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ABSTRACT 

Simple resource specification, resource selection, and effective 

binding are critical capabilities for Grid middleware.  We 

describe the Virtual Grid, an abstraction for dynamic grid 

applications to deal with complex resource environments. 

Elements of the Virtual Grid include a novel resource description 

language (vgDL) and a resource selection and binding component 

(vgFAB), which accepts a vgDL specification and returns a 

Virtual Grid, that is, a set of selected and bound resources. The 

goals of vgFAB are efficiency, scalability, robustness to high 

resource contention, and the ability to produce results with 

quantifiable high quality. We present the design of vgDL, showing 

how it captures application-level resource abstractions using 

resource aggregates and connectivity amongst them. We present 

and evaluate a prototype implementation of vgFAB.  Our results 

show that resource selection and binding for virtual grids of 

10,000’s of resources can scale up to grids with millions of 

resources, identifying good matches in less than one second.  

Further, these matches have quantifiable quality, enabling 

applications to have high confidence in the results.  We 

demonstrate the effectiveness of our combined selection and 

binding approach in the presence of resource contention, showing 

the robust selection and binding can be achieved at moderate cost. 

1. INTRODUCTION 
While the success and acceptance of Grids continues in the 

scientific and commercial computing communities [1-3], the 

technology required to achieve the ambitious grid vision -- 

flexible, adaptive applications running on large federated and 

shared resource collections -- is still in its infancy.  In fact, the 

applications in most widespread use on production grid 

environments (see [4,5]) correspond to loosely-coupled parallel 

applications, asynchronous workflows, and multi-tier web-

application server-database applications. Applications that require 

tightly-coupled coordination, high performance data movement 

coordinated with computation, and real-time coupling of 

instruments remain difficult to design, implement, and manage at 

runtime. These types of applications are the focus of the research 

described in this paper; they typically require sophisticated 

synchronized resource use and management of failures, and  their 

performance depends strongly on the resources used.  To achieve 

their mission goals, these applications need to be resource-aware, 

but given the current complexity of grid resource environments 

and their likely future growth to millions, even billions of devices, 

embedding understanding of the resource environment into each 

application is impractical.  

Supporting demanding grid applications requires effective 

solutions to four key resource problems: (i) description, which  

specifies the needed resources, (ii) discovery, which finds 

candidate resources, (iii) selection, which chooses from the 

candidates, typically based on static and dynamic resource 

information, and (iv) binding, which allocates resources via 

negotiation with autonomous resource managers.   

We propose a new integrated approach, based on the notion of a 

virtual grid that provides a unified framework for solving all these 

resource problems. Our approach differs from a wide range of 

research efforts that address either one or a subset of these 

problems [6-18]. The virtual grid consists of four key elements: 

vgDL – an application-oriented language used to specify resource 

needs, vgFAB – a “finder and binder” that performs integrated 

resource selection and binding,  vgLAUNCH – a scalable 

application launcher that initiates the application on the bound 

resources, and vgMON – a distributed monitoring service that 

ensures that resource expectations are realized throughout 

application execution. While all four of these elements pose an 

interesting research challenges, the scope of this paper is limited 

to the design of vgDL, a prototype implementation of vgFAB, and 

an initial evaluation of the implementation.  Specific contributions 

of this paper include: 

1. A new framework for application resource awareness 

called the Virtual Grid: Virtual grids provide an 

abstraction of complex grid resource, enabling optimized 

resource selection, management, and adaptation with robust 

behavior and a simple, uniform interface. 

2. Design of the vgDL resource description language: vgDL 

is a structured hierarchical language in which applications 

specify their resource needs. It is based on typical resource 



 

 

abstractions used by application developers to manage and 

optimize performance (or other application execution 

attributes).  vgDL is specifically designed to enable efficient 

resource selection and binding in large-scale, shared 

resource environments.  

3. An integrated resource “finder and binder” (vgFAB) 

algorithm and prototype implementation: vgFAB 

combines selection and binding, identifying and allocating 

resource sets that match a vgDL specification. VgFAB is 

designed for efficiency, scalability, and robustness to 

resource contention.  

4.  Evaluation of vgDL and of the vgFAB prototype: Our 

results show that vgDL specifications in grids with millions 

of resources can be matched in less than a second, with 

obtained resource sets of quantifiable quality.  Furthermore, 

vgFAB identifies many candidate solutions, which is key to 

efficient binding even in the presence of resource contention.  

