
UC San Diego
Technical Reports

Title
Efficient Resource Description and High Quality Selection for Virtual
Grids

Permalink
https://escholarship.org/uc/item/4922m9vk

Authors
Kee, Yang-Suk
Logothetis, Dionysios
Huang, Richard
et al.

Publication Date
2004-12-17

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4922m9vk
https://escholarship.org/uc/item/4922m9vk#author
https://escholarship.org
http://www.cdlib.org/

Submitted to Cluster Computing and the Grid 2005, Cardiff, United Kingdom.

Efficient Resource Description and High Quality Selection
for Virtual Grids

Yang-Suk Kee, Dionysios Logothetis, Richard Huang, Henri Casanova1, Andrew A. Chien2
Computer Science & Engineering, University of California San Diego

{yskee, dlogo, ryhuang}@csag.ucsd.edu, casanova@sdsc.edu, achien@ucsd.edu

Supported in part by the National Science Foundation under

awards NSF CCR-0331645, NSF ACI-0305390, and NSF

Research Infrastructure Grant EIA-0303622. Support from

the UCSD Center for Networked Systems, BigBangwidth,

and Fujitsu is also gratefully acknowledged.

1 Also affiliated to San Diego Supercomputing Center and Center for Networked Systems

2 Also affiliated to Center for Networked Systems

ABSTRACT

Simple resource specification, resource selection, and effective

binding are critical capabilities for Grid middleware. We

describe the Virtual Grid, an abstraction for dynamic grid

applications to deal with complex resource environments.

Elements of the Virtual Grid include a novel resource description

language (vgDL) and a resource selection and binding component

(vgFAB), which accepts a vgDL specification and returns a

Virtual Grid, that is, a set of selected and bound resources. The

goals of vgFAB are efficiency, scalability, robustness to high

resource contention, and the ability to produce results with

quantifiable high quality. We present the design of vgDL, showing

how it captures application-level resource abstractions using

resource aggregates and connectivity amongst them. We present

and evaluate a prototype implementation of vgFAB. Our results

show that resource selection and binding for virtual grids of

10,000’s of resources can scale up to grids with millions of

resources, identifying good matches in less than one second.

Further, these matches have quantifiable quality, enabling

applications to have high confidence in the results. We

demonstrate the effectiveness of our combined selection and

binding approach in the presence of resource contention, showing

the robust selection and binding can be achieved at moderate cost.

1. INTRODUCTION
While the success and acceptance of Grids continues in the

scientific and commercial computing communities [1-3], the

technology required to achieve the ambitious grid vision --

flexible, adaptive applications running on large federated and

shared resource collections -- is still in its infancy. In fact, the

applications in most widespread use on production grid

environments (see [4,5]) correspond to loosely-coupled parallel

applications, asynchronous workflows, and multi-tier web-

application server-database applications. Applications that require

tightly-coupled coordination, high performance data movement

coordinated with computation, and real-time coupling of

instruments remain difficult to design, implement, and manage at

runtime. These types of applications are the focus of the research

described in this paper; they typically require sophisticated

synchronized resource use and management of failures, and their

performance depends strongly on the resources used. To achieve

their mission goals, these applications need to be resource-aware,

but given the current complexity of grid resource environments

and their likely future growth to millions, even billions of devices,

embedding understanding of the resource environment into each

application is impractical.

Supporting demanding grid applications requires effective

solutions to four key resource problems: (i) description, which

specifies the needed resources, (ii) discovery, which finds

candidate resources, (iii) selection, which chooses from the

candidates, typically based on static and dynamic resource

information, and (iv) binding, which allocates resources via

negotiation with autonomous resource managers.

We propose a new integrated approach, based on the notion of a

virtual grid that provides a unified framework for solving all these

resource problems. Our approach differs from a wide range of

research efforts that address either one or a subset of these

problems [6-18]. The virtual grid consists of four key elements:

vgDL – an application-oriented language used to specify resource

needs, vgFAB – a “finder and binder” that performs integrated

resource selection and binding, vgLAUNCH – a scalable

application launcher that initiates the application on the bound

resources, and vgMON – a distributed monitoring service that

ensures that resource expectations are realized throughout

application execution. While all four of these elements pose an

interesting research challenges, the scope of this paper is limited

to the design of vgDL, a prototype implementation of vgFAB, and

an initial evaluation of the implementation. Specific contributions

of this paper include:

1. A new framework for application resource awareness

called the Virtual Grid: Virtual grids provide an

abstraction of complex grid resource, enabling optimized

resource selection, management, and adaptation with robust

behavior and a simple, uniform interface.

2. Design of the vgDL resource description language: vgDL

is a structured hierarchical language in which applications

specify their resource needs. It is based on typical resource

abstractions used by application developers to manage and

optimize performance (or other application execution

attributes). vgDL is specifically designed to enable efficient

resource selection and binding in large-scale, shared

resource environments.

3. An integrated resource “finder and binder” (vgFAB)

algorithm and prototype implementation: vgFAB

combines selection and binding, identifying and allocating

resource sets that match a vgDL specification. VgFAB is

designed for efficiency, scalability, and robustness to

resource contention.

