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ABSTRACT

Computational proteomics lets us model drug-protein interactions in ways conventional assays

cannot. Most drugs are specific for one protein, but some interact with multiple. One example is

imatinib, which inhibits ABL to treat chronic myeloid leukemia. It binds to other kinases to treat

other malignancies, but its atomistic mechanisms are poorly understood. Although complex

structures are available in the Protein Data Bank, they do not show binding dynamics and protein

functions. Imatinib has differential kinase affinities compared to structural similarity, ABL and

SRC share 50% similarity, but a 3000x affinity difference. In contrast, ABL and KIT share 30%

similarity and have strong imatinib affinities. My goals are to model free protein and

imatinib-bound states for ABL, KIT, LCK, p38α, and SRC kinases using 500 ns Molecular

Dynamics (MD) simulations to survey the complex interactions and conformational changes

over time. The results generally agree with previous results, showing that molecular simulations

are a useful method to identify the non-covalent interactions between imatinib and kinases.

These simulations may serve as a useful predictor of drug affinity, as the longevity of the

non-covalent interactions correspond with how well the drug sticks in the binding pocket.
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INTRODUCTION

The Importance of Computational Chemistry

Computational chemistry is important because it lets researchers visualize and quantify

molecular motions, interactions, and kinetics in ways that conventional bench chemistry

techniques cannot show. According to the United States Food and Drug Administration (FDA),

drug discovery productivity has declined since the 2000s (Paul et al., 2010). Fewer viable

compounds are being discovered despite greater expenditures from government agencies,

pharmaceutical companies, and biotechnology firms for their search. Conventional techniques to

search for viable small compounds include high-throughput screening. High-throughput

screening tests many small compounds on large cell assays to isolate compounds with observed

significant effects on a biological target, making them costly and time-consuming. They usually

do not have a targeted approach and produce many false positives, signifying a high failure rate

(Rahman, 2015). After this, the drug candidate must go through years of expensive testing on

animals and humans before it may be considered for FDA approval. Clinical testing costs over

60% of the overall cost of drug development as of 2006 (Lawrence, 2007). Therefore, a better

approach is necessary for drug design. Computers may mitigate costs by using molecular models

to study how existing drugs affect off-target proteins with similar binding sites and predict their

binding / unbinding affinities using molecular simulations (Druker, 2004) (Ashburn & Thor,

2004) (Kinnings et al., 2009) (Jorgensen, 2004). Therefore, using computational chemistry to

study how existing drugs would interact with other protein targets is a more efficient method to

expand their applications since those drugs have known toxicology and history.

5



Chronic Myeloid Leukemia’s Impact on Populations

Chronic Myeloid Leukemia (CML) accounts for about 15% of all diagnosed adult leukemia

cases (Granatowicz et al., 2015) (Jabbour and Kantarijan, 2020). It is defined by a BCR-ABL

gene fusion, identified in 1960 by Dr. Peter Nowell (Ayatollahi et al., 2018) (Deininger et al.,

2000). Before the 1990s, the survival rate for CML within 5 years was less than 30% (Chen et

al., 2012). After the Federal Drug Administration (FDA) approved imatinib for CML treatment

in 2001, it has over an 80% survival rate 5-10 years after diagnosis (Hochhaus et al., 2017). This

demonstrates the great impact of targeted drug design on minimizing CML mortality and that

similar approaches using targeted medicine should be undertaken for other malignancies.

Imatinib’s Targeted and Non-Targeted Inhibitions

Imatinib was created in the 1990s using rational drug design, a process of creating new

medications based on a known biological target, typically with computers (Huggins et al., 2012).

It was a landmark medication since it differentiated between cancer and wildtype cells rather

than indiscriminately target cells like chemotherapy or radiation treatment (Capdeville et al.,

2002). Imatinib is a type II inhibitor specifically designed to target the inactive ABL kinase at the

ATP binding site (Gumireddy et al., 2005). It is derived from a 2-phenyl amino pyrimidine with

additional pharmacophores added for highly specific interactions with ABL kinase. These groups

include a pyridyl group for cell activity, a methyl group for BCR-ABL selectivity, an amide that

generally inhibits tyrosine kinases, a benzene to prevent mutagenesis, and an N-methylpiperazine

for aqueous solubility and oral bioavailability (Rossari et al., 2018). While imatinib is intended

to target the BCR-ABL kinase, because of conserved structures between different ATP binding

sites, it interacts with other off-target proteins. However, imatinib demonstrates differential
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affinities for various kinases regardless of their sequence similarity (Aleksandrov and Simonson,

2010) (Lin and Roux, 2013). The result is that its use has been expanded to treat other

malignancies by inhibiting different proteins in other biological pathways.

