Lawrence Berkeley National Laboratory
Recent Work

Title

THE LIQUID-DROP MODEL OF FISSION: EQUILIBRIUM CONFIGURATIONS AND ENERGETICS OF
UNIFORM ROTATING CHARGED DROPS

Permalink
ttps://escholarship.org/uc/item/4916q93f

Author
Hiskes, John R.

Publication Date
1960-06-16

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/4916q3ff
https://escholarship.org
http://www.cdlib.org/

RN AR / am

UCRL 9275

- UNIVERSITY OF
CALIFORNIA

i‘ Ernest O owronce
Radiation
Laborator

THE LIQUID-DROP MODEL OF FISSION:
EQUILIBRIUM CONFIGURATIONS AND
ENERGETICS OF UNIFORM
ROTATING CHARGED DROPS

i fn AN 3 v "Cg ? »
EREN v .

e

“ . 4

TWO-WEEK LOAN COPY %%

This is a Library Circulating Copy

‘which may be borrowed for two weeks.
For a personal retention copy, call

Tech. Info. Division, Ext. 5545

_ ‘ e,




DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.



el SR : *‘JJ;R},L;‘)Z"/S

UG-34 " Physics and:Mathematics

TID-4500 (15th Ed.)

‘UNIVERSITY OF CALIFORNIA

Lawrence Radiation Laboratory
Berkeley, California

Contract No. W-7405-eng-48

THE LIQUID-DROP MODEL OF FISSION:
EQUILIBRIUM CONFIGURATIONS AND ENERGETICS
OF UNIFORM ROTATING CHARGED DROPS

John R. Hiskes

(Thesis: Part I)

June 16, 1960



. - .
+
N 1 '
L. ¢
: . - *
O *
AR R »t Lot : b4 -
4 - -
. - e
N - e i 0 v."';"" .
i - IS ‘ - . #o 1E4 g4
.~ . *
. e j o SO " Iit ~: 4
- s oL LW k4
. PR . P .

Printed in USA. Price $1.25. Available from the
Office of Technical Services
U. S. Department of Commerce
Washington 25, D.C.

‘\

< €



# ~ THE LIQUID-DROP MODEL OF FISSION:
_ EQUILIBRIUM CONFIGURATIONS AND ENERGETICS
< OF UNIFORM ROTATING CHARGED DROPS
4 . Contents
v . Abstract . . . .
- I. Introduction ., .
-II. Quantitative Discussion
A, Kinematics
B. Analytic Calculations for Equilibrium Configurations
1. Parametrization '
2. A Variation-Iteration Method .
III. Discussion of the Results , . ., . . . . . . . .
IV. Conclusions
Acknowledgments |, |, | |
Appendices
Appendix A |, |, ,
' Appendix B , , .
References e e e e e e
{ ga

L e

11
11
20
26
36
37

38
48
53



THE LIQUID-DROP MODEL OF FISSION:
EQUILIBRIUM CONFIGURATIONS AND ENERGETICS
OF UNIFORM ROTATING CHARGED DROPS

John R. Hiskes

Lawrence Radiation Laboratory
University of California
Berkeley, California

June 16, 1960
ABSTRACT

The ’problem of finding the equilibrium configurations of
uniform rotating charged liquid drops is considered. An analytic
treatment is given based on a parametric expansion for small ellipsoidal
distortions about a sphere. This treatment is applied to finding the
ground-state conﬁrgurations and the saddle-shaped configurations leading
to fission as functions of charge and angular momentum of the drop.
A variation-iteration method for generating the configurations of

equilibrium is described. The method is applied to finding the con-

figurations of equilibrium of axially symmetric drops over the range

0 <x <1 and 0 <y <0.5, where x is the ratio of the coulomb
energy to twice the surface energy for a sphere, and y is the ratio of
the rotational energy to the surface energy for a sphere. The
energetics of these configurations are calculated; the fission thresholds

are calculated in the range of applicability of the parametric expansions.
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-system is increased.

I.. INTRODUCTION

The introduction of heavy -ion accelerators in nuclear research

.makes p0551b1e exploratlon of nuclear reaction phenomena in which

very large orbital angular momenta are involved. The neon beams

available from the Berkeley and Yale heavy ion accelerators are

capable of inducing nuclear reactions on heavy nuc1e1 in which orb1tal

angular momenta in excess of 100 units of i are encountered. There

is an increasing amount of experimental evidence to suggest that a -

large fraction of the total cross section is due to reactions in which

the incident heavy ion fuses with the target nucleus to form a compound

system. One would hope that the existence of such compound systems

_carrying large amounts of angular momenta would provide a means

for studying the inertial properties and the stability of large rotating
masses of nuclear matter, |

An important mode of de-excitation of these compound systems
is the fission process, For targets near the upper end of the periodic
table, the.fission mode overwhelms all other de-excitation mechanisms;
for lower-2Z targets, neutron emission becomes competitive, but
fission induced by heavy-ion bombardment has been observed with
targets as low as _H067165. One might suspect that ex.ist'ence of
rotational forces in the compound system would significantly affect
the fissionability of the system., Theee rotational forces should become
part1cu1ar1y 1mportant for low-mass targets where the centmfugal
forces may become 1arge enough to prevent the formatlon of the com-
pound system. Flerov and collaborators have shown that in the
bombardment of gold by nitrogen ions the flss1onab1l1ty of the compound

system is strongly enhanced relative to neutron em1s smn as the energy.

of the incident ion and hence the orbital angular momentum of the compound

2,3



In this paper we shall consider the energetics and forms of
equilibrium of uniform rotating charged 11qu1d drops as a starting

point for a liquid-drop model study of the effects of rotation on fission.

Specxflcally, we shall be concerned here vnth flnd]ng the lowest energy |

stable configurations of a rotating charged drop subJect to a surface
tension, and the lowest-energy saddle shape conflguratlons leading to
the fission of the system. The energy difference between these two
configurations is defined as the fission barnero We should empha31ze
that a complete s,tudy.of the configurations of equlhbrlum would involve
discussion of the configurations of higher e.nergy and the various linear
series of these shapes and their points of bifufcatiori Appel has out-
lined such a survey for the analogous problem of rotatlng gravitating
masses. 4 "The conventlonal liquid-drop model, contalmng a term in
the coulomb energy and a term in the surface energy, is here extended
to include in addition a rotational—energy term. In this work we are
concerned with configurations of gyrostatic eqﬁilibrium,v in which the
drop, in its .equilibrium.eonfiguration, is rotating as a rigid body.

There are many articles in the literature on the problem of the

configurations of equilibrium of rotating liquid masses as a consequence

of the work on rotating gravitatiﬁg liquid masses by Darwin, Jeans,

PoincaTe, Liapunoff and others. 6-12 More recent'lyp Lyttleton has

reconsidered these problems, primarily from the point of view of

astrophysical interest, 13 Appel has discussed in addition the problem

of a rotating mass subject to a surface tension, both with and without
the gravitation term. The first to consider the problerh of the con-
ﬁguraﬁons of equilibrium of a rotating charged liquid dvro'p was
Pik-Pichak, -whose interest in the problem was also iﬁspired by con-

siderations of heavy-ion-induced fission, -

©
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In the next section we shall follow this earlier work of
Pik-Pichak and consider small ellipsoidal distortions about the
spherical shape. We shall derive expressions for the distortion
parameters which determine the shapes .of the ground states and ‘
saddle sha;.pes in the limit where these shapes deviate only slightly
from spherical configurations. Also, we shall derive expressions for
the energy barrier against fission, "

In the succ‘eéding section we shall describe a variation-iteration
method for generating configurations of equilibrium as a step toward
the general solution of the problem of finding the configurations of
equilibrium of uniform rotating charged liquid drops. This method is
applied to the axially symmetric ¢onfigurations .covering the entire
range of charge states of interest and covering a wide range of
rotational states. These equilibrium shapes and their energetics are

illustrated in the enclosed graphs and tables.



