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ABSTRACT 

\ 

The problem of finding the equilibrium configurations of 

uniform rotating charged liquid drops is considered. An analytic 

treatment is given based on a parametric expansion for small ellipsoidal 

distortions about a sphere. This treatment is applied to finding the 

ground-state configurations and the saddle-shaped configurations leadi:t;lg 

to fission as functions of charge and angular momentum of the drop. 

A variation-iteration method for generating the configurations of 

equilibrium is described. The method is applied to finding the con­

figurations of equilibrium of axially symmetric drops over the range 

0 < x, < 1 and 0 < y ~ 0. 5, where x is the ratio of the coulomb 

energy to twice the surface energy for a sphere, and y is the ratio of 

the rotational energy to the surface energy for a sphere. The 

energetics of these configurations are calculated; the fission thresholds 

are calculated in the range of applicability of the parametric expansions. 
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I. INTRODUCTION · 

The introduction of heavy-ion accelerators in nuclear research 

. makes possible exploration of nuclear reaction phenomena .in which 

very large orbital angular momenta are involved. The neon beams 

available from the Berkeley and Yale heavy-ion accelerators are 

capable of inducing nuclear reactions on heavy nuclei· in which orbital 

angular momenta in excess of 100 units of ){ are encountered. There 

is an increasing amount of experimental evidence to suggest that a 

large fraction of the total cross section is due to reactions in which 

the incident heavy ion fus.es with the target nucleus to form a compound 

system. One would hope that the existence of such compound systems 

carrying large amounts· of angular momenta would provide a .means 

for studying the inertial properties and the stability of large rotating 

masses of nuclear matter. 

An important mode of de-excitation of these compound systems 

is the fission process. For targets near the upper end of the periodic 

table, the.fission mode overwhelms all other de-excitation mechanisms; 

for lower-Z targets, neutron emission becomes competitive, but 

fission induced by heavy-ion bombardment has been observed with 
165 1 ·. . 

targets as low as Ho
67 

One might suspect that existence of 

rotational forces in the compound system would significantly affect 

the fissionability of the system. These rotational forces should become 

particularly important for low-mass targets where the centrifugal 

forces .may become large enough to prevent the formation of the com­

pound system. Flerov and collaborators have shown that in the 

bombardment of gold by_ nitrogen ions the fissionability of the compound 

system is strongly enhanced relative to neutron emission a~ the energy 

of the incident ion and hence the orbital angular momentum of the compound 
. . d 2, 3 system 1s Increase . 
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Iri. this paper we . shall consider the energetics and forms of 

equilibrium of uniform rotating charged liquid drops as a starting 

point for a liquid-drop model study of the effects of rotation on fission. 

Specifically, we shall be concerned here with finding the lo~~st-energy 
stable configurations of a rotating charged drop subject to a surface 

tension, and the lowest-energy saddle-shape configurations leading to 

the fission of the system. The energy difference between these two 

configurations is defined as the fission barrier. We should emphasize 

that a complete study of the configurations of equilibri~m would involve 

discussion of the configurations of higher energy and the various linear 

series of these shapes and their points of bifurcation. Appel has out­

lined such a survey for the analogous problem of rotating gravitating 

masses. 
4 

The conventional liquid-drop mod~l, containing a term in 

the coulomb energy and a term in the surface energy, is here extended 

to include in addition a rotational-energy term. In this work we are 

concerned with configurations of gyrostatic equilibrium, in which the 

drop, in its equilibrium configuration, is rotating as a rigid body. 
5 

There are many articles in the literature on the problem of the 

configurations of equilibrium of rotating liquid masses as a consequence 

of the work on rotating gravitating liquid masses by DarWin, Jeans, 
"" 6-12 Poincare, Liapunoff and others. More recently, Lyttleton has 

reconsidered these problems, primarily from the point of view of 

astrophysical interest. 
13 

Appel has discussed in addition the problem 

of a rotating mass subject to a surface tension, both with and without 

the gravitation term. The first to consider the problem of the con­

figurations of equilibrium of a .rotating charged liquid drop was 

Pik-Pichak,. whose interest in the problem was also inspired by con-

"d . f h . . d d f" . 14 
Sl eratlons o eavy-1on-1n uce 1s s1on. 

.. ~· 

-· 
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In the next section we shall follbw this earlier work of 

Pik-Pichak and consider smal~. ellipsoidal distortions about the 

spherical shape. We shall derive expressions for the distortion 

parameters which determine the shapes of the ground states and 

saddle shapes in the limit where these shapes deviate only slightly 

from spherical configurations. Also, we shall derive expressions for 

the energy barrier against fission.· 

In the succeeding section we shall describe a variation-iteration 

method for generating configurations of equilibrium as a step toward 

the general s.olution of the problem of finding the configurations of 

equilibrium of uniform rotating charged liquid drops. This method is 

applied to the axially symmetric configurations covering the entire 

range of charge states of interest and covering a wide range of 

rotational states. These equilibrium shapes and their energetics are 

illustrated in the enclosed graphs and tables . 



-7-

II. QUANTITATIVE DISCUSSION:· 

A. Kinematics 

To illustrate the orders of magnitude of the orbital ang}.llar 

momenta and rotational energies the compound nucleus can :assume, 

we shall begin the discussion with a few elementary kinematic con­

siderations. For a quantitative estimate of the maximum angular 

momentum of the compound system we shall assume the incident heavy 

ion' follows a trajectory which gives it ag)aoc:ing contact \v:ith the target 

nucl.eus. There is considerable uncertainty however, regarding the 

·shape of the incident projectile and of the target nucleus immediately 

·prior to the collision. In addition, if we have estimated a value for 

the angular momentum of the system, the rotational energy of the 

compound system is not determined until a moment of inertia and 

hence a shape for the compound system is also specified. The 

solution of these problems would require a detailed dynamical study 

of the collision process and subsequent motions of the compound 

system, a study which is beyond the scope of this paper. For the 

purposes of these estimates we shall disregard these dynamical 

processesrand take the projectile, target, and compound system to 

have spherical symmetry. 

Let ez
1

, ez 2, and A
1

, A 2 be the charges and mass numbers 

of the incident ion and target nucleus, respectively. Assuming the 

two nuclei to be spherical at time of contact, their respective radii 

are R 1 = r 0 A 1 l/
3

, and R 2 = r 0A//
3

. If Ec. m. = [A2J.(-A1 +A2} E 1aJ• 

and j.l = m A 1 A 2/ (A
1 

+A2) are the energy in the center of mass and 

reduced mass, respectively, the orbital angular momentum contained 

in the system is 

(II. 1) 

.~. 
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where R = r 
0 

(A
1

1
/

3 + A
2 
l/

3
) . As. an illustration of the values L 

can assume, consider the bombardment of u238 
with c 12

, Ne
22

, and 

A 
40

, respectively. If we use E
1 

b = 10 Mev/nucleon and 
-13 a 

r = 1.2;( 10 em, and set ~~b , Eq. (II.l) yields ~ values of 
0 ~ 

4 
. -13 

8, 99, and 158, respectively; if we choose r
0 

= 1.5Xl0 em, 

we have ~ = 7J, 133, and 238. 