4. Evaluation of vgDL and of the vgFAB prototype: Our

results show that vgDL specifications in grids with millions

of resources can be matched in less than a second, with

obtained resource sets of quantifiable quality. Furthermore,

vgFAB identifies many candidate solutions, which is key to

efficient binding even in the presence of resource contention.

The remainder of the paper is organized as follows. In Section

2, we introduce the notion of Virtual Grid and its architecture.

Subsequently, we narrow our focus to the vgDL resource

description language and vgFAB resource selection in Section 3.

While many implementations are possible, one realization of the

virtual grid architecture is described in Section 4 and in Section 5

we evaluate the vgDL language and the prototype. In Section 6,

we discuss the implications of this evaluation and survey related

work. Finally we summarize our results and describe possible

directions for future work in Section 7.

2. VIRTUAL GRID ARCHITECTURE
Our work on Virtual Grids builds on and is informed by a four-

year effort to build development tools for adaptive grid

applications, the Grid Application Development Software Project

(GrADS) [28]. The Virtual Grid architecture builds on a key

insight from GrADS that application participation (knowledge,

expectations) is needed to effectively manage performance in a

dynamic grid resource environment. A major innovation in

VGrADS is the attempt to couple applications and underlying grid

resource management together through an application oriented

resource specification (in vgDL) and an active entity (the virtual

grid) which is the reification or instantiation of the application’s

resource environment. The application-oriented language

insulates the application from the full complexity of the resource

environment, and the lifecycle coupling of the application and

underlying resource environment (resources and managers)

enables flexible application management of resources at a high

level. A Virtual Grid (VG) does not define how the application

uses resource with the virtual grid, nor does it provide a functional

virtualization as in a virtual machine.

The interaction of an application with the virtual grid system is

illustrated in Figure 1. The Virtual Grid execution system (vgES)

is realized in the following key elements:

� vgDL – a structured hierarchical language for application

resource abstractions that is used to identify appropriate

resources.

� vgFAB – the “finder and binder” that performs integrated

resource selection and binding which in combination enable

optimized resource choices in a high load resource

environment with autonomous resource managers. This

returns a “virtual grid” (VG) handle that communicates

resource information to application in terms of the

application resource abstractions.

� vgLAUNCH – an application launcher that initiates the

application on the bound resources.

� vgMON – a distributed monitoring component that ensures

that resource performance expectations (i.e., vgDL

specifications) are met throughout application execution.

VG’s allow users to configure their own resources and change

configurations according to evolving application requirements

and/or resource conditions.

As shown in Figure 1, users create a VG instance by specifying

application requirements in vgDL and passing to the vgFAB.

Then, the execution system instantiates a response to the request,

returns a handle (vgID) to a VG (an explicit representation of the

resources in the form of an annotated tree of resources that

matches the vgDL structure). Figure 2 depicts how a vgDL

specification is turned into a VG instance. The execution system

selects multiple candidates and allocates one of them, either

choosing the ``best’’ one according to application-specific criteria

or successively trying to bind candidates until it succeeds. From a

users perspective, these selection and binding operations are

hidden in the function of vgFAB. The VG thus realized goes

beyond traditional resource selection [6-13]. First, the VG

consists of bound resources on which the application has been

launched by vgLAUNCH. This avoids problems with being

repeatedly unable to bind that have been selected due to high

contention for resources. Once resources have bound, it is most

efficient to provide a simple application launcher, ensuring that

resources can be used from the moment they are bound. Second,

vgMON provides runtime monitoring of the acquired resources

and can facilitate adaptation to changing resource conditions

either transparent or application-directed, so that vgDL

specifications are met. Once a VG instance is acquired, the

application can utilize the resources and use sophisticated,

application-specific scheduling and load-balancing techniques to

enhance performance.

 The vgES system is compatible with existing and future

resource information services (MDS [15], NWS [16], and Ganglia

[17]) and a wide range of resource management models including

best-effort, batch, slices, and even provisioned; all of which are

extant in the grid today. For the remainder of this paper, we

select

Request Candidates

bind

Grid

monitor

V
irtu

a
l G

rid

Resources

Figure 2. Virtual Grid Architecture

ApplicationApplication

vgES APIs

vgMON

vgDL

Information
Services

Resource
ManagersvgLAUNCH

vgFAB
VG

vgID

VG
VG

Figure 1. Virtual Grid Execution System (vgES)

confine our discussion to the design and evaluation of vgDL and

vgFAB.