II. QUANTITATIVE DISCUSSION: .

A, Kinematics

To illustrate the orders of magnitude of the orbital:angular
mémehfa and rotational energies the compound nucleus can assume,

" we shall begin the discussion with a few elementary kinematic con-
siderations. For a quantitative estimate of the maximum angular

: moment.um of the compound system we shall assume the incident heavy
'ion follows a trajectory which gives it aglancing contact ';W-ithvthe target
nucl_erus.v There is considerable uncertainty however; regarding the
‘shape of the incident projectile and of the target nucleus irnmediately
‘prior to the collision, In addition, if we have estimated a value for
the angular momentum of the system, the rotational energy of the
compound system is not determined until a moment of inertia and
hence a shape for the compound system-is also specified. The
solution of these problems would require a detailed dynamical study
of the collision process and s.ubséquent motions of the compound
system, a study which is beyond the scope of this paper. For the
purposves of these estimates we shall disregard these dynamical
prdtesses.r-and take the projectile, target, and compound system to
have spherical symmetry.

Let eZ;, eZ,, and Ay, A, be the charges and mass numbers
of the incident ion and target nucleus, respectively. Assuming the
two nuclei to be spherical at time of contact, their respgctive radii
‘are R, = rOA11/3, and R, =1 A 1/3. If E_ =EA27'(A1+A2) Elall,

1 0" 2
and p=m AlAZ/(A1+AZ) are the energy in the center of mass and

reduced mass, respectively, the orbital angular momentum contained

in the system is
> 1/2
e ZIZZ -
L=R ZH‘Ec.m - —_— (IL. 1)

o

*



where R = ry (A1 1/3 + A21/3) . As an illustration of the values L

238 22
e

can assume, consider the bombardment of U with .Clz,_ N and

A4O, ‘respectively. If we use Elab = 10 Mev/nucleon and

ry = 1L2X 10-13 cm, and set NER® , Eq. (II.1) yields £ wvalues of
48, 99, and 158, respecfively; if we choose rg = l.,5><1.0-13 cm,
we have £ =71, 133, and 238,

For an estimate of the upper limit of rotational energy carried
by the compound system, assume the compound system to be carrying
an amount of orbital angular momentum given by Eq. (II.1). Such an
estimate of the rotational enérgy.for the ground-state configuration
must be an overestimate since as we shalllse‘e in later paragraphs
the lowest configuration of equilibrium will have an. approximately -
oblate shape; i.e. a higher moment of inertia.

‘Pik-Pichak has defined the parameter

Rotational energy of spherical drop _ L’ /4 TR 2o
= C ?

Surface energy of spherical drop ZIC

where Ic and RC are the moment of inertia and radius of the compound
system, and O is the surface energy parameter. It is easily shown

that y has the value

2 .
ALl 4| ‘ 2
5 1 A2 e leZ 1

2 E
A \110/3 c. m, 2

2 Az5/3{1 *<A1>. R [ amr %0
2 (I1.2)

In Fig. 1 this function is plotted against A2 for several values of Al“

y:

The values for Z2 have been chosen to correspond to values lying

close to the line of stability of the periodic table. For these calculations

we have taken 47 r '20 - 17.81 Mev and r. = l.5><10=13.cm.

0" 0
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Fig. 1. Values for the rotational parameter, y = E; (0)/E (0),
s

for a spherical compound nucleus formed by :
a glancing collision of either Clz, Nezz, or A40
with targets of mass number AZ'
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- Below a certain value of A‘2 ‘this curve will actually exceed
the upper limit of energy available in the center of mass. 15 -For the
ratio of rotational energy to center-of-mass energy one finds (again

for idealized spherical nuclei)

. ‘ 2., ., i/3,,1/3.2
Eot 5 % [ e Z;Z, AT HAT)

" E T2 (A + A IV‘E R la +a,23
c.m. ( l,+ 2) : “c.m. C ( 1 2 '

In Fig. 1 the point at which w is. equal to one is indicated by the short
vertical lines. < We emphasize again that because of the simplification
of assumed spherical symmetry this value of ’A‘2 ~may have no
particular significance. Indeed, in.the spirit of the approximations

at hand one would expect the condition w =1 to occur at a lower value

of A‘2 than calculated here due.to the oblateness of the ground state.

<y

e

o
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B. Analytical Calculations for Equilibrium Configurations <

-1, Parametrization .

In this section we shall consider the shapes. of-eqﬁilib‘rium
and energetics of a uniform rotating charged liquid drop. In a

first approximation to this problem we proceed in the conventional

b

way and describe the shape of the drop with a radius vector whose
angular dependence is introduced pé.ra.metrically. 16-24 In most
treatments of the liquid-drop model the different configurations of
the drop which are to be studied are limited to axial symmetry.
However, with the intr-oduction o‘f rotation into the problem, intuitive
considerations suggest that configurations that are not axially

. symmetric will also be of considerable importance. After the fission
of a rapidly rotating liquid drop, one would .expect the fragments to
separate from each other in a plane which is oriented approximately
at right é.ngles to the angular-momentum axis of the compound .system.
.One would not expect therefore that the saddle-shaped configuration
that leads to fission would be axially symmetric about the angular-
momentum axis. |

For the nonrotating problem and in the limit that 1-x < <1,

the primary features of fission can be described by éonsidering only
an QZOPZO (cos 0) distortion. This suggests that in the same limit

but with rotation we consider an equation for the surface of the drop

which has the form

R 4
_ 0
R = T [l + a0 PZO (cos 0) + a5 P22 (cos 0) cos 2¢:|,

with (11.3)
(3 -1) | D

L
|

20 >
and ‘ .

3 (1 - pz) .

i)
"

22
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The =z \ax’is’, 6 = 0, will be taken as the axis of rotation. Ezzlnation
(I1.3) describes a drop with an approximately ellipsoidal shape, i.e.
with three unequal axes, and with the principal axes. of the ellipsoid
oriented along the coordinate axis. A term in .a21P21 (cos 8) cos ¢
which might also have been included has been suppressed since such
a term, for small a5 has the effect only of tipping the e111psold with

respect to the pr1nc1pa1 axes, Here we are concerned with the con-

figurations of equilibrium which have minimum energy. The surface

and coulomb energies are independent of the or1entat10n of a particular
shape, but the rotat10na1 energy of the lowest e111ps01da1 saddle shaped
conflguratlon will be a mlnlmum when the principal axes are oriented
along the coordinate axes.