For an estimate of the upper limit of rotational energy carried 

by the compound system, assume the compound system to be carrying 

an amount of orbital angular momentum given by Eq. (II.l). Such an 

estimate of the rotational energy for the ground-state configuration 

must be an overestimate since as we shall see in later paragraphs 

the lowest configuration of equilibrium will have an approximately 

oblate shape; i.e. a. higher moment of inertia. 

Pik-Pichak has defined the parameter 

y = Rotational energy of spherical drop = 
Surface energy of spherical drop 

where IC and RC are the moment of inertia and radius of the compound 

system .. and 0 is the surface energy parameter. It is easily shown 

that y has the 

y = 
5 

2 

val~ue (Al ~ l/ 3 J 2 

All+ A 
2 

(
E -c.m. 

1 
2 

4nr
0 

0 

(II. 2) 

In Fig. 1 this function is plotted against A 2 for several values of A
1

. 

The values for z
2 

have been chosen to correspond to values lying 

close to the line of stability of the periodic table, For these calculations 
2 -13 

we have taken 4n r
0 

0 = 17.81 Mev and r
0 

'= 1.5Xl0 em. 
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0 

MU-20841 

Fig, l. Values for the r.otational parameter, y = ER (0) /E (O), 
for a spherical compound nucleus formed by . s 
a glancing collision of either cl2, Ne22, or A40 
with targets of mass number A
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Below a certain value of A 2 this curve_ will actually exceed 

the upper lit?it of energy available in the center of mass. 
15 

For the 

ratio of rotational energy to center-of-mass energy one finds (again 

for idealized spherical n-uclei) 

E 
rot 5 

w = = 
E 2 

c.m. 

In Fig. 1 the point at which w is equal to one is indicated by the short 

vertical lines. We emphasize again that because of the simplification 

of assumed spherical symmetry this value of A 2 may have no 

particular significance. Indeed, in the spirit of the approximations 

at hand one would expect the condition w = l to occur at a lower value 

of A 2 than calculated here due. to the·oblateness of the ground state. 

<.: 

e 
I 
J 
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B.. Analytical Calculations for Equilibrium Configurations 

1. Parametrization 

In this section we shall consider the shapes of equilibrium 

and energetics of a uniform rotating charged liquid drop. In a 

first approximation to this problem we proceed in the conventional 

way and describe the shape of the drop with a radius vector whose 
. 16-24 . 

angular dependence is introduced parametrically. In most 

treatmehts of the liquid-drop model the different configurations of 

the drop which are to be studied are limited t.o axial symmetry. 

However, with the introduction of rotation into the problem, intuitive 

considerations suggest that configurations that are not axially 

symmetric will also be of considerable importance. After the fission 

of a rapidly rotating liquid drop, one would expect the fragments to 

separate from each other in a plane which is oriented approximately 

at right angles to the angular-momentum axis of the compound system . 

. One would not expect therefore that the saddle- shaped configuration 

that leads to fission would be axially symmetric about the angular­

momentum axis. 

For the non rotating problem and in the limit that 1-x < < 1, 

the primary features of fission can be described by considering only 

an a 20 P 20 (cos 8) distortion. This suggests that in the same limit 

but with rotation we consider an equation for the surface of the drop 

which has the form 

with 

and 

R= 

P2o = 
1 

2 
(3 j-!

2 
- 1 ) 

2 = 3 (1 - f-l. ) 

(II. 3) 

_.., 
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The z axis I e = 0. wilr be take~ as the axis of rotation. Equation 

(II.3) describes a drop with an approximately ellipsoidal shape, i.e. 

with three unequal axes, and with the .principal axes of the ellipsoid 

oriented along the coordinate axis. A term in. a. 21 P 21 (cos 8) cos <j> 

which might also have been insluded h;as been suppressed since such 

a term, for small a.
21

, has the effect only of tipping the ellipsoid with 

respect to the principal axes. Here we are concerned with the con­

figurations of equilibrium which have minimum energy. The surface 

and coulomb energies are independent of the orientation of a particular 

shape, but the rotational energy of the lowest ellipsoidal saddle-shaped 

configuration will be a minimum when the principal axes are oriented 

along the coordinate axes. 

For the calculation of saddle-shaped configurations and 

energetics, we shall require terms up to third order in a. 20 • a. 22 • 

The normalization factor }.,. in Eq. (II.3) is determined from the 

condition 

4 
- 11 

3 
R 3 = 

0 

and has the value 

3 }.,. = 1 + 3 

5 

7 Jj 
0 -1 0 

2 36 
0.20 + 

5 

2 2 3 
a.22 + - a.2o 

35 

The moment of inertia is given by 

] Jj 
0 -1 0 

4 2 
P m r ( 1- .fl. ) dr dfl d<j>. 

8tr 
= 

15 

(II.4a) 

(II.4b} 

(II. 5) 
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The rotational energy, measured in units of the surface energy of a 

sphere, is then 

L
2 

2 
ER = - /4 nR

0 
0 = y (l 

4 
+ a.20 + 

7 
2Ic (II. 6) 

. 2 2 
The rotational energy is given only up to terms of order· a. 20 , a: 22 , 

since the factor y is already a first-order quantity. In Appendix 

A the surface energy, coulomb potential, and coulomb energy are 

evaluated. The surface energy, measured in units of the surface energy 

of a sphere, is given by the integral 

l 

and has the value 

The coulomb energy 

l 
2n +l 

E = r c 2 
8nR

0 
0 

2n +l 

'
( ,. 

! 
/ ! 

' 

R 2 
pr dr 

becomes :6 ,;; 1 /0 

3 Q2 1 1 2 
E = - ( 1- - a.20 c z 

5 Ro 4nR
0 

0 5 

(

CIR) 
2 

2 2 ~~R)·_ 2] l/2 -_ +R + (l-1-L) ,;- di-id<l> 
d<j> fi-L 

\ 
. (II. 7 a) 

(II. 7b) 

2_1T +l R 2 
di-id<l> 

' - _P_-r, dr' di-i'd<l>' .J --'' , rl 
:r-r i (II.8a) 

0 ..:1 /0 

12 2 4 3 48 2 - - a.22 --- a.20 +- a.20a.22 ) 
5 105 35 

(II. 8b) 

Expressed in units of the fission parameter x = EC (O) /2ES (O) Eq. (II.8b) 

becomes 

1 
E = 2x (-1 -c 

12 2 
a.22 

5 

4 3 48 2 
- -- a.20 + a.20 a.22 ) 

105 35 
(II. 8c) 

.. 

. - .. 
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The total energy, to third order, of the rotating liquid drop is then 

2 2 24 2 4 3 144 2 
E = 1 + 2x + 5 a.20 (1 - x) + -5- a.22 (1 - x)- 35 a.20 + 35 a.20a.22 

4 
+ y ( 1 + a.20 + 

7 

132 2 
a.22 ). 

7 
(II. 9) 

Comparing our result in Eq. (IL 9) with a similar result given 

by Pik-Pichak, we see that there is a consistent factor-of-six 

difference in the a. 22 
2 

terms. Pik- Pichak has chosen to define the 

a.
22 

in conjunction with the D(a., 13, 0) functions
25 

rather than with the 

P 22 polynomial as is done here. His equivalent to our Eq. (11.3) is 

written 

with a. 2 , _ 2 = a.
2

, 2• Because of the different normalization of the D 1 s, 

his a. 22 differs by a factor of .j"'6 from the choice of a 22 used in this 

paper. 

