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Abstract 
Multi-voxel pattern analysis (MVPA) is a popular analytical 
technique in neuroscience that involves identifying patterns in 
fMRI BOLD signal data that are predictive of task conditions. 
But the technique is also frequently used to make inferences 
about the regions of the brain that are most important to the 
tasks in question, and our analysis shows that this is a 
mistake. MVPA does not provide a reliable guide to what 
information is being used by the brain during cognitive tasks, 
nor where that information is. This is due in part to inherent 
run to run variability in the decision space generated by the 
classifier, but there are also several other issues, discussed 
here, that make inference from the characteristics of the 
learned models to relevant brain activity deeply problematic. 
These issues have significant implications both for many 
papers already published, and for how the field uses this 
technique in the future. 

Keywords: neuroscience, machine learning, inference, 
philosophical issues. 

Introduction 
Multi-voxel pattern analysis (MVPA) is an increasingly 
popular analytical technique in neuroscience. MVPA 
involves searching through the Blood Oxygenation Level 
Dependent (BOLD) signal data produced in fMRI 
experiments to identify patterns that are highly predictive of 
task conditions.  To illustrate, consider a simple experiment 
in which participants are asked to view pictures representing 
various object categories (e.g. faces, houses, chairs, shoes, 
etc.). One early MVPA study showed it was possible to 
determine, by looking only at BOLD data, which class of 
object an experimental participant was viewing when that 
data was collected (Haxby et al., 2001).  The technique has 
since been used to predict the orientation of lines being 
viewed by a participant (Haynes & Rees, 2005), to 
differentiate between lying and truth-telling (Davatzikos et 
al., 2005), and to predict which action a participant was 
about to take (Haynes et al., 2007), among many other 
things (see Pereira, Mitchell & Botvinick, 2009; Norman et 
al., 2006; Haynes & Rees, 2006 for reviews of the technique 
and its applications).  

This is indeed impressive, and we expect that MVPA will 
have many important experimental and diagnostic 
applications (Lao et al., 2004).  It has become commonplace 
to make certain inferences about the way differences in 
BOLD signal patterns correspond to differences in mental 
states.  For instance, by finding the set of voxels that are 
most predictive of a certain task outcome, studies have 
claimed to discover the “cognitive states associated with 
perception of tools and dwellings” (Shinkareva et al., 2008), 

“localizable task-specific representations of freely chosen 
intentions” (Haynes at al., 2007), and the regions of the 
brain that “contain information” (Preston et al., 2008) 
relevant to the cognitive or perceptual task under 
investigation. 

To put it bluntly, however, such inferences are at best 
misleading and at worst entirely unwarranted.  The issues 
dovetail with, but are distinct from, the more general 
concerns about the unreliability of “reverse inference” from 
neuroimaging data (Poldrack, 2006), and  have significant 
implications both for how we ought to interpret some of the 
many papers already published, and for how the field 
applies this technique in the future.  

Of course, not every MVPA study is governed by the 
logic that we will criticize here.  For instance, Mitchell et al. 
(2008) take something like the opposite approach, and see if 
they can predict the pattern of brain activity that will be 
caused by listening to novel words.  Here the point of the 
study is not to discover which brain regions are responsible 
for understanding; rather, they are testing the hypothesis that 
meanings of words are based on sets of “semantic features” 
that can be inferred from word co-occurrence in language 
corpora.  McDuff, Frankel & Norman (2009) are likewise 
focused on hypothesis testing, in their case about the 
characteristics of targeted memory retrieval. We think that 
MVPA has a very promising future both as a diagnostic 
tool, and as a useful dependent variable—in part because the 
technique is sensitive to contingencies beyond classical 
single-voxel effects—but that for the reasons outlined in this 
paper it is a very poor tool for reliably localizing 
information or identifying cognitive states. 

