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Abstract: The course of pathophysiological mechanisms involved in fragile X-associated tremor/ataxia
syndrome (FXTAS) remains largely unknown. Previous proteomics and metabolomics studies con-
ducted in blood samples collected from FMR1 premutation carriers with FXTAS reported abnormali-
ties in energy metabolism, and precursors of gluconeogenesis showed significant changes in plasma
expression levels in FMR1 premutation carriers who developed FXTAS. We conducted an analysis of
postmortem human brain tissues from 44 donors, 25 brains with FXTAS, and 19 matched controls.
We quantified the metabolite relative abundance in the inferior temporal gyrus and the cerebellum
using untargeted mass spectrometry (MS)-based metabolomics. We investigated how the metabolite
type and abundance relate to the number of cytosine-guanine-guanine (CGG) repeats, to markers of
neurodegeneration, and to the symptoms of FXTAS. A metabolomic analysis identified 191 primary
metabolites, the data were log-transformed and normalized prior to the analysis, and the relative
abundance was compared between the groups. The changes in the relative abundance of a set of
metabolites were region-specific with some overlapping results; 22 metabolites showed alterations in
the inferior temporal gyrus, while 21 showed differences in the cerebellum. The relative abundance of
cytidine was decreased in the inferior temporal gyrus, and a lower abundance was found in the cases
with larger CGG expansions; oleamide was significantly decreased in the cerebellum. The abundance
of 11 metabolites was influenced by changes in the CGG repeat number. A histological evaluation
found an association between the presence of microhemorrhages in the inferior temporal gyrus and
a lower abundance of 2,5-dihydroxypyrazine. Our study identified alterations in the metabolites
involved in the oxidative-stress response and bioenergetics in the brains of individuals with FXTAS.
Significant changes in the abundance of cytidine and oleamide suggest their potential as biomarkers
and therapeutic targets for FXTAS.
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1. Introduction

Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset single-gene
neurodegenerative disorder characterized by the following core clinical symptoms: bal-
ance problems (ataxia), intention tremor, and cognitive decline. FXTAS is caused by an
expanded trinucleotide repeat in the promoter region of the FMR1 (fragile X messenger
ribonucleoprotein 1) gene that codes for a crucial protein, FMRP, important for cognitive
development. Not all individuals who are FMR1 premutation carriers (expansions between
54 and 200 CGG repeats) will go on to develop FXTAS, but the conversion rate increases
with age, with the average diagnosis age being around 61 years in males and 68 years in
females. Premutation-carrier females have one normal X allele that helps compensate for
the expanded one and thus have milder symptoms and a lower FXTAS penetrance rate.
Approximately 40% of males and 16% of females develop FXTAS. An added layer of com-
plexity is that some premutation-carrier individuals have mild symptoms; this phenotype
is commonly seen in females who were originally thought to be unaffected, while others
have symptoms that emerge rapidly and get worse over time.

There is no single and simple test for FXTAS. The sensitivity and specificity of clinical
diagnosis methods are low and only effective in patients with significant core symptoms.
Magnetic resonance imaging of the brain supports the diagnosis of FXTAS; however, white
matter hyperintensities in the middle cerebellar peduncles (MCP sign), a major radiological
criterion, are seen in approximately 60% of males and in <13% of females. The pathological
examination of postmortem brain is widely accepted as the final diagnostic method of
FXTAS by confirming eosinophilic-ubiquitin-positive intranuclear inclusions [1,2]. Like
other diseases, an effective drug treatment may be needed before the onset of clinical
symptoms. In this context, metabolomics can be a useful tool to detect altered metabolites
that are closely associated with FXTAS pathogenesis. Similar to most neurodegenerative
disorders with no known cure, there is an urgent need for biomarkers that can facilitate the
development, diagnosis, severity, prognosis, and treatment of FXTAS.

Primary metabolites, products of the metabolism that are directly involved in cell
maintenance, growth, and reproduction, are emerging substances that can be used as
potential disease biomarkers. An imbalance of metabolic homeostasis is a precursor for
disease, so the assessment of changes in the metabolome through metabolomics analysis has
become an important application for understanding the complexity of a disease phenotype
and for discovering novel therapeutic targets. Previous metabolomics studies conducted in
human plasma and brain tissue from animal models showed metabolic differences between
FMR1 premutation with and without FXTAS and controls [3–6].

Here, we report the metabolomic profile of postmortem brain tissues from patients
who died from FXTAS and report the pathways potentially affected by FXTAS pathophysi-
ology [7]. We employed an untargeted metabolomics approach using a combination of gas
chromatography coupled with mass spectrometry (GC-MS) for a global metabolic profile
of the postmortem human brain cortex and cerebellum (CB) from individuals with FXTAS.
This approach accurately quantified 513 primary metabolites, with 191 being identified,
from 44 tissue samples harvested from the inferior temporal gyrus (ITG) and CB. We
performed a pathway enrichment analysis to detect altered biological processes and a
receiver operator characteristic (ROC) curve analysis on a selected list of metabolites to
assess for their discriminatory potential. These findings can potentially help to identify the
key predictive biomarkers of FXTAS and expand the basic knowledge of the metabolome.
Understanding the metabolic processes associated with core clinical symptoms in FXTAS
may aid in uncovering biochemical pathways associated with different FXTAS phenotypes.

2. Materials and Methods
2.1. Participants

Twenty-five brains with FXTAS and nineteen matched controls for age and sex were
included in this study (Table 1). FXTAS cases were obtained from the FXS/FXTAS brain
repository at UC Davis (a node of the Hispanic-American Brain Bank for Neurodevelopmen-
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tal Disorders—CENE) [8]. All donors gave written informed consent for a brain autopsy
and the use of the material and clinical information for research purposes. Control brain
tissues were obtained from the NIH NeuroBioBank and acquired from subjects without
any significant neurological history or the FMR1 premutation. FXTAS cases were advanced
in the disease progression and had a variable clinical presentation. FXTAS diagnosis was
confirmed with the presence of the FMR1 premutation and postmortem ubiquitin-positive
intranuclear inclusions in brain cells.

Table 1. Subject characteristics.

