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Highlights  35 

 Transfer efficiency is a key parameter describing ecosystem structure and function and is used 36 

to estimate fisheries production, however, it is also one of the most uncertain parameters.  37 

 Questions remain about how habitats, food resources, fishing pressure, spatiotemporal scales, 38 

temperature, primary production, and other climate drivers impact transfer efficiency.  39 
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 Direct measurements of transfer efficiency are difficult, but observations of marine population 40 

abundances, diets, productivity, stable isotope analysis, and models integrating these 41 

constraints can provide transfer efficiency estimates.    42 

 Recent estimates suggest that transfer efficiency is more variable than previously thought, 43 

compounding uncertainties in marine ecosystem predictions and projections.  44 

 Increased understanding of factors contributing to variation in transfer efficiency will improve 45 

projections of fishing and climate change impacts on marine ecosystems.  46 

 47 

Glossary 48 

- Assimilation efficiency: proportion of ingested material that is broken down by digestive 49 

enzymes to fuel the organism’s metabolic processes.  Unassimilated material is egested. 50 

- Energy flux model: a model that quantifies relationships between biodiversity and the flow of 51 

energy through ecosystems 52 

- Food web: a system of interconnected feeding relationships or food chains. Illustrations depict 53 

resources and consumers with nodes linked by lines that symbolize a feeding relationship (e.g. 54 

Figure 1D).  Nodes can represent predator and prey, species, trophic levels, functional groups or 55 

size classes.   56 

- Food web model or ecosystem model:  a mathematical representation of how energy or 57 

biomass flows from primary producers to primary consumers and then to secondary consumers 58 

and higher predators.    59 

- Predator-prey mass ratio: the ratio of the average mass of an individual predator to that of its 60 

prey.   61 
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- Production: the generation of biomass or energy.  Primary production refers to the synthesis of 62 

organic compounds from carbon dioxide most often via photosynthesis.  Secondary production 63 

involves the generation of biomass through consumption of another organism. 64 

- Productivity: the rate of production.  65 

- Resilience: ability of a population or ecosystem to recover to its original state following a 66 

disturbance.  67 

- Size spectrum model:  a mathematical representation of a food web that groups individuals by 68 

their sizes.   69 

- Trophic level model: a mathematical representation of a food web that groups individuals by 70 

their position in a food chain. 71 

- Stable isotopes: naturally occurring, non-radioactive atoms of the same element that have 72 

different numbers of neutrons. The isotope with fewer neutrons is lighter in mass, which results 73 

in faster chemical reaction rates and may lead to a preference for its uptake by organisms.  74 

Comparing ratios of carbon and nitrogen stable isotopes in organismal tissues to ratios in their 75 

prey can elucidate the processes that formed these tissues and estimate the organism’s trophic 76 

level. 77 

- Transfer efficiency: the proportion of resource production converted into consumer production.  78 

Transfer efficiency is often calculated as the proportion of production passed from one node to 79 

another in a food web. 80 

- Trophic level: the position of an individual within a food web based on the number of feeding 81 

links between it and the primary producer.  Primary producers such as phytoplankton and 82 

plants have a trophic level of 1, herbivores have a trophic level of 2, carnivores have a trophic 83 

level of at least 3.  Non-integer trophic levels result from mixed diets.  Detritus is often also 84 

assigned a trophic level of 1.  85 
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 86 

Abstract 87 

Transfer efficiency is the proportion of energy passed between nodes in food webs.  It is an emergent, 88 

unitless property that is difficult to measure and responds dynamically to environmental and ecosystem 89 

changes.  Because the consequences of changes in transfer efficiency compound through ecosystems, 90 

slight variations can have large effects on food availability for top predators.  We review processes 91 

controlling transfer efficiency, approaches to estimate it, and known variations across ocean biomes.  92 