Information and the brain 
There are three general ways in which information could 
inhere in the BOLD signal.  First, the information could be 
non-local, that is, carried by irreducibly relational features 
of the signal like regional co-variance. We might expect this 
to occur when large-scale neural synchrony is the relevant 
aspect of brain activity (Varela, et al., 2001; Gross et al., 
2004).  Second, it could be local and distributed, that is, the 
information could be carried by the activity of individual 
voxels, and the information-carrying voxels could be spread 
throughout the brain.  We might expect this for cognitive 
processes that require the cooperation of many different 
brain regions.  Third, the information could be local and 
concentrated, that is, carried by individual voxels that are 
grouped together in one or a few clumps.  This might 
happen when the work done by local neural circuits is most 
important to the cognitive task(s) in question. In this essay, 
we will consider the performance of MVPA in all three 
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components. So, if a given product turns out to be important 
to the classifier, shall we attribute this importance to just 
one of the components, or to both? Either decision seems 
likely to give misleading results.  Nevertheless, for the sake 
of the discussion, let’s adopt the simple rule that when a 
given feature is highly weighted, both components (voxels) 
will be counted as “informative”. Given this, we can 
examine the frequency with which voxels are informative, 
and track the voxels that are frequently informative. 

To test this procedure when using K2, we generated 40, 
10x10 versions of the standard patterns from Figure 1, 20 of 
each pattern type, with a 1:1 ratio of versions, and a noise 
level of 5%. We projected each of these patterns into the 
5,050‐dimensional feature space of K2, and trained a linear 
SVM on the set. Then we found the top 500 highest 
weighted features, and projected these back onto the 10x10 
pattern following the rule above.  Now, it is perfectly 
legitimate to make the following inference from this 
procedure: the highly weighted voxels are the ones that, had 
they been in a different state, would have been most likely 
to cause the classifier to place the pattern in the other class.  
The trouble is, the weighting is often taken to tell us 
something about the relative importance of each voxel to the 
intrinsic difference between the patterns (and to the 
underlying cognitive states), and no such inference is 
warranted in this case.   

First, there is a basic problem of interpretation given that 
the important features are in fact products of two voxels—
so, every time a voxel is deemed informative, it has a 
partner with which it was important, and the set itself gives 
no information about the distribution of these partners.  
Second, it is clear in this case (because there is no local 
information) that the relevant information differentiating 
between the patterns is non-local, carried in the covariance 
structure of the pattern, and this information is not contained 
in the set of frequently informative voxels. Third, the most 
highly-weighted features are not those that contain the most 
information.  As in the linear case, they are the features that 
contained sufficient information to drive the classifier on a 
given set of training examples.  Fourth and finally, as should 
not be surprising, the set of informative features and 
informative voxels is highly unstable in this case, as well.  

To explore the stability of the set of important features 
when using K2, we generated 10x10 versions of the standard 
patterns above, creating 100 sets of 40 (20 of each pattern) 
with a noise level of 5%. We projected each of these 
patterns into the 5,050‐dimensional feature space of K2, and 
trained a linear SVM on each of the 100 sets. From each of 
these 100 sets, we extracted the top 500 most important 
features. Doing a pair‐wise comparison of the most 
important features from each set revealed that, on average, 
only 101.08 (SD 16.94) of these features (20.21%) were 
common between each pair. Moreover, the common features 
varied from pair to pair. Doing a 5‐wise comparison of the 
most important features sets reveals an average of just 0.81 
(SD 1.09) of the features (0.16%) are shared across all five 
sets. Note that despite the instability of the “most 
informative” feature sets, classification accuracy in all cases 
was 100%. 

Given the high degree of variability in the features 
considered most important, it seems certain that the set of 
frequently informative components (voxels) is likewise 
unstable.  To confirm this, we generated 500 training sets of 
the 10x10 patterns, and, following the procedure above, 
found the top 500 most important features for each set. 
Then, we counted the number of times each individual 
component of the input vector was included in a pair that 
was in this important feature set. On average, each 
component was included in the set 10.00 times (SD 0.39).  
No component averaged fewer than 9 inclusions, or more 
than 11.00. Once again, if there is some stable difference 
between the cognitive states in the two task conditions, the 
set of most informative voxels is certainly not tracking it, 
nor can it therefore be a reliable indicator of the location of 
the cognitively relevant information.   

Admittedly, this example was based on a very simple rule 
for mapping features in the multi-dimensional space to 
components of the original vector, and it is true that more 
sophisticated procedures for uncovering the most 
informative components have been developed (Davatzikos 
et al., 2005; Lao et al., 2004).  But insofar as these 
techniques still depend in one way or another on identifying 
the most highly weighted features in a multi-dimensional 
space, and insofar as this set is not determinate for a given 
classification task, then the results of such analyses need to 
be interpreted with extreme caution.  