Control (n = 19) Case (n = 25) p-Value

Age 0.868

N 19 25
Mean (SD) 80.5 (8.5) 80.8 (7.2)

Median (Range) 80 (62–97) 81 (67–93)

PMI 0.939

N 19 18
Mean (SD) 23.5 (33) 21.5 (28.7)

Median (Range) 8.7 (2.3–136.1) 15.2 (2.5–127)

Gender 1

F 9 (47.4%) 12 (48%)
M 10 (52.6%) 13 (52%)

Blood CGG

N 19 25
Mean (SD) 30.6 (4.8) 82 (15.7)

Median (Range) 30 (23–42) 81 (55–120)
20–44 19 (100%) 0
45–54 0 0
55–74 0 7 (28%)
75–94 0 14 (56%)
95–120 0 4 (16%)

Race/Ethnicity

White 19 (100%) 25 (100%)

2.2. GC-MS Sample Preparation and Metabolite Profiling

Five hundred milligrams (0.5 g) of fresh frozen brain tissue were sampled from the ITG
(Brodmann area 20) and the CB. Samples were stored at −80 degrees Celsius prior to analysis.
Metabolite relative abundance was conducted by the West Coast Metabolomics Center using
GC-MS quantification. Samples were extracted using 1 mL of 3:3:2 ACN:IPA:H2O (v/v/v).
Half of the sample was dried to completeness and then derivatized using 10 µL of 40 mg/mL
methoxyamine in pyridine. The samples were shaken at 30 ◦C for 1.5 h. Then, 91 µL of
N-methyl-N-(trimethylsilyl) trifluroacetamide (MSTFA) + fatty acid methyl esters (FAMEs)
were added to each sample, and they were shaken at 37 ◦C for 0.5 h to finish derivatiza-
tion. The samples were then vialed, capped, and injected onto the instrument. Data were
acquired using the chromatographic parameters detailed in Fiehn O. et al. [9]. Metabolite
profiling was performed by an ALEX-CIS GC TOF MS system from the Gerstel corporation
(Linthicum, MD, USA). Chromatographic parameters were as follows: column, Restek corpo-
ration Rtx-5Sil MS (30 m length × 0.25 mm internal diameter with 0.25 µm film made of 95%
dimethyl/5%diphenylpolysiloxane); mobile phase, helium; column temperature, between
50–330 ◦C; flow rate, 1 mL min−1; injection volume, 0.5 µL; injection, 25 splitless time into
a multi-baffled glass liner; injection temperature, 50 ◦C ramped to 250 ◦C at 12 ◦C s−1. The
oven temperature parameters were as follows: 50 ◦C for 1 min, then ramped at 20 ◦C min−1

to 330 ◦C and held constant for 5 min. The mass spectrometry parameters were as follows: a
Leco Pegasus IV mass spectrometer (St. Joseph, MI, USA) was used with a unit mass resolu-
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tion at 17 spectra s−1 from 80–500 Da at a −70 eV ionization energy and an 1800 V detector
voltage with a 230 ◦C transfer line and a 250 ◦C ion source. Data analysis was achieved
using ChromaTOF vs. 2.32 (St. Joseph, MI, USA). Signal intensities were reported as peak
heights using the unique ion as default. Raw data were submitted to BinBase (West Coast
Metabolomics Center, Davis, CA, USA). Data were normalized using sum normalization after
BinBase data processing during data curation. A series of 13 FAMEs were used as internal
standards for the retention index and QC during acquisition to control for batch variation.
All metabolomics data generated, in both raw and processed formats, and total ion chro-
matograms are available at the Metabolomics Workbench www.metabolomicsworkbench.org
(accessed on 22 August 2023).

2.3. CGG Repeat Length

CGG allele repeat size was obtained from DNA samples isolated from 3 mL of whole
blood using the standard procedure (Qiagen, Valencia, CA, USA) and assessed through
polymerase chain reaction (PCR) and Southern blot analysis as previously described [10,11].
PCR used specific FMR1 primers, and PCR products were visualized by capillary elec-
trophoresis and analyzed with the Peak Scanner Software 2.0 (Thermo Fisher Scientific,
Waltham, MA, USA).

2.4. Markers of Neurodegeneration

We analyzed the presence/absence of amyloid beta plaques, tau aggregates (neurofib-
rillary tangles and neuritic plaques), and microhemorrhages, all of which are markers of
neurodegenerative processes in the brain. Emerging evidence points to the co-existence
of Alzheimer’s-type pathology in the brain cortex and the presence of microhemorrhages
in the cerebellum as possible aggravating factors for the rate of disease progression in
FXTAS [12–14]. Fixed samples from the ITG (Brodmann area 20) and CB were immersed
in 30% sucrose and embedded in an optimal cutting temperature compound. Afterwards,
each sample block was cut on the cryostat at a 14 µm thickness. We incubated sections
in DIVA for 8 minutes at 110 ◦C followed by 3% hydrogen peroxide, permeabilized and
blocked them in a tris-buffered saline (TBS) solution containing Triton and donkey serum
for 1 hour (75% TBS, 15% Triton, 10% serum), and incubated them with the following
primary antibodies overnight at 4 ◦C in a dark and humid box: rabbit anti-ubiquitin (1:150;
Dako, Glostrup, Denmark), polyclonal rabbit anti-β amyloid 1–42 (1:500; Abcam, Cam-
bridge, UK), and mouse monoclonal anti-phosphorylation clone AT8 tau (1:200, Invitrogen,
Waltham, MA, USA). On day 2, sections were incubated with biotinylated secondary anti-
body (1:150, Jackson ImmunoResearch, West Grove, PA, USA) for 1 hour, incubated in a
Vectastain ABC kit (Vector Labs, Burlingame, CA, USA) for 2 h, developed in a DAB kit
(Vector Labs, Burlingame, CA, USA), dehydrated with alcohols, cleared in xylene, and
cover slipped. Immunochemistry was used to evaluate the presence/absence of neurofib-
rillary tangles, neuritic plaques, and FXTAS intranuclear inclusions. Hematoxylin- and
eosin-stained tissue was evaluated for the presence of microhemorrhages, defined as small
(<10 mm), cortical/subcortical perivascular hemorrhages.