Those distorted shapes that are equilibrium configurations are 

determined by the conditions 

and 

&E = 0 , 

oE 
--0 
aa.22 

with yield the two equations 

4 12 2 144 2 8 
a 20 + -- a.2 2 + Y ( 1 + a 20) = 0 ' 

35 '7 
a20 z -

5 35 

(11.10) 

(II.lla) 
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and 

48 288 
a22 z + -,-

5 35 

264 
a22 Y = o . (II.ll b) 

7 

Here we have set z = 1 - x. With a
22 

= 0 the first of these equations 

gives an axially symmetric equilibrium configuration; the. value of the 

distortion parameter is given by . . 1; 2 
7 ' 5 - [ 7 5 2 35 . J .. a

20 
= - z + - y + ( - z + _ y) + _. _ y 

. 6 3. . .6 3 .. 12 . 
(II.12a) 

The negative sign corresponds to an oblate spheroid,· the positive sign 

gives a prolate spheroid. The prolate spheroid is a saddle- shaped, 

leading to fission along theangular-momeritum axis. This s-addle has 

a higher energy than one discussed in succeeding paragraphs and is 

therefore not of interest here. Expanding the radical in Eq. (II.12a), we 

have 

a = - ~ y/z 
20 4 

Fbr a 22 -f O,theEq. (II.llb)gives 

. 15 7 
y - z. 

12 6 

Inserting this value for a
20 

in Eq. (ILlla), we have 

= 
1 

4 

2 . 
(2_) (z2 

6 

5 35 
-y) -
7 24 

yz -
275 2 
-·Y 
576 

Corresponding to this nonzero value for a 22 , we have for a2o , 

7 . 5 G 7 5 2 35 ~ l/
2 

a 2 = -·z+- y- (- z+ -y) + -·- y+l2a 0 
6 3 6 3 12 22 

(II.l2b) 

(II.l3a) 

(II.13b) 

Equations (II.l3a) and (II.l3b) representan ellipsoidal equilibrium 

configuration which is the lowest-energy saddle shape the drop can 

assume. Equation (11.12) is the lowest-energy stable configuration of 

the drop; as y goes to 0, a20 goes to 0, ·and this axially symmetric 

ground state tends to a sphere. . - ~ 
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One would suspect that for a fixed value of x, increasing the 

rotational energy of the drop would ultimately lead to an instability 

of the axially symmetric ground- state configuraticn. Stated in another 

way, one expects that as the rotation increases, the saddle-shaped 

configuration tends toward the ground- state configuration, and for 

that value of rotational energy at which these two configurations · 

coalesce the drop has neutral stability.l. This is expressed by setting 

a.a22 
2 = 

48 

5 

288 
z + 

35 
264 y = 0 a20 -

7 

and combining this result with Eq. (II.l2) to give the critical relation 

between y and z. This critical value for y for which the drop has 

neutral stability is then 

2 [ 2 2 2 y = - (1 + 6z) - ( -) (1 + 6z) 
7 7 

4 

5 

Expanding the radical and retaining the first few terms gives 

7 2 
y = z (1 - 6z) , 

5 

in agreement with the result of Pik- Pichak. 

(II.l4a) 

(II.l4b) 

For y less than this critical value, there is an energy barrier 

against fission. The fission threshold is defined as the energy 

difference between the saddle configuration given by Eq. (II.l3) and.the 

ground-state configuration given by Eq. (II.l2.). If we insert the ex­

pression for a 20 given in Eq. (II.l2a) into Eq. (II. 9a) and set 

a 22 = 0, the energy of the ground-state stable configuration, Eg' is 

then 

7 
E = 1 + 2x t y + g 6 

yz + 49 3 - ( z 
135 

2 
-y + .!i z 2) 
3 45 

[<i z)2 + 35 YJ/2 ' (1!.15) 
12 
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3 
where we have retained terms up to order z The energy at the 

saddle is given by inserting.Eq. (II.l3) in the energy expression. 

One finds 

98 
E 5 = 1 + 2x t y + 

135 

3 
z 

7 
zy~ 

6 
(II.l6} 

The fission barrier, EB' is the difference of Eqs. (II.l6) and (11.15). 

and has the value 

= 49 
135 

3 
z 7 

3 
( 3_ 14 

zy + y + 
3 45 

~YJ 1/2 • 

12 

(II.l 7) 

Our expression for the barrier differs from that of Pik-Pichak who 

has given an expression for the 

shape and the spherical shape. 

several values of z. Note that 

energy difference between the saddle 

Figure 2 is a plot of EB vs y for 

Pik~ Pichak 1 s equivalent of Fig. 2 gives 

a negative value for EB at large y as a consequence of his expression 

for the threshold. 

In Fig. 3 is illustrated the configuration of stable equilibrium 

and the saddle-shaped configuration for the values y = 0.01 and 

x = 0.85. These shapes have beeri determined by using Eqs. (11.12) and 

(11.13). 
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5.0 

0.07 

y 
MU-20842 

Fig. 2. Fission b,ar:ders EB, versus y = ER(O)/Es (O)• 
for several values of The parameter 
z = 1-x. These curves are calculated by using 
Eq. (II. 17). 
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X= E~0l2 r~>=0.85 

Y= E~Y E~> = 0.01 

tY 

tz 

MU- 20843 

Fig. 3. The axially symmetric ground state and nonaxially 
symmetric saddle- shape configurations at x = 0. 85 
andy= 0.01. These shapes have been calculated by 
using Eqs. (II. 12a}, (II. 13a}, and (II. l3b). 

. . 
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2. A Variation-Iteration Method 

A systematic study of the configurations of equilibrium of 

rotating charged liquid drops requires a means for calculating the 

energetics of such drops over the range 0 < x < 1, and for · y 

values ranging from zero up to that value for which the drop has only 

. neutral stability. In principle, the parametric method used in the 

previous section could be extended to handle the more general problem 

simply by introducing a sufficient number of a1~
1 s, and working with 

expansions of sufficiently high order, This approach has been adopted 

in many studies o! the conventional axially symmetric liquid-drop 

problem in which the effects of rotation are not included. Such a 

procedure here would involve considerably more labor, since many 

important features of the problem including rotation .require the in­

clusion of nonaxially-symmetric distortions. One recognizes that the 

parametric method could be facilitated for certain ranges of values 

of x and y by using a parametric expression in a"more suitable 

coordinate system, as for example in spheroidal or ellipsoidal 

coordinates, Several authors have employed prolate spheroidal ex-

. . . h . 11 . bl 16 • 24 An pans1ons 1ntreat1ng t e ax1a y symmetr1c pro em. ex-

pansion in ellipsoidal coordinates has been introduced by Poincare to 

treat the stable configurations of rotating gravitating liquid masses. 

At the present state of our understanding of the current :problem, 

however, we can suspect that such parametric expansions will each have 

its own limited scope of practical application. 