Before moving on with the remainder of the analysis, it is 
worth pausing to summarize the findings.  In the case where 
there is local information relevant to distinguishing patterns, 
linear MVPA does not reliably find it; and in the case where 
there is relevant non-local information, carried for instance 
by covariance patterns, linear MVPA cannot find it, and 
non-linear MVPA models can make it look as if they were 
using local information. More importantly, having 
discovered some features whose state matters most to the 
classification decision is not the same as having discovered 
the brain regions whose activity matters most (or even 
relatively more) to the participant (or her brain). Indeed, 
these two sorts of information need have no regular 
correspondence to one another; one need not track, be a 
reliable indicator of, or be otherwise instructive about the 
nature, scope or location of the other. 

Local, concentrated information 
How is this disconnect possible?  Consider first an example 
from the MVPA literature meant to showcase the power of 
the technique.  Haynes and Rees (2005) were able to use 
MVPA to correctly identify the orientation of visually-
presented lines, even when the stimuli were presented 
briefly and masked so that the participant did not 
consciously perceive them.  That is an intriguing result, and 
may tell us something interesting about the operation of V1 
(the ROI they used to make the predictions).  But note the 
broader implication for the method: since the participants 
cannot judge the orientation of the lines, they cannot be in 
whatever cognitive state gives the ability to judge the 
orientation of the lines.  Thus, MVPA can be used to infer 
features of the task environment from characteristics of the 
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BOLD signal, without being a reliable indicator of the 
cognitive state of the participant.   

Now consider extending the experiment in the following 
straightforward way: while the visual stimulus is being 
shown (and masked), experimenters play an auditory tone 
from which the participant could reliably infer the 
orientation of the line.  If, as seems likely in this particular 
case, the most informative voxels for the pattern classifier 
would remain in V1, this outcome would provide a clear 
instance in which the information used by the participant 
and the information used by the classifier would not have 
the expected relation.   

But is such an outcome really possible?  In fact, this 
hypothetical example points in the direction of a well-
known fact about the way classification algorithms perform. 
Numerous theoretical results and a tremendous amount of 
empirical evidence in machine learning demonstrate that 
there is no universally best learning algorithm (Wolpert, 
1996). Every algorithm has a bias that is appropriate for 
some problems and inappropriate for others. This is true for 
the brain, and the same is true of kernels. There is no 
universally best kernel, and changing from one kernel to 
another can lead to large changes in the learned decision 
surface and thus to changes in what features in the data set 
seem to be important. 

The relevance of this problem for MVPA is that a 
particular set of stimuli may elicit different patterns of 
activity, call them pattern A and pattern B, in different parts 
of the brain, and one kernel may be able to detect pattern A 
but not pattern B, whereas another kernel may be able to 
detect pattern B but not pattern A. Thus, when relating 
“most informative features” to “most important activity”, 
the area of the brain implicated in the experiment will 
change depending on which kernel is used. 

To make this concrete, consider two patterns with 20 
binary features (f1 - f20) in which for every instance of the 
first (positive) pattern the following two conditions hold:  
 
(a) Either f19 = 1 and f20 = −1, or f19 = −1 and f20 = 1 
(b) The sum of the first 5 bits is less than or equal to zero 
 
For every instance of the second (negative) pattern, the 
following two conditions hold: 
 
(a) Either f19 = 1 and f20 = 1, or f19 = −1 and f20 = −1 
(b) The sum of the first 5 bits is greater than zero 
 
The values of the other bits are chosen uniformly at random 
from {−1, 1}. Condition (a) is the logical exclusive or 
(XOR) function on bits 19 and 20 and is easily learned by 
the polynomial kernel of degree two (the class label is 
−sign(f19 * f20)) but is impossible to learn with a linear 
kernel. Condition (b) is easily learned with a linear kernel 
(the class label is 1 if f1+f2+f3+f4+f5 ≤ 0 and is -1 otherwise), 
but is extremely difficult for the polynomial kernel of 
degree two because it has access to individual feature fi only 
as fi * fi which is 1 regardless of the value of fi.   

We created 100 datasets based on the above rules and 
trained an SVM with a linear kernel on both the original 
feature space and the feature space constructed for the 

polynomial kernel of degree two. In the latter space, the 
feature corresponding to f19 * f20 had an average weight of 
3.64. The remaining 209 features had average weights in the 
range (0.05, 0.10). In the former case, the average weights 
for features f1 through f5 were 1.92, 1.94, 1.94, 1.93, and 
1.94. The remaining 15 features had average weights in the 
range (0.03, 0.10). Clearly, the choice of kernel can have a 
dramatic impact on which features are deemed important 
and, in the case of MVPA, which voxels are implicated in 
various cognitive tasks.  