2.5. Symptoms of FXTAS

We extracted clinical data from available medical histories from FXTAS cases. We
studied the association between changes in metabolite abundance in postmortem brain
(ITG and CB) and the severity of core clinical symptoms (absent/mild vs. moderate/severe)
per last medical report based on the treating physician’s perception during neurologi-
cal evaluation. FXTAS stages (stages of physical disability defined by the consortium)
were as follows: (1) subtle or questionable tremor and/or balance problems; (2) minor
tremor and/or balance problems with minimal interference in activities of daily living
(ADL); (3) moderate tremor and/or balance problems with significant interference in ADL;
(4) severe tremor and/or balance problems with the need to use a cane or walker; (5) daily

www.metabolomicsworkbench.org
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use of a wheelchair; and (6) bedridden [15]. Scores from standardized clinical or research
assessments were also used when available (Supplementary Materials Table S3).

2.6. Statistical Methods
2.6.1. Differential Metabolite Abundance Analyses

Cases and controls were frequency matched by age and sex. Metabolomics data
were log transformed and cyclic loess were normalized [16] prior to analysis. Differ-
ential metabolite abundance analyses were conducted using the Bioconductor package
limma [17] version 3.52.2. Each brain region was analyzed separately. Models used in
limma were adjusted for batch and subject age by including these as covariates (post-
mortem interval could not be controlled for as it was missing for several subjects but
had a comparable distribution in cases and controls). Analyses were conducted using
R version 4.2.1 (22 November 2022) [18]. Multiple comparisons were accounted for us-
ing the Benjamini–Hochberg false discovery rate (FDR adj. p-value). Metabolites were
considered significant when the adj. p-value was calculated from the FDR < 0.05, and
metabolites with adj. p-value < 0.08 were considered trending. Metabolites with raw
p-values < 0.01 and adj. p-values < 0.2 were considered to have a possible association
with changes in the number of CGG repeats. Volcano plots of metabolite log2FC and
−log10 (p-value) values were also generated to identify metabolites of interest, with
metabolites considered to be differentially expressed if they exhibited a p-value < 0.05.

2.6.2. Enrichment and Pathway Analyses

The differentially expressed metabolites from the comparative analyses of FXTAS
versus control groups were subjected to enrichment analysis using the R package cluster-
Profiler [19], version 4.4.4, which implements the algorithm from GSEA [20]. This analysis is
sensitive to identifying small but consistent changes among metabolites involved in the same
biological pathway. Pathways were considered significant when the adj. p-value calculated
from the enrichment analysis was <0.05 and trending when adj. p-value 0.05 < 0.08.

2.6.3. Receiver Operator Characteristic (ROC) Curve Analysis—Area under the
Curve (AUC)

The ROC curve is the most popular graphical tool for evaluating the discriminatory
power of a biomarker. To postulate potential predictive biomarkers of FXTAS, we tested
the metabolites with a raw p-value < 0.05 in the differential metabolite abundance analysis
and those metabolites found to be upregulated/downregulated in the volcano plot analysis
for ITG and CB. A value of 0.5 for AUC suggested that the metabolite being tested had
no discriminatory ability between FXTAS cases and controls. AUC values between 0.5–0.7
had poor discrimination, 0.7–0.8 had acceptable discrimination, 0.8–0.9 had excellent
discrimination, and >0.9 had outstanding discrimination. The AUC values reported are
in-sample values.

3. Results

A metabolomics dataset was generated from the frozen postmortem brain samples
from FXTAS cases and age-/sex-matched controls. The untargeted analysis of the primary
metabolites demonstrated significant alterations in the FXTAS brains. A complete list of
the identified metabolites is available in the Supplementary Materials. A description of the
key outcomes is presented below.

3.1. Participants

The age of the FXTAS cases ranged from 67 to 93 years (mean 80.8 years). The control
cases ranged in age from 62 to 97 years (mean 80.5 years). The average CGG repeat number
in the FXTAS group was 82 ± 15.7 (mean ± SD), and in the controls, it was 30.6 ± 4.8. A
total of 100% of the cases (n = 44) were white. The age range for the onset of symptoms of
FXTAS was 50–81 years (Table 1). Most of the FXTAS cases presented with ataxia as the
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first clinical manifestation, and 36% of the cases had additional neurological diagnoses
(Supplementary Materials Table S3).

3.2. Primary Metabolite Profile in the Brains with FXTAS

The differential metabolite abundance analysis detected 513 primary metabolites, and
191 were identified (Supplementary Materials Tables S1 and S2). The changes in the metabo-
lite relative abundance were region-specific. A total of 22 metabolites showed changes
between groups (raw p-value < 0.05) in ITG. Cytidine abundance, a pyrimidine nucleoside,
was lower in the FXTAS cases—log2 fold change (logFC): −1.38, adj. p-value 0.0007. In
addition, 3-hydroxybutyric acid (logFC: 1.07, adj. p-value 0.0772), 2-hydroxybutanoic acid
(logFC: 0.93, adj. p-value 0.0772), and 1,5-anhydroglucitol (logFC: 1.08, adj. p-value 0.0772),
metabolites involved in energy metabolism, showed a trending higher abundance. CB
showed changes in 21 metabolites (raw p-value < 0.05), and the relative abundance of
oleamide, a fatty acid, was significantly lower (logFC: −1.06, adj. p-value 0.0018) (Table 2).
Significance based on a volcano plot analysis showed the abundance of 3-hydrobutyric
acid, 1,5-anhydroglucitol, and pyruvic acid to be upregulated; cytidine and glyceric acid
were downregulated in the ITG of FXTAS cases compared to the controls. In CB, fructose-1-
phosphate, 1,5-anhydroglucitol, 2-hydroxybutanoic acid, and glucose-6-phosphate were
upregulated, while oleamide was observed to be downregulated, as shown in Figure 1a,b.
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Figure 1. (a,b) Volcano plots for differential metabolite abundance analysis of case versus control in
ITG and CB. The x-axis shows the logFC for case/control, and the y-axis shows −log10 of the false
discovery rate adjusted p-value. Metabolites with an absolute logFC greater than 1 are shown in pink
and labeled with their BinBase name. The dashed horizontal line shows an adjusted p-value of 0.05.
The dashed vertical lines show log2 fold changes of −1 and 1. A metabolite was said to be differential
if p-value < 0.05 and logFC > 1. The purple dots in the figure represent downregulated differentially
expressed metabolites, the red dots represent upregulated differentially expressed metabolites, and
the gray dots represent metabolites detected but that were not significantly different. (c–e) Heatmaps
of altered metabolites. Heatmaps were created using the Bioconductor package ComplexHeatmap,
version 2.12.0. Red indicates high and purple indicates low abundance of the metabolite relative to
the median.
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Table 2. Differential abundance cases/controls.