Kinases of Interest

Kinases are proteins that facilitate the transfer of a gamma phosphate from nucleotide

triphosphates to tyrosine, serine, or threonine of protein substrates (Paul et al., 2020). They are

implicated in many biochemical pathways, but their overexpression corresponds with

uncontrolled cell growth and division (Bhullar et al., 2018) (Cicenas et al., 2018). The

differential charge due to the negatively-charged phosphate induces conformational changes in

the proteins, which impacts their ability to conduct biochemical reactions since kinases must

adopt specific conformations for pathways to occur (Cohen, 2002) (Sissi and Palumbo, 2009).

About 13,000 proteins have phosphorylatable sites (Vlastaridis et al., 2017). This means

targeting kinases, which facilitate phosphate transfers, are an interesting target for cancer

inhibition. It is possible to get molecular insights into signal transductions based on structural

biology and computational simulations of mechanisms (Shah and Kuriyan, 2018).

A 2019 proteomics study from the Wang lab at UC Riverside demonstrates that imatinib affects

several kinases’ phosphorylation activity (Miao et al., 2019). This potentially reveals new drug

targets to explore using computational chemistry techniques. The particular kinases of interest

for this project include ABL1, ASK1, AURKA, BRAF, CHK1, FLT3, GSK3β, KIT, LCK, p38α,

and SRC; which show substantial changes in phosphorylation activity as a result of imatinib

interacting. Of these structures, ABL1, KIT, LCK, p38α, and SRC have available reference

structures in the Protein Data Bank for comparison. They will be the focus of this manuscript.
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ABL regulates cell differentiation, proliferation, survival, and stress response

ABL1 affects multiple biological pathways including STAT, MYC, RAS, and PI3K; all of which

are involved in cell proliferation, epithelial cell formation, and cell survival (Repsold et al.,

2017). It is involved in cell differentiation, cell adhesion, and stress responses for DNA repair

(Takizawa et al., 2004) (Salles et al., 2011) (Siddiqui et al., 2021). A fusion between the BCR

and ABL genes defines CML (Ayatollahi et al., 2018). The effects of ABL inhibition when

overexpressed would be a reduction of cell proliferation and uncontrolled cell survival.

KIT mediates cell survival, gamete creation, and cancer development

KIT is a cytokine receptor which precedes several pathways including Ras, Raf, MEK, and ERK

in the MAPK signaling cascade and PTEN, Akt, mTOR, and BAD in the PI3K signaling

cascade. They are all involved in cell survival, proliferation, and differentiation (Carlino et al.,

2014) (Edling and Hallberg, 2007) (Sheikh et al., 2022). It is important in signaling for

melanocyte survival, hematopoiesis, the creation of gametes, and regulating many processes

involved in cancer development (Brooks, 2006). Overexpression and mutant variants are

implicated in cancers (Edling and Hallberg, 2007) (Sheikh et al., 2022). A reduction in KIT

overexpression would reduce uncontrolled cell proliferation and growth, and promote better

regulation of cancer cell development.

LCK controls immune cell development, survival, and proliferation

LCK regulates T-cell activity and cancer proliferation, survival, and migration via regulation of

several pathways including FLT3, IL-7R, BCR, CD28, TCR, CAR, Integrin, NMDA-R, CD55,

and PDGF-R and phosphorylates proteins including IL-2-inducible T-cell kinase (ITK), protein

kinase C, Phosphoinositide 3-kinase (PI3K), and Zeta-chain-associated protein kinase 70
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(ZAP-70) (Bommhardt et al., 2019) (Vahedi et al., 2015) (Elkamhawy et al., 2021) (Rohrs et al.,

2016) (Wei et al., 2020). Overexpression of LCK is reported in several tumor types including

acute and chronic leukemias and carcinomas of the brain, breast, colon, and prostate (Vahedi et

al., 2015) (Elkamhawy et al., 2021) (Singh et al., 2018). Cancer formation increases from low

LCK levels due to proliferation of immature immune cells (Elkamhawy et al., 2021) (Singh et

al., 2018). Reducing LCK overexpression would correspond with a reduction in various solid

cancers, but an excess reduction may result in generation of tumors due to a low production of

immune cells.

p38α modulates cell survival, apoptosis, and inflammation responses

Mitogen-activated protein kinases (MAPKs) generally react to stress stimuli such as UV

radiation, cytokines, and osmotic shock (Yang et al., 2014) (Asih et al, 2020). p38α (MAPK14)

targets substrate proteins like Ahnak, Iws1, Grp78, Pgrmc, Prdx6, and Ranbp2 (Yang et al.,

2014). This gives them a substantial role in cell survival, controlled death, proliferation,

migration, mRNA stability, and inflammatory responses through cytokine synthesis and

inflammatory mediators including TNFα, IL-1β, and COX-2 (Bradham and Mcclay, 2006)

(Schieven, 2009) (Young, 2013) (Yang et al., 2014). They control cell maturation, differentiation,

apoptosis, and lysosomal degradation pathways (Asih et al, 2020) (Zarubin and Han, 2005)