In this section we shall develop a method for treating equilibrium 

configurations which is independent of parametrization. The starting point 

for this method is a variational condition, relating the coulomb surface 

potential, surface curvature, and a rotational term, such that the sum 

of these terms at any po1nt on the surface has the same value if the 

surface is to be a surface of equilibrium. This variational principle 

has already been employed in the liquid-drop problem by Swiatecki as 
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a. starting point for a parametric study i'n prolate sphe_"r'o:i,dal 
. 23 24 

coord1nates. ' If the surface in question is not anequilibrium 

configuration, the sum of terms will vary from poi11,t to pqtnt on the 

surface. This deviation of the sum from a constant value is treated 

as a trial function which is added to the radius vector to generate a 

new surface and hence a new trial function. These two trial functions 

are in turn used as a basis for extrapola;ting to a third trial function 

chosen in such a way as minimize the mean square deviations of the 

sum over the surface. Successive applications of this procedure are 

used to reduce the mean square deviation to an arbitrary minimum. 

Once this minimum has been reached, the equilibrium configuration 

has been determined and its energetics are the11 computed .. 

The variational condition is determined by GOnside~ring the most 
~ 

general normal displacement, on , of the surface of the drop subject 

to the condition that the volume of the drop be conserved during this 

normal displacement. If the drop is initially in a configuration of 

equilibrium under the combined action of surface tension, coulomb 

forces, and rotational forces,. we know, from the principle of virtual 

work, that the first-order changes in the total energy of the system 

must be zero. This is expressed by writing 

oE = oEC + oES + oER = 0 

with 

J --...:>. ~ 
ov = on . dA = 0 

surface 

as the statement of conservation of volume. If V' is the surface 
s 

(II.l7a) 

coulomb potential and K 1 the total curvature of the surface, then 

to first order we have 

J ~ ~ 

oEc = pV' on. dA, s 
surface 

0 1 -" ~ oE
5 = K I on ° dA, 

surface 
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and 

2 2 L2 I 2 --lo. 

6E = 6 (___!:__ ) L p 
dA. - -

212 61 = - -ziY"m 
r I fn· 

R s •. 21 
surface 

where .r 1 S 
2 

is the square of the distance from the angular momentum 

axis to a point on the surface. Combining these expressions, we have, 

at equilibrium, 

6E = J 
surface 

If We chOOSe the quantity in the brackets to be a COnStant, r I, the 

constancy-of-volume condition insures that Eq. (11.17) is satisfied, 

since 

6E = J ~~ r 1 0:n _ _,.·dA=r• 6V=O. 

surface 

(II.I7b) 

There~ore, the condition that a certain configuration be a configuration 

of equilibrium can be stated as 

L2 
Pm I 2 

r S = r~ (II.l8a) 

Written in terms of :x: and y, Eq. (II.l8a) becomes 

2 
5x V S + K - Y r S = r (II.l8b) 

2 
Here V S' K , r S are expressed in units of their values for a sphere 

of unit radius and unit charge. Specifically, for a sphere we have 
4 2 

V S = TT .and = 2, and r
5 

varies in magnitude from zero to one. 
3 
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We are now prepared to describe the iterative procedure for 

generating configurations of equilibrium of the drop for various values 

of the two parameters x and y. The equation .for the surface of the 

drop can be described in terms of two variables; for this work it was 

found useful to work with a spherical-coordinate system and to describe 

the surface in terms of the two spherical coordinates' e and <I> • 

Having. chosen values for X and y, we specify an equation for 

an initial surface 

(a) R = R' 
0 

(e, cf>), 

and the volume of this configuration is normalized.to the volume of a 

sphere of unit radius, 

(b) R = R
0 

((J, cp). 

With this equation for the surface, the Eq. (Il.l8b) is .calculated 

at every point on the surface: 

{c) 5x V S + K 
2 y r s = r 0 (e. cp) • 

Here we have written r as a function of (J and cp · since in general 

our initial surface will not be a surface of equilibrium. 

The average value of r 
0 

(e, <j>) is calculated from 

(df r j r 
0 

(9, $) dA/ 

surface 
J 

surface 

dA. 

We then calculate the di.fference of r 
0 

((J, cp) from the average value 

at each point on the surface: 

(e) A r
0 

(B,<j>) = r
0 

(e,<j>)- F. 

The root-mean-square value of A r 
0

(8, cp) over the surface is_ 

then calculated: 

·•' 
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(f) 

The ratio /A. r 
0 

2 /I' is chosen as the criterion for judging 

whether the shape is an equilibrium configuration. The ratio 

/ AT
2 /I' is .a measure of the fractional rate of change per unit 

displacement from equilibrium. Near a configuration of equilibrium 

the energy varies quadratically with distortion and consequently 

J Ar 2 
/ r is of order Jon I , the order of magnitude of the distortion. 

R 

Examination of s.ome of the numerical results confirmed this con-

clusion, e. g.} on I ~j'IT"Z It follows then that AE r.~( /~r 2 fr> 2 
0 

R r E 

Rigorously, the shape is not an equilibrium configuration unless this 

ratio is zero. In practice the shape is conside·r:ed to be an equilibrium 

configuration provided this ratio is less than an arbitrarily chosen 

upper limit. If the ratio is less than this specified upper limit, the 

calculation is halted and the energetics of the drop are computed. 

Usually, however, the ratio is not sufficiently small at this point and 

the iterative procedure is continued. 

In continuing the cycle we desire a means for varying the 

surface in such a way that our convergence criterion discus sed in the 

previous paragraph can be made a minimum. To achieve this. we use 

Ar 
0

(8, cj>} as a trial function to be added to R
0

(8, cj>) to give the new 

surface. The .contributions to Ar (8, cj>) at any particular point on the 

surface are due to local variations in K 
' 

the rotational term, and to 

a certain extent to local variations in v . To correct fat this 
s 

variation in r at the point in question we displace the surface along 

its normal an amount proportional to the magnitude of AF at that 

point. Such a procedure is primarily intuitive; its justification depends 

on the success of the convergence. Specifically, we write 
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where k 1 is a suitably chosen constant, '? is the unit vector along 

the radius vector from the origin to a point in question on the surface, 

and '£' is the unit vector along the normal to the surface at the point 

in question. 

The volume of the shap~ given by operation (g) is normalized: 

(h) R = R
1 

(8, cj>) • 

Operations (c) through (b) are repeated, yielding ,/JA.r 
1

2 
. Using 

r---:,- I . 

the values~/ AT 
0 

2 
and /A.r 1 2 

and assuming that the relation between 
;-

1 .&.r
2 

and k is linear, we extrapolate to determine a new k
2 

chosen 

to· give zero for w. One has 

/ Aro2 
(i) k 2 = - k

1 
j JAr 1 2 -/ Ar o 2 

which is used to give a new R
2 

, 

(j) R2 1 (8, cJ>) 

The operations are then returned to operation (b) and the cycle is 

repeated. 

value for 

When the convergence is satisfactory, as indicated by the Rro 2 
/ r 

0 
, the cycle is halted and the energetics of 

·the drop computed. 

This iterative cycle has been coded for the IBM 704 using the 

FORTRAN symbolic coding system. The cycle has been coded to 

handle axially symmetric and nonaxially symmetric configurations 

with octant symmetry. To facilitate the convergence and to allow for 

greater accuracy in computing the energetics, we have left the mesh 
Tl 1 

A8 = Acj>_= - -
2 T 

size in the numerical integration formula, , as 

an adjustable parameter .by choosing different values for T. The 

details of these integrations and the expressions used for 

and I are discussed in Appendix B. 