The remainder of the paper is organized as follows. In Section 

2, we introduce the notion of Virtual Grid and its architecture. 

Subsequently, we narrow our focus to the vgDL resource 

description language and vgFAB resource selection in Section 3. 

While many implementations are possible, one realization of the 

virtual grid architecture is described in Section 4 and in Section 5 

we evaluate the vgDL language and the prototype.  In Section 6, 

we discuss the implications of this evaluation and survey related 

work.  Finally we summarize our results and describe possible 

directions for future work in Section 7. 

2. VIRTUAL GRID ARCHITECTURE 
Our work on Virtual Grids builds on and is informed by a four-

year effort to build development tools for adaptive grid 

applications, the Grid Application Development Software Project 

(GrADS) [28].  The Virtual Grid architecture builds on a key 

insight from GrADS that application participation (knowledge, 

expectations) is needed to effectively manage performance in a 

dynamic grid resource environment. A major innovation in 

VGrADS is the attempt to couple applications and underlying grid 

resource management together through an application oriented 

resource specification (in vgDL) and an active entity (the virtual 

grid) which is the reification or instantiation of the application’s 

resource environment. The application-oriented language 

insulates the application from the full complexity of the resource 

environment, and the lifecycle coupling of the application and 

underlying resource environment (resources and managers) 

enables flexible application management of resources at a high 

level.  A Virtual Grid (VG) does not define how the application 

uses resource with the virtual grid, nor does it provide a functional 

virtualization as in a virtual machine. 

The interaction of an application with the virtual grid system is 

illustrated in Figure 1.  The Virtual Grid execution system (vgES) 

is realized in the following key elements:  

� vgDL – a structured hierarchical language for application 

resource abstractions that is used to identify appropriate 

resources.    

� vgFAB – the “finder and binder” that performs integrated 

resource selection and binding which in combination enable 

optimized resource choices in a high load resource 

environment with autonomous resource managers. This 

returns a “virtual grid” (VG) handle that communicates 

resource information to application in terms of the 

application resource abstractions. 

� vgLAUNCH  – an application launcher that initiates the 

application on the bound resources. 

� vgMON – a distributed monitoring component that ensures 

that resource performance expectations (i.e., vgDL 

specifications) are met throughout application execution.  

VG’s allow users to configure their own resources and change 

configurations according to evolving application requirements 

and/or resource conditions.   

As shown in Figure 1, users create a VG instance by specifying 

application requirements in vgDL and passing to the vgFAB. 

Then, the execution system instantiates a response to the request, 

returns a handle (vgID) to a VG (an explicit representation of the 

resources in the form of an annotated tree of resources that 

matches the vgDL structure).  Figure 2 depicts how a vgDL 

specification is turned into a VG instance. The execution system 

selects multiple candidates and allocates one of them, either 

choosing the ``best’’ one according to application-specific criteria 

or successively trying to bind candidates until it succeeds. From a 

users perspective, these selection and binding operations are 

hidden in the function of vgFAB. The VG thus realized goes 

beyond traditional resource selection [6-13]. First, the VG 

consists of bound resources on which the application has been 

launched by vgLAUNCH. This avoids problems with being 

repeatedly unable to bind that have been selected due to high 

contention for resources.  Once resources have bound, it is most 

efficient to provide a simple application launcher, ensuring that 

resources can be used from the moment they are bound. Second, 

vgMON provides runtime monitoring of the acquired resources 

and can facilitate adaptation to changing resource conditions 

either transparent or application-directed, so that vgDL 

specifications are met. Once a VG instance is acquired, the 

application can utilize the resources and use sophisticated, 

application-specific scheduling and load-balancing techniques to 

enhance performance.  

 The vgES system is compatible with existing and future 

resource information services (MDS [15], NWS [16], and Ganglia 

[17]) and a wide range of resource management models including 

best-effort, batch, slices, and even provisioned; all of which are 

extant in the grid today.  For the remainder of this paper, we 
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Figure 1. Virtual Grid Execution System (vgES) 



 

 

confine our discussion to the design and evaluation of vgDL and 

vgFAB. 