(Bradham and Mcclay, 2006). A reduction in the inappropriate p38α overexpression would

enable better responses to stress stimuli, better apoptosis regulation, and removal of

dysfunctional cell components.
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SRC affects cell adhesion, mobility, differentiation, and apoptosis

SRC regulates multiple pathways including RAS/RAF/MEK/ERK pathways, PI3K/AKT/mTOR

pathway, and the STAT3 pathway (Jiao et al., 2018). This gives it a substantial involvement in

cell adhesion, mobility, proliferation, and differentiation (Jiao et al., 2018) (Bjorge and Fujita,

2000) (Byeon et al., 2012) (Roskoski, 2004). Increased SRC expression and specific activity

corresponds with different cancers including colon and breast cancers. It does so by regulating

signals for biological processes like mitogenesis, cytoskeletal organization, growth factor

production, apoptosis, inflammation pathways and immunogenic responses (Bjorge and Fujita,

2000) (Byeon et al., 2012) (Ortiz et al., 2021). SRC overexpression promotes several human

cancers, particularly when co-overexpressed with epidermal growth factor receptors (Roskoski,

2004) (Ortiz et al., 2021). A better control of SRC expression would correspond with a stronger

control over cancerous cell spread, generation, and promotion, especially via controlled cell

death (Byeon et al., 2012).
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METHODS

Protein Selection

Of the eleven kinases of interest for the project, there are five which have available

protein-imatinib bound structures in the Protein Data Bank. These included ABL (PDB ID:

2HYY), KIT (1T46), LCK (2PL0), p38α (3HEC) and SRC kinases (2OIQ). The complexes are

multimers, so only the Chain A of the protein, imatinib, and crystal waters were selected for

analysis. The crystal waters were retained as they have significant roles mediating hydrogen

bonding and protein-drug affinities (Raschke, 2006) (Onuchic and Levy, 2004) (Bellissent-Funel

et al., 2016) Only the completed structures for ABL, KIT, and LCK have simulations prepared

for analysis as of the writing of this Capstone.

Resolving Protein Structures

Several complexes had missing sections because of high flexibility in loop regions. For smaller

gaps of 1-2 residues, an automated SWISS-MODEL technique was used to resolve the missing

structures using the primary amino acid sequence (Biasini et al., 2014) (Waterhouse et al., 2018).

Larger missing structures were filled in with a copy-paste alignment technique where similar

DFG-out protein-drug complexes from structural repositories are superimposed to obtain a

conformational sample of the missing loop sequence (Barozet et al., 2021).

Imatinib and Protein Protonation State

The chain A imatinib was isolated for modification. Imatinib is either neutral or protonated at

physiological pH as its pKa is 7.7 according to acid-base profiling from titration and nuclear

magnetic resonance trials (Szakács et al., 2005). However, imatinib preferentially binds to ABL
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in a single protonated (+1) charge state at the piperazinyl group site (Aleksandrov and Simonson,

2009). It is expected that imatinib is protonated when binding with other tyrosine kinases as

shown in crystal structures and previous MD literature (Vologzhanina et al., 2020) (Lin et al.,

2013). The imatinib was, therefore, protonated using VegaZZ software at the piperazinyl site for

all simulations. The chain A proteins were prepared since the protein binding site contains

histidines. Previous literature shows that the histidine in ABL was protonated at the epsilon

position based on the local environment (Lin and Roux, 2013) (Paul et al., 2020). Other protein

histidine protonation sites were not mentioned. Therefore, it is assumed that the AMBER default

protonation setting at the epsilon site was used.

Preparing and Running Simulations

The MD simulations were run using AMBER16 for the ABL and LCK and AMBER18 for the

KIT. There are no differences between how the two softwares conduct the MD simulations. For

each system, FF14SB was used for the protein, GAFF2 was used for the ligand, and TIP3P was

used for the water (Maier et al., 2015) (He et al., 2020) (Jorgensen et al., 1983). All simulations

are verified models for running MD.

For all drug-protein systems, the simulation box must be neutralized before running the

simulations for accurately computing long-range electrostatic calculations (Collier et al., 2019).

A minimization is conducted to reduce steric clashes; first hydrogens, then protein side chains,

then the whole protein (Kini and Evans, 1991). The ABL-imatinib system was set up using eight

sodium ions and one chloride ion to neutralize the net charge of -7 with water box side lengths of

18.45 Å. The LCK-imatinib system was set up using 7 sodium ions and one chloride ion to

neutralize the net charge of -6 with water box side lengths of 17.85 Å. The KIT-imatinib system

was set up using one sodium ion and five chloride ions to neutralize the net charge of -4 with
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water box side lengths of 15.75 Å. To render all drug-protein systems comparable for enthalpy

calculations, the ParmEd package was used to remove excess waters from the systems, leaving

22,307 waters in each. The simulations were run for 500 nanoseconds (ns) for the ABL-imatinib

and LCK-imatinib kinase systems and 100 ns for KIT-imatinib kinase system.