V , K. , 
s 
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IlL DISCUSSION OF THE RESULTS 

The iterative cycle described in the previous section has been 

applied to finding the configurations of equilibrium of axially symmetric 

, drops for the range 0 2 x S.l• and 0 < y < 0.5. These equilibrium 

configurations are plotted in Figs. 4 through 10. The energetics and 

moments of intertia for these solutions are tabulated in Table I. 

In carrying out these calculations a compromise had to be 

made between the accuracy desired in the solutions, as determined by 

the mesh size, and the time available for computation. It was felt that 

in order for these results 1D beuseful in interpreting fission phenomena, 

the energetics should be more accurate than one part in a thousand. 

Most of these solutions were obtained with a mesh size T = 6. For this 

mesh the time required to complete a cycle was 72 sec, of which 20 

sec was used for tape writing in recording the running result. These 

calculations were continued until the convergence criterion, 

k 2 I r was less than w- 3
. For most of the results listed in 

-3 
Table I the convergence criterion is appreciably less than 10 

The iterative cycles were started in either one of two ways: 

for y 2 0.1 the cycle was initiated by·-reading in an a 2P 2 distortion 

with a. 2 =- 0.05; for y > 0.1, the cycle was initiated by reading in the 

previous solution at the same x value. For y < O.l, typical starting 

values of j ~r 2 /F were about 0.025. The number of cycles required 

for convergence depended on the x value but typically were 10 to 15 

cycles. The s.olutions for the largest values of y, those at x = 0.6, 

required 20 to 30 cycles. In most cases the iterations converged 

immediately, the largest fractional change occurring in }Ar 2 I r 
during the first few cycles. In a few cases for large y values, the 

result diverged. Starting with the solution at x = 0.6, y = 0.3, the 

iterative procedure for x = 0.6, y = 0.5 would not converge, but did 

so for x = 0.6, y = 0~4. The result for x = 0.6, y = 0.5 would not 

converge starting with x= 0.6, y = 0.4; convergence for this case 
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z X= E~Y2E~l.:0.90 
(O) (0) Y= ER/E5 = 0.0,0.014, 0.025 

Axial symmetry 

MU-20844 

Figo 4o The axially symmetric equilibrium configurations 
for x = 0. 90 and for various values of y. These 
configurations and those illustrated in Figs. 5-10 
have been calculated by using the variation-iteration 
method discussed in the text. 

•.. 

.. 
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z 

Axial symmetry 

MU-20845 

Fig. 5. Axially symmetric equilibrium configurations for 
x = 0. 80 and for various values of the rotation 

- parameter y. 
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z X= E~'l2 E1~l= 0. 70 
- (Ol (OLO 0 010 Y- ER/E 5 - .0, .06, . 

Axial symmetry 

MU-20846 

Fig. 6. Axially symmetric equilibrium configurations for 
x = 0. 70 and for various values of the rotation 
parameter y. 
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z X = E~>/2E~> = 0.60 

y = E<~~~~>=0.0,0.04, 

0.07, 0.10,0.20,0.30, 
0.40, 0.50 
Axial symmetry 

MU -20847 

Fig. 7. Axially symmetric equilibrium configurations for 
x = 0.60 and for various values of the rotation 
parameter y. 
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z 
X= E~0l2E1~>= 0.50 

y= E~YE~>= 0.0,0.10 

Axia I symmetry 

MU-20848 

Fig. 8. Axially symmetric equilibrium configurations for 
x = 0. 50 and for various values of the rotation 
parameter y. 

.• 

- # 
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. z X= E~'l2 E1~>= 0.25 

. y= E~1/E~01 =0.0,0.10 

Axial symmetry 

MU-20849 

Fig. 9. Axially symmetric equilibrium configurations for 
x = 0. 25 and for various values of the rotation 
parameter y. 
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z X= E~0l2 E<~>= 0.0 

Y= E<~rE<~>= o.o,o.lo,o.3o 

Axia I symmetry 

MU-20850 

Fig. 10. Axially symmetric equilibrium configurations for 
x = 0.00 and for various values of the rotation 
parameter y. 
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was accomplished by starting with the solution at x = 0.6, y = 0.4 

but with the values x = 0.6, y = 0.45. After five cycles this tentative 

result was restarted with x = 0.6, y = 0.5, and the <:;onvergence was 

accomplished. 

As a measure of the effects of grid size on the convergence 

cycle the case x = 0. 5, y = 0.1 was done a second time for T = 9. 

The initial values for / A.r 2/ r were identical in either case but 

convergence to the same final value required ~bout 4<Y/o more cycles 

for the T = 9 mesh. Since the time required for calculating the surface 

potential varies as T
3 

for these axially symmetric cases, the over-

all time required for convergence with T = 9 was appreciably longer 

than for T = 6. Both results are tabulated in Table I. 

The moment of inertia and the energetics of the final configurations 

are shown in Table I. The results listed in Table I are given in double 

entry. The first row corresponds to the result obtained directly 

from the energetics calculation. This result contains the inherent 

error due to the finite mesh size used in these calculations. Thes.e 

absolute errors are indicated explicitly for those cases marked (sphere), 

in which case the energetics were computed but the configuration was 

constrained to a sphere. One would suspect that the variation in 

absolute error from one shape to the next would vary less rapidly than 

the magnitude of the absolute error, at least for those shapes which 

do not differ markedly from a sphere. Therefore, we have listed in 

the second row the values for the energetics normalized by that same 

factor which gives zero error for the spherical solution. 

The error in the radius vector for these solutions has been 

determined by asking the convergence routine to converge on a sphere 

starting with an initial P 
2 

distortion and comparing the final calculated 

shape with a sphere. If ~ is the root-;rn.e an- s q_u a r:..e deviation 

of the radius vector from the 

for / Ar
2 /r.!::::!... 10-

3
. 

/
----2; -3 correct value, we find AR R < 2 x 10 
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Table I 

Energetics fqr rotating liquid d_r9ps 

x=E (0)/2E (0) 
c s 

-E (0)/E (0) 
y- R S Ec Es ER ET ./r-rz;r 

T X y 

6.00 0.00 Q.lO 0.00 1.00708 0.089737 . 1.867144 0.00056 
0.00 1.00417 0.089721 1.093891 1..867474 

0.00 0.30 0.00 1.03155 0.229670 2.188576 
0.00 1.02857 0.229628 1.258198 2.188963 

6.00 0.250 0.10 0.250016 1.00993 0.087140 1.922800 . 0.00066 
0.248617 1.00701 0.087124 1. 591368 1.923140 

9.00 0.50 1.00 0.501251 1.001277 1.000034 1.675458 
(sphere) o. 500000 1.000000 1.000000 3.000000 [..675512 

9.00 0.50 0.10 0.497301 1.015458 0.0829069 2.020960 0.00083 
0.496060 1.014163 0.0829041 2.089187 2.021024 

6.00 0.50 0.10 0.498199 1.0163.88 0.082958 2.019720 0.00083 
0.495411 1.013454 0.082943 2.087219 2.020077 

6.00 0.60 0.04 0.601331 1.006465 0.036165 1.853200 0.00023 
0.597966 1.003560 0.036158 2. 235650 1. 853528 

0.60 1.00 0.603377 1.002895 1.000181 1.675216 
(sphere) 0.600000 1.000000 1.000000 2.200000 1.675512 

0.60 0.07 0. 598892 1.01321 0.059372 1. 97 5456 0.00056 
0.595540 1.010129 0.059361 2. 260572 1.975805 