3. APPLICATION-ORIENTED RESOURCE 

DESRIPTION LANGUAGE (vgDL) 
A central element of the Virtual Grid approach is a resource 

description language (vgDL) based on application resource 

abstractions.  Based on detailed study of a number of major grid 

applications, including EMAN [19], EOL [20], LEAD/MEAD 

[21], GridSAT [22], as well as a large body of ad hoc experience, 

we identified two main application resource abstractions – 

clusters and bags – and a range of typical preferences and 

attributes.  This design rational is discussed in detail in the Virtual 

Grid Design Tech Report. vgDL not only uses  simple application 

resources abstractions, supporting simple specifications, but is a 

rich, expressive language that enables experts to control resource 

specification with precision. Figures 3-1 and 3-2 show the BNF 

for the language. Note that we have incorporated the RedLine [9] 

BNF for attribute constraints. Key features of vgDL include 

� Resource aggregates 

� Network connectivity 

� Composition of aggregates 

� Ranking (preference) 

� Adaptation 

3.1 Resource aggregates 
Based on extensive study of scientific and grid computing 

applications, we learned that to simplify portability in design for 

performance (and to manage complexity), simple resource 

abstractions are often employed. For example, the basic model of 

EOL is “bags” – heterogeneous collections of nodes. That of 

EMAN is a bit more complex, a heterogeneous set of “clusters” 

(each themselves homogenous collections), and so on. Meanwhile, 

most parameter-sweep applications require only a “bag” of 

resources with minimal connectivity between computing nodes 

and the NPB benchmark suites [23] require a “cluster”. vgDL 

contains three resource aggregates, distinguished based on their 

homogeneity and internal connectivity. 

� LooseBag: a collection of heterogeneous nodes with poor 

connectivity; users only care about number of nodes but 

node architecture and connectivity between nodes are not 

major concerns 

� TightBag: a collection of heterogeneous nodes with good 

connectivity 

� Cluster: adding homogeneity, a well-connected set of 

nodes with identical (or nearly so) individual resource 

attributes  

Each aggregate specifies a range for its size (number of elements).  

Aggregates can be nested as described in Section 3.3.  Aggregator 

properties, and many of the characteristics of vgDL descriptions 

are qualitative.  In our analysis of application needs, we found 

that for many applications, detailed quantitative specifications are 

a distraction, and as such caused resource specifications to be 

fragile.  We believe our qualitative approach will enable many 

applications to construct simple, robust, and enduring vgDL 

specifications. 

3.2 Network connectivity 
For many grid and distributed applications, inter-node and inter-

aggregate network connectivity is critical for performance. VgDL 

includes four operators that define network connectivity: close, 

far, highBW, and lowBW. These composers indicate coarse 

notions of network proximity in terms of latency and bandwidth. 

Close (highBW) indicates that latency (bandwidth) between 

two aggregates is low (high).  The properties of the aggregates 

and operators are intentionally qualitative, and each 

Vgrid ::= Identifier = Rdl-expression [ at time/event ] 

Rdl-expression ::= Rdl-subexpression | [ “(“ Rdl-expression “)” op “(“ Rdl-expression “)” ]* 

Rdl-subexpression ::= Associator-expression | Node-expression 

Associator-expression ::= Bag-of-expression | Cluster-of-expression 

Bag-of-expression ::= LooseBagof "<" Identifier ">" "[" MinNode ":" MaxNode "]" [ "[" Number [ “su” | “sec” ] "]" ] ";" Node-

expression | 

TightBagof "<"Identifier ">" "[" MinNode ":" MaxNode "]" [ "[" Number [ “su” | “sec” ] "]" ] ";" Node-expression 

Identifier ::= String 

Min ::= Integer 

Max ::= Integer 

Node-expression ::= Identifier "=" Node-constraint 

Node-constraint ::= "{" Attribute-constraint | Rdl-expression "}" | Rdl-expression 

Attribute-constraint ::= Redline expression for attribute and constraint [see Figure 3-2] 

Cluster-of-expression ::= Clusterof "<" identifier ">" "[" MinNode ":" MaxNode [ “,” MaxTime “:” “MinTime”] "]" ";" Node-

expression 

op := close | far | highBW | lowBW 

Figure 3-1. BNF description of vgDL language 

Figure 3-2. BNF description for Redline expression for 

attribute and constraint 

Redline expression ::= Identifier‘=‘ Arithmatic_expr | 

Logic_expr | Predicate 

Arithmatic_expr ::= A_operand [A_op A_operand]* 

A_operand ::= Integer | Real 

A_op ::= "+" | "-" | "*" | "/" | "^" 

Logic_expr::= L_operand [L_op L_operand]* 

L_operand ::= Integer | Real | Boolean | String 

L_op ::= ">" | "<" | ">=" | "<=" | "==" | "&&" | "||" | "!=" 

Predicate ::= Required "(" Attribute [“,” Attribute]* ")" 

Attribute ::= String 



 

 

implementation will use specific default values as definitions for 

close and far, as appropriate for distribution of grid resources, 

and changing as technology advances. For many applications, 

detailed quantitative specifications are a distraction, and a 

detriment to simple, robust, and enduring vgDL specifications. 