Analysis Tools

The trajectory files were studied using BIO3D; an R-package for visualizing the

root-mean-square-deviation and -fluctuation (RMSD and RMSF) for general protein stability and

observing flexible regions, respectively (Grant et al., 2020). Hydrogen bonding data was

collected using the Hydrogen Bonds plug-in in Visual Molecular Dynamics (VMD). Protein

homology data was extracted using the reference sequences from the NCBI and compared using

BLAST.
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RESULTS

ABL MD Results

The MD results for ABL show that it stabilizes by 250 ns, with an average RMSD of 2.058 Å

and a standard deviation of 0.216 Å. ABL has an average RMSF of 1.099 Å and a standard

deviation of 0.756 Å. The hydrogen bonding frequency shows a substantial pattern among

residues including GLU52, THR81, MET84, ILE126, HIE127, and ASP147; corresponding with

GLU286, THR315, MET318, ILE360, HIS361, and ASP381.

KIT MD Results

The MD results for KIT show that it stabilizes by 55 ns, with an average RMSD of 1.928 Å and a

standard deviation of 0.294 Å. KIT has an average RMSF of 0.917 A and a standard deviation of

1.059 Å. The hydrogen bonding frequency shows a substantial pattern among residues including

GLU76, THR106, CYS109, ILE153, HIE154, and ASP174; corresponding with GLU640,

THR670, CYS673, ILE789, HIE790, and ASP810.

LCKMD Results

The MD results for LCK show that it stabilizes by 75 ns, with an average RMSD of 2.490 A and

a standard deviation of 0.299 Å. LCK has an average RMSF of 1.131 A and a standard deviation

of 0.778 Å. The hydrogen bonding frequency shows a substantial pattern among residues

including GLU58, THR86, and HIE132; corresponding with GLU288, THR316, and HIS362.
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Figure 1. RMSD of ABL over 1000 frames (500 ns)

Figure 2. RMSD of LCK over 1000 frames (500 ns)

Figure 3. RMSD of KIT over 200 frames (100 ns)
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Figure 4. ABL RMSF Figure 5. ABL Protein Structure

Figure 6. LCK RMSF Figure 7. LCK Protein Structure

Figure 8. KIT RMSF Figure 9. KIT Protein Structure
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Table 1. IC50 Ranges For ABL, KIT, LCK, p38, and SRC Complexes with Imatinib

Protein-imatinib Complex IC50 ranges (μM)

ABL 0.025 - 0.6

KIT 0.1 - 0.4

LCK 0.32 - 9.0

p38 13.7 - >100

SRC > 100

Table 2. Hydrogen Bonding Frequency Data of Imatinib-bound ABL, KIT, and LCK Complexes

ABL (ref.) GLU286 THR315 MET318 ILE360 HIS361 ASP381

52.80% 49.70% 77.60% 16.00% 31.30% 42.40%

KIT GLU286 THR315 CYS318 ILE360 HIS361 ASP381

64.00% 23.50% 73.00% 0.00% 40.50% 6.00%

LCK GLU286 THR315 MET318 ILE360 HIS361 ASP381

53.40% 4.50% 0.00% 0.70% 81.70% 0.50%

Table 3. Whole Human Kinase Sequence Identity Comparison

ABL KIT LCK p38 SRC

ABL 30.7% 44.6% 27.9% 43.9%

KIT 42.7% 34.3% 41.4%

LCK 29.6% 59.9%

p38 28.5%

SRC
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DISCUSSION

Kinase Homology and Drug Affinity

An evaluation of human protein sequence identity from the NCBI data bank using BLASTx

shows that all of the proteins have substantial differences in their whole protein sequences. But

the residues within 5 Å of imatinib are shown to have high homology with each other, only

differing in a few select residues (Aleksandrov and Simonson, 2010). This is expected since

imatinib binds into the ATP binding site. The ATP binding site should exhibit high similarity

between different proteins because all kinases serve the same general function of transferring

gamma phosphates from nucleotide triphosphates to other protein substrates for cell

communication and signaling regulation. The high conservation in the binding site, but

drastically different IC50 ranges for the imatinib and kinases, shows that there are other

structural factors beyond the ATP binding site affecting imatinib’s protein affinity.

Kinase Stabilization and Flexibility

A protein’s stabilization and flexibility are important because for kinases to function in signaling

pathways, they must adopt specific conformations to transfer gamma phosphates from nucleotide

triphosphates to the natural substrates on other proteins. Differential flexibilities will affect the

kinase’s ability to adopt the appropriate confirmation necessary for the signal transduction.

