterns, that are informative about class
membership. That is to say, although there is still non-local
information in the patterns—and it is arguable that the non-
local co-variance structure is the crucial, relevant distinction
between these patterns—the initial test situation is one in

which there nevertheless is also relevant local information,
distributed across many voxels.

For our analysis of the performance of MVPA with local,
distributed information, we generated 20 sets of 80
“scans”—that is, 20 datasets, each containing 40 instances
of each pattern type. Patterns were corrupted with 5%
noise—a 5% chance for each voxel that it will be in a state
inconsistent with the pattern. For each dataset, we used 40
of the 80 scans for training and 40 for test, and classified
them wusing a Support Vector Machine. Because
classification accuracy roughly tracks the relative proportion
of pattern versions, our scans contained a 4:1 ratio of pattern
versions within each type, and classification accuracy
averaged 80%.

Thus, our hypothetical experiment would have produced a
solid predictive success; we would be able to tell, 80% of
the time, which task condition the participant was in just by
looking at the fMRI data. But what, if anything, would we
be permitted to conclude about the local neural conditions—
representations, information content, activity, etc.—
contributing to the differences in cognitive tasks (thinking
about or judging the difference between living vs. non-
living things)?

Although any of the input components could contribute to
the prediction breaking one way or the other in an given
case (and it needn’t be the same components for each
instance), in practice there can be a small number of voxels
that contribute most to the classifier performance because
they (literally) carry the most weight—that is, they have the
highest values of w;. In linear MVPA, this set of highly
weighted voxels is considered the “most informative”.

Figure 2 shows a map of the voxels that were most
informative for distinguishing between pattern types 1 and 2
in dataset 1.

Figure 2: Most informative voxels for an MVPA classification

What is the proper interpretation of these results in the
context of MVPA? These are the voxels that, had they been
in a different state, would have been most likely to cause the
classifier to place the pattern in the other class. But consider
the following inference, an inference of similar structure to
those being made in the MVPA literature: if the state of
these voxels had been different in the right way—and note
this picture provides no information about what the right
way is—the brain would have been in the relevantly
different state (or the participant would have been in the
different cognitive state). This inference does not follow,
because if covariance is the crucial cognitively relevant
property of the activity here, then all the other voxels would
also be different when the brain/participant is in the other
state: they will be covarying with a different set of partners.
And, even if covariance is not the crucial property—if the
relevant information is the local information—it seems
pretty clear that it isn’t all or only the voxels in the “most
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informative” set that would need to be in a different state to
turn one pattern into the other.

Likewise, consider a similar inference (versions of which
can also easily be found in the literature): the information
contained in these voxels is the information crucial to the
difference between the cognitive states under investigation
(judging living vs. non-living things). This inference is also
unwarranted, for similar reasons. For one strong possibility
is that the relevant information is carried by the covariance
structure of the patterns, and this non-local information is
not contained in the set of “most informative” voxels. And
even if the local information is what is relevant here, we can
see from the results above that the set of most informative
voxels does not consist of all or only the voxels carrying the
relevant information.

The uncertainty of inferences about brain or cognitive
states based on which voxels are most highly weighted is
driven home even more strongly when one looks at the
stability of the set of highly weighted voxels over multiple
trials of the same task. Figure 3 shows the most highly
weighted voxels from the first three datasets.

Figure 3: Most informative voxels for three different
classification runs

Obviously, the highly weighted voxels vary from run to run.
To get a better quantitative handle on the stability of the
highly weighted voxel set, we counted the number of times
each voxel was among the top 10 most highly weighted.
Overall, every voxel was in this set at least twice, and none
more than 12 times. 24 voxels were in the set between 6
and 12 times, and 22 between 6 and 10 times. The
characteristics of the classification model can vary
considerably, driven in part by noise in the training
instances, but also by the fact that the algorithm needs only
find some of the features that discriminate between some
instances of the patterns some of the time. It is not
guaranteed to find all of the relevant differentiating features,
nor the best. The conclusion seems obvious, but is worth
stating clearly: when any voxel can make it into the “most
informative” set, and many voxels are more or less equally
likely to end up there, this should make us a bit uneasy
about their actual informativeness. If there is something
stable to the cognitive states differentiating the task
conditions, the set of most informative voxels is certainly
not tracking it, nor can it therefore be a reliable indicator of
the location of the cognitively relevant information.

In should be noted that cross-validation does not alleviate
this issue. Cross-validation consists of a family of methods
designed to prevent over-fitting of the model to what could
be an unusually biased sample. Typically, it involves
building multiple models based on multiple partitions of the
sample, and averaging results over the range of different
partitions (Pereira et al., 2009). For instance, K-fold cross-
validation involves splitting the training data into K parts,

and training K times on a rotating K-1 of the partitions. We
performed 10-fold cross validation on our 20 training sets,
and found similar variability in the set of most informative
voxels in each fold. The mean number of inclusions among
the top 10 most highly weighted voxels was 4 (SD 2.83). 23
of the voxels were among the 10 most highly weighted
voxels in at least one fold.