For the calculation of saddle-shaped configurations and
energetics, we - shall require terms up to third order in asyr %o
The normalization factor M in Eq. (IL.3) is determined from the

condition
217 +1

- 2 U | | | |
4 L [ [ dr dudo, (II.4a)
3 ‘ _

- -1 0 | : '

and has the value

2 36 2 2 3 12 2

SRR 52 %20 T T %22 *t7%0 " 17 %20°%22 ¢
(1. 4b)
The moment of inertia 1s given by
2n +1 R
] fj (l-u)drdudcb;,
- R05 (1 -azyt 2 @207 2 °zoz+l’3‘2_ “222)

i5 - ™ 7 7 7
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The rotational energy, measured in units of the surface energy of a
sphere, 'is then v A
. L 2. 4 2 132 2
: 21, - | S . (IL.6)

C
The rotational energy is given only up to terms of order. '0'2()2’ .-0;222,

'since the factor y is already a first-order quantity. In Appendix
A the surface energy, coulomb potential, and coulomb energy are
evaluated. The surface energy, measured in units of the surface energy

of a sphere, is given by the integral

2n 41 JooN2 o, fo\271/2
: 1 r ‘ 1 OR 2 2. {6R
Eg= ——— | | R =) +R“+ (1-p )(f J dpdé
S 4mR b I:I-HZ o4 . o
ST o ‘ (IL.7a)
and has the value . |
Eg= (1 + 2 a202 Ll “zzz __i‘f__a203 L 48 azbazz‘z). © (IL.7b)
5 5 105 “Y 35 :
The coulomb energy )
o 1 2t +1 R 2 2m +1 R >
EC = m /' 1"” ‘!:' pr dr dpdd : ? 5—‘p—,‘!‘.r' dr' dp'dé!
0 [ o aEeT (IL.8a)
becomes 0 <170 0 -1 7 ,
2 : ' y
3. Q 1 1 2 12 2 4 3, 48 2
E.= = = (1- = a - = a -— a + — a,,a ) -
© 5 R 4amrf0 5 0 5 22 qo5 20 T35 20022

(I1.8b)

Expressed in units of the fission parameter x = EC(O,)/ZES(O):Eq. (I1.8Db)
becomes ' |

2 12 2 4 3 48

1 2
=2x(l - = a - — a - — a + — a a ) .
C 5 20 5 22 105 20 35 20 22

E (11.8c¢)

ef
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The total energy, to third order, of the rotating liquid drop is then

24

2 2
E-_—1+2x+—a20 (l--x)+—;—o.22

5

+y(1+0.20+ — 5,

2'(1 - X)-

3520

4 2 132

7 7

fl..a 3+___.

35.

144

%20%22

QZZ'L

(I1.9)

Comparing our result in Eq. (II.9) with a similar result given

by Pik-Pichak, we see that there is a consistent factor-of-six .
difference in the 0222 terms, Pik-Pichak has chosen to define the

a in conjunction with the D{(a, p, 0) functions > rather than with the

22
PZZ polynomial as is done here,

written

-

-
pm—

R =

1+ a20' P20 +

> |ow > Iow

R =

e

-1

——————

v

6

L+a,0Dp0 t 25, Dypt oy 2D -ZJ

0’22P22 cos 2¢:|

His equivalent to our Eq. (IL.3) is

with a, > ="a2 2 Because of the different normalization of the D's,

his a,, differs by a factor of ,/ 6 from the choice of a

paper.

used in this

Those distorted shapes that are equilibrium configurations are

determined by the conditions

and

with yield the two equations

12 2 144
35

— Z -

5 20 35

(I1.10)

(II.11a)

- N
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andrw S L
48 288 - 264 ,‘ (IL.11b)

— a z 4+ ——"a a - — a y =0.
5 22 35 20 »ZZ, 7 2_2’ .

Here we have set z = 1 - x. With a,5 = 0 the first of these equations

- gives an axially symmetric equilibrium configuration; the. value of the A
distortion parameter is given by . :

- 15 -1 5 235 /2 ' ,

azoz — z+ — y+ E( —z 4+ =-y) 4+ — vy . (11.12a) -

The negative sign corresponds to an oblate svpherolid,V the positive sign
gives a prolate spheroid. The prolate spheroid is a saddle-~shaped,
leading to fis sion along the angular-momentum axis. This s»&ddlé'has
a higher energy thén one discussed in succeeding paragraphs and is

therefore not of interest here. Expanding the radical in Eq. (II.12a), we

have _
5
G = - = y/z (11.12Db)
For a,, # 0, the Eq. (IL.11b) gives
o =15 LT,
20, 6 |
Inserting this value for a5 in Eq. (II.1la), we have
21 ,7.% 2 5 35 275 2
0.22 = = (=) (z - -—y) - — yz - —y . .+ (II.13a)
4 6 7 24 576
Corresponding to this nonzero value for a,,, we have for ajg .,
7, . s 7 5 2. 35 2] V2
'aZO: —z+ —y- (= z4+ =y) + -—y+120,2 . (I1.13Db)
| 6 3 6 3 12 2 "

Equations (II.13a) and (II.13b) represent an ellipsoidal equilibrium
‘configuration which is the lowest-energy saddle shape the drop can
assume. Equation (I1.12) is the lowest-energy stable configuration of

goes to 0, -and this axially symmetric

o

the drop; as y goes to 0, %0

ground state tends to a sphere.
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One would suspect that for a fixed valué ofi X, ihcfeasing the
rotational energy of the drop would ultimately lead to an instability
of the axially symmetric ground-state configuratiam. Stated in another
way, one expects that as the rotation increases, the saddle-shaped
confiﬁguration tends toward the ground-state configuration, and for
that value of rotational energy at which these two configurations

coalesce the drop has neutral stability... This is expressed by setting

2

B __ 48, 288 264 _g
a,uzzz 5 35 40 7

and combining this result with Eq. (II.12) to give the critical relation
between y .and z. This critical value for y for which the drop has

neutral stability is then
1/2 '
2
g= 2 (1462 - l: (22 (14 6mt. & Zz] : (IL 142)
7 7 5 -
Expanding the radical and retaining the first few terms gives

y:

o |~

z2 (1 - 62), ' : . (II. 14b)

in. agreement with the result of Pik-Pichak,

For y less than this critical value, there is an energy barrier
against fission. The fission threshold is defined as the energy-
difference between the saddle configuration given by Eq. (II.13) and the

ground-state configuration given by Eq. (I1I.12). If we insert the ex-

pression for a0 given in Eq. (II.12a) into Eq. (II.92a) and set

a,, = 0, the energy of the ground-state stable configuration, Eg’ is

then

Eg=l+2x+y+1 yz+ﬂ z3-(—2-y+--—z)
3 .

6 135
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where we have retained terms up to order z3. The enérgy at the .
saddle is given by inserting Eq. (II.13) in the energy expression.

One finds _ T,

ES =1 4+2x+y+ 98 z3 - L zy. (I1.16) - "
' 135 6 .
The fission barrier, EB, is the difference of Eqgs. (I1.16) and (11.15),

and has the value

1/2
4 3 2 z
- E =__9_ z ..1 zy+(£ Y'I’ﬁ z) (Z. z)+ ?’_.s_y .
135 - 3 3 45 6 12

(11.17)

Our expression for the barfier differs from fhat of Pik-Pichak who
has given an expression for the enefgy difference between the saddle
shapg and the spherical shape. Figure 2is a plot of Egvs y for
several values of z. Note that Pik-Pichak's equivalent of Fig. 2 gives
a negative value for EB at large y as a consequence of his expression
for the threshold.