3. APPLICATION-ORIENTED RESOURCE

DESRIPTION LANGUAGE (vgDL)
A central element of the Virtual Grid approach is a resource

description language (vgDL) based on application resource

abstractions. Based on detailed study of a number of major grid

applications, including EMAN [19], EOL [20], LEAD/MEAD

[21], GridSAT [22], as well as a large body of ad hoc experience,

we identified two main application resource abstractions –

clusters and bags – and a range of typical preferences and

attributes. This design rational is discussed in detail in the Virtual

Grid Design Tech Report. vgDL not only uses simple application

resources abstractions, supporting simple specifications, but is a

rich, expressive language that enables experts to control resource

specification with precision. Figures 3-1 and 3-2 show the BNF

for the language. Note that we have incorporated the RedLine [9]

BNF for attribute constraints. Key features of vgDL include

� Resource aggregates

� Network connectivity

� Composition of aggregates

� Ranking (preference)

� Adaptation

3.1 Resource aggregates
Based on extensive study of scientific and grid computing

applications, we learned that to simplify portability in design for

performance (and to manage complexity), simple resource

abstractions are often employed. For example, the basic model of

EOL is “bags” – heterogeneous collections of nodes. That of

EMAN is a bit more complex, a heterogeneous set of “clusters”

(each themselves homogenous collections), and so on. Meanwhile,

most parameter-sweep applications require only a “bag” of

resources with minimal connectivity between computing nodes

and the NPB benchmark suites [23] require a “cluster”. vgDL

contains three resource aggregates, distinguished based on their

homogeneity and internal connectivity.

� LooseBag: a collection of heterogeneous nodes with poor

connectivity; users only care about number of nodes but

node architecture and connectivity between nodes are not

major concerns

� TightBag: a collection of heterogeneous nodes with good

connectivity

� Cluster: adding homogeneity, a well-connected set of

nodes with identical (or nearly so) individual resource

attributes

Each aggregate specifies a range for its size (number of elements).

Aggregates can be nested as described in Section 3.3. Aggregator

properties, and many of the characteristics of vgDL descriptions

are qualitative. In our analysis of application needs, we found

that for many applications, detailed quantitative specifications are

a distraction, and as such caused resource specifications to be

fragile. We believe our qualitative approach will enable many

applications to construct simple, robust, and enduring vgDL

specifications.

3.2 Network connectivity
For many grid and distributed applications, inter-node and inter-

aggregate network connectivity is critical for performance. VgDL

includes four operators that define network connectivity: close,

far, highBW, and lowBW. These composers indicate coarse

notions of network proximity in terms of latency and bandwidth.

Close (highBW) indicates that latency (bandwidth) between

two aggregates is low (high). The properties of the aggregates

and operators are intentionally qualitative, and each

Vgrid ::= Identifier = Rdl-expression [at time/event]

Rdl-expression ::= Rdl-subexpression | [“(“ Rdl-expression “)” op “(“ Rdl-expression “)”]*

Rdl-subexpression ::= Associator-expression | Node-expression

Associator-expression ::= Bag-of-expression | Cluster-of-expression

Bag-of-expression ::= LooseBagof "<" Identifier ">" "[" MinNode ":" MaxNode "]" ["[" Number [“su” | “sec”] "]"] ";" Node-

expression |

TightBagof "<"Identifier ">" "[" MinNode ":" MaxNode "]" ["[" Number [“su” | “sec”] "]"] ";" Node-expression

Identifier ::= String

Min ::= Integer

Max ::= Integer

Node-expression ::= Identifier "=" Node-constraint

Node-constraint ::= "{" Attribute-constraint | Rdl-expression "}" | Rdl-expression

Attribute-constraint ::= Redline expression for attribute and constraint [see Figure 3-2]

Cluster-of-expression ::= Clusterof "<" identifier ">" "[" MinNode ":" MaxNode [“,” MaxTime “:” “MinTime”] "]" ";" Node-

expression

op := close | far | highBW | lowBW

Figure 3-1. BNF description of vgDL language

Figure 3-2. BNF description for Redline expression for

attribute and constraint

Redline expression ::= Identifier‘=‘ Arithmatic_expr |

Logic_expr | Predicate

Arithmatic_expr ::= A_operand [A_op A_operand]*

A_operand ::= Integer | Real

A_op ::= "+" | "-" | "*" | "/" | "^"

Logic_expr::= L_operand [L_op L_operand]*

L_operand ::= Integer | Real | Boolean | String

L_op ::= ">" | "<" | ">=" | "<=" | "==" | "&&" | "||" | "!="

Predicate ::= Required "(" Attribute [“,” Attribute]* ")"

Attribute ::= String

implementation will use specific default values as definitions for

close and far, as appropriate for distribution of grid resources,

and changing as technology advances. For many applications,

detailed quantitative specifications are a distraction, and a

detriment to simple, robust, and enduring vgDL specifications.

Applications that require detailed quantitative measurements of,

say, bandwidth, can query the grid information systems once a

VG has been instantiated. Such information can be used to apply

possibly sophisticated scheduling algorithms and other

optimizations at the application level.

3.3 Composition of resources and aggregates
vgDL allows users to define a single resource or an aggregate of

resources with certain properties. Aggregate operators can be used

to build simple aggregate of individual resources. Description of

such aggregates is intuitive and compact. As shown in Figure 4, a

vgDL cluster description is simpler than one in Redline [9].

Furthermore, it is possible to build aggregates of arbitrary depth,

e.g., a Bag of Clusters of x86 Nodes. Individual resources or

aggregates can be also composed via the simple network

connectivity operators described earlier. Users can thus structure

resources in top-down fashion and decorate components with

additional constraints when desired.

3.4 Ranking (preference)
In addition to specifying constraints, applications can also express

preference using a scalar ranking function. The ranking function

is a user-defined expression consisting of four basic arithmetic

operations, which produces a scalar value that represents quality.