Applications that require detailed quantitative measurements of, 

say, bandwidth, can query the grid information systems once a 

VG has been instantiated. Such information can be used to apply 

possibly sophisticated scheduling algorithms and other 

optimizations at the application level.  

3.3 Composition of resources and aggregates  
vgDL allows users to define a single resource or an aggregate of 

resources with certain properties. Aggregate operators can be used 

to build simple aggregate of individual resources. Description of 

such aggregates is intuitive and compact. As shown in Figure 4, a 

vgDL cluster description is simpler than one in Redline [9]. 

Furthermore, it is possible to build aggregates of arbitrary depth, 

e.g., a Bag of Clusters of x86 Nodes. Individual resources or 

aggregates can be also composed via the simple network 

connectivity operators described earlier. Users can thus structure 

resources in top-down fashion and decorate components with 

additional constraints when desired.  

3.4 Ranking (preference) 
In addition to specifying constraints, applications can also express 

preference using a scalar ranking function. The ranking function 

is a user-defined expression consisting of four basic arithmetic 

operations, which produces a scalar value that represents quality. 

The ranking function is used to compare the candidates that meet 

the vgDL specification constraints to determine which one the 

application would prefer. If no ranking function is provided, or 

the ranking function does not distinguish the candidates, the 

vgFAB has a set of default preferences on the remaining attributes. 

For instance, for most attributes with scalar values, larger is better 

(the one exception being network latency). Compared to other  

systems [6-10], the vgDL ranking functions are more flexible, 

enabling easy expression of ranking functions that combine 

multiple attributes in complex fashion. 

3.5 Adaptation 
Typically the vgFAB returns a VG which satifies the request 

vgDL specification.  At some later time, resource adaptation may 

be initiated by the application or the VG (a vgMON detected 

violation for example).  Adaptation of a VG can then be made 

with respect to the currently bound resources, the initial vgDL 

specification, or particular resources in the VG that correspond to 

a particular part of the vgDL request and need to be replaced or 

enhanced. Resource adaptation relative to an extant VG is a key 

distinguishing capability of our approach.  

3.6 Range-based specifications and search 
In contrast to bilateral matching techniques typified by 

Matchmaking [6-9], vgDL describes constraints that are naturally 

mapped to multi-dimensional range search. Applications specify 

acceptable value ranges for attributes. We exploit this capability 

to identify sets of candidate solutions – as opposed to a single 

solution.  This helps in shared resource environments where 

resources will be overloaded or in high demand.  

3.7 Other Features 
Time and Duration: By default, the execution system allocates 

resources immediately for unlimited time. For applications or 

resources with complex temporal constraints, vgDL can describe 

access to systems with advance reservation. 

Resource Quantity: vgDL requests reflect a range of acceptable 

quantities of resources(i.e. 8 to 64 nodes). For applications, it is 

sometimes convenient to express total computational capability of 

an aggregate.  vgDL allows desired total desired capability 

(service units or SU’s) to be tied to a request; enabling 

coordinated parameter resolution by the vgFAB.  

4. VIRTUAL GRID PROTOTYPE 
To demonstrate and evaluate the Virtual Grid Execution System 

(vgES), we implemented a prototype system.   In this system, the 

vgFAB  implements  selection based on a local copy of the grid 

resource information in a relational database.  This local copy is 

created and maintained by periodic downloads from grid 

information servers.    

Figure 5 depicts the resource selection process and components 

involved in each step. First, vgFAB builds a parse tree analyzing 

the given resource description and simplifies this parse tree 

according to some rules.  Based on the simplified parse tree, the 

SQL synthesizer generates SQL queries for the resources, which 

capture ranking functions and default preferences. vgFAB then 

submits the SQL queries to the resource information database, 

annotates the vgDL parse tree, and binds the resources (trying 

new resources if the binding fails). Finally, the vgES returns a 

handle to a VG instance.  

The prototype vgES is built in Java: using java-cc [24] to 

implement a vgDL parser and a MySQL database to store grid 

resource information.  The vgFAB makes queries against this 

information using the MySQL Connector/J JDBC driver [25]. 