In Fig. 3 is illustrated the configuration of stable equilibrium
and the saddle-shaped configuration for the values y = 0.01 and »
x = 0.85. These shapes have been determined by using Eqs. (II.12) and
(II.13).
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Fig. 2. Fission barriers E_, versus y = ER(O)/ES(O),

o for several values of &e parameter
z = l-x, These curves are calculated by using
Eq. (II. 17).
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2. A Variation-Iteration Method

A systematic study of the configurations of equilibrium of
rotating charged liquid' drops requires a means for calculating the
energetics of such drops over the range 0 <x <1, and for y

Vé.lues ranging from zero up to that value for which the drop has .only

_neutral stability. In principle, the parametric method used in the

previous section could be extended to handle the more general problem
simply by introducing a sufficient number of ah;n' s, -and working with
expansions of sufficiently high order. This approach has been adopted
in many studies of the conventional axially symmetric liquid-drop
problem in which the effects of rotation are not included. Such a
procedure here would involve considerably more labor, since many

important features of the problem including rotation require the in-

.clusion of nonaxially-symfnetric distortions. One recognizes that the

parametric method could be facilitated for certain ranges of values

of x and y by using a parametric expression in a.more suitable

" coordinate system, as for example in spheroidal or ellipsoidal

coordinates. Several authors have employed prolate spheroidal ex-
pansions intreating the axially symmetric pr.oblem. 16, 24 An ex-
pansion in ellipsoidal coordinates has been introduced by Poincaré to

treat the stable configurations of rotating gravitating liquid masses.

At the present state of our understanding of the current problem,

however, we can suspect that such parametric expansions will each have
its own limited scope of practical application.

In this section we shall develop a method for treating equilibrium
configurations which is independent of parametrization. The starting point
for this method is a variational condition, relating thé coulomb surface
potential, surface curvature, and..a rotational term, such that the sum
of these terms at any point on the surface has the same value if the

surface is to be a surface of equilibrium. This variational principle

- has already been employed in the liquid-drop problem by Swiatecki as
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a. starting point for a parametric study in prolaté ‘spheroidal - ' .
coordinates. 23,24 If the surface in question is not an equilibrium
configuration, the sum of terms will vary from point to point on the .
surface. This deviation of the sum from a constant Vaiue is. treated
as a trial function which is added to the rad'nis vector to generate a
new surface and hence a new trial function. These two trial functions
are in turn used as a basis for extrapolating to.a third trial function
chosen in such a way as minimize the mean square deviations of the
sum over the surface. Successive applications . of this procedure are
‘used to reduce the mean square deviation to an arbitrary minimum.
‘Once this minimum has been reached, the equilibrium configuration
has been determined and its energetics are then computed. .

The variational condition is determined by considering the most
general normal displacement, _5}? ,- 0f the surface of the drop subject
- to the condition that the volume of the drop be conserved during this
normal displacement. If the drop is initially in a configuration of
equilibrium under the combined action of surface tension, coulomb
forces, and rotational forces, we know, from the principle of virtual
work, that the first-order changes in the total energy of the system

must be zero. This is expressed by writing

§E = SE . + 8Eg + 8E5 = 0., - _ . o (II.17a)

C
with .
—_— ——
5V 6n - dA =20

surface

I

as the statement of conservation of volume. If V'S is the surface
coulomb potential and k' the total curvature of the surface, then

to first order we have o .

- 1 = . 33 . .
GEC f stén dA, o,
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and

2 2 2

L, L L P . 2 ey N

8E; =6 (=)= - = 6I=- —Pm f.-r' “%-. dA,
R 21 21° 21 Y

surface
where .r'S is the square of the distance from the angular momentum
axis to a point on the surface. Combining these expressions, we have,

at equilibrium,

L2 |
SE = V' +0 k! __Z__Pm r ZJTE IE- 0
= p . s K. - 21 ‘ S - °

surface . (ILI7b)

If we choose the quantity in the brackets to be a constant, I'*, the

constancy-of-volume condition insures that Eq. (II.17) is satisfied,

since

—n N :
-6E= / 't én-dA =T" 6V = 0.
surface

Therefore, the condition that a certain configuration be a configuration

of equilibrium can be stated as

2
L P 2
pV'S+O k! - r'S =T, S ' (I1.18a)
212 _
Written in terms of x and y, Eq. (II.18a) becomes
| 2 _
5x Vs+.i<-yrs =T . v (1I1.18b)
Here VS, K rS2 ‘are expressed in units of their vé.lues for a sphere

of unit radius and unit charge. Specifically, for a sphere we have

4 C s . :
Vo= — 7 and = 2, and rg varies in magnitude from zero to one.

S 3
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We are now prepared to describe the iterative procedure for
generating configurations of equilibrium of the drop for various values
of the two parameters x and -y. The equation .for the surface of the - .

drop can be described in terms of two variables; for this work it was

found useful to work with a spherical-coordinate system and to describe >

the surface in terms of the two spherical coordinates, 6 and ¢ .
Having chosen values for x and y, we specify an equation for -

an initial surface R '
(a) R =R';(6,9),

and the volume of this configuration is normalized .to the volume of a

sphere of unit radius, .
(b) R =R, (6, ¢).
With this equation for the surface, the Eq. (II.18b) is calculated

at every point on the surface: v
() 5% Ve + & - 2. T (0, )
C S K Yrs = 0 { ;¢ °

Here we have written I as a function of 6 and ¢ sincé in general

our initial surface will not be a surface of equilibrium.

i The average value of I"O (6, ¢) is calculated from
(dy T f 1"0 (6, ¢) dA/ ] dA .

surface : : " surface

We then calculate the difference of ]."0 (6, 45) from the average value

at each point on the surface: - - o -
(e) AT, (6,¢)=T, (6,¢) - I |
The root-mean-square value of A FO(G, ¢) over the surface is. -

then calculated:
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2 1/2
o YZT,? - f [ar, ©.0)] aa/ f da .

surface gurface

The ratio / A_f‘OZ/T‘ is chosen as tjhe cfiteripn ‘fér judging
whether the shape is an equilibrium configuration. The ratio
‘/Z H"Z/T‘ . is a measure of the fractional rate of change per unit
displacement from equilibrium. Near a configuration of equilibrium

the energy varies quadratically with distortion and consequently

VAT /T is of order ]6£| , the order of magnitude of the distortion.

R
Examination of some of the numerical results confirmed this con-
. 2 2
clusion, e.g.lin—] aeN.——— . It follows then that AF ~(YRTT/TY
R T E

Rigorously, the shape is not an eQuilibrium configuration unless this
ratio is zero. In practice the shape is considered to be an equilibrium
configuration provided this ratio is less than an arbitrarily chosen
upper limit. If the ratio is less than this specified upper limit, the
calculation is halted and the energetics .of the drop are computed.
Usually, however, the ratio is not sufficiently small at this point and
the iterative procedure is continued,

In continuing the cycle we desire a means for varying the
surface in such a way that our convergence criterion discussed in the
previous paragraph can be made a minimum. To achieve this we use
AI‘O(G, ¢) as a trial function to be added to RO(O, ¢) to give the new
surface. The contributions to AL (8, ¢) at any particular point on the
surface are due to local variations in « , the rotational term, and to
a certain extent to local variations in V_. To correct far this
variation in I' at the point in question we displace the surface along
its normal an amount proportional to the magnitude of AT at that
point. Such a procedure is primarily intuitive; its justification depends

on the success of the convergence. Specifically, we write

(g) R "(6,¢) =R, (6,0) +k AT (0,¢)/T - 2,
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where kl is a suitably chosen constant, T is the unit vector along
the radius vector from the origin to a point in question on the surface,
and T is the unit vector along the normal to the surface at the point
in question, '

The volume of the shape given by operétion (g) 1s normalized:
(h) R =R, (6,9).