The ranking function is used to compare the candidates that meet

the vgDL specification constraints to determine which one the

application would prefer. If no ranking function is provided, or

the ranking function does not distinguish the candidates, the

vgFAB has a set of default preferences on the remaining attributes.

For instance, for most attributes with scalar values, larger is better

(the one exception being network latency). Compared to other

systems [6-10], the vgDL ranking functions are more flexible,

enabling easy expression of ranking functions that combine

multiple attributes in complex fashion.

3.5 Adaptation
Typically the vgFAB returns a VG which satifies the request

vgDL specification. At some later time, resource adaptation may

be initiated by the application or the VG (a vgMON detected

violation for example). Adaptation of a VG can then be made

with respect to the currently bound resources, the initial vgDL

specification, or particular resources in the VG that correspond to

a particular part of the vgDL request and need to be replaced or

enhanced. Resource adaptation relative to an extant VG is a key

distinguishing capability of our approach.

3.6 Range-based specifications and search
In contrast to bilateral matching techniques typified by

Matchmaking [6-9], vgDL describes constraints that are naturally

mapped to multi-dimensional range search. Applications specify

acceptable value ranges for attributes. We exploit this capability

to identify sets of candidate solutions – as opposed to a single

solution. This helps in shared resource environments where

resources will be overloaded or in high demand.

3.7 Other Features
Time and Duration: By default, the execution system allocates

resources immediately for unlimited time. For applications or

resources with complex temporal constraints, vgDL can describe

access to systems with advance reservation.

Resource Quantity: vgDL requests reflect a range of acceptable

quantities of resources(i.e. 8 to 64 nodes). For applications, it is

sometimes convenient to express total computational capability of

an aggregate. vgDL allows desired total desired capability

(service units or SU’s) to be tied to a request; enabling

coordinated parameter resolution by the vgFAB.

4. VIRTUAL GRID PROTOTYPE
To demonstrate and evaluate the Virtual Grid Execution System

(vgES), we implemented a prototype system. In this system, the

vgFAB implements selection based on a local copy of the grid

resource information in a relational database. This local copy is

created and maintained by periodic downloads from grid

information servers.

Figure 5 depicts the resource selection process and components

involved in each step. First, vgFAB builds a parse tree analyzing

the given resource description and simplifies this parse tree

according to some rules. Based on the simplified parse tree, the

SQL synthesizer generates SQL queries for the resources, which

capture ranking functions and default preferences. vgFAB then

submits the SQL queries to the resource information database,

annotates the vgDL parse tree, and binds the resources (trying

new resources if the binding fails). Finally, the vgES returns a

handle to a VG instance.

The prototype vgES is built in Java: using java-cc [24] to

implement a vgDL parser and a MySQL database to store grid

resource information. The vgFAB makes queries against this

information using the MySQL Connector/J JDBC driver [25].

4.1 Resource Classification
Many existing resource selection techniques exhibit poor

scalability because the representation of grid resource information,

e.g., in systems such as MDS [cite], is resource-oriented, making

it hard to retrieve information needed to address users requests

efficiently. For example, collecting a set of 50 nodes that have

similar configuration across multiple sites might require hundreds

or thousands of information services requests. Our approach is

proactive, caching much of the available grid resource

information locally in a database, and exploiting query

optimization technology to efficiently answer requests. In this

model, dynamic information can be supplied as periodic updates

to the database. Other resource attributes in the database include

processor architecture, operating system, as well as network

latency and bandwidth. In this approach, large numbers of

Figure 4. Complexity of query in Redline and vgDL

// Redline specification

Cluster

RES = [ClusterNode ISA SET

 [Node ISA [CPUType=“Pentium4”, OSType=“Linux”]]

 For all x in ClusterNode

 x.latency(Node) < threshold;

 Maximize(ClusterNode.cpu)

Count(ClusterNode) >= 1;

Count(ClusterNode) <= 32;

]

// vgDL specification

Cluster = ClusterOf<Node> [1:32][Rank=CPUCount] {

 Node = [Processor=”Pentium4”, OS=”Linux”]

}

requests can be supported by a single database (see Section 5),

and if needed multiple database systems can be deployed.

Optimal resource selection is typically an NP-hard problem [9], so

finding an optimal solution in grids with millions of resources is

impractical. Instead, our objective is to find a good solution that

has quantifiable quality. To support this, the collected grid

resource information is populated into a database according to a

classification which identifies aggregates used in the vgDL. This

supplementary classification information can improve selection

process significantly. Specifically, individual hosts are grouped

into clusters and clusters are grouped into tight bags. Singleton

hosts either are part of a tight bag or exist as independent entities

in the implied loose bag which includes all resources. Additional

aggregate properties for clusters and tightbags include number of

hosts, total memory, and total disk capacity.

This classification of resources in a real deployment could be

achieved by independent (centralized or distributed) agents

identify resource classes using the network properties and host

configuration information retrieved from external information

services systems such as the Network Weather Service (NWS),

the (Monitoring and Discovery Service) MDS, or self-classified

resources such as a cluster managed by a batch scheduler.