4.1 Resource Classification 
Many existing resource selection techniques exhibit poor 

scalability because the representation of grid resource information, 

e.g., in systems such as MDS [cite], is  resource-oriented, making 

it hard to retrieve information needed to address users requests 

efficiently.  For example, collecting a set of 50 nodes that have 

similar configuration across multiple sites might require hundreds 

or thousands of information services requests. Our approach is 

proactive, caching much of the available grid resource 

information locally in a database, and exploiting query 

optimization technology to efficiently answer requests.   In this 

model, dynamic information can be supplied as periodic updates 

to the database.  Other resource attributes in the database include 

processor architecture, operating system, as well as network 

latency and bandwidth. In this approach, large numbers of 

Figure 4. Complexity of query in Redline and vgDL 

// Redline specification 

Cluster 

RES = [ClusterNode ISA SET 

    [Node ISA [CPUType=“Pentium4”, OSType=“Linux”]] 

    For all x in ClusterNode 

        x.latency(Node) < threshold; 

    Maximize(ClusterNode.cpu) 

Count(ClusterNode) >= 1; 

Count(ClusterNode) <= 32; 

] 

// vgDL specification 

Cluster = ClusterOf<Node> [1:32][Rank=CPUCount] { 

    Node = [Processor=”Pentium4”, OS=”Linux”] 

} 



 

 

requests can be supported by a single database (see Section 5), 

and if needed multiple database systems can be deployed. 

Optimal resource selection is typically an NP-hard problem [9], so 

finding an optimal solution in grids with millions of resources is 

impractical.  Instead, our objective is to find a good solution that 

has quantifiable quality.  To support this, the collected grid 

resource information is populated into a database according to a    

classification which identifies aggregates used in the vgDL. This 

supplementary classification information can improve selection 

process significantly.   Specifically, individual hosts are grouped 

into clusters and clusters are grouped into tight bags.  Singleton 

hosts either are part of a tight bag or exist as independent entities 

in the implied loose bag which includes all resources.  Additional 

aggregate properties for clusters and tightbags include number of 

hosts, total memory, and total disk capacity. 

This classification of resources in a real deployment could be 

achieved by independent (centralized or distributed) agents 

identify resource classes using the network properties and host 

configuration information retrieved from external information 

services systems such as the Network Weather Service (NWS), 

the (Monitoring and Discovery Service) MDS, or self-classified 

resources such as a cluster managed by a batch scheduler.  

 

4.2 Simplifying Reductions 
Since vgDL can express complex resource specifications that may 

require exponential search time, our vgFAB prototype exploits 

aggregate composition semantics to simplify descriptions, 

enabling their efficient implementation. For instance, a nested 

cluster expression like ClusterOf<cluster> [1:10] { cluster = 

ClusterOf<node> [1:10] { node = …} } can be regarded as 

ClusterOf<node> [1:100] {  node = … }. Instead of searching 

multiple tightly coupled clusters, vgFAB searches a larger cluster 

that can accommodate multiple clusters, and then partitions the 

cluster into multiple sub-clusters based on the requirements. This 

simplifying transformation preserves the properties of the vgDL 

request, but eliminates the expensive pairwise connectivity 

checking between clusters.    

Figure 6 summarizes the simplifying reductions adopted in our 

current implementation. A common rule is that if a parent (in 

parse tree) has stronger constraints than the children, then we can 

safely simplify the request by requiring the children to follow the 

parent’s constraints. With respect to connectivity, cluster and tight 

bag are stronger than loose bag while cluster is stronger than tight 

bag and loose bag with respect to homogeneity. Meanwhile, 

close and highBW operators are stronger than far and 

lowBW, respectively. If associators with strong connectivity nest 

weak operators, the weak operators are translated as 

corresponding strong ones. On the contrary, if strong operators 

nest associators with weak connectivity, the weak associators are 

translated into the strong ones.  Our simplifying reductions allow 

us to achieve fast, good solutions for vgDL requests, but do 

exclude some possible solutions in the grid resource space.  

Quantifying the impact of these exclusions is an interesting 

subject for future research. 