Inferior Temporal Gyrus Cerebellum

BinBase Name Biological Role PubChem logFC p-Value adj. p-Value BinBase Name Biological Role PubChem logFC p-Value adj. p-Value

Cytidine nucleoside 6175 −1.381 0.000004 0.0007 Oleamide fatty acid amide 5283387 −1.060 0.00001 0.0018
3-hydroxybutyric acid ketone body 92135 1.075 0.0011 0.0772 Fructose-1-phosphate monosaccharide 439394 1.362 0.0013 0.1067

2-hydroxybutanoic acid organic acid 440864 0.939 0.0015 0.0772 1,5-anhydroglucitol monosaccharide 64960 1.037 0.0039 0.1683
1,5-anhydroglucitol monosaccharide 64960 1.083 0.0016 0.0772 Phosphoethanolamine phosphomonoester 1015 0.569 0.0046 0.1683

Oleamide fatty acid amide 5283387 −0.904 0.0029 0.1115 2-hydroxybutanoic acid organic acid 440864 1.056 0.005 0.1683
Guanine amino acid/purine 764 0.747 0.0043 0.1181 N-acetylmannosamine amino sugar 11096158 −0.779 0.0069 0.1796
Xanthine amino acid/purine 1188 −0.347 0.0043 0.1181 Lysine essential amino acid 5962 −0.398 0.0074 0.1796
Histidine essential amino acid 6274 -0.624 0.0057 0.138 Maltotriose trisaccharide 439586 0.908 0.0103 0.2134
Proline essential amino acid 145742 −0.730 0.0094 0.1854 Proline essential amino acid 145742 −0.909 0.0114 0.2134

Phosphoric acid organic acid 1004 0.487 0.0096 0.1854 Threonine essential amino acid 6288 −0.323 0.0141 0.2353
Gluconic acid organic acid 6857417 −0.952 0.0118 0.207 Maltose disaccharide 439186 0.955 0.0161 0.2353

Cysteine amino acid 5862 −0.814 0.0139 0.2232 Xylose monosaccharide 135191 0.658 0.0167 0.2353
Cholesterol lipid 5997 0.354 0.0168 0.2493 Erythritol monosaccharide polyol 222285 0.434 0.0234 0.2906
Threonine essential amino acid 6288 −0.265 0.0181 0.2493 Glycyl tyrosine dipeptide 92829 −0.591 0.0241 0.2906

Maltotriose trisaccharide 439586 0.752 0.0199 0.2557 Inosine nucleoside 6021 0.780 0.0268 0.3021
Glyceric acid organic acid 752 −1.710 0.0219 0.2592 Ascorbic acid organic acid 54670067 0.480 0.0294 0.3107

Pyrophosphoric acid inorganic acid 1023 0.446 0.0228 0.2592 Glycerol sugar alcohol 753 −0.349 0.0319 0.315
Pyruvic acid organic acid 1060 1.019 0.03 0.3145 Histidine essential amino acid 6274 −0.602 0.0336 0.315

Erythrose monosaccharide 439574 −0.461 0.031 0.3145 Arabitol sugar alcohol 94154 0.364 0.0356 0.3162
Adipic acid organic acid 196 0.283 0.0405 0.3904 Serine non-essential amino acid 5951 −0.342 0.0413 0.3466

Gluconic acid lactone organic acid 7027 −0.653 0.0451 0.4145 Leucine essential amino acid 6106 −0.329 0.0486 0.3466
Adenosine nucleoside 60961 0.639 0.0474 0.4161
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3.3. KEGG Enrichment Analysis

The enrichment of the KEGG pathway analysis in the ITG revealed that the most
relevant downregulated pathways were related to the dysregulation of identified amino
acids in FXTAS vs. controls: (i) protein digestion and absorption (hsa04974), (ii) aminoacyl-
tRNA biosynthesis (hsa00970), and (iii) D-amino acid metabolism (hsa00470). Similar
downregulation of (i) protein digestion and absorption (hsa04974) and (ii) D-amino acid
metabolism (hsa00470) were noted in CB (Table 3). The enrichment analysis did not show
any distinctive upregulated pathways.

Table 3. Enriched pathways in FXTAS vs. controls.

ITG

Pathway Name BinBase Name logFC p-Value adj. p-Value t KEGG

Histidine −0.624 0.006 0.138 −2.912 C00135

Protein digestion and absorption
Homo sapiens (human)

hsa04974
p-value: 0.0019 adj. p-value 0.009

q-value 0.0039
Normalized enrichment score: −1.948

Proline −0.730 0.009 0.185 −2.723 C00148
Cysteine −0.814 0.014 0.223 −2.568 C00097

Threonine −0.265 0.018 0.249 −2.460 C00188
Methionine −0.284 0.091 0.446 −1.728 C00073

Leucine −0.194 0.213 0.585 −1.265 C00123
Glutamine 0.187 0.442 0.737 0.776 C00064

Aspartic acid −0.085 0.608 0.803 −0.516 C00049
Alanine −0.066 0.708 0.870 −0.377 C00041

Aryptophan −0.038 0.799 0.891 −0.256 C00078

Aminoacyl tRNA biosynthesis
Homo sapiens (human)

hsa00970
p-value: 0.0053 adj. p-value 0.0132

q-value 0.0056
Normalized enrichment score: −1.868

Histidine −0.624 0.006 0.138 −2.912 C00135
Threonine −0.265 0.018 0.249 −2.460 C00188
Isoleucine −0.276 0.059 0.446 −1.938 C00407