Thus, although much of this paper was spent detailing the 
worrying instability and potential deceptiveness of the most 
informative voxel set when information is non-local or 
distributed, the fact is that even if MVPA were perfectly 
reliable at the task of finding the most informative features 
in a data set, the inference from this to the brain activity 
most important determining the outcome in given task 
would remain fairly weak. This is because inference from 
most informative features to most important activity 
apparently relies on the unwarranted additional assumption 
that the pattern classification algorithm and the brain are 
classifying on a relevantly similar basis.  While of course no 
one claims that the success of MVPA shows that the brain is 
implementing an identical classifier, the issue is that the 
hypothesis space is different for different classifiers, and so 
different information will be relevant to each.  What is 
relevant in the brain, and what is relevant to classifying an 
image of the brain, need not bear much relation. 

Conclusion 
There are very many challenges to the task of reliably 
relating the features (of the BOLD signal) most important to 
classification success to the features (of brain activity) most 
important to cognitive states/outcomes.  By way of 
summation, consider this general list of possible ways in 
which these features might fail to relate as expected. 

(1) The highly informative elements of the pattern as 
discerned by MVPA are distributed in the brain in such a 
way that the brain is anatomically or functionally incapable 
of integrating the information. If people are nevertheless 
capable of making the relevant discrimination, it must have 
been on the basis of different information.  

(2) There may well be classes of stimuli that differ in 
ways undetectable to subjects (under any presentation 
condition, conscious or otherwise), but which nevertheless 
create patterns in the BOLD signal allowing for successful 
classification by MVPA.  Consider in this regard an 
experiment run by Hung et al. (2005).  Macaques passively 
viewed picture stimuli in eight different categories while 
undergoing direct recording of neural activity using 
microelectrode arrays.  Hung et al. were able to successfully 
classify the stimuli with a linear SVM taking the multi-unit 
activity as input.  But here the macaques did not—indeed, in 
all likelihood could not—classify the stimuli, because they 
had not been trained to do so.  In this case, the SVM might 
have been making distinctions that the (untrained) macaques 
were not.   

(3) Stimuli may differ along more than one dimension, 
both of which lead to differences in the BOLD signal.  
MVPA classification could rely on patterns relating to one 
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dimension, while participants use information relating to the 
other.  That is, even when there is information in the BOLD 
signal that is theoretically accessible by (or that is tracking 
information accessible by) the participant, this may not be 
the information that is being used by the participant. 

(4) The MVPA classifier may be using a kernel that is 
significantly different from what is implemented in the 
brain.  As we saw, classifiers with different kernels trained 
on the very same data will extract different features, and 
thus come to different decisions about which features (and 
which elements of the input vectors) are most important. 

(5) Since there will always be a set of highly informative 
voxels produced by the MVPA classifier, the existence of 
such a set won’t tell us whether the relevant information in 
the brain is local and concentrated, local and distributed, 
non-local, or some combination of these. 

The discussion also raises a much more general issue.  As 
we noted at the outset, MVPA offers an exciting new way to 
investigate the operation of the brain, by looking at the 
predictive value of (typically widely) distributed patterns of 
activity.  The problematic inferences generally come in the 
attempt to reduce such patterns to local features of brain 
activity.  But if the best predictor of cognitive states is not 
the location of an activated region, but rather the patterns of 
cooperation and coactivation between them—as the success 
of MVPA might be said to indicate, and as has been argued 
for independent reasons (Anderson, 2008; Sporns, et al., 
2004; Uttal, 2001)—then perhaps it is time to pay more 
heed to the patterns than to the partners.  We are just 
beginning to develop the tools to make such an investigation 
fruitful and rigorous—including not only MVPA but other 
forms of statistical pattern analysis, machine learning, graph 
theory, etc.—and it seems a shame instead to use these tools 
in the service of localization projects for which they are 
ultimately ill-suited. New tools often come with the 
opportunity to re-consider the strengths of theoretical 
perspectives and paradigms, and these are offering a chance 
to look beyond localization, to what other perspectives on 
brain organization might have to offer. 
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