Operations (c) through (b) are repeated, yielding Ar‘lz . Using
[ 2 2
the values:‘/AI‘O and ,/Al"l and assuming that the relation between

/ > . :
/AF and k is linear, we extrapolate to determine a new k2 chosen

to: give zero for- /JAI' . One has
- 2
. AFO
1 2 Vi 2 ’
\/Afl -vY AI‘O

(i) k,=- k

which is used to give a new R, ,

o AT (6, ¢)
(G) R, (6,9) = Ry (0,4) + Xk, -

' r a

. The operations are then returned to operation (b) ahd the cycle is
repeated. When the convergence is satisfactory, as indicated by the
value for AI"vOZ / T‘O , the cycle is halted and the energetics of

- the drop computed.

This iterative cycle has been coded for the IBM 704 using the
FORTRAN symbolic coding system. The cycle has been coded to
handle axjally symmetric and nonaxially symmetric configurations
with octant symmetry. To facilitate the convergence and to allow for
greater accuracy in computi.ng the energetics, we have left fclhe mesh

m

size in the numerical integration formula, A6 = A¢= — — , as
o 2 T

an adjustable parameter by choosing different values for T. The
details of these integrations and the expressions used for VS,K ,

and 1 are discussed in Appendix B.
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1II. DISCUSSION OF THE RESULTS

The iterative cycle described in the previous section has been

applied to finding the configurations of equilibrium of axially symmetric

" drops for the range 0 <x <1, and 0 <y <0.5. These equilibrium

configurations are plotted in Figs. 4 through 10. The energetics and
moments of intertia for these solutions are tabulated in Table I.

In carrying out these calculations a compromise had to be
made between the accuracy desired in the solutions, as determined by
the mesh size, and the time available for computation. It was felt that
in order for these results to bkeuseful in interpreting fission phenomena,
the energetics .should be more accurate than one part in a thousand.
Most of these solutions were obtained with a mesh size T = 6. For this
mesh the time required to complete a cycle was 72 sec, of which 20
sec was used for tape writing in recording the running result. These

calculations were continued until the convergence criterion,

Al"z /T , was less thanlOc?’, For most of the results listed in
Table I the convergence criterion is appreciably less than 10m3
The iterative cycles were started in either one of two ways:
for y < 0.1 the cycle was initiated by-reading in an O‘ZPZ distortion
with a, = - 0.05; for y > 0.1, the cycle was initiated by reading in the
previous solution at the same x wvalue. For y < 0.1, typical starting

values of \/ A]."Z/T were about 0.025. The number of cycles required;

for convergence depended on the x value but typically were 10 to 15
cycles. The solutions for the largest values of y, those at x = 0.6,
required 20 to 30 cycles, In most cases the iterations converged
immediately, the largest fractional change occurring in AI‘Z/ T
during the first few cycles. In a few cases for large y values, the
result diverged. Starting with the solution at x = 0.6, y = 0.3, the
iterative procedure for x = 0.6, y = 0.5 would not converge, but did
so for x = 0.6, y = 0.4, The result for x = 0.6, y = 0.5 would not

converge starting with x=0.6, y = 0.4; convergence for this case
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, X =ESY2ELL090
y=ES/ESL 00,0014, 0.025

Axial symmetry

MU-20844

Fig. 4. The axially symmetric equilibrium configurations
for x = 0.90 and for various values of y. These
configurations and those illustrated in Figs. 5-10
have been calculated by using the variation-iteration
method discussed in the text.
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, X = E72ESL0.80
- y= E9YE%=00,005,010

Axial symmetry

MU -—20845

Fig. 5. Axially symmetric equilibrium configurations for
x = 0.80 and for various values of the rotation
- parameter vy,
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x=E%%2e%=070

VA
y=ELYEDL00,0.06,010
Axial symmetry
MU-20846

Fig. 6. Axially symmetric equilibrium configurations for
x = 0.70 and for various values of the rotation
parameter y.
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x = EQ72eQ = 0.60

y=ER/Eg=00,004,
007, 0.10,0.20,0.30,

0.40,0.50
Axial symmetry

0.30

0.40

0.50

MU-20847

Fig.v 7. Axially symmetric equilibrium configurations for-
x = 0,60 and for various values of the rotation

parameter vy.
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X=E /2EP=0.50
Z y= ECVEQ=00,0.10

Axial symmetry

MU-20848

Fig. 8. Axially symmetric equilibrium configurations for
x = 0.50 and for various values of the rotation
parameter vy.
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Z x=e%72E%=0.25
Y=ER/EJ=00,0.10

Axial symmetry

MU -20849

Fig. 9. Axially symmetric equilibrium configurations for
x = 0.25 and for various values of the rotation
parameter vy. '
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(0)  (0)_

7 X=Eg/2E¢= 0.0
y= ELYE% 00,010,030

Axial symmetry

’

MU=20850

Fig. 10. Axially symmetric equilibrium configurations for
x = 0.00 and for various values of the rotation
parameter y.

.
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was accomplished by starting with the solution at x = 0.6, y = 0.4
but with the values x = 0.6, y = 0.45. After five cycles this tentative
result was restarted with x = 0.6, y = 0.5, ahd the convergence was
accomplished.

As a measure of the effects of grid size on the convergence
cycle the case x = 0.5, y = 0.1 was done a second time for T = 9.
The initial values for VTZ/ T were identical in either case but
convergence to the same final value required about 40% more cycles
for the T = 9 mesh. Since the time required for calculating the surface

potential varies as T3 for these axially symmetric cases, the over-

all time required for convergence with T = 9 was appreciably longer

than for T = 6. Both results are tabulated in Table 1.

The moment of inertia and the energetics of the final configurations
are shown in Table I. The results listed in Table I are given in double
entry. The first row corresponds to the result obtained directly
from the energetics calculation. This result contains the inherent
error due to the finite mesh size used in these calculations. These
absolute errors are indicated explicitly for those cases marked (sphere),
in which case the energetics were computed but the configuration was
constrained to a sphere. One would suspect that the variation in
absolute error from one shape to the next would vary less rapidly than
the magnitude of the absolute error, at least for those shapes which
do not differ markedly from a sphere. Therefore, we have listed in
the second row the values for the energetics normalized by that same
factor which gives zero error for the spherical solution.

The error in the radius vector for these solutions has been
determined by asking the convergence routine to converge on a sphere
starting with an initial PZ dis.tgrtion and comparing the final calculated
shape with a sphere. If AR"™ is the root-mean-squar.e deviation