Glycine −0.236 0.065 0.446 −1.896 C00037
Serine −0.252 0.080 0.446 −1.816 C00065

Asparagine −0.139 0.273 0.643 −1.110 C00152
O-phosphoserine 0.627 0.295 0.643 1.148 C01005

Tyrosine −0.102 0.547 0.801 −0.608 C00082
Lysine −0.074 0.622 0.811 −0.497 C00047

Tryptophan −0.038 0.799 0.891 −0.256 C00078

D-amino acid metabolism
Homo sapiens (human)

hsa00470
p-value: 0.0391 adj. p-value 0.065

q-value 0.0274
Normalized enrichment score: −1.641

Proline −0.730 0.009 0.185 −2.723 C00148
Cysteine −0.814 0.014 0.223 −2.568 C00097

Threonine −0.265 0.018 0.249 −2.460 C00188
Methionine −0.284 0.091 0.446 −1.728 C00073

Glutamic acid −0.123 0.262 0.629 −1.137 C00025
N-acetylglutamate −0.171 0.321 0.671 −1.006 C00624

Trans-4-hydroxyproline 0.139 0.350 0.675 0.946 C01157
Glutamine 0.187 0.442 0.737 0.776 C00064

Aspartic acid −0.085 0.608 0.804 −0.516 C00049
Alanine −0.066 0.708 0.870 −0.377 C00041

Phenylalanine −0.007 0.964 0.969 −0.045 C00079

CB

Pathway Name Pathway Name logFC p-Value Adjusted
p-Value t KEGG

Protein digestion and absorption
Homo sapiens (human)

hsa04974
p-value: 0.0004 adj. p-value 0.002

q-value 0.0009
Normalized enrichment score: −2.017

Proline −0.909 0.011 0.213 −2.649 C00148
Threonine −0.322 0.014 0.235 −2.562 C00188
Histidine −0.602 0.034 0.315 −2.198 C00135
Leucine −0.329 0.049 0.347 −2.031 C00123
Cysteine −0.618 0.115 0.448 −1.609 C00097

Methionine −0.313 0.124 0.448 −1.570 C00073
Alanine −0.330 0.137 0.448 −1.518 C00041

Aspartic acid −0.272 0.155 0.469 −1.447 C00049
Glutamine 0.148 0.531 0.806 0.632 C00064
Tryptophan −0.089 0.608 0.853 −0.517 C00078

D-amino acid metabolism
Homo sapiens (human)

hsa00470
p-value: 0.0034 adj. p-value 0.0069

q-value 0.0036
Normalized enrichment score: −1.815

Proline −0.909 0.011 0.18 −2.814 C00148
Threonine −0.322 0.014 0.235 −2.562 C00188
Cysteine −0.618 0.115 0.315 −2.198 C00097

Methionine −0.313 0.124 0.347 −2.112 C00073
Alanine −0.33 0.137 0.347 −2.018 C00041

Aspartic acid −0.272 0.155 0.473 −1.427 C00049
Phenylalanine −0.126 0.420 0.731 −0.815 C00079

Glutamine 0.148 0.531 0.806 0.632 C00064
Trans-4-hydroxyproline −0.073 0.702 0.895 −0.386 C00157

N-acetylglutamate −0.022 0.902 0.982 −0.124 C00624
Glutamic acid −0.008 0.954 0.982 −0.058 C00025

3.4. Relationship between CGG Expansion and Metabolite Abundance

Forty-six metabolites had abundance changes associated with CGG repeat expansions
(raw p-value < 0.05), eleven of which showed a possible correlation (raw p-value < 0.01 and adj.



Cells 2023, 12, 2132 9 of 19

p-value < 0.2) between the relative abundance and the number of CGG repeats in ITG. Cytidine
showed a significant decrease in abundance with smaller CGG expansions (55–74 repeats).
Cases with larger expansions showed a larger logFC change; however, significance was not
achieved after a multiple comparisons adjustment (logFC −1.59; adj. p-value 0.03 (55–74 vs.
20–44 repeats); logFC −1.26; adj. p-value 0.06 (75–94 vs. 20–44 repeats); logFC −1.82; adj.
p-value 0.14 (75–94 vs. 95–120 repeats)) (Figure 2a,b). Five metabolites exhibited increases
in abundance with increases in the CGG repeat number (which we refer to here as a “pos-
itive correlation”, although CGG was categorized in the analysis); 2-hydroxybutanoic acid
showed a trending difference (adj. p-value 0.054) between cases with larger CGG expansions
and controls (Supplementary Materials Figure S1), while adenosine, adipic acid, guanine, and
pyrophosphate had possible positive correlations. Six metabolites showed a possible negative
correlation: histidine, cytidine, asparagine, xanthine, proline, and heptadecanoic acid. In the
CB, 42 metabolites had abundance changes; oleamide and fructose-1-phosphate presented
a possible correlation (Supplementary Materials Figure S1). Further analysis of the cases
showed a significant decrease in the abundance of UDP-glucuronic acid (logFC: −1.66, adj.
p-value 0.04)—a sugar made from UDP-glucose using NAD+ as cofactor and used in the syn-
thesis of polysaccharides and ascorbic acid—in cases with larger expansions (>95 CGG repeats)
when compared to smaller expansions in the premutation range (Figure 2g). Conflicting results
were found in the plasma samples from FMR1 premutation carriers, with a positive correlation
between the relative abundance of proline and UDP-glucuronic acid, and in those with larger
CGG expansions [21]. Oleamide, on the other hand, had a negative correlation with the number
of CGG repeats in the plasma from premutation carriers with and without FXTAS, which was
in agreement with our results in the postmortem brain samples (Figure 2f). There is a possibility
that the lack of significance can be attributed to the limited number of FXTAS cases included in
the small expansion (CGG 55–74, n = 7) and large expansion (CGG > 95, n = 4) groups during
the analysis.
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Figure 2. (a) Cytidine’s differential abundance cases/controls. (b) Cytidine abundance was sig-
nificantly lower in the 55–74 CGG range group compared to controls in the ITG. (c) Uracil was
increased, with trending significance, in the ITG of subjects with identified neurofibrillary tangles.
(d) 2,5-dihydroxypyrazine was significantly decreased in cases with microhemorrhages in the ITG.
In cerebellum: (e) Oleamide abundance was lower in FXTAS cases compared to controls. (f) Differ-
ences in relative abundance (raw p < 0.001) were found in the 55–74 and 75–94 CGG range groups.
Significance was not achieved after multiple testing adjustment. (g) Significantly lower abundance
of UDP-glucuronic acid in cases with larger expansions > 95 CGG repeats when compared to cases
with 55–94 CGG repeats. (h) Xanthosine was increased, with trending significance, in the CB of
cases with dementia diagnosis per medical history. * adj. p-value < 0.05, ** adj. p-value < 0.01,
*** adj. p-value < 0.001, † raw p-value < 0.0015.
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3.5. ROC Curve Analysis