The MD results for ABL show that it forms a stable complex with imatinib. This is indicated

early in the simulations at 250 ns with a low average and standard deviation of 2.058 ± 0.216 Å

for the RMSD. Previous MD data shows a similar trend with ABL stabilizing early in the

simulations at 2 ns with an RMSD of 1 Å (Lin and Roux, 2013). This is not a long enough

time-span for analysis of long-scale protein dynamics, but it is consistent with the idea that the
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ABL-imatinib complex is highly stable. The MD results show an RMSF of 1.009 ± 0.756 Å.

Previous studies show similar RMSF patterns, with high flexibility in the regulatory regions

(Lovera et al., 2015).

The MD results for KIT show that it forms a stable complex with imatinib. It is shown in the

stabilization of the RMSD at 75 ns, with an average and standard deviation of 1.928 ± 0.294 A.

Previous MD data shows a similar trend, with stabilization occurring at 25 ns with an RMSD of

1.45 Å (Gomes et al., 2016). The MD results show an RMSF of 0.917 ± 1.059 Å. The high

standard deviation is due to the terminal regions exhibiting high flexibility, but the RMSF of the

main kinase domains are all low. These trends are consistent with previous literature, showing

low flexibility, and affirming the notion of a stable imatinib-KIT complex (Gomes et al., 2016).

The MD results for LCK show the formation of a stable imatinib-bound complex. The RMSD

stabilizes at 100 ns. It has an average and standard deviation of 2.490 ± 0.299 Å. Previous MD

studies show an overall stability for LCK at 1.5 Å by 1.75 ns (Lin and Roux, 2013). This is not a

long enough time-span for longer timescale protein dynamics, but it is consistent with the

observed trends of imatinib-LCK complex stability. The MD results show an RMSF of 1.131 ±

0.778 Å with similar flexibility peaks in key regulatory regions as ABL. There is substantial

flexibility at the protein termini contributing to the higher standard deviation. Previous studies

show similar peaks for the imatinib-LCK complex as imatinib-ABL, validating the models

(Lovera et al., 2015).

Flexible Regions and Contributing Residues of Interest

There are regions which exhibit high flexibility in the proteins including the Walker A motif

(P-loop), the DFG motif, the activation loop (A-loop), and the α-C-helix. The P-loop is a motif

involved with terminal phosphate transfer and binding (Romero et al., 2018). The DFG motif
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marks the start of the activation loop; both of which are involved in the regulation of protein

catalysis through the coordination of magnesium ions in the ATP binding site and providing

access for substrate binding (Peng et al., 2013) (Dubey and Ojha, 2011) (Modi and Dunbrack,

2019). The α-C-helix is a regulatory element that stabilizes active kinase configurations and aids

with efficient catalysis (Taylor and Kornev, 2010).

The MD results for ABL show high RMSF peaks for the P-loop, A-loop, and α-C-helix as shown

in figures 4 and 5. This is consistent with previous literature and the known qualities of those

regulatory motifs (Lovera et al., 2015). The DFG motif shows little fluctuation, which is

expected since the imatinib helps stabilize the DFG-out conformation in the kinases. It may be

expected that there will be greater flexibility in the DFG motif in a free-form protein simulation

because imatinib will not be present to stabilize the structure. A closer examination of individual

residue sequences shows a similarity in the previous data is a local RMSF minima at THR81,

which serves as a gatekeeper residue to modulate ligand affinity and avoid protein aggregation

(Emrick et al., 2006) (Gibbons et al., 2011). Another notable residue difference is TYR159,

which acts as a pseudosubstrate to impair access to the substrate pocket, and exhibits a minimum

in the RMSF (Schindler et al., 2000). The minima does not appear in previous literature, which

may warrant further investigation from longer simulations.

The MD results for LCK show high RMSF peaks for the P-loop, A-loop, and α-C-helix

comparable to the ABL. This is consistent with previous studies demonstrating flexibility for

those regulatory motifs (Lovera et al., 2015). The DFG motif shows little fluctuation, which is

consistent with the idea that imatinib forms a complex with LCK and stabilizes the DFG-out

conformation. A comparison of DFG motif flexibility in a free-form protein simulation may

show greater movement because imatinib will not be in the ATP binding pocket. Individual
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residues of interest include THR86, which is the gatekeeper residue analogous to THR81 from

ABL, which shows a local minimum in the RMSF. Mutants at the gatekeeper position are

implicated in imatinib resistance (Lee et al., 2010). Additional data for further individual

residues of interest from imatinib-LCK simulations are lacking, representing a future research

avenue for longer simulations.

The MD results for KIT exhibit low RMSF peaks for the P-loop, A-loop, and α-C-helix

compared to either the ABL or LCK. This is consistent with previous literature, which shows

that the flexibility for protein regions in an imatinib-bound KIT complex is generally low

(Gomes et al., 2016). Previous data suggests that when imatinib is not bound to the KIT in a

free-form protein, that it will exhibit greater flexibility, but not in the regulatory regions. The

flexible region corresponds with a flexible loop, of which its biochemical significance warrants

further study (Gomes et al., 2016). Because the regions are inflexible, it is difficult to ascertain

particular residues of interest at this time.