of the radius vector from the correct value, we find \/ A.RZ/R <Z2x 10-3

for AT /T o~ 1073,
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Table I

Energetics for rotating liquid drops

= O (9] _x (0) (0) :
x=E¢"/2E"  y=Ep''/Eg Eg Eg Eg Ep I aro/r
T x Yy
6.00 0.00 0.10 0.00 1.00708 0.089737 , "1.867144 0.00056
0.00 1.00417 0.089721 1.093891  1.867474
0.00 0.30 0.00 1.03155 0.229670 - - 2.188576 .
0.00 1,02857 0.229628 1.258198  2.188963
6.00 0.250 0.10 0.250016  1.00993 0.087140° 1.922800 ~ 0.00066
0.248617  1.00701 0.087124 1.591368  1,923140
9.00 0.50 1.00 0.501251 1001277 1.000034 1.675458
{(sphere) 0.500000  1.000000 1.000000 3.000000  1/675512
9.00 0.50 0.10 0.497301  1,015458 0.0829069 2.020960 0.00083
— 0.496060  1.014163 0.0829041 2.089187 - 2.021024
6.00 0.50 0.10 0.498199  1.016388 0.082958 2.019720 0.00083
0.495411  1.013454 0.082943 2.087219  2.020077
6.00 0.60 0.04 0.601331  1.006465 0.036165 . . 1,853200 0.00023
0.597966  1.003560 0.036158 2.235650  1.853528
0.60 1.00 0.603377  1.002895 1.000181 1.675216
(sphere) 0.600000  1.000000 1.000000 2.200000 1.675512
0.60 0.07 0.598892  1.01321 0.059372 1.975456 0.00056
0.595540 1.010129 0.059361 2.2605_72 1.975805
0.60 0.08 0.598437  1.014574 0.067188 1.995016  0.00079
0.595089  1.011645 0.067176 2.268999  1.995369
6.00 0.60 0.10 0.596314  1.021155 0.080607 2.078616 . 0.00075
0.592977  1.018207 0.080592 2.284753 2.078984
0.60 0.20 0.587144  1.052442 0.141312 2.371376  0.00065
0.583858  1.049404 0.141286 2.358442  2.371796
0.60 0.30 0.577927  1.08635 0191790 - 2.620848 0.00061
0.574693  1.08321 0.191755 2.424351  2.621312
0.60 0.40 0.568243  1.123846 0.233682 2.868024 0.00055
0.565063  1,120602 0.233640 2,484368  2.868532
0.60 0.50 0.559050  1.161362 0.269846 3.104584 0.0012
0.555921  1.158010 0.269797 2.539649  3.105134
6.00  0.70 0.0 0.703939  1.002895 0.0 1.675216
(sphere) 0.700000-  1.,000000 2.400000 1.675512
0.70 0.06 0.698569  1.013558 0.050760 1.980504 0.00061
0.694660  1.010632 0.050751 2.450703  1,980854
0.70 0.10 0.693761  1.02655 0.078368 ° 2.138000 0.00077
0.689879  1.02358 0.078354 2.481692  2.138378
6.00 0.80 0.05 0.796096  1.01877 0.040867 2.049920 0.0010
0.791641  1.01583 0.040860 2.639972  2.050282
0.80 0.10 0.789104  1.03598 0.075111 : 2.230464 0.0015
0.784689  1.03299 0.075097 2.677465  2.230858
6.00 0.90 0.014 0.902661  1.0054 0.012847 1.825832 0.00087
' 0.897610  1.002498 0.012844 2.810562  1,826155
6.00 0.90 0.025 0.898304  1.01325 0.021199 - 1.985968 0.00081
0.893278  1.01032 0.021150 2.818026  1,986318
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It is interesting to compare the solutions in Figs.4 through 10
with the calculated distortion given by Eq. (II.12a). Over the entire
X range, 0 <x< 1, and for vy <_0.1, the analytic r_esult for the radius
vector agrees with the calculated result to within a few percent. For
x = 0.6, y = 0.5, the Eq. (II.12a) gives a radius which differs.By, 16 %
from the solution of Fig. seven. The analytic result Eq. (Il.12a) is useful

over the entire range of x provided the distortions are small.



=36, -

Vi. CONCLUSIONS

' The problem of determining the configurations of equilibrium
of rotating charged drops has been considered. The effects of the
rotational forces in influencing the fissionability of these systems is |
illustrated in Fig., 2. From this figure one concludes that the effects
" of rotation are quite effective in reducing the fission barrier, Taking

240 by Ne22 to form a compound

as.an example the bombardment of Pu
nucleus with an x 2¢0.83, we have from Fig. 1 possible values for y
.ranging from zero to 0.05. For this case even a relatively moderate
impact parameter, giving a'value y = 0.02, has the effect of reducing
the fission barrier to one-third its value for the nonrotating system.
For the largest impact parameters with a Ne22 projectile and over
most of the range of impact parameters for A4O, .the bombardment
of targets near the upper end of the periodic table would result in
compound systems which contain rotational energies in excess of that
value necessary to give the system only neutral stability. We conclude,
therefore, that in this range of targets and projectiles these large
rotational forces will inhibit the formation of the compound systems.
The variationwiterafion method described in the previous
sections has been demonstrated to be useful in generating the con-
figurations of equilibr.ium of axially symmetric drops in the ranges
0 <x <1, and 0 <y <0.05. This iterative procedure is adequate
therefore to generate axially symmetric configurations over the entire
range 6f values of x and y induced by heavy-ion bombardments with
projectiles.as heavy as A40 and for energies up to 10 Mev/nucleon.

It is planned to extend these calculations by using this method to

calculate the corresponding saddle-shaped configurations,

P
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APPENDICES
Appendix A
In this appendix we shall derive th‘e_expr'essivons__for the moment
of inertia, rotational energy, surface energy, Coulomb potential, and
Coulomb energy for small ellipsoidal distortioris of a rotating liquid
drop. » .
Expressed in spherical coordinates p = cos 6, ¢, the surface

of the drop is specified by

R T
__0 \
= _.):..-_ E+ a0 P20 () + O'ZZPZZ(H) cos Zqi',
with

D
P, = E (3p° - 1)

and

_ S
P,,=3(L-p9.

Volume Normalization

The factor )\=1 is introduced in the expression for R to insure
constancy of volume and is determined by the condition

2m +1 R

4 11R03,=j [ j_rz drdpdd .
3 0 <1.-0

This expression yields, to third order in 'O'ZO’ ass the value
3 3 2 36 2 2 3 72 2
AN=1+ = a + — a + — a - —— a,.0a
5 - 20 5 22 35 20 35 2022
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Moment of Inertia and Rotational Energy

The moment of inertia about the z-axis is given by |
2n 41 R - :

; ' 2
= pm/f /r [ =t -p?) ar apas,
{
/"O ,/"“]. JO
where P is the mass density. To second order in At Gpp0 WE
have '
81p R :
_ m 0 5 10 2 216 2
I= " { . Yy o - %50 + — 255 + ey ) .

7 7
Introducing into I the value for )\275 determined from the previous

paragraph givés

2 132 2
20 + 22 )

I”’_v,= Is (1 - a 20

3
+ — a
7

where ][s = (8 ﬂmeOS)/I'S, the moment of inértia of ‘a sphere,

The rotational energy, expressed in units of the surface energy

of the drop, is_thén

: L -1 : : 4 2 132 2
E, = =y {l +a +—- a - — a )
Roar o anry% 20, 20 4 22
where :
2
{0) ). (0) _ L 2
y=E /E = =~ /4R 0.
R s ZIS 0

Surface Energy

The surface of the drop is given by the integral
Zm +1

E -0 f D(p, ) dpdo,
0 -1
where 0 1is a measure of the surface tension and is expressed in units

of energy/unit area. 'For;'th'ev"infe.gra’rid D{p, ¢) we have recourse to
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differential geometry26 to obtain

Dm,@{(ay 9y 8z av)?‘ +(9__z£<_2<8_z>2+(<1z oy b gz)

dp  9¢ dp 09¢ dp 9¢ Ou ¢

O 0pOp O¢

Using the relations

sz\/l-pzcosq),
o 2 .
y =R\ 1 - sin¢,

= Ry,

we can show that the expression for D(u, ¢) reduces to

\ 1/2
D, ¢) = R | —2 (aR)2+R2+<1-u2)(93)‘j
I'HZ ¢ _ O

and

Inserting the value for 'R, expanding the bracket using the binomial

theorem, and carrying out the integrations over p and ¢, we obtain

N 2 2 24 2 4 3 48 2
E =14 — a T4+ — a - —_—— a + — a a
s 5 20 5 22 105 20 35 20 22

for the surface energy expressed in units of the surface energy of the

sphere.