Non-local information

So, that seems to be the situation when information is local
and distributed. What about when the only information is
non-local, that is, when the ratio of pattern versions is 1:1?
It turns out it is possible to classify these patterns with
100% accuracy, applying MVPA using a support-vector
machine with a polynomial kernel of degree two. Can we
conclude anything in this case about the neural conditions—
representations, information, activity, etc.—contributing to
the differences in cognitive tasks?

One is of course tempted to simply dismiss the possibility.
In our examples every voxel is in both of its possible states
in every task condition. That is: no voxel is by itself
predictive of any cognitive state, and thus no inference to
the special status of activity in any voxel could possibly be
supported by the predictive success of MVPA. Yet
researchers do extract “most informative” voxel sets even
when using polynomial kernels (e.g. Davatzikos et al.,
2005), so it is wise to consider the matter more carefully.

In linear classifiers identifying most important voxels for
the classifier is easy—the features in the decision space that
have the highest weights are the most important, and these
features have a 1:1 correspondence with components of the
input vector, that is, with the voxel values fed into the
classifier. But non-linear SVMs use “kernel functions”,
whereby a vector input is projected into a kernel-specific
high-dimensional space, and the importance of each feature
is determined in that space. The original space for a given
vector X has one dimension for each component of the input
vector, and the value of that feature—its position on
dimension i—is just X;. In contrast, a polynomial kernel of
degree 2 (K,) projects the input vector into a space having a
dimension for each unique (unordered) pair of features in
the vector, and the value of each of those features—its
position on dimensions (i,j)—is X; * X;.

Thus, the K; classifier over an input space of dimension n
looks more like this:

n
prediction = sign (b + z Wi * X; *xj)
ij=1
In fact, we can get exactly this situation by manually
projecting our input vectors into the polynomial space—
turning them in this case from n-dimensional vectors into
n+((n*-n)/2) dimensional vectors—and using linear SVMs
to classify them. This procedure will produce the same
decision surface as using K, in the original space, but will
allow us to directly inspect the resulting weights to
determine which features were most important.

However, given the nature of non-linear SVMs, relating
features to individual components of the input vectors is
inherently problematic. For note that what gets weighted in
the decision function is the product of each pair of
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components. So, if a given product turns out to be important
to the classifier, shall we attribute this importance to just
one of the components, or to both? Either decision seems
likely to give misleading results. Nevertheless, for the sake
of the discussion, let’s adopt the simple rule that when a
given feature is highly weighted, both components (voxels)
will be counted as “informative”. Given this, we can
examine the frequency with which voxels are informative,
and track the voxels that are frequently informative.

To test this procedure when using K,, we generated 40,
10x10 versions of the standard patterns from Figure 1, 20 of
each pattern type, with a 1:1 ratio of versions, and a noise
level of 5%. We projected each of these patterns into the
5,050-dimensional feature space of K,, and trained a linear
SVM on the set. Then we found the top 500 highest
weighted features, and projected these back onto the 10x10
pattern following the rule above. Now, it is perfectly
legitimate to make the following inference from this
procedure: the highly weighted voxels are the ones that, had
they been in a different state, would have been most likely
to cause the classifier to place the pattern in the other class.
The trouble is, the weighting is often taken to tell us
something about the relative importance of each voxel to the
intrinsic difference between the patterns (and to the
underlying cognitive states), and no such inference is
warranted in this case.

First, there is a basic problem of interpretation given that
the important features are in fact products of two voxels—
so, every time a voxel is deemed informative, it has a
partner with which it was important, and the set itself gives
no information about the distribution of these partners.
Second, it is clear in this case (because there is no local
information) that the relevant information differentiating
between the patterns is non-local, carried in the covariance
structure of the pattern, and this information is not contained
in the set of frequently informative voxels. Third, the most
highly-weighted features are not those that contain the most
information. As in the linear case, they are the features that
contained sufficient information to drive the classifier on a
given set of training examples. Fourth and finally, as should
not be surprising, the set of informative features and
informative voxels is highly unstable in this case, as well.

To explore the stability of the set of important features
when using K,, we generated 10x10 versions of the standard
patterns above, creating 100 sets of 40 (20 of each pattern)
with a noise level of 5%. We projected each of these
patterns into the 5,050-dimensional feature space of K,, and
trained a linear SVM on each of the 100 sets. From each of
these 100 sets, we extracted the top 500 most important
features. Doing a pair-wise comparison of the most
important features from each set revealed that, on average,
only 101.08 (SD 16.94) of these features (20.21%) were
common between each pair. Moreover, the common features
varied from pair to pair. Doing a 5-wise comparison of the
most important features sets reveals an average of just 0.81
(SD 1.09) of the features (0.16%) are shared across all five
sets. Note that despite the instability of the “most
informative” feature sets, classification accuracy in all cases
was 100%.