Both process-level analysis and observed macroscale variations suggest that ecosystem-scale transfer 93 

efficiency is highly variable, impacted by fishing, and will decline with climate change.  It is important 94 

that we more fully resolve the processes controlling transfer efficiency in models to effectively 95 

anticipate changes in marine ecosystems and fisheries resources. 96 

 97 

Efficiency of energy transfer through food webs 98 

Transfer efficiency (see Glossary) is an emergent, unitless property that quantifies the fraction 99 

of energy passed from one node to another in a food web.  It is often estimated as the ratio of 100 

production at a trophic level relative to one trophic level below (Figure 1; [1-5]).  A high transfer 101 

efficiency means that a greater proportion of production at lower trophic levels is converted to 102 

production at the upper trophic levels.  Transfer efficiency is a critical factor shaping marine 103 

ecosystems, as even subtle shifts in transfer efficiency can compound across trophic levels and lead to 104 

profound differences in abundances of top predators (Boxes 1, 2; [2,6-10]) and sustainable fishing rates 105 

[4,5,11].  Fisheries catches, for example, vary by more than two orders of magnitude across heavily 106 

fished systems despite variations in primary production within a factor of four [8].  Cross-biome 107 
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gradients in transfer efficiencies underlie these differences, with high transfer efficiencies accentuating 108 

fish biomass peaks in high primary production areas and low efficiencies deepening lows in oligotrophic 109 

(low primary production) systems [2,8].  As climate change affects ocean temperature and primary 110 

production [12], increased transfer efficiencies could compensate for changes in primary production.  111 

Alternatively, decreased transfer efficiencies could exacerbate declines in primary production, reducing 112 

potential fisheries harvest from the oceans [13,14].   113 

Transfer efficiency is often illustrated using a trophic pyramid (Figure 1A).  The trophic pyramid 114 

presents a useful and conceptually simple depiction of trophodynamics – the thinning of the trophic 115 

pyramid at higher trophic levels is indicative of energy not transferred, resulting in decreasing 116 

production.  Generally, a transfer efficiency of ~10%, based on early model estimates [4], is used as a 117 

characteristic value for marine ecosystems (Figure 1A).  118 

Despite its recognized importance, transfer efficiency persists as a dominant source of 119 

uncertainty in our understanding of current marine ecosystems and projected changes.  This reflects 120 

three challenges: 1) transfer efficiency is determined by diverse processes at multiple scales with 121 

potentially complex dependencies on environmental and ecosystem properties, 2) it is difficult to 122 

measure and estimate, and 3) current models used to predict marine resource trajectories generally 123 

have highly simplified representations of it.  This contribution provides a synthesis of these challenges, 124 

our present understanding of transfer efficiency, and a summary of estimates of its value.   125 

 126 

Processes controlling transfer efficiency 127 

A complex set of processes control the distribution of production among trophic levels (Figure 128 

1).  We group this diversity of processes into three categories operating at different scales: metabolism 129 

at the individual organism scale (Figure 1B), life cycle at the species population scale (Figure 1C), and 130 

food webs at the ecosystem scale (Figure 1D).  The integration of all these processes and scales 131 
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ultimately determines the trophic organization of an ecosystem, the production of each level within it, 132 

and the efficiency of energy transfer through it. 133 

 134 

Metabolism  135 

 At the individual level, numerous metabolic processes modulate the translation of ingested 136 

material to the production of new organic matter (Fig. 1B).  Once material is ingested, a fraction of it is 137 

broken down by digestive enzymes to fuel the organism’s metabolic processes.  This fraction is referred 138 

to as the assimilation efficiency, with unassimilated material lost to egestion of dissolved and 139 

particulate organic material.  Assimilated material is then partitioned between catabolic (energy 140 

producing) and anabolic (tissue building) processes, with anabolic processes only possible once 141 

catabolic needs are met.  Catabolic metabolism is often further divided into basal (or maintenance) and 142 

active respiration, with the former costs incurred regardless of the organism’s activity, and the latter 143 

increasing with movement and feeding levels.  Only the anabolic investment is reflected in transfer 144 

efficiency, and each of the processes toward this final investment have complex environmental 145 

dependencies [15].   146 

 The metabolic theory of ecology [16] predicts that increasing temperature increases the rates