4.2 Simplifying Reductions
Since vgDL can express complex resource specifications that may

require exponential search time, our vgFAB prototype exploits

aggregate composition semantics to simplify descriptions,

enabling their efficient implementation. For instance, a nested

cluster expression like ClusterOf<cluster> [1:10] { cluster =

ClusterOf<node> [1:10] { node = …} } can be regarded as

ClusterOf<node> [1:100] { node = … }. Instead of searching

multiple tightly coupled clusters, vgFAB searches a larger cluster

that can accommodate multiple clusters, and then partitions the

cluster into multiple sub-clusters based on the requirements. This

simplifying transformation preserves the properties of the vgDL

request, but eliminates the expensive pairwise connectivity

checking between clusters.

Figure 6 summarizes the simplifying reductions adopted in our

current implementation. A common rule is that if a parent (in

parse tree) has stronger constraints than the children, then we can

safely simplify the request by requiring the children to follow the

parent’s constraints. With respect to connectivity, cluster and tight

bag are stronger than loose bag while cluster is stronger than tight

bag and loose bag with respect to homogeneity. Meanwhile,

close and highBW operators are stronger than far and

lowBW, respectively. If associators with strong connectivity nest

weak operators, the weak operators are translated as

corresponding strong ones. On the contrary, if strong operators

nest associators with weak connectivity, the weak associators are

translated into the strong ones. Our simplifying reductions allow

us to achieve fast, good solutions for vgDL requests, but do

exclude some possible solutions in the grid resource space.

Quantifying the impact of these exclusions is an interesting

subject for future research.

4.3 Query Synthesis
With a structured resource database and a simplified resource

request, the vgFAB next synthesizes a sequence of SQL queries to

identify a set of candidates. For instance, to select a tight bag,

vgFAB first retrieves information about tight bags from database

and identifies the clusters composing the tight bags. Then, vgFAB

searches the hosts composing each cluster. At each step, vgFAB

filters out infeasible candidates using a WHERE clause with the

constraints of individual hosts and aggregators. Then, vgFAB

evaluates the ranking function and default preferences declaring a

dynamic attribute by an AS clause and sorting the records in a

descending order with respect to this dynamic attribute. VgFAB

determines the number of candidates per request using a LIMIT

clause. In summary, a general form of synthesized SQL query is:

SELECT attributes FROM tables, ranking

function AS rank WHERE constraints ORDER BY

rank DESC LIMIT # of candidates

The result of this query is a set of candidates all of which meet the

requirements of the simplified vgDL request.

4.4 Binding and VG Construction
Armed with a set of ranked, satisfactory candidates the vgFAB

can proceed to bind resources (selecting new candidates if binding

fails due to resource unavailability or some other reason). With a

bound set of resources, the vgFAB constructs an annotated vgDL

request, the realized VG representation, decorating it with the

physical resource information. This living representation of the

virtual grid can then be used by the application for scheduling and

Figure 6. Simplifying Reductions

ClusterOf<m1, n1> { associator<m2, n2> } or

TightBagOf<m1,n1> {ClusterOf<m2,n2>

� ClusterOf<m1+m2, n1+n2>

TightBagOf<m1, n1> { TightBagOf/LooseBagOf<m2, n2> }

� TightBagOf<m1+m2, n1+n2>

LooseBagOf<m1, n1> { associator<m2,n2> }

� # of associators is between m1 and n1

Component<m1, n1> close Component<m2, n2>

� TightBagOf<m1+m2, n1+n2> satisfying both the

components requirements

ClusterOf/TightBagOf { A far B }

� ClusterOf/TightBagOf { A close B }

Cluster<cluster>[1:10]

{

cluster<node>[1:10]

{

node = [

Processor=Pentium4,

1<=Memory<=4

]

}

}

Cluster<cluster>[1:10]

{

cluster<node>[1:10]

{

node = [

Processor=Pentium4,

1<=Memory<=4

]

}

}

Cluster [1:10]

Node

Pentium4, 1<=M<=2

Cluster [1:10]

Cluster [1:100]

Node

Pentium4, 1<=M<=2

SELECT ID FROM Cluster WHERE

Processor=“Pentium4” AND Node BETWEEN 1

AND 100 AND Memory BETWEEN 1 AND 200;

SELECT * FROM Host WHERE

Cluster.ID = Host.Cluster AND Memory BETWEEN

1 AND 2;

SELECT ID FROM Cluster WHERE

Processor=“Pentium4” AND Node BETWEEN 1

AND 100 AND Memory BETWEEN 1 AND 200;

SELECT * FROM Host WHERE

Cluster.ID = Host.Cluster AND Memory BETWEEN

1 AND 2;

Cluster: CSAG0

node_0: CSAG0-0

…

node_n: CSAG0-n

P
a
r
se

r

R
e
d

u
ce

r
A

n
n

o
ta

to
r

S
Q

L
 S

y
n

th
es

iz
e
r

Specification
Parse Tree

Reduced Parse Tree

SQL Query Annotated Parse Tree

Figure 5. Example resource selection and binding

execution. If a candidate component corresponds to a simplified

vgDL expression, the vgFAB partitions the resource and logically

organizes them according to the original vgDL specification.