Given the high degree of variability in the features
considered most important, it seems certain that the set of
frequently informative components (voxels) is likewise
unstable. To confirm this, we generated 500 training sets of
the 10x10 patterns, and, following the procedure above,
found the top 500 most important features for each set.
Then, we counted the number of times each individual
component of the input vector was included in a pair that
was in this important feature set. On average, each
component was included in the set 10.00 times (SD 0.39).
No component averaged fewer than 9 inclusions, or more
than 11.00. Once again, if there is some stable difference
between the cognitive states in the two task conditions, the
set of most informative voxels is certainly not tracking it,
nor can it therefore be a reliable indicator of the location of
the cognitively relevant information.

Admittedly, this example was based on a very simple rule
for mapping features in the multi-dimensional space to
components of the original vector, and it is true that more
sophisticated procedures for uncovering the most
informative components have been developed (Davatzikos
et al.,, 2005; Lao et al., 2004). But insofar as these
techniques still depend in one way or another on identifying
the most highly weighted features in a multi-dimensional
space, and insofar as this set is not determinate for a given
classification task, then the results of such analyses need to
be interpreted with extreme caution.

Before moving on with the remainder of the analysis, it is
worth pausing to summarize the findings. In the case where
there is local information relevant to distinguishing patterns,
linear MVPA does not reliably find it; and in the case where
there is relevant non-local information, carried for instance
by covariance patterns, linear MVPA cannot find it, and
non-linear MVPA models can make it look as if they were
using local information. More importantly, having
discovered some features whose state matters most to the
classification decision is not the same as having discovered
the brain regions whose activity matters most (or even
relatively more) to the participant (or her brain). Indeed,
these two sorts of information need have no regular
correspondence to one another; one need not track, be a
reliable indicator of, or be otherwise instructive about the
nature, scope or location of the other.

Local, concentrated information

How is this disconnect possible? Consider first an example
from the MVPA literature meant to showcase the power of
the technique. Haynes and Rees (2005) were able to use
MVPA to correctly identify the orientation of visually-
presented lines, even when the stimuli were presented
briefly and masked so that the participant did not
consciously perceive them. That is an intriguing result, and
may tell us something interesting about the operation of V1
(the ROI they used to make the predictions). But note the
broader implication for the method: since the participants
cannot judge the orientation of the lines, they cannot be in
whatever cognitive state gives the ability to judge the
orientation of the lines. Thus, MVPA can be used to infer
features of the task environment from characteristics of the
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BOLD signal, without being a reliable indicator of the
cognitive state of the participant.

Now consider extending the experiment in the following
straightforward way: while the visual stimulus is being
shown (and masked), experimenters play an auditory tone
from which the participant could reliably infer the
orientation of the line. If, as seems likely in this particular
case, the most informative voxels for the pattern classifier
would remain in V1, this outcome would provide a clear
instance in which the information used by the participant
and the information used by the classifier would not have
the expected relation.

But is such an outcome really possible? In fact, this
hypothetical example points in the direction of a well-
known fact about the way classification algorithms perform.
Numerous theoretical results and a tremendous amount of
empirical evidence in machine learning demonstrate that
there is no universally best learning algorithm (Wolpert,
1996). Every algorithm has a bias that is appropriate for
some problems and inappropriate for others. This is true for
the brain, and the same is true of kernels. There is no
universally best kernel, and changing from one kernel to
another can lead to large changes in the learned decision
surface and thus to changes in what features in the data set
seem to be important.

The relevance of this problem for MVPA is that a
particular set of stimuli may elicit different patterns of
activity, call them pattern A and pattern B, in different parts
of the brain, and one kernel may be able to detect pattern A
but not pattern B, whereas another kernel may be able to
detect pattern B but not pattern A. Thus, when relating
“most informative features” to “most important activity”,
the area of the brain implicated in the experiment will
change depending on which kernel is used.

To make this concrete, consider two patterns with 20
binary features (f; - fy) in which for every instance of the
first (positive) pattern the following two conditions hold:

(a) Either flg=1and f)y=—1,or fy=—1and f,, = 1
(b) The sum of the first 5 bits is less than or equal to zero

For every instance of the second (negative) pattern, the
following two conditions hold:

(a) Either fig =1 and fy =1, or fjy =—1 and f,, = -1
(b) The sum of the first 5 bits is greater than zero

The values of the other bits are chosen uniformly at random
from {—1, 1}. Condition (a) is the logical exclusive or
(XOR) function on bits 19 and 20 and is easily learned by
the polynomial kernel of degree two (the class label is
—sign(fiy * fy)) but is impossible to learn with a linear
kernel. Condition (b) is easily learned with a linear kernel
(the class label is 1 if fi+,+f;+f,+f5 < 0 and is -1 otherwise),
but is extremely difficult for the polynomial kernel of
degree two because it has access to individual feature f; only
as f; * f; which is 1 regardless of the value of f;.