Imatinib Hydrogen Bonding Patterns Show Homology in ATP Pocket

Most kinase residues in the ATP binding pocket are homologous in the different systems,

including those which form hydrogen bonds with imatinib in a bound complex. An analysis of

hydrogen bonding frequency data from MD shows that ABL forms six key hydrogen bonds with

imatinib at residues GLU286, THR315, MET318, ILE360, HIS361, and ASP381 with

frequencies of 52.8%, 49.7%, 77.6%, 16.0%, 31.3%, and 42.4%; respectively. These interaction

frequencies are consistent with previous data showing that imatinib forms hydrogen bonds at

those residues (Avendaño and Menéndez, 2015) (Lin and Roux, 2013). A comparison of the

homologous residues for KIT and LCK were investigated. The MD data for KIT shows that it

forms hydrogen bonds with GLU286, THR315, MET318, HIS361, and ASP381 with frequencies
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of 64.0%, 23.5%, 73.0%, 40.5%, and 6.0%; respectively. These hydrogen bonds are expected as

observed in previous literature (Mol et al., 2004) (Lin and Roux, 2013) (Keretsu et al., 2020).

The MD results for LCK show that it forms hydrogen bonds for GLU286, THR315, and HIS361

with frequencies of 53.4%, 4.5%, and 81.7%; respectively. These hydrogen bonds are observed

in previous literature; further validating the experimental results (Lin and Roux, 2013).

IC50 Values Correlate with Known Affinity Ranges

The IC50 value describes the concentration of ligand required to inhibit a protein’s biological

functions by 50%. The smaller the value, the lower the concentration of ligand required to inhibit

the protein, and vice versa. ABL exhibits an IC50 range of approximately 0.025 - 0.6 μM as

validated by multiple previous studies (Zin et al., 2020) (Seeliger et al., 2007) (Deininger et al.,

2005) (Lovera et al., 2015) (Dar et al., 2009) (Kitagawa et al., 2013) (Namboodiri et al., 2010).

This makes sense since imatinib was designed to find into ABL’s ATP binding site. KIT has an

IC50 range of approximately 0.1 μM to 0.4 μM, exhibiting a similar binding and inhibition

capacity for imatinib as ABL (Seeliger et al., 2007) (Lovera et al., 2015) (Paniagua et al., 2006)

(Kitagawa et al., 2013) (Namboodiri et al., 2010) (Ravichandran et al., 2015). This is consistent

with previous observations showing that imatinib can favorably bind with KIT, enabling its use

to treat gastrointestinal stromal tumors by inhibiting KIT. LCK shows an IC50 range of

approximately 0.32 μM to 9.0 μM, which is a substantially higher range compared to either ABL

or KIT (Seggewiss et al., 2005) (Lee et al., 2010) (Lin and Roux, 2013) (Druker et al., 2005)

(Lovera et al., 2015) (Buchdunger et al., 2001) (Kitagawa et al., 2013) (Namboodiri et al., 2010)

(Ravichandran et al., 2015). This is consistent with kinetics observations showing that LCK has a

lower affinity for imatinib than either ABL or KIT. p38α has an IC50 range between 13.7 μM to

over 100 μM according to previous literature (Namboodiri et al., 2010) (Chen et al., 2008)
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(Dietrich et al., 2010). This is consistent with previous kinetics studies showing that p38α has a

generally low affinity for imatinib. SRC has been repeatedly validated to have an IC50 value

exceeding 100 micromolar according to previous literature, showing it has poor affinity with

imatinib (Druker et al., 2005) (Lovera et al., 2015) (Seeliger et al., 2007) (Dar et al., 2009)

(Namboodiri et al., 2010) (Ravichandran et al., 2015). This is consistent with previous studies

showing that SRC has a 2400x worse affinity for imatinib compared to ABL. Explaining the

differences in binding affinity is of substantial importance for rational drug design, as

understanding why some medicines bind to proteins better than others will help guide the

creation of new drugs that specifically bind one or a few proteins to prevent unwanted side

effects and expand treatment options for other malignancies.

Expectations for Future Simulations

If other kinases have similar homology with the ABL binding site, one may expect similar

hydrogen bonding patterns. However, as shown with previous literature and MD results, this is

not always the case. Even over the 500 ns simulations for ABL and LCK, homologous hydrogen

bonds did not form with comparable frequency. It is, therefore, necessary to conduct further MD

simulations on known systems to evaluate the accuracy identifying non-covalent interactions

before expanding the simulation to kinases without imatinib-bound complexes in the PDB.

Previous literature shows that p38α forms an unstable complex with imatinib (Yang et al., 2011).