0.60 0.08 0. 598437 1.014574 0.067188 1.995016 0.00079 
0. 595089 1.011645 0.067176 2. 268999 1.9953.69 

6.00 0.60 0.10 0.596314 1.021155 0.080607 2.078616 . 0.00075 
0.592977 1.018207 0.080592 2. 284 7 53 '2.078984 

0.60 0.20 0.587144 1.052442 .0.141312 2.371376 0.00065 
0.583858 1.049404 0.141286 2.358442 2.371796 

0.60 0.30 0~577927 1.08635 0.191790 2.620848 0.00061 
0.574693 1.08321 0.191755 2.424351 2.621312 

0.60 0.40 o. 568243 1.123846 0. 233682 2. 868024 0.00055 
0.565063 1.120602 0.233640 2.484368 2.868532 

0.60 0.50 o. 559050 1.161362 0.269846 3.104584 0.0012 
0.555921 1.158010 0.269797 2. 539649 3.105134 

6.00 0.70 0.0 0. 703939 1.002895 o.o 1.675216 
(sphere) 0. 700000 1.000000 2.400000 1.675512 

o. 70 0.06 0.698569 1.013558 0.050760 1. 980504 0.00061 
0.694660 1.010632 0.050751 2.450703 1.980854 

o. 70 0.10 0.693761 1.02655 0.07.8368 2.138000 0.00077 
0.689879 1.02358 0.078354 2.481692 2.138378 

6.00 0.80 0.05 0. 796096 1.01877 0.040867 2.049920 0.0010 
o. 791641 1.01583 0.040860 2.63997 2 2.050282 

0.80 0.10 o. 789104 1.03598 0.075111 2. 230464 0.0015 
.. 

o. 784689 1.03299 0.075097 2.677465 2. 230858 

6.00 0.90 0.014 0. 902661 1.0054 0.012847 1.825832 0.00087 
0.897610 1.002498 0.012844 2.810562 1.826155 ,. 

6.00 0.90 0.025 0.898304 1.01325 0.021199 1. 985968 0.00081 
0.893278 1.01032 0.021150 2.818026 1.986318 
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It is interesting to compare the s.olutions in Figs.4 through 10 

with the calculated distortion given by Eq. (II.l2a). Over the entire 

x range, O<x<l, and for y ~0.1, the analytic result for the radius 

vector agrees with the calculated result to within a few percent. For 

x = 0.6, y = 0.5, the Eq. (II.lZa) gives a radius which differs by.l6o/o 

from the solution of Fig. seven. The analytic result Eq. (II.l2a) is useful 

over the entire range of x provided the distortions are small. 



VI. CONCLUSIONS 

The problem of determining the configurations of equilibrium 

of rotating charged drops has been considered. The effecfs ·of the 

rotational forces in influencing the fissionability of these systems is 

illustrated in Fig. 2. From this figure one concludes that the effects 

· of rotation are quite effective in reducing the fission barrier. Taking 
240 22 . 

as an example the bombardment of Pu by Ne to form a compound 

~ nucleus with an x 0='0~83, we have from Fig. l possible values for y 

ranging from zero to 0.05. For this case even a relatively moderate 

impact parameter, giving a value y = 0.02, has the effect of reducing 

the fission barrier to one-third its value for the nonrotating system. 

For the largest impact parameters with a Ne 
22 

projectile and over 
40. 

most of the range of impact parameters for A , the bombardment 

of targets near the upper end of the periodic table would result in 

compound systems which contain rotational energies in excess of that 

value necessary to give the system only neutral stability. We conclude, 

therefore, that in this range .of targets and projectiles these large 

rotational forces will inhibit the formation of the compound systems. 

The variation-iteration method described in the previous 

sections has been demonstrated to be useful in generating the con~ 

figurations of equilibrium of axially symmetric drops in the ranges 

0 < x < 1, and 0 < y ~ 0.05. This iterative procedure is adequate 

therefore to generate axially symmetric configurations over the entire 

range of values of x and y induced by heavy-ion bombardments with 
40 

projectiles as heavy as A and for energies up to 10 Mev /nucleon. 

It is planned to extend these calculations by using this .method to 

calculate the corresponding saddle~ shaped configurations. 
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APPENDICES 

Appendix A· 
·-'' 

In this appendix we shall derive the expres sions,for tl1_e moment 

of inertia, rotational energy, surface energy, Cc;rulomb potential, and 

Coulomb energy for small ellips.oidal distortions of a rotating liquid 

drop. 

Expressed in spherical coordinates 

of the drop is specified by 

with 

and 

p20 
1 

2 

2 
(31-l - 1) 

2 
p22 = 3 (1 - 1-l ) 

Volume Normalization 

f.L = cos 8, <j>, the surface 

'\~1 
The factor " is introduced in the expression for R to insure 

constancy of volume and is determined by the condition 

2TT +1 R 

: "Ro3 = 1 L1 2 
r drdf.Ld<J> . 

This expression yields, to third order in a
20

, a
22

, the value 

}-.3 = 1 + 3 
5 

36 2 
+ a22 

5 
+ 

2 

35 

72 

35 



Moment of Inertia and Rotational Energy 

The moment of inertia about the z-axis is given by 
2n +l R 4 2 

I ~ Pm( r [ r ( 1 - f.l. ) d:r df.l.d<j>, 

)o _).l _..~o 
where Pm is the mass density. To second order in a20' a22' we 

have 
8np R 10 2 216 2 m (-0- )5 (1 -I = 0.20 + - a20 +-- · a22 ) 

15 ~ 7 7 

Introducing into I the value for 

paragraph g:lves 

-5 
~ determined from the previous 

where I = s 

2 :1.32 
a20 + 

7 

The rotational energy, expressed in units of the surface energy 

of the drop, is then 

1 

where 

= E (0)/E {0) = 
y R s 

Surface Energy 

2 
/4nR 0. 

0 

The surface of the drop is given by the integral 

Es I = 0 fnJ+l D( f.l., <j>) df.l.d<j>, 

0 -l 

13.2 

7 

where 0 is a measure of the surface tension and is expressed in units 

of energy/unit area, For the int.egrarid D{f.l..-cP) we have recourse to 
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differential geometry
26 

to obtain 

( 
0 z + -
Clfl 

Using the relations 

x = R /1 - fl
2 

cos <1> , 

y=R/l-fl
2

sincj>, 

and 

z = Rf.L, 

we can show that the expression for D(fl, cj>) reduces to 

D(fl, <j>) = R [· l 
2 

1 - fl 

' J 1/2 ( oR )2 + R2 + (l _ fl 2) ( 8R)2 

o<j> ~fl 

Inserting the value for R, expanding the bracket using the binomial 

theorem, and carrying out the integrations over fl and cj>, we obtain 

E 
s = 1 + 2 

5 

2 24 
0.20 + 

5 

4 

105 

48 
+ 

35 

for the surface energy expressed in units of the surface energy of the 

sphere. 

Coulomb Potential and Energy 

with 

The Coulomb energy of the drop is given by the six-fold integral 

E 1 = 
c 

_E._ 

2 

2 
V (r., f.L, <j>) r dr. df.L. dcj>. 

1 1 1 1 

2n +1 R 

V(ri, ~'-;• <I>;) = p J 11 
0 -1 0 

1 2 
r. dr. df.L. d<j>. 