Based on our results from the differential metabolite abundance analyis and vol-
cano plot analysis, we tested 22 metabolites in the ITG and 21 in the CB (see Table 2)
with raw p-values < 0.05 for their discriminatory potential between the FXTAS cases and
controls. We found cytidine to have outstanding discriminatory potential in the ITG,
followed by 3-hydroxybutyric acid and xanthine with excellent discriminatory potential
and 1,5-anhydroglucitol, oleamide, 2-hydroxybutanoic acid, and guanine with acceptable
discriminatory potential. In the CB, oleamide and lysine had excellent discriminatory
potential, while fructose-1-phosphate, N-acetylmannosamine 1,5-anhydroglucitol, and
2-hydroxybutanoic acid had acceptable discriminatory potential. The remaining tested
metabolites had no/poor discriminatory potential for FXTAS vs. controls. (See Figure 3).
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Figure 3. ROC analysis. (a–g) Metabolites with discriminatory potential between FXTAS and controls
in the ITG. (h–m) Metabolites with discriminatory potential between FXTAS and controls in the CB.
AUC less than or equal to 0.5 = no discriminatory potential, AUC 0.5–0.7 = poor discriminatory
potential, AUC 0.7–0.8 = acceptable discriminatory potential, AUC 0.8–0.9 = excellent discrimina-
tory potential, and AUC > 0.9 = outstanding discriminatory potential. AUC values reported are
in-sample values.

3.6. Association between Changes in Metabolite Abundance and Markers of Neurodegeneration

We identified possible associations between markers of neurodegeneration (pres-
ence/absence) in the ITG of FXTAS cases and changes in metabolite abundance. Uracil was
increased by 1.30 logFC (raw p-value 0.0007, adj. p-value 0.121) in the cases with neurofib-
rillary tangles (81%, n = 18), and 2,5-dihydroxypyrazine was significantly decreased by
−1.61 logFC (adj. p-value 0.047) (Figure 2c,d) in the cases with microhemorrhages (50%,
n = 11). Our group previously reported that about 50–60% of FXTAS cases present with
microhemorrhages in the white matter of the cerebral and cerebellar cortices [14].
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3.7. Association between Changes in Metabolite Abundance and Clinical Symptoms

The abundance of xanthosine, a purine nucleoside, was increased by 2.2 logFC with
trending significance (adj. p-value 0.061) in the CB of the FXTAS cases with a clinical
diagnosis of dementia vs. those with no/mild cognitive decline per medical history
(Figure 2h). No other association was found between the studied symptoms of FXTAS and
the changes in metabolite abundance in the ITG and CB.

4. Discussion

Our analysis generated untargeted metabolomics data in postmortem brains with
FXTAS. The metabolomics analysis identified disease-related metabolic changes. These
data are the starting point to map the metabolic trajectory leading to disease onset and
progression. We identified a set of altered metabolites, enhanced pathways, and potential
biomarkers of disease at the later stages of FXTAS progression. All the cases evaluated
had an advanced clinical involvement. In this section, we discuss our findings, suggest-
ing remarkable metabolic abnormalities in the pathways involved in cellular membrane
synthesis, response to oxidative stress, and energy utilization.

4.1. Pathways Involved in Neuronal Membrane Synthesis Are Affected in FXTAS

Cytidine’s relative abundance within the ITG was lower (logFC −1.38, adj. p-value 0.0007)
and showed an optimal discriminatory power between the FXTAS cases and controls (Figure 3a).
Its abundance decreased remarkably in the FXTAS cases with larger CGG expansions when
compared to the controls with normal (20–44) CGG repeat numbers (Figure 2b). Cytidine is
a pyrimidine nucleoside comprising a cytosine nucleic base and ribose sugar and is acquired
through dietary sources. Cytidine is a substrate in the production of critical membrane phos-
pholipids, phosphatidylcholine, and phosphatidylethanolamine and is also a precursor in
pyrimidine nucleotide synthesis concerning uracil and cytidine triphosphate (CTP). A prerequi-
site for the brain’s utilization of cytidine is its conveyance from the circulation into the brain’s
extracellular fluid and its incorporation into the neurons and glia. The effectual mechanism
facilitating the brain’s uptake of cytidine has yet to be identified [22].

Given the diminished relative abundance of cytidine in the brains affected by FXTAS, it
is reasonable to anticipate dysregulations in the Kennedy and pyrimidine salvage pathways
(Figure 4a). These pathways are involved in polysaccharide and phospholipid biosynthesis,
detoxification processes, and protein and lipid glycosylation [23]. The disruption of new
neuronal membrane synthesis could be linked to the etiology of neurodegeneration [24].
Interestingly, higher cytidine levels were observed in the biofluids of a small cohort of
patients with various neurodegenerative dementias, including Alzheimer’s, frontotemporal
dementia, and Lewy body dementia [25], and they have been postulated as a plasma marker
for Alzheimer’s disease [26]. However, each form similarly involves the degradation of
vulnerable neurons of various brain regions and shares a related symptomology to FXTAS,
such as cognitive decline and impairments of body movement [27–29]. Changes in cytidine
abundance were not reported in the plasma from FXTAS patients; however, a decreased
level of choline phosphate, an intermediate of the Kennedy pathway, was observed in FMR1
premutation carriers who had developed FXTAS [5]; a lower abundance of cytidine was
also found in the cerebellum of premutation mice [6]. A previous open-label pilot clinical
trial of citicoline, an intermediate in the Kennedy pathway, did not show clinical efficacy
(expected as a 20% improvement on the FXTAS rating scale); however, after one year of
treatment, none of the participants had significantly worse scores from the baseline [30].