5. EMPIRICAL EVALUATION
We evaluate the efficiency and scalability of our prototype for

vgFAB. In addition, we explore how the vgFAB can support the

selection of multiple candidates for a single vgDL request and

how effectively those candidates can be used to increase success

rates for application requests. For experiments, we used variations

of the following vgDL

specifications.

The grid resource environments used are based on state of the

art research tools for generating representative structures for grid

resources (Kee and Chien’s statistical grid resource generator [26]

and Medina, et. al.’s BRITE network topology generator [27]).

The vgFAB runs are done on a modest computing system -- IBM

Thinkpad X31 with a single Pentium3 processor and 512 MB

memory. The vgFAB prototype including the database system is

configured on the Thinkpad. Completion time for a request is

measured from the time when it is initiated to when a response is

received.

5.1 Scalability
To evaluate the scalability, we vary the vgDL request complexity,

the size of the resource population, the number of candidates, and

the number of requests.

5.1.1 Request complexity
We first evaluate how the complexity of a vgDL request

affects the cost of selection. To increase complexity, we change

the depth of nesting, order of aggregates, and operators for

connectivity. We used a database with 1,000,000 hosts, finds 10

candidates per request, and repeated 100 times. As shown in

Figure 7, nesting the aggregators does not affect the cost of

selection. LL (LooseBag of LooseBag), CC(Cluster of Cluster),

and TT (TightBag of TightBag) have the same cost as L, C, and T,

respectively. This is quite reasonable because multiple nested

aggregates of same type are reduced to a larger aggregate by the

simplifying rules. In contrast, ordering of nested aggregates

affects the selection cost. If the top-most aggregate is a tight bag,

then the simplified description is a kind of tight bag while if the

top-most aggregate is a cluster, then the simplified description is a

cluster. This matches our empirical results quite well. According

to the simplifying rules, aggregates with a close operator are

translated as a larger tight bag. Meanwhile, aggregates with a far

operator are translated into two independent requests. The results

in Figure 7 match this well with the response time of “Cluster

close Cluster” close to that of “TightBag” and the response time

of “Cluster far Cluster” close to the sum of the response time of

“Cluster”. In all cases, the cost of identifying ten candidates is

modest, much less than one second.

5.1.2 Grid Size
Figure 8 shows how resource population affects response time.

For each type, we changed the database population from 10,000

hosts to 1,000,000 hosts. We identified 10 candidates for each

vgDL request and repeated the procedure 100 times. Our results

show that the cost of selection increases with the size of resource

population, but the amount of growth varies by request type. For

example, a tight bag search issues large number of queries..

To find 10 candidates for a loose bag for a single vgDL request,

12 queries are required. In vgDL requests to find 10 candidates

for a single host, one query is needed, and 11 queries needed to

find 10 candidates for a cluster. The number of queries for tight

0

50

100

150

200

250

300

350

400

450

L LL T TT C CC TC CT TCT CTC CcC TcT CfC TfT

Complexity

R
es

p
o
n
se

 T
im

e
(m

s)

Figure 7. Average response time of queries varying request

complexity and size with 1,000,000 hosts (L: LooseBag, T:

TightBag, C: Cluster, c: Close, f: Far)

0

50

100

150

200

250

10,000 100,000 1,000,000

of hosts

R
es

p
o

n
se

 t
im

e
(m

s)

Host search Cluster search TightBag search

Figure 8. Average response time with different size of resource

population

0

500

1000

1500

2000

2500

3000

3500

1 2 4 8 16 32

of requests

R
es

p
o

n
se

 t
im

e
(m

s)

Host search Cluster search TightBag search

Figure 9. Average response time of concurrent requests with

1,000,000 hosts

vgNode = {node=[Processor=Pentium4]}

vgCluster = ClusterOf<node>[10:20] {

node=[Processor=Pentium4, Memory>=1024]

}

vgTightBag = TightBagOf<node>[10:20] {

node=[Processor=Pentium4, Memory>=1024]

}

bag is dependent on the number of clusters composing the tight

bag.

5.1.3 Number of requests
Finally, we evaluate scalability with respect to workloads with a

fixed server configuration. The execution system has a database

with 1,000,000 hosts and finds 10 candidates per request. Figure 9

shows the average response time when varying the number of

concurrent requests from one to 32. For cluster and host search,

our vgFAB prototype serves more than 32 requests per second

and sustains 8 requests per second for tight bag search. In

summary, our results show that resource selection for virtual grids

of 10,000’s of resources can scale up to grids with millions of

resources, identifying matches in less than one second.

5.2 Virtual Grid Quality
In response to each vgDL request, vgFAB returns a VG. In

general, the vgFAB identifies multiple candidates for a request in

order to improve the chance of successfully binding resources in

the presence of resource contention. Ultimately, this should make

resource behavior more robust and give higher rates of successful

requests. We present a preliminary evaluation of the trade-off

between search result quality, overhead of identifying multiple

candidates, and probability of successfully binding a resource.

Figure 10 shows the average response time when different

numbers of candidates are considered by vgFAB. We used a

database with 1,000,000 hosts and repeated 100 times. The cost of

identifying multiple candidates appears to increase linearly with

the number of candidates. However, as all of these costs are quite

low, we have too little information to draw strong conclusions.