J J J . J 

where p is the charge density of the drop. 
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The first integra1 can be reduced to a two-fold integral over the 

surface by employing a de~ic~ used by Fra:.nkel and Met'ropolis following 

a suggestion of H. Hurwitz. ·IS If v' (R,fJ., <j>) is' the potential on the 
s 

surface of the drop, we have 

2n +1 
1 r ,--.._ 

E = E. I V (R,f.L, <j>) ( x )t + y f.L + z v ) D df.Ld<j>. 
c 5 

)0 
s 

)_1 

The ~. fi, and v are the direction cosines of the norrp.al to the 

surface and are given by 

}l = 

and 

1 

D 

1 

D 

1 

D 

Clx Elz 

Inserting the expression for x, y, z given in the section on the surface 
. 1 

energy one can readily show that the expression for E reduces: to 

E 1 = 
c 

_e_ 
5 

2n +1 

[[ 
c 

3 
V (R, f.L, <j>) R (f.L, <j>) df.Ld<j> • 

s 

For the evaluation of the potential we shall use a method due 

to Mudd. 
27 

The method begins by dividing the deformed drop i:hto an 

interior region defined by a surface (referred .to as th~ standard 

surface) plus an outer deformed shell. The potential at a point inside 

the standard surface due to the charge within the standard surface and 

the charge in the outer shell is given by Mudd's expansion. The 

calculation is faciiitated if we choose as the standard surface a sphere 

with a radius such that the surface of the deformed drop always lies 

outside the standard surface. It is essential to note, however, that the 

choice of the standard surface is arbitrary. The potential inside the 

standard surface due to the charge lying between the standard surface 



-42-

and the surface of the deformed drop is given by a series expansion 

in 6R (J.L, <j>), the thickness of the outer shell. 
' . : . 

If a is the radius of the standard surface, Mudd 1 s expansion 

is written 

2n +1 R 

V(r., J.L:, <j>.) = p 
1 1 1 

where 

r 
.) 

0 

2TI 

v<b> = p I 
0 

r 
I 

_; 
-1 

+1 

r 
_; 

-1 

2n + 1 
( ( 

I 
I = p I 

I 

-6 
and 2;r +1 

y(d) = p 

with 6R = R - a. 

./ 

0 

2 
r. 
_J _ 

r .. 
1J 

1 

2 '· 

1 

3'. 

2 
r. 
_L 

r .. 
1J 

dr. df.L. d<j>. 
J J J 

= v<a) + y(b) + y(c) + ..... 

r. 2] 
( ..:2_) 

a . 

r. =a 
J 

oa 

2 

L' (6R)
2 

df.Ldcp 
r.. , 

1J \rj = a 

2 
r. 
_J_ 

r . 
iJ r. =a 

J 

This series expression for V gives the potential at any point 

inside the standard surface. But since the choice of the standard 

surface is arbitrary, the result cannot depend on the standard surface. 

Therefore the potential expression. must be valid up to the surface of 

the deformed drop. ·The surface potential for the deformed drop is then .. 

obtained by setting· r. = R. 
1 

For the radius, a, of the standard surface we take 
R . ,. 

a =. ___!! (l - a.20 - a.22 
h l 

I) = ~o (I ~ n) ' with n = ho I ,+I nzz I . 

,, . 

•. 
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Then we can write 

.· Ro j_ l 
oR= R - a = -~- L20 p20(!J.) + 0.22 p22 (!J.) cos 2cp + :J . 
We shall now evaluate the four leading terms in the potential. 

For r. = R, the V(a) term becomes 
1 

In the .evaluation of the V(b), V(c), V(d), terms we shall have occasion 

to use 

and 

1 

r .. 
1J 

1 

a 

1; 

n=O 

r. 
1 n 

(--)P (IJ. .. ) 
a n 1J 

n 
p (!J. .. ) = :l: 

n ·1J 
{2- o ) (n-m) '· 

mO (n+m)'. 
P (!J..) P (!J..) cos m (cp.-cp.). 

nm 1 nm J 1 J 
m=O 

Inserting these expressions in V(b) gives 

y(b) = 4np Roa 

3 }.. 

If we set ri = R, and expand to third order in a.
20

, a. 22 , and a., V 

is written 

y(b) = 4np 
R .2 .. 2 3" 3 (-0-) (3a.-30. + a.20p2~ + a.22p 22cos. 2cp 

3 }.. 5 5 

3 
a. 0.20 p 20 + 

5 

(b) 
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3 
a.a.22p22 cos 2<j> + 3 2 

a.20p 20. + 
3 2 

2<j> + a. a. a. · P·· ·· cos 
5 5 5 

22 '22 

... 

6 2 2 6 2' 2 2 12 
a.22a.20P 20P 22cos + a.2o P2o +- 0.22 p22 cos 2<j> + -

5 5 . . · .. ·5· 

6 2 2 6 2 2 2. 
+ a. a.2o P2o + a. a.22 p22 cos 2 <1> 

5 5 

+ 9 
0.2 2 . 2 . 9 2p. p 2 2 

5 ° a.22P 20 P 22 cos 2 <1> + a.2oa.22 ·. 2o 22 cos 2 <1> 
5 

3 3p 3 3 3 3 . 3 2 
+ 0.20 • 20, + 0.22 p 22 cos <I>) • 

5 ~ 5 

For the evaluation of V(c) there appears in the integrand the factor 

l 
2 a r. 

_J_ 

2 1• aa. r .. 
1J r.=a 

J 

. The term V(c) .becomes 

= 
l 

2 
.I; 

n=O 

. r. . 
· 1 n 

(1-n) ( -) P ( f.L •.. ) 
a n 1J 

v<c) = 4np 

3 

2 { 3 ) - 2 36 2 3 
0.20 +- 0.22 ° + 

2 
a. 

.· 10 10 2 

3 ( _1_ ) ( -. ) p r. 
2 ~ l 2 l 12 2 

0.20 + -a. a. - 0.22 ·.. 20 
a · 35 5 : 20 35. 

+ ( l 
5 

2<j> 

. " 
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r. 4 ·t( -3(-1-) 3 . 2 6 2) p 
a20 + · a22 · 40 

a 35 35 

The terms in P 
40

, P 42 , P 44 will not contribute to the energy 

integral and will not be carried further. 

At r. = R, V(c) becomes 
1 

36 v<c) = 4TTp ( Ro , 
2 [2 2 

1 a20 + 
3 ~ 10 10 

2 2 24 2 2 
+ a a20 p20 - a a 22 P2o +--

5 35 35 

2 2 2 24 2 2 
+ a a20 p20 - ·- a20a22 p20 + 

5 35 ' 

3 2 
a 

2 

3 2 
a20 p20. 

2 2 
a22p 20p 22 cos a20 

35 

+ 4 
5 

P P ·2..h - 24 3p p 2"' a a20a22 20 22 cos 't' · a22 . 20 22 cos 't' 
35 

2<j> 



+ 

4 

35 

2 

5 
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In the integrand of V(d) there appears·. the factor 

02 
2 

1 r. ao r. 
_J_ 1 

~ 
1 n 

-2- = n (n-1) (- ) P (f.! .. ) 

3 '· oa r .. 3a n=O · a n lJ 
lJ r.=a 

J 

There is no contribution for n = 0 and n = 1, therefore the leading 

ter.m in y(d) will be a term in P
20

. In calculating the coulomb 

energy to third order in the a 1 s, this P 
20 

and other terms in V(d) 

will vanish under the f.!, cp integration; since this V(d) term does 

not contribute to the energy integral, we need not write out its ex­

pansion. 