4.3 Query Synthesis 
With a structured resource database and a simplified resource 

request, the vgFAB next synthesizes a sequence of SQL queries to 

identify a set of candidates. For instance, to select a tight bag, 

vgFAB first retrieves information about tight bags from database 

and identifies the clusters composing the tight bags. Then, vgFAB 

searches the hosts composing each cluster. At each step, vgFAB 

filters out infeasible candidates using a WHERE clause with the 

constraints of individual hosts and aggregators. Then, vgFAB 

evaluates the ranking function and default preferences declaring a 

dynamic attribute by an AS clause and sorting the records in a 

descending order with respect to this dynamic attribute. VgFAB 

determines the number of candidates per request using a LIMIT 

clause. In summary, a general form of synthesized SQL query is: 

SELECT attributes FROM tables, ranking 

function AS rank WHERE constraints ORDER BY 

rank DESC LIMIT # of candidates 

The result of this query is a set of candidates all of which meet the 

requirements of the simplified vgDL request. 

4.4 Binding and VG Construction 
Armed with a set of ranked, satisfactory candidates the vgFAB 

can proceed to bind resources (selecting new candidates if binding 

fails due to resource unavailability or some other reason).  With a 

bound set of resources, the vgFAB constructs an annotated vgDL 

request, the realized VG representation,  decorating it with the 

physical resource information.  This living representation of the 

virtual grid can then be used by the application for scheduling and 

Figure 6. Simplifying Reductions 

ClusterOf<m1, n1> { associator<m2, n2> } or 

TightBagOf<m1,n1> {ClusterOf<m2,n2> 

� ClusterOf<m1+m2, n1+n2> 

TightBagOf<m1, n1> { TightBagOf/LooseBagOf<m2, n2> } 

� TightBagOf<m1+m2, n1+n2> 

LooseBagOf<m1, n1> { associator<m2,n2> } 

� #  of associators is between m1 and n1 

Component<m1, n1> close Component<m2, n2> 

� TightBagOf<m1+m2, n1+n2> satisfying both the 

components requirements 

ClusterOf/TightBagOf { A far B } 

� ClusterOf/TightBagOf { A close B } 

Cluster<cluster>[1:10]

{

cluster<node>[1:10]

{

node = [

Processor=Pentium4,

1<=Memory<=4

]

}

}

Cluster<cluster>[1:10]

{

cluster<node>[1:10]

{

node = [

Processor=Pentium4,

1<=Memory<=4

]

}

}

Cluster [1:10]

Node

Pentium4, 1<=M<=2

Cluster [1:10]

Cluster [1:100]

Node

Pentium4, 1<=M<=2

SELECT ID FROM Cluster WHERE

Processor=“Pentium4” AND Node BETWEEN 1 

AND 100 AND Memory BETWEEN 1 AND 200;

SELECT * FROM Host WHERE 

Cluster.ID = Host.Cluster AND Memory BETWEEN 

1 AND 2;

SELECT ID FROM Cluster WHERE

Processor=“Pentium4” AND Node BETWEEN 1 

AND 100 AND Memory BETWEEN 1 AND 200;

SELECT * FROM Host WHERE 

Cluster.ID = Host.Cluster AND Memory BETWEEN 

1 AND 2;

Cluster: CSAG0

node_0: CSAG0-0

…

node_n: CSAG0-n
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Figure 5. Example resource selection and binding 



 

 

execution. If a candidate component corresponds to a simplified 

vgDL expression, the vgFAB partitions the resource and logically 

organizes them according to the original vgDL specification.  

5. EMPIRICAL EVALUATION 
We evaluate the efficiency and scalability of our prototype for 

vgFAB. In addition, we explore how the vgFAB can support the 

selection of multiple candidates for a single vgDL request and 

how effectively those candidates can be used to increase success 

rates for application requests. For experiments, we used variations 

of the following vgDL 

specifications.

 

The grid resource environments used are based on state of the 

art research tools for generating representative structures for grid 

resources (Kee and Chien’s statistical grid resource generator [26] 

and Medina, et. al.’s BRITE network topology generator [27]).  

The vgFAB runs are done on a modest computing system -- IBM 

Thinkpad X31 with a single Pentium3 processor and 512 MB 

memory. The vgFAB prototype including the database system is 

configured on the Thinkpad. Completion time for a request is 

measured from the time when it is initiated to when a response is 

received.  

5.1 Scalability 
To evaluate the scalability, we vary the vgDL request complexity, 

the size of the resource population, the number of candidates, and 

the number of requests.  