Additional studies are necessary to understand the FXTAS-related biological abnor-
malities involved in cellular membrane synthesis, including those involved in the synthesis
of phospholipids, which are essential for membrane fusion, mitochondrial stability, protein
biosynthesis, and oxidative phosphorylation [31]. Further analysis of lipids in brains with
FXTAS is needed to fully evaluate the impact of having a lower abundance of cytidine in
the critical pathways of phospholipid biosynthesis and lipid glycosylation.
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Figure 4. (a) Kennedy and pyrimidine salvage pathways, adapted from Cansev 2006 [22]. (b) Diagram
showing interactions of oleamide in CNS. (c) Several metabolites involved in energy homeostasis
and stress response pathways were identified to have changes in relative abundance in FXTAS. Red
arrows show changes in the relative abundance of metabolites in the FXTAS group compared to
controls. † Metabolites with discriminatory power between the FXTAS cases and controls.

4.2. Brains with FXTAS Present with a High Abundance of Markers for Oxidative Stress

A higher relative abundance of 2-hydroxybutanoic acid (2HB) was observed within the ITG
and CB in the FXTAS cases when compared to the controls. The abundance increased in the ITG
of the FXTAS cases with increasing CGG repeat expansions (Supplemental Materials Figure S1).
2HB is formed from its derivative alpha-ketobutyrate (AKB), a by-product of threonine and
methionine catabolism and glutathione (GSH) anabolism [32,33]. GSH is the primary intracellu-
lar antioxidant, and its production is increased during increased oxidative stress [34]. Under
normal conditions, AKB is converted to propionyl-CoA, a key player in the citric acid cycle
(TCA). When AKB production outpaces its catabolism, 2HB is formed. A high NADH/NAD+
ratio potentiates this process by increasing the activity of lactate dehydrogenase, an enzyme
that catalyzes the conversion of AKB to 2HB [33] (Figure 4c).

In addition, an increased 2HB level is a well-established biomarker for insulin resis-
tance (IR), impaired glucose tolerance, metabolic acidosis, and oxidative stress [33–36]. The
aforementioned NADH/NAD+ imbalance may be attributed to increased lipid oxidation,
a common feature of IR and a source of oxidative stress. Increased 2HB concentrations
have also been reported in biofluids in schizophrenia patients [37], inherited metabolic
diseases [38], and multiple sclerosis [39], and it showed discriminatory power between the
FXTAS cases and controls in our analysis (Figure 3f,m). Interestingly, Giulivi et al. reported
a lower 2HB plasma abundance in premutation carriers compared to controls [4]. However,
a second study reported an increased abundance of 2HB in plasma collected from a larger
cohort of FMR1 premutation carriers compared to healthy controls. The same study did not
find a difference in the relative abundance of 2HB between premutation carriers that had
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developed FXTAS and those that had not during the study period [5] (Table 4). To date, no
study has correlated abnormal 2HB concentrations to specific FXTAS symptoms or other
neurodegenerative conditions.

Table 4. Metabolomics in FMR1 premutation.

ITG

BinBase Name
FMR1 FXTAS

Human
Frozen Brain

Zafarulla 2020 [5]
FMR1 FXTAS

Human Plasma

Giulivi 2016 [4,21]
FMR1 Premutation

Human Plasma
3-hydroxybutyric acid ↑ ↑ ↓

2-hydroxybutanoic acid ↑ ↑ ↓
Oleamide ↓ ↓
Histidine ↓ ↓
Proline ↓ ↑

Gluconic acid ↓ ↑
Glyceric acid ↓ ↑
Pyruvic acid ↑ ↑

CB

BinBase name
FMR1 FXTAS

Human
Frozen brain

Zafarulla 2020 [5]
FMR1 FXTAS

Human Plasma

Giulivi 2016 [4,21]
FMR1 premutation

Human Plasma

Kong [6]
FMR1 mouse

Frozen CB
Oleamide ↓ ↓

1,5-anhydroglucitol ↑ No change
Phosphoethanolamine ↑ ↑ No change
2-hydroxybutanoic acid ↑ ↑ ↓

Lysine ↓ ↓ ↑
Proline ↓ ↑ No change

Threonine ↓ No change
Maltose ↑ ↑
Xylose ↑ ↑

Erythritol ↑ No change
Inosine ↑ ↑

Glycerol ↓ ↑ ↑ ↓
Histidine ↓ ↓ No change

Serine ↓ No change
Leucine ↓ ↑
↑ Increased,
↓ decreased

Similar results between FXTAS frozen brain and plasma from premutation carriers with FXTAS
Similar results between FXTAS frozen brain and plasma from premutation carriers without FXTAS

Similar results between frozen cerebellum in FXTAS cases and an FMR1 mouse model

The relative abundance of proline was decreased in the ITG and CB of the FXTAS cases.
Contrarily, the abundance of proline was increased in the plasma of FMR1 premutation
carriers (Table 4) [4,21]. Prior studies on the regulatory roles of proline biosynthesis
suggested the role of the proline cycle in augmenting redox cycling for the Warburg effect,
increasing the level of total pyridine nucleotides and increasing the capacity for antioxidant
defenses by stimulating the oxidative branch of the pentose phosphate pathway [40].

Further, the relative abundance of the nucleoside xanthosine was increased (adj.
p-value 0.061) in the CB of the FXTAS cases with a clinical diagnosis of dementia.
Purine metabolism is a component of the mitochondrial response to oxidative stress
and may be involved in slowing progressive mitochondrial dysfunction. High levels of
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xanthosine have been reported in the plasma of patients with untreated schizophrenia [41].
Changes in xanthosine and guanine expression were also detected in postmortem entorhinal
cortex in AD [42].