Available RMSD data over 10 ns shows a continual increase in the protein and pocket, indicating

a lack of overall stability (Yang et al., 2011). The RMSF shows similar flexibilities for ABL and

LCK in the kinase regulatory regions (Yang et al., 2011). Imatinib has been shown to form

non-covalent interactions with MET109, THR106, GLU71, and ASP168 (Namboodiri et al.,

2010). This is consistent with the observation of imatinib having a high IC50 value range from
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13.7 μM to over 100 μM; a substantially higher range than ABL, KIT, or LCK. If there is a weak

affinity between imatinib and p38, a statistically similar RMSD and RMSF should be observed

between the free-form and imatinib-bound complexes because of weak non-covalent hydrogen

bonding effects. If there are substantial differences, it would indicate that imatinib’s presence in

the binding pocket is affecting p38α’s dynamics, but that there are other structural factors

explaining its weak affinity for p38α.

Previous literature shows that imatinib has a 2400x weaker binding affinity for SRC compared to

ABL. The RMSD from previous studies shows imatinib-SRC complex formation, stabilizing at

around 1.2 Å by 2.5 ns (Lin and Roux, 2013). The RMSF differences between the free-form and

imatinib-bound complexes are comparable within ± 0.5 Å, with the most difference in the

regulatory motif of the P-loop (Morando et al., 2016). SRC is expected to form four hydrogen

bonds with GLU310, THR338, MET341, and ASP404 (Seeliger et al., 2009). This is consistent

with the known IC50 range in previous studies, with all known observations ranking over 100

μM. If there is a weak affinity between imatinib and SRC, a statistically similar RMSD and

RMSF should be observed between the free-form and imatinib-bound complexes because of

weak non-covalent hydrogen bonding effects. If there are substantial differences, it would

indicate that imatinib’s presence in the binding pocket is affecting SRC’s dynamics, but that

there are other structural factors explaining its weak affinity for SRC.

Future Directions

Comparing Free-form and Imatinib-bound Kinase Dynamics

Analyzing the dynamics differences between the free-form and imatinib-bound complex states

will show how the imatinib binding affects the stability and flexibility differences for the protein.
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It would generally be expected that those proteins which form a strong complex with imatinib

will exhibit substantial differences in the stability and flexibility findings. Those proteins which

do not form strong complexes with imatinib will show insignificant differences in the stability

and flexibility (Karch et al., 2019). The estimation of the differences in Gibbs binding free

energy requires long MD simulations to compare the unbound and bound equilibrium states

(Salo-Ahen et al., 2020) (Hata et al., 2021). The simulations will be expanded to p38α and SRC

kinases, along with free-form simulations of ABL, KIT, LCK, p38α, and SRC for experimental

verification. The simulations will then be expanded to other kinases of interest including ASK1,

AURKA, BRAF, CHK1, FLT3, and GSK3 beta; all of which exhibit changes in kinase

phosphorylation with imatinib present (Miao et al., 2019). Of these kinases without available

imatinib-bound complexes in the PDB, only AURKA has available MD data showing it forms a

stable complex based on RMSD, showing it may be a promising target for further study (Zhang

et al., 2019). However, detailed insights into protein dynamics are lacking, representing future

research opportunities.

Investigating Bridge Waters and Salt Bridges

Crystal waters have a critical role in stabilizing biomolecular complexes and aiding protein

folding (Petukhov et al., 1999) (Onuchic and Levy, 2004) (Bellissent-Funel et al., 2016) (Steinke

et al., 2018). Water molecules in imatinib-bound ABL MD simulations have been previously

explored, but the simulations were conducted for only 14 ns, which is not long enough to track

key bridge waters over a longer time scale (Dubey and Ojha, 2011). The findings, however,

suggest that hydration plays an important role in mediating the imatinib-protein complex.

Previous MD data consistently shows the importance of salt bridges, another type of

non-covalent interaction, in mediating kinase promiscuity and intra-protein interactions between
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different regulatory motifs (Dubey and Ojha, 2011) (Keretsu et al., 2020) (Hanson et al., 2019).

Studies suggest that while salt bridges do not significantly affect kinase activity, they generally

increase complex entropy, which should be reflected in thermodynamics analysis and free energy

calculations (Dubey and Ojha, 2011). It is, therefore, of importance to investigate how hydration

effects and salt bridge interactions help mediate the free energy in the imatinib-bound

complexes.

Evaluating Imatinib Docking Energies

Molecular docking is a useful method to evaluate the possible conformations that a ligand may

adopt when bound to a protein (Pantsar and Poso, 2018). It is especially powerful when

combined with structural biology to explain what non-covalent interactions or binding pocket

conformations contribute to binding affinity differences between ligands and proteins (Forli et

al., 2016). However, there are limitations in how the software selects conformations and if

similar structures are missing. Docking works by calculating and ranking the energetic

favorability of the ligand-protein complex rather than by a binding mechanism (Pantsar and

Poso, 2018) (Forli et al., 2016). It is possible to obtain drug conformations that are energetically

favorable, but not biologically possible in a protein. It is, therefore, useful to consider a few of

the top selections instead of only the most favorable and to compare the structures with similar

complexes, such as the same drug bound to different proteins or similar drugs bound to the same

protein (Ramirez and Caballero, 2018). Docking tools cannot accurately estimate binding

energies, but they are still useful for a general evaluation of binding affinity trends, even if they

do not perfectly agree with experimental kinetics (Pantsar and Poso, 2018). AutoDock software

will be used to dock imatinib with different protein conformations collected from MD to check

how structural changes over time affect the binding energies. Imatinib will be cross-docked to
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DFG-out kinase structures without available imatinib-bound complexes and the most reasonable

conformation from visual examination will be used for MD (Ravichandran et al., 2015) (Chen et

al., 2019) (Ramirez and Caballero, 2018).