Coulomb Potential and Energy

The Coulomb energy of the drop is given by the six-fold integral

2n +1 R
—~ 1 _ p 2
EC = ? j / j v (ris M, ¢) r drl dp‘l d¢i ’
0 -1 70
with
2n +1 R

dr dp d¢

V(b 6 )—p fj}r

where p 1is the charge denS1ty of the drop

'ZJ;/Z _

<
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The first 1ntegra1 can be reduced to a two-fold’ 1ntegra1 over the

surface by employing a ‘device used by Frankel and Metropohs followmg

a suggestion of H. Hu'rwitz'..'18 If V:s (R,}.L, ¢) is the potential on the
surface of the drop, we have T
2n 41 :
=~ 1_ p [ _ , — = -
Ec = = i VS(R,H,¢)(xk+yp.+zV)deLd¢.
5 ;

The R,T.;, and Vv are the direCtion‘co'sines of the normal to the‘

surface and are given by

x= L (ay ?z_aZdL),.
D ts VIR ) dp. 0¢
T]. :l (a_zi}_(._giz)’
D o 0¢ opn 9¢
and
y =1 E{.ay_ay ox

Inserting the expression for x, y, 2z given in the s ection on the surface

energy one can readily show that the expression for Ecl reduces: to

2T 41
[\
1 _ p 3 ‘
EC - -_— VS(R, M, ¢) R (P‘: ‘P) dud¢ M
0 1

For the evaluation 6f the ‘poter‘itial we shalvl use a m.eth_odv.due
to Mudd. 27 The method begins by dividing the ‘deforAme'd dro»p ihto an
interior region deﬁnedv-by, a surface (referred to as the stahdard
surface) plus an outer deformed shell.. The potent1a1 at a point inside
the standard surface due to the charge within the standard surface and
the charge in the outer shell is given by Mudd's expansion. The
’calculatmn is fac111tated if we choose as the standard surface a sphere
with a radius such that the surface of the deformed drop always lies
outside the standard surface. It is essential to note, however, that the
choice of the standard surface is arbitrary. The potential inside the

standard surface due to the charge lying between the standard surface
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and the surface of the deformed drop is given by a serles expansion
~in S8R (M, <1>), the thlckness of the outer shell X
If a is the radius of the standard surface, Mudd' s expansmn

is written

2m +1 R >
i T,
V(I’ s H ¢ ) = [ [ - dr dp d¢ = V(a) + V(b) + V(Cl) doooeas
J r.. :
o -1 0 1)
where >
‘ (a) _ 2 1 i
v z2mp A% |1 - = ()
' 3 a .
ZZT +}/ r 2 |
v oo | A R dudé
J S r..
o -1 Y r;=a
2w 41 _ L2
[ 7 ) i 2
vl N (6R)” dpdd
Jo v da ro
0 <1 | POl
and 2n 41 , c
" . 2 r. oo
d : 1 o i 3
v L2 ~ (6R)” dpde
P 3L da r . | . =24 o
S S T

with 8R = R - a. ,

This series expression for .V gives the potential at any point
inside the standard surface. But since the choice of the standard
surface is arbltrary, the result cannot depend on the standard surface.
:Therefore the potential express1on must be valid up to the surface of
the deformed drop. The surface potential for the deformed drop is then.
‘obtained by setting T = R. |

For the radius, a, of the standard surface we take
i R , . y i

0
!“zo ot

R 1
)= — (1l -a), with a-=
A T

o ,, |
a=-— (1 - Ja a ‘
- 22

20 - %" !“22
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Then we can write v S

R
= ;- _0 :
SR=R -a= —|— &20 onv(pt) ta,, 'PZZ (M) cos 2¢ + (il .

We. shall now evaluate the four leading terms in the potential.

For r1 = R, the V( )term becomes

R 2 :
(2}, _ 47p ~0 _ o 3 2. R .
V(R) = A =) (l-3a+=0a"-0a;,P,,"-a,,P,,cos 2¢
3 N 2 .
1 - 2 2 : 1 2 2 2
© 5 %20 P20 " %20%22F20F 22908 4% - > %22 Faz co® 2¢) -

In the..evaluétion of the V(b),»v V(C), V(d), terms ‘we shall have occasion v

to use

1 1 w0 . . .
= —. I (—)"P (b)),
r. a n=0 a : J

and

5 )

_ (n-m)? : |
Pn(Hij) “' ‘njz1:=0‘ ‘(2“‘5 ) _(_r;—m—)—'- “an(P-i) anm(Hj) cos m (¢i'¢j) .

Inserting these expre_ss'iohs in v{P) gives

R a T. S .

(b) _ 4mp 0 i ,2 |3 T

v = — 3a + ( — P (k) + = (e )cosZ .
s {“ A=) [5 “20 T20ti) ¥ 3 %22%2 ‘1’]}

If we set r, = R, and expand to third orde‘r.in a500 3227 and a, V(b)

is written

(b) _ 4mp , Ro L2 3 3
vit= S5 (—-—)\—-) (3a-3a" + o a50Po0 * < a,,P,,cos 2¢

3
t g.““zopzo
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3 3 2. : )
f g aa,,P,, cos 2¢ + ; a a20P20.+ — a O'ZZPZZ cos 2¢

25 2 6 2, 2 12

22 \cqu 26+ 922%20% 20722

cos 2¢

, 6 2 2.
o %% Pao T %% Pppocos ¢

12
t ¢ %20 a,2P,0P 008 2¢

9 ' :
+ = 9 2 P: 2 2
cos 2¢ + —5 a50%22" 20P—22 cos 2¢

+ P"+ia"3P 3cos32¢).
5 8 »

22 T 22

For the evaluation of V(C) there appears in the integrand the factor

1 3 r. - 1 o . R e
19 = 2 .. (1-m) ( =2)P_ (k) .
2% da r., 2 n=0 a "oy
U | r=a. . . e T
J
The term V-( ) becomes
(c) 4@ .'Ro 2[ 3 B 2, 36 2, 3 2
VT =B — ) { = o +=a,,"+ = a
3 N 10 10 = o2
r 2
1 2 12 2
-3 ) [(— o, .“+ —ada — a,, )} P
‘ a 35 ZOA 5 ZQ 35 22 ' 720
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TR N
a 35

35

-3

2
955 ) Pyg

1 : 9 2
+— a,.d,5 P , cos 2¢ + a P, cos4¢|).
55 20722 742 0% R T IIO T Tao Tag :‘}

The terms in P P will not contribute to the energy

40’ P42.’ 44
integral and will not be carried further.

At r, = R, V(c) becomes

R 2 36

V(C) = é:TT_p (._L) ..._3_ aZOZ + — (122 + .%. Q,Z
3 N L1o 10 2
1 2 1 : 12 2
~-3({— a P,.+ =~ aa, P - —=a P, +—) aa P
35 20 20 5 20 | ZOH 35 22 | 2.0 35 20 720
2 2 4 2 2 3 2
+ — aa P - — aa P +— a P,
5 ,20 20 35 22 ~ 20 35 | 20 .20
2 2. 2 24 2. 2 2 2
+ — a a0 ‘PZO - ——ayga,, P20 + — %50 O'ZZPZOPZZ cos 2¢
5 35 “ 4, 35 |
4 - 24 3
t o % %20%22F20F22 <08 %% - 35 22 PPz cos 2¢

2 - ‘ 1 B ,
= —— a,0%, P,, cos 2¢ + — aa,, P,, cos 2¢

35 5 22~ 22
_ 4 S22 -
- T aa,.a,, PZZ + E a QZZPZZ cos 2¢
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4 2. 22
cos 2¢ - 3—5— a50%22 P,, cos 2¢

4 2 B
-—  a a, PP,
35 20 22 Z_O 22

. 2 2 2 2
+ 5— aa_zz P‘22 cos 24§]..