5.1.1 Request complexity 
We first evaluate how the complexity of a vgDL request  

affects the cost of selection. To increase complexity, we change 

the depth of nesting, order of aggregates, and operators for 

connectivity. We used a database with 1,000,000 hosts, finds 10 

candidates per request, and repeated 100 times. As shown in 

Figure 7, nesting the aggregators does not affect the cost of 

selection. LL (LooseBag of LooseBag), CC(Cluster of Cluster), 

and TT (TightBag of TightBag) have the same cost as L, C, and T, 

respectively. This is quite reasonable because multiple nested 

aggregates of same type are reduced to a larger aggregate by the 

simplifying rules.  In contrast, ordering of nested aggregates 

affects the selection cost. If the top-most aggregate is a tight bag, 

then the simplified description is a kind of tight bag while if the 

top-most aggregate is a cluster, then the simplified description is a 

cluster. This matches our empirical results quite well.  According 

to the simplifying rules, aggregates with a close operator are 

translated as a larger tight bag. Meanwhile, aggregates with a far 

operator are translated into two independent requests. The results 

in Figure 7 match this well with the response time of “Cluster 

close Cluster” close to that of “TightBag” and the response time 

of “Cluster far Cluster”  close to the sum of the response time of 

“Cluster”.  In all cases, the cost of identifying ten candidates is 

modest, much less than one second. 

 

 

5.1.2 Grid Size 
Figure 8 shows how resource population affects response time. 

For each type, we changed the database population from 10,000 

hosts to 1,000,000 hosts. We identified 10 candidates for each 

vgDL request and repeated the procedure 100 times. Our results 

show that the cost of selection increases with the size of resource 

population, but the amount of growth varies by request type.   For 

example, a tight bag search issues large number of queries..  

To find 10 candidates for a loose bag for a single vgDL request, 

12 queries are required.  In vgDL requests to find 10 candidates 

for a single host, one query is needed, and 11 queries needed to 

find 10 candidates for a  cluster. The number of queries for tight 
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Figure 7. Average response time of queries varying request 

complexity and size with 1,000,000 hosts (L: LooseBag, T: 

TightBag, C: Cluster, c: Close, f: Far) 
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Figure 8. Average response time with different size of resource 

population  
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Figure 9. Average response time of concurrent requests with 

1,000,000 hosts 

vgNode = {node=[Processor=Pentium4]} 

vgCluster = ClusterOf<node>[10:20] { 

node=[Processor=Pentium4, Memory>=1024] 

} 

vgTightBag = TightBagOf<node>[10:20] { 

node=[Processor=Pentium4, Memory>=1024] 

} 



 

 

bag is dependent on the number of clusters composing the tight 

bag.  

5.1.3 Number of requests 
Finally, we evaluate scalability with respect to workloads with a 

fixed server configuration. The execution system has a database 

with 1,000,000 hosts and finds 10 candidates per request. Figure 9 

shows the average response time when varying the number of 

concurrent requests from one to 32. For cluster and host search, 

our vgFAB prototype serves more than 32 requests per second 

and sustains 8 requests per second for tight bag search.  In 

summary, our results show that resource selection for virtual grids 

of 10,000’s of resources can scale up to grids with millions of 

resources, identifying matches in less than one second.    

5.2 Virtual Grid Quality 
In response to each vgDL request, vgFAB returns a VG.  In 

general,  the vgFAB identifies multiple candidates for a request in 

order to improve the chance of successfully binding resources in 

the presence of resource contention.  Ultimately, this should make 

resource behavior more robust and give higher rates of successful 

requests. We present a preliminary evaluation of the trade-off 

between search result quality, overhead of identifying multiple 

candidates, and probability of successfully binding a resource.  

Figure 10 shows the average response time when different 

numbers of candidates are considered by vgFAB. We used a 

database with 1,000,000 hosts and repeated 100 times. The cost of 

identifying multiple candidates appears to increase linearly with 

the number of candidates. However, as all of these costs are quite 

low, we have too little information to draw strong conclusions.  

Note that these candidates are the “best” ones, according to user-

specified ranking functions or default preferences. So, if vgFAB 

examines 10 candidates, the application is guaranteed to obtain a 

resource set among the 10 best ones.  

If binding were always successful, that is with no contention 

for resources and no resource failures, only one candidate would 

be needed. We simulated resource contention and failures by 

assigning a (uniform) probability of successful binding to all 

resources. Figure 11 shows 95% confidence intervals plot of the 

number of binding attempts needed until success versus the 

probability of successful binding individual resources.  The 

results show that even with low probabilities of binding individual 

resources (e.g., 10%), vgFAB can successfully bind a VG to meet 

the vgDL request after a moderate number of tries (<15).  The 

results in Figure 10 show that the cost of considering such a 

number of candidates is very low (<300ms).  Thus our overall 

conclusion is that vgFAB can bind good VG’s with low overhead 

even in the presence of high levels of resource contention and/or 

failures. 