Examining the sum V(a) + V(b) + V(c), we see that all terms up 

to second order which contain an a or a
2 

combine to give a zero 

result. One .can show that had we included the V(d) all terms in a 

up to third order would cancel. . This cancellation is an expression 

of the fact that the potential on the surface of the drop is independent of 

our choice for the standard surface. 

where 

The C_oulomb energy is given by the integrals 

E 1 = E l(a) + E 1 (b) + E l (c) + E l (d) 
c c c c c 

E (a) = 
c 

_£_ 

5 

•. 



. 
-~ 

.• t 

3 ( 4 np )2 1 1 (1 1 2 6 2 
= - -- 0.20 - 0.22 

5 3 Ro T 10 5 

7-- 3 36 . 2 

35 
0.20 + 

35 
a.20a.22 ) 

E (b) = _p J y(b) R 3 df'd<j> = 
3 Q2 1 3 2 

c 5 5 Ro 
")?" 5 a.2o 

~.cp 

36 2 12 3 432 2 
+ 0.22 + -a. - 35 a.20a.22 ) 

5 35 20 

E (c) = _e_ 1 ( 3 2 18 
T ~ a.2o + 5 c 5 

3 3 108 2 
- -- 0.20 + a.20a.22 ) 

35 35 
and 

E (d) = _e__ 
c 5 

j v<d) R
3 

df'"P = o 

~.cp 

Here we have set ( 
4

'1TP ) = Q, the total charge on the drop. Com-
3 -5 

bining the above terms, inserting the value for A , and expressing 

the Coulomb energy in units· of the fission parameter x = E (O) /2E (O), 
c s 

we obtain for the Coulomb energy 

1 
E = 2x (1 - -

c 5 

12 

5 
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Appendix B 

Here we consider some o.f the details associated with evaluating 

the various integrals appearing in the iterative cycle and with the 

integrals necessary for the energetics calculations. 

The surface of the drop is specified by points distributed over 

a 8, <j> grid in a spherical-coordinate system. The numerical 

integrations here have been limited to shapes with octant symmetry, 

that is, 

0 < (] < 
TT 

2 

and 
TT 

2 

There is no difficulty in extending the codes to quadrant symmetry. 

The mesh size, T, which determines the interval between successive 

points in 8 and ~ onJhe mesh is definedby 

!:::.(] = !:::.<j> = l TT 

T 2 

For these calculations T has ranged from five to seventeen, The 

coordinates of the points on the surface are recorded in rectangular 

coordinates x(8, <j)) , y(8, <j>), and z(8, <j>) expressed in terms of the 

two primary va~iables (] and · <j> . 

All volume infegrals are written as 'surface integrals. 

Volume: J 
volume· 

Moment of Inertia: I 
volume 

dx dy dz = . J y~D dOd~ 
. surface 

2 2 
(x + y ) dx dy dz = I 2 2 

(x + y ) z v D d8d<j> . 

surface 
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The direction cosines of the normal to the surface are :.. - -1\., fl., v • 

Th 'tt 1' . 1 26 ese are wn en exp 1c1t y 

and 

with 

)t = 1 
D 

1 
fl.. = 

v= 

D 

1 

D 

(~ ox 

ae a<P 

Bz By ) 

a e a <I> 

By Bx) 

ae 'a <I> 

0 2 = ( ~ ~ _ ~ &y ) 
2 

+ (~ ~ _ ox 8z) 
2 

+ (ax By _ By ax) 
2 

ae aq, ae a <I> ae aq, ae a <I> ae a <I> ae a <I> 

The derivatives are evaluated by using seven-point difference 

formulae given by Scarborough. 
28 

The surface integrals are 

evaluated using the seven-point cubature formula (double integration 

f 1 ) . b I . 29 ormu a g1ven y rw1n. 

The expres sian for the curvature, K , is given by a formula 

frorn differential geometry, 
26 

K = + 1 1 EN- 2 FM + GL = 
R2 D2 

where R
1 

and R 2 are the two principal radii. of curvature of the 

surface. The other quantities are given by 



and 

-5Q •. 

F = ax ax _ 'dy 2._ _ ~ a z 

ae o<J> ae o<J> ae o<J> 

a2 
M=}t __ x_+ 

a e a <I> 

a2 · 2 
y + - a z 
~ v --::--:::7 ' a e a e 

a2 . 2 . y - a z 
f.L --+ V--

(){:) a <I> ae o<J> 

The second derivatives are evaluated by using Scarborough's seven­

point difference formulae. The second-order mixed partial 

derivatives are evaluated by using a difference expression obtained 

by differentiating a mid-panel central-difference double interpolation 

formula given by Irwin. 29 

The fractional errors of these integrals and curvature when 

evaluated for a sphere are illustrated in Fig. 11 for various values of 

the mesh size, T. 

The expression for the surface potential is alsc> written as a 

f . 1 30 sur ace 1ntegra , 



r .. ( 

-51-

5 7 II 

T 

MU-20851 

Fig. 11. Fractional errors in the numerical formulae 
used in the variation-iteration method plotted versus 
the mesh parameter T for spherical shapes. Here 
~ Vol/Vol = error in volume; ~I/I = error in 
moment of inertia; ~R/R = error in the rotational 
term; ~ Ren/Ren = error in the volume 
renormalization; ~K/K = error in the curvature. 



V (r) ::: 
s 1 

volume 

V (r) - -
s 

1 

2. 
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dx 1 dy 1 dz 1 = 1 

2. 1 jr- r' 1 surface 

1 (x- x'))t + (y- y')f+ (z- z')v Dd8' d"''· 
r, z. z]Pz. 't' ~X - X I) + (y y I) + (z - z I) / 

surface 

The fractional error in the potential when evaluated for a sphere is 

illustrated in Fig. 12. for the cases of a one-point and a three-point 

cubature formula. The error near the poles is the same for either 

case, but the error near the equator is less for the three-point formula 

than for the one-point formula. 

In carrying out the numerical integrations for the cycle, the 

evaluation of the surface potential requires more than half the total 

time. The evaluation of the potential using the three-point cubature 

formula requires approximately 2.5% more time than does the one-point 

formula. Although the three-point formula gives a better relative error 

over the surface, it does not improve the absolute error. Consequently, 

for these calculations it was decided to use the one-point cubature formula 

in the iterative cycle and to rely on varying the mesh size to improve 

the accuracy. 

The coulomb energy is evaluated using the same integral 

discus sed in Appendix A, that is 

1 

5 1 
surface 

V (x)t + y fJ. + z v) D d 8 dcp, 
s 

"I • 
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Polar error 

5 7 II 

T 

MU-20852 

Fig. 12. Fractional error in the Coulomb surface potential 
as a function of the mesh parameter T for a sphere 
and using a one-point or a three-point cubature 
formula. 
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again using a seven-point cubature formula. The rotational energy 

is determined once the moment of inertia is calculated. The surface 

energy is given by the integral 

0 ) n de d<J>. 

surface 

• 
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