(d)

In the integrand of V' ’ there éppears‘,the factor

2 T. ot : r
1 0 1 i
29 ) = — I n(n-1) (=2 ,)nPn (1) -
31 0da T.. - 3a n=0 a J
1) r.=a

J

There is no contribution for n =0 and n = 1, therefore the leading
term in .V(d) will be a term in ‘PZO' In calculating the coulomb
energy to third order in the a's, this P, and other terms in v{d)

o
will vanish under the p, ¢ integration; since this V(d)

term does
not contribute to the energy integral, we need not write out its ex-
pansion. ‘

Examining the sum V(a) + V(b) + V(C), we see that all terms up
to second order which contain an a or (12 combine to give a zero
result. One can show that had we included the V(d) all terms in a
up to third order would cancel. . This cancellation is an expression
of the fact that the potential on the surface of the drop is independent of
our choice for the standard surface. '

The Coulomb energy is given by the integrals
® 1 - E-.l(a) + E 1(b) + E 1(c) + E 1(d) ,

c c c c v

c
where

.Ec(a) = P fv(a) R> dpde
l
e
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3 . 4mp .2 1 1 1 2 6 2
= = (=) 5= (1= — a5 - T2
5 3 R, M 10 5
3 36 2
- — a + — a,.a Y.
35 20 35 20%22

A\ 5

5 5 R
e 0
L3602 12 3_432 2
s 22 35 20 35 20%22
(c) _ p (c) =3 32 1,3 2 18 2
E - v R™ dpde = = =— T(_ ay t — oy,
¢ 5 5 R A 10 5
"L9¢ '
3 108 2
- = + — a ),
35 20 55 20%22
and
Ec(d)= £ jv-(d) R dpap = 0,
5 o

My ¢

47p ) = Q, the total charge on the drop. Com-

Here we have set (
bining the above terrr?s, inserting the value for )\_5 , and expressing
‘the Coulomb energy in units of the fission parameter x = E (0)/2E (O)

we obtain for the Coulomb energy

o 2,12 2 4 3,48 2
zo'g—azz,'—zo — %20%22 /-

'Ec=zx {1-
105 35

5
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Appendix B

»

Here we consider some of the details associated with evaluating
the various integrals appearing in the iterative cycle and with the
integrals neces s'ary for the energetics calculations.

The surface of the drop is.specifiéd by points distributed over
a 6,¢ gridina 'spherica_l—coordihate system., The numerical

integrations here have been limited to shapes with octant;symmetry,

that is,
0 <6 < T
=7 =5
and
0<p< —
- 2

There is no difficulty in extending the codes to quadrant symmetry.
' The mesh size, T, which determines the interval between successive
points in 6 and ¢ on the mesh is defined by

s

RIS
T 2

For these calculations T has ranged from five to seventeen. The
coordinates of the points on the surface are recorded in rectangular
coord‘iné.t'esv' x(6, ¢) , ylo, ¢), and z(@ $) expressed in terms of the
two prlmary variables 6 and b .

All volume 1ntegra1s are Wr1tten as ‘surface 1ntegrals

Volume: ] dx. dy dz = f yrD d8dé

volume’ - .surface

Moment of Inertia: ] (x2 + yz) dx dy dz = ] (x'2 + yz) zv DdOd¢ .

volume surface
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The direction cosines of the normal to the surface are X, &, V.

These are written explicitly26

L @y oz 8z 8y

X =
D 86 9a¢p 0806 d¢
— 1 0z .0x ox 0z
e (222X X 02y,
D 06 9¢ 0 94
and
V= .}_ (iz. _a_X - a_Y. .a_x. .
D 96 0¢ 090 '0¢
with

2_ By bz _bzoy P 02 bx exda® oxay fyox’

— it e tt— ity e

B d¢ 00066 36 34 96 3¢ 0 8¢ 96 3¢

D

The derivatives are evaluated by using seven-point difference
formulae given by Scarborough. 8 The surface integrals are
evaluated using the seven-point cubature formula (double integration
formula) given by Irwin.

The expression for the curvature, « , is given by a formula
from differential geometry, 2
1 + 1 _ EN-2FM+ GL

- = > ,
R1 R, D

K =

where ‘Rl and R, are the two principal radii of curvature of the

surface. The other quantities are given by



ox, 2 oy 2 9z, 2
E= ()°+ )"+ £5H°
86 26 980
po 3x8x 0ydy bz0z
960¢ 00 98¢y 96 B¢
o 9
G= (2% + (% + 5%,
9¢ 9¢ 8¢
2 2 a2
07"x — Oy — 0
L:k———-2+p ——2+ V—
9.6 96 00
2 2 w2
8608¢ 36 8¢ 36 9¢
and
N =X 1125 + ".Eflé-+'“-ﬁf%r
. = M 1%
99 0¢ 9¢

The second derivatives are evaluated by using Scarborough's seven-
point difference formulae.
derivatives . are evaluated by using a difference expression obtained

by differentiating a mid-panel central-difference double interpolation
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29

formula given by Irwin.

v The fractional errors of these integrals and curvature when
evaluated for a sphere are illustrated in Fig. 'l_llfor' various values of

the mesh size, T.

The expression for the surface potential is also written as a

surface integral,

The second-order mixed partial
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10-3| i
~ .
10-4| -
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K
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5 7 I

T

MU-20851

Fig. 11, Fractional errors in the numerical formulae
used in the variation-iteration method plotted versus
the mesh parameter T for spherical shapes. Here
A Vol/Vol = error in volume; AI/I = error in
moment of inertia; AR/R = error in the rotational
term; A Ren/Ren = error in the volume
renormalization; AK/K = error in the curvature.
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V_(r) - f dedy det L f T T
volume ,r-r 2 surface (, -r’l)
- x-x")k +({y-y')pt+t(z-2")y ' ode!
V (r)=- — D do' d¢'.
S > |:(x-x')2+(y-y')2+(z—z')z‘]l/z
surface

The fractional error in the potential when evaluated for a sphere is
illustrated in Fig. 12 for the cases of a one-point and a three-point
cubature formula. The error near the poles is the same for either
case, but the error near the equator is less for the three-poin;c formula
than for the one-point formula.

v In carrying out the numerical integrations for the cycle, the
evaluation of the surface potential requires more than half the total
time. The evaluation of the potential using the three-point cubature
formula requires approximately 25% more time than does the one-point
formula. Although the three-point formula gives a better relative error
over the surface, it does not improve the absolute error. Consequently,
for these calculations it was decided to use the one-point cubature formula
in the iterative cycle and to rely on varying the mesh size to improve
the accuracy.

The coulomb energy is evaluated using the same integral

discussed in Appendix A, that is

L f Vs(xk+y_|~f +zVv)Ddgdé,

surface
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- Fig. 12. Fractional error in the Coulomb surface potential

as a function of the mesh parameter T for a sphere
and using a one-point or a three-point cubature
formula.
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again using a seven-point cubature formula. The rotational energy .
is determined once the moment of inertia is calculated. The surface

energy is given by the integral

0 Dd6d$.

surface
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