 

 

6. RELATED WORK 
Our work on Virtual Grids builds on and is informed by the four-

year GrADS project [28] to build development tools for adaptive 

grid applications. In the GrADS framework, tight coupling of an 

individual application basis through performance model and 

contract monitor was too intensive and complex: given the current 

complexity of grid resource environments and their likely future 

growth in scale, embedding understanding of the resource 

environment into each application is impractical.  The Virtual 

Grid approach takes a step back from these, striking a middle 

ground between the GrADS approach and pure low level resource 

oriented schemes, and uses a layered approach (i.e., functional 

decomposition of discovery, selection, allocation, etc.) that 

enables simple interaction between the application and the 

resource environment, thereby yielding a much more flexible 

architecture. While the VG concept includes a wide range of 

research fields of Grid middleware, the scope this paper is limited 

to resource description, selection, and binding. 

Resource description and selection is often formulated as a 

resource matchmaking problem. For instance, Condor ClassAds 

were proposed for symmetric bilateral matching of a single 

customer with a single resource [6], and extended to for co-

allocation (gangmatching) [81] and aggregate characteristics (set 

matching) [7]. Meanwhile, Redline [9] reinterpreted matching as a 

constraint satisfaction problem and exploited constraint-solving 

techniques to implement matching process. Many other 
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Figure 10. Average response time of a single query varying 

the number of candidates per request with 1,000,000 hosts 
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Figure 11. Interval plot of the number of binding trials 

before success changing the success probability of binding 



 

 

techniques are also used for resource selection. Other systems 

perform resource description and selection (e.g., SpiderNet [11], 

SWORD [10]) and rely on P2P support for operating in a 

decentralized manner. Additional  related work includes [12,13]. 

A fundamental difference between our work and that above is a 

description language based on application-level resource 

aggregate abstractions. Generally, previous approaches are either 

not expressive enough to describe such aggregates, or are 

cumbersome to do so.  Further, often these complex descriptions 

do not provide a simple structure for application scheduling and 

efficient resource selection.  Another important difference 

between our work and others is our use of ranking functions. For 

instance, Redline allows users to maximize/minimize a single 

constraint, and SWORD allows users to define a penalty function 

for individual resource and sums up the values using internally 

defined normalized utility function. By contrast, the vgDL 

ranking functions are more flexible and allow user to express 

combined preferences over multiple attributes easily.  

Finally, although not the main focus of this paper, a key 

advantage of the VG approach is its we support of adaptation: a 

VG instance is a living entity that is monitored at runtime and for 

which the application has a handle. A subset of the VG resources 

can be removed or replaced at runtime by the vgES, and new 

resources can be added, followed by application rescheduling [18]. 

No other systems can do this adaptation conveniently without 

creating an abstraction similar to our virtual grid.   

7. SUMMARY & FUTURE WORK 
We have introduced the Virtual Grid concept and we have 

presented a novel structural resource description language that 

captures relevant resource abstractions for Grid applications, and 

an efficient resource selection mechanism. Our prototype 

implementation demonstrates scalability: it is feasible to find and 

select resources in real time even in enormous resource 

environments. With a stressful workload of 1,000,000 hosts and 

32 concurrent requests per second, the system supported the 

request load and achieved  good performance. Moreover, when 

the candidates are evaluated using user-provided ranking function, 

in most cases, the vgES system efficiently finds sets of candidates 

and can use them to tolerate a high contention environment. We 

plan to extend these experiments, for instance investigating how 

the frequency of updates to the resource information database 

affects performance. 

While we implemented our prototype system in a centralized 

version, it can be extended to a distributed version. For instance, 

to distribute the workloads due to updates of resource information, 

the resource information database can be distributed. In addition, 

agents that collect resource information could be distributed like 

web crawlers. Finally, multiple vgFABs could cooperate to 

distribute requests from users. Since several design choices are 

available, we need to explore them for better performance. In the 

meantime, we are designing and implementing the other 

components of the Virtual Grid execution system, including a 

resource discovery agent, resource performance monitor, and 

launcher. We expect that the resulting system will provide users 

with a simple but powerful way to deploy their applications 

efficiently on large-scale Grid platforms.  
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