Principal Component and Dihedral Correlation Analysis

As MD yields large coordinate data for each atom in the run, it is useful to use principal

component analysis (PCA) to determine the essential protein dynamics and construct a free

energy landscape (Padhi et al., 2022) (David and Jacobs, 2013) (Sittel et al., 2014). PCA is a

method to simplify correlated observations to principal components (PCs), identifying important

conformational changes that either repeat or do not repeat over time (David and Jacobs, 2013).

PCA standardizes the variable range to the same scale to not bias the results, computes a

covariance or correlation matrix to check for direct and inverse correlations, determines the PCs

with linear algebra to discern the variables with greatest variance, and plots them such that each

PC represents a line that maximizes variance while being uncorrelated with subsequent PCs

(Lever et al., 2017) (Jolliffe and Cadima, 2016). For MD, the structure must be aligned to a

reference to minimize translation and rotation motion (David and Jacobs, 2013). The degrees of

freedom, corresponding with the PCs, depends on the protein size and atom selection, but it will

be three times the number of atoms selected corresponding to the x-, y- and z-axes (David and

Jacobs, 2013) (Srikumar et al., 2014). The BIO3D R package can calculate and visualize PCA,

making it a useful tool for future research (Grant et al., 2020). Since PCA is reducing variables in

the set, there is a slight accuracy reduction, but identification of important protein motions is

easier without irrelevant data.

Dihedral angles form between four atoms connected linearly and they define the protein’s

conformational dynamics over an MD simulation (Long and Tian, 2016). Protein dynamics are
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important for their functions physiologically, but are difficult to track, so a solution is dihedral

correlation analysis (Taddese et al., 2020). Dihedral correlations are useful for separating internal

and whole protein motion when interpreting free energy landscapes, describing the total

molecular energy of a system, and coordination between individual residues and larger secondary

structures (Taddese et al., 2020) (Altis et al., 2007) (Friederich et al., 2018) (Moulick and

Chakrabarti, 2022) (Haddad et al., 2019). They have an advantage over conventional PCA since

dihedrals are affected by Van der Waal interactions, hydrogen bonding with other residues and

waters, and salt bridge interactions; presenting another avenue for guiding rational drug design

(Taddese et al., 2020). A tool for studying dihedral distributions is T-Analyst, an in-house Linux

program developed by the Chang lab to study the dihedrals of protein backbones, side-chains,

and ligands (Ai et al., 2010). Dihedral correlation analysis is useful in conjunction with PCA to

solve for the important free-form and imatinib-bound protein dynamics and energetics as the

simulation progresses producing large coordinate and dihedral data sets.

Dissociation Simulations, Residence Time, and Binding Affinity Approximation

After analyzing the free-form and imatinib-bound MD simulations, a future goal of the project is

to study dissociation simulations. This is to measure the residence time, the inverse of the

dissociation rate constant koff and the time required for a drug to unbind from a protein, which is

a better predictor of drug efficacy (Sohraby and Nunves-Alves, 2023). As drug dissociation from

a protein takes place over a longer time period than is obtainable from a single simulation, it is

necessary to use alternate techniques to lengthen the simulations while conserving computational

power (Re et al., 2019). Milestoning theory is a technique to enhance computational simulations

of kinetics using shorter MD trajectories to approximate the solution using free energy

calculations and mean first passage time (Elber et al., 2020) (Elber, 2020). Previous studies have
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shown that imatinib exits ABL via two mechanisms, either sliding under the alpha-C-helix or

exiting under the P-loop via a hinge mechanism, which are the same pathways by which it is

known to associate with ABL (Yang et al., 2009) (Paul et al., 2020) (Narayan et al., 2021)

(Shekhar et al., 2022). KIT kinase has imatinib dissociate via the ATP channel, though the

precise unbinding mechanism is unexplored (Yang et al., 2009). All other kinases in this study do

not have available literature exploring the imatinib unbinding mechanism, though if they have

lower affinities compared to ABL and KIT, a general trend of faster dissociation should be

reflected in the simulations (Shah and Kuriyan, 2018). It is of interest to explore the structural

factors that impede imatinib’s retention in the ATP binding pocket to guide rational drug design.
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