4.3. Dysfunction in Energy Metabolism in Brains with FXTAS

Our analysis found a trending (adj. p-value 0.077) increased relative abundance of
3-hydroxybutiric acid, a fatty acid and marker for impaired glucose regulation, and 1,5-
anhydroglucitol, a glucose analog in ITG, as well as a significantly (adj. p-value 0.0018)
decreased relative abundance of oleamide in the CB. The volcano plots additionally identi-
fied fructose-1-phosphate and glucose-6-phosphate to be differentially expressed in the CB,
while intermediate metabolites involved in glycolysis, including glyceric acid and pyruvic
acid, were differentially expressed in the ITG (Figure 1a,b), demonstrating a dysfunction
in glucose utilization (Figure 4c). These results provide additional evidence supporting
the presence of altered energy metabolism in the brains of FXTAS individuals. Fatty acids
are among the most important lipid molecules that determine the brain’s integrity and
function [43]. Changes in the plasma metabolic profile of fatty acids have been reported in
patients diagnosed with FXTAS [5] and in various neurodegenerative and neuropsychiatric
disorders such as Alzheimer’s disease, autism spectrum disorders, schizophrenia, anxiety,
and FXTAS [44–46].

4.4. A Central-Acting Fatty Acid Shows Lower Abundance in FXTAS

The relative abundance of oleamide was significantly lower (logFC: −1.06, adj.
p-value 0.0018) in the CB with FXTAS (Figure 2e). In addition, oleamide showed an
excellent discriminatory power during the ROC analysis (Figure 3h). Oleamide is
a fatty acid primary amide, which exerts effects on vascular and neuronal tissues.
The recognized biological effects of oleamide include the binding of cannabinoid re-
ceptors [47], specifically CB1 [48,49], immunological suppression, sleep induction,
serotonin and gamma-aminobutyric acid receptor activation [50,51], and the inhibition
of gap junction [52] coupling (Figure 4b). In addition, in a mouse model of AD, exoge-
nous oleamide supplementation reduced amyloid-β (Aβ) accumulation and suppressed
inflammation after amyloid Aβ deposition by enhancing microglial phagocytosis [53].
Furthermore, oleamide may elicit protective effects against excitotoxicity-induced neu-
ronal death, partly related to its direct and/or indirect calpain inhibitory activity [54]
and other yet unknown biological actions.

Gap junctions are found between neurons and glial cells [52]. Gap junctions play
an important role in neuronal activity and are implicated in many cognitive processes,
including the modulation of memory processes, brain development, and the mechanisms of
psychostimulant dependence [55]. In addition, glial gap junctions modulate the expression
of hundreds of genes [56] and enable the propagation of signaling molecules implicated
in cerebrovascular regulation [57] and astrocytic glutamate release [58–61]. A low relative
abundance of oleamide in brains with FXTAS may therefore affect neuronal excitability
and facilitate a higher permeability by microvascular endothelial cells. A lack of the
beneficial effects of oleamide in brains with FXTAS may also contribute to lowering the
brain’s capacity to respond to the damage caused by inflammation and excitotoxicity, as
well as promoting a higher accumulation of Aβ in brains with FXTAS and concomitant
AD. Decreased oleamide plasma levels were reported in FMR1 premutation carriers and
proposed as a potential biomarker for the diagnosis of FXTAS [21], showing a negative
correlation with CGG expansion [4], which was also identified in our analysis. A lower
abundance of oleamide in plasma has also been postulated as a marker for AD [62].

4.5. Study Advantages

Submitting a variety of tissues to metabolomic studies is important as each tissue has
its own unique advantages. For example, CSF is less prone to metabolite degradation in
comparison to plasma because of its relatively decreased enzymatic activity [63]. Plasma,
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however, is easier to obtain in larger quantities. In the study of neurogenerative disease,
metabolomic analysis of brain tissue offers the advantage of the direct quantification of
metabolites at the site of the organ of interest. This helps limit the confounding variables
introduced by the analysis of tissues separate from the brain. This is especially relevant in
the case of brains where the blood–brain barrier (BBB) and the blood–CSF barrier (BSFB)
reduce the influx and efflux of small molecules such as metabolites [64].

Using a combination of tissues helps to strengthen the search for disease biomarkers.
Metabolites found in multiple tissues to be abnormally altered compared to controls raises
confidence in results being related to a disease rather than an artifact of pretreatment,
sampling, or some other unknown variable impacting a single tissue type. In addition,
finding biomarkers of disease to be universal across a tissue will allow for easier disease
staging via the testing of more readily acquired tissue, such as plasma. We compared our
results to previously reported metabolomics analyses conducted in plasma from FMR1
premutation with and without FXTAS patients and frozen brain tissue from a mouse model
of FXTAS (Table 4).

4.6. Study Limitations

Differences in the postmortem interval (PMI) pose a significant limitation. Certain
changes in metabolite concentrations might not necessarily indicate disease pathology,
but rather a difference between antemortem and postmortem conditions. Several studies
have found metabolites altered by PMI in a variety of tissues [65–67]. Studies in sheep
and human brains found free trimethylammonium (fTMA), propionate, and butyrate to be
elevated as PMI increased [68,69]. Our analysis was limited to primary metabolites using
GC-MS quantification. Further analysis of lipid metabolomics is granted to validate our
findings and for a more comprehensive comparison between lipid metabolic disturbances
found in the plasma of FMR1 premutation carriers and FXTAS patients.

5. Conclusions

An altered abundance of some metabolites may influence the clinical outcome of
patients with FXTAS. Our data identified alterations in the metabolic pathways related to
oxidative stress responses and bioenergetics in the human postmortem brains with FXTAS.
The results from our study demonstrate similarities with previous metabolic disturbances
reported in plasma of FMR1 premutation carriers and FXTAS patients, but they also
demonstrate differences that need further analysis. The significantly lower abundance of
cytidine and oleamide in the FXTAS brains and their discriminatory potential between
diseased and healthy brain tissue should serve as starting point to study their potential
protective effects against neuronal damage in FXTAS. Oleamide and other metabolites of
interest previously reported in plasma and now reported in postmortem brains suggest
their potential as biomarkers for the diagnosis and prognosis of FXTAS.
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