Note that these candidates are the “best” ones, according to user-

specified ranking functions or default preferences. So, if vgFAB

examines 10 candidates, the application is guaranteed to obtain a

resource set among the 10 best ones.

If binding were always successful, that is with no contention

for resources and no resource failures, only one candidate would

be needed. We simulated resource contention and failures by

assigning a (uniform) probability of successful binding to all

resources. Figure 11 shows 95% confidence intervals plot of the

number of binding attempts needed until success versus the

probability of successful binding individual resources. The

results show that even with low probabilities of binding individual

resources (e.g., 10%), vgFAB can successfully bind a VG to meet

the vgDL request after a moderate number of tries (<15). The

results in Figure 10 show that the cost of considering such a

number of candidates is very low (<300ms). Thus our overall

conclusion is that vgFAB can bind good VG’s with low overhead

even in the presence of high levels of resource contention and/or

failures.

6. RELATED WORK
Our work on Virtual Grids builds on and is informed by the four-

year GrADS project [28] to build development tools for adaptive

grid applications. In the GrADS framework, tight coupling of an

individual application basis through performance model and

contract monitor was too intensive and complex: given the current

complexity of grid resource environments and their likely future

growth in scale, embedding understanding of the resource

environment into each application is impractical. The Virtual

Grid approach takes a step back from these, striking a middle

ground between the GrADS approach and pure low level resource

oriented schemes, and uses a layered approach (i.e., functional

decomposition of discovery, selection, allocation, etc.) that

enables simple interaction between the application and the

resource environment, thereby yielding a much more flexible

architecture. While the VG concept includes a wide range of

research fields of Grid middleware, the scope this paper is limited

to resource description, selection, and binding.

Resource description and selection is often formulated as a

resource matchmaking problem. For instance, Condor ClassAds

were proposed for symmetric bilateral matching of a single

customer with a single resource [6], and extended to for co-

allocation (gangmatching) [81] and aggregate characteristics (set

matching) [7]. Meanwhile, Redline [9] reinterpreted matching as a

constraint satisfaction problem and exploited constraint-solving

techniques to implement matching process. Many other

0

200

400

600

800

1000

1200

1400

1600

10 20 40 60 80 100

of candidates

R
es

p
o
n
se

 t
im

e
(m

s)

Host search Cluster search TightBag search

Figure 10. Average response time of a single query varying

the number of candidates per request with 1,000,000 hosts

Success rate (%)

#
 o

f
tr

ia
ls

9070503010

12

10

8

6

4

2

0

Figure 11. Interval plot of the number of binding trials

before success changing the success probability of binding

techniques are also used for resource selection. Other systems

perform resource description and selection (e.g., SpiderNet [11],

SWORD [10]) and rely on P2P support for operating in a

decentralized manner. Additional related work includes [12,13].

A fundamental difference between our work and that above is a

description language based on application-level resource

aggregate abstractions. Generally, previous approaches are either

not expressive enough to describe such aggregates, or are

cumbersome to do so. Further, often these complex descriptions

do not provide a simple structure for application scheduling and

efficient resource selection. Another important difference

between our work and others is our use of ranking functions. For

instance, Redline allows users to maximize/minimize a single

constraint, and SWORD allows users to define a penalty function

for individual resource and sums up the values using internally

defined normalized utility function. By contrast, the vgDL

ranking functions are more flexible and allow user to express

combined preferences over multiple attributes easily.

Finally, although not the main focus of this paper, a key

advantage of the VG approach is its we support of adaptation: a

VG instance is a living entity that is monitored at runtime and for

which the application has a handle. A subset of the VG resources

can be removed or replaced at runtime by the vgES, and new

resources can be added, followed by application rescheduling [18].

No other systems can do this adaptation conveniently without

creating an abstraction similar to our virtual grid.

7. SUMMARY & FUTURE WORK
We have introduced the Virtual Grid concept and we have

presented a novel structural resource description language that

captures relevant resource abstractions for Grid applications, and

an efficient resource selection mechanism. Our prototype

implementation demonstrates scalability: it is feasible to find and

select resources in real time even in enormous resource

environments. With a stressful workload of 1,000,000 hosts and

32 concurrent requests per second, the system supported the

request load and achieved good performance. Moreover, when

the candidates are evaluated using user-provided ranking function,

in most cases, the vgES system efficiently finds sets of candidates

and can use them to tolerate a high contention environment. We

plan to extend these experiments, for instance investigating how

the frequency of updates to the resource information database

affects performance.

While we implemented our prototype system in a centralized

version, it can be extended to a distributed version. For instance,

to distribute the workloads due to updates of resource information,

the resource information database can be distributed. In addition,

agents that collect resource information could be distributed like

web crawlers. Finally, multiple vgFABs could cooperate to

distribute requests from users. Since several design choices are

available, we need to explore them for better performance. In the

meantime, we are designing and implementing the other

components of the Virtual Grid execution system, including a

resource discovery agent, resource performance monitor, and

launcher. We expect that the resulting system will provide users

with a simple but powerful way to deploy their applications

efficiently on large-scale Grid platforms.