We created 100 datasets based on the above rules and
trained an SVM with a linear kernel on both the original
feature space and the feature space constructed for the

polynomial kernel of degree two. In the latter space, the
feature corresponding to f9 * f)y had an average weight of
3.64. The remaining 209 features had average weights in the
range (0.05, 0.10). In the former case, the average weights
for features f; through fs were 1.92, 1.94, 1.94, 1.93, and
1.94. The remaining 15 features had average weights in the
range (0.03, 0.10). Clearly, the choice of kernel can have a
dramatic impact on which features are deemed important
and, in the case of MVPA, which voxels are implicated in
various cognitive tasks.

Thus, although much of this paper was spent detailing the
worrying instability and potential deceptiveness of the most
informative voxel set when information is non-local or
distributed, the fact is that even if MVPA were perfectly
reliable at the task of finding the most informative features
in a data set, the inference from this to the brain activity
most important determining the outcome in given task
would remain fairly weak. This is because inference from
most informative features to most important activity
apparently relies on the unwarranted additional assumption
that the pattern classification algorithm and the brain are
classifying on a relevantly similar basis. While of course no
one claims that the success of MVPA shows that the brain is
implementing an identical classifier, the issue is that the
hypothesis space is different for different classifiers, and so
different information will be relevant to each. What is
relevant in the brain, and what is relevant to classifying an
image of the brain, need not bear much relation.

Conclusion

There are very many challenges to the task of reliably
relating the features (of the BOLD signal) most important to
classification success to the features (of brain activity) most
important to cognitive states/outcomes. By way of
summation, consider this general list of possible ways in
which these features might fail to relate as expected.

(1) The highly informative elements of the pattern as
discerned by MVPA are distributed in the brain in such a
way that the brain is anatomically or functionally incapable
of integrating the information. If people are nevertheless
capable of making the relevant discrimination, it must have
been on the basis of different information.

(2) There may well be classes of stimuli that differ in
ways undetectable to subjects (under any presentation
condition, conscious or otherwise), but which nevertheless
create patterns in the BOLD signal allowing for successful
classification by MVPA. Consider in this regard an
experiment run by Hung et al. (2005). Macaques passively
viewed picture stimuli in eight different categories while
undergoing direct recording of neural activity using
microelectrode arrays. Hung et al. were able to successfully
classify the stimuli with a linear SVM taking the multi-unit
activity as input. But here the macaques did not—indeed, in
all likelihood could not—classify the stimuli, because they
had not been trained to do so. In this case, the SVM might
have been making distinctions that the (untrained) macaques
were not.

(3) Stimuli may differ along more than one dimension,
both of which lead to differences in the BOLD signal.
MVPA classification could rely on patterns relating to one

1515



dimension, while participants use information relating to the
other. That is, even when there is information in the BOLD
signal that is theoretically accessible by (or that is tracking
information accessible by) the participant, this may not be
the information that is being used by the participant.

(4) The MVPA classifier may be using a kernel that is
significantly different from what is implemented in the
brain. As we saw, classifiers with different kernels trained
on the very same data will extract different features, and
thus come to different decisions about which features (and
which elements of the input vectors) are most important.

(5) Since there will always be a set of highly informative
voxels produced by the MVPA classifier, the existence of
such a set won’t tell us whether the relevant information in
the brain is local and concentrated, local and distributed,
non-local, or some combination of these.

The discussion also raises a much more general issue. As
we noted at the outset, MVPA offers an exciting new way to
investigate the operation of the brain, by looking at the
predictive value of (typically widely) distributed patterns of
activity. The problematic inferences generally come in the
attempt to reduce such patterns to local features of brain
activity. But if the best predictor of cognitive states is not
the location of an activated region, but rather the patterns of
cooperation and coactivation between them—as the success
of MVPA might be said to indicate, and as has been argued
for independent reasons (Anderson, 2008; Sporns, et al.,
2004; Uttal, 2001)—then perhaps it is time to pay more
heed to the patterns than to the partners. We are just
beginning to develop the tools to make such an investigation
fruitful and rigorous—including not only MVPA but other
forms of statistical pattern analysis, machine learning, graph
theory, etc.—and it seems a shame instead to use these tools
in the service of localization projects for which they are
ultimately ill-suited. New tools often come with the
opportunity to re-consider the strengths of theoretical
perspectives and paradigms, and these are offering a chance
to look beyond localization, to what other perspectives on
brain organization might have to offer.
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