8. REFERENCES
[1] Grid2003 - The Grid2003 Production Grid: Principles and

Practice. In IEEE High Performance Distributed Computing

(HPDC), June 2004.

[2] Geoffrey Fox and David Walker, e-Science Gap Analysis,

UK e-Science Technical Report, UKeS-2003-0,

http://www.nesc.ac.uk/technical_papers/uk.html, Jun. 2003.

[3] Japan’s National Research Grid Initiative (NAREGI), Asian

Technology Information Program Report, ATIP03.016,

http://www.atip.org/REPORTSMATRIX/public/year2003_to

tal.html, Dec. 2003.

[4] Charlie Catlett, The TeraGrid: A Primer,

http://www.teragrid.org/about, Sep. 2002.

[5] L. Peterson, D. Culler, T. Anderson, and T. Roscoe. A

blueprint for introducing disruptive technology into the

internet, HotNets-I, Oct. 2002.

[6] R. Raman, M. Livny, and M. Solomon, Matchmaking:

Distributed Resource Management for High Throughput

Computing, IEEE HPDC’98, pp. 140-147, July 1998.

[7] C. Liu, L. Yang, I. Foster and D. Angulo, Design and

Evaluation of a Resource Selection Framework, HPDC’02,

pp. 63-72, July 2002.

[8] R. Raman, M. Livny, M. Solomon, Policy Driven

Heterogeneous Resource Co-Allocation with Gangmatching,

IEEE HPDC’03, pp. 80-89, June 2003.

[9] C. Liu and I. Foster, A Constraint Language Approach to

Matchmaking. RIDE’04, Boston, 2004.

[10] D. Oppenheimer, J. Albrecht, D. Patterson, and A. Vahdat.

Scalable Wide-Area Resource Discovery. UC Berkeley

Technical Report UCB//CSD-04-1334, July 2004.

[11] X. Gu, K. Nahrstedt, and B. Yu, Spidernet: An Integrated

Peer-to-peer Service Composition Framework, IEEE

HPDC’04

[12] T. Kichkaylo, A. Ivan, and V. Karamcheti, Constrained

Component Deployment in Wide-area Networks Using AI

Planning Techniques, IEEE IPDPS’03, Apr 2003.

[13] A. Huang, and P. Steenkiste, Building Self-configuring

Services Using Service-specific Knowledge, IEEE HPDC’04

[14] I. Foster, C. Kesselman, and S. Tuecke, The anatomy of the

Grid: Enabling scalable virtual organizations. International

Journal of High Performance Computing Applications,

15(3):200-222, 2001.

[15] K. Czajkowski, S. Fitzgerald, I. Foster, C. Kesselman, Grid

Information Services for Distributed Resource Sharing, IEEE

HPDC’01, Aug. 2001.

[16] R. Wolski, N. Spring, and J. Hayes. The Network Weather

Service: A Distributed Resource Performance Forecasting

Service for Metacomputing, FGCS 15(5-6): 757-768, Oct.

1999.

[17] F. Sacerdoti, M. Katz, M. Massie, D. Culler, Wide Area

Cluster Monitoring with Ganglia, IEEE Cluster, Dec 2003.

[18] K. Cooper et. al, New Grid Scheduling and Rescheduling

Methods in the GrADS Project, Workshop for Next

Generation Software, April 2004.

[19] W. Li, R. Byrnes, J. Hayes, V. Reyes, A. Birnbaum, A.

Shahab, C. Mosley, D. Pekurovsky, G. Quinn, I. Shindyalov,

H. Casanova, L. Ang, F. Berman, M. Miller, P. Bourne. The

Encyclopedia of Life Project: Grid Software and

Deployment. Special Issue on Grid Systems for Life

Sciences. New Generation Computing.

[20] Available from http://ncmi.bcm.tmc.edu/~stevel/EMAN/doc

[21] Available from

http://www.ncsa.uiuc.edu/expeditions/MEAD

[22] W. Chrabakh and R. Wolski, GridSAT: A Chaff-based

Distributed SAT Solver for the Grid, ACM/IEEE SC’03,

Nov. 2003.

[23] D. Bailey, T. Harris, W. Saphir, R. v. d. Wijngaart, A. Woo,

and M. Yarrow, The NAS Parallel Benchmarks, Technical

Report, NAS-95-020, 1995.

[24] Available from https://javacc.dev.java.net

[25] Available from http://dev.mysql.com/doc/connector/j

[26] Y.-S. Kee, H. Casanova, and A. A. Chien, Realistic

Modeling and Synthesis of Resources for Computational

Grids, ACM/IEEE SC’04, Nov. 2004

[27] A. Medina, A. Lakhina, I. Matta, and J. Byers. BRITE: An

Approach to Universal Topology Generation. International

Workshop on Modeling, MASCOTS'01, Aug. 2001.

[28] F. Berman, A. Chien, K. Cooper, J. Dongarra, I. Foster, D.

Gannon, L. Johnsson, K. Kennedy, C. Kesselman, J. Mellor-

Crummey, D. Reed, L. Torczon, R. Wolski. The GrADS

Project: Software Support for High-Level Grid Application

Development. International Journal of High-Performance

Computing Applications, 15(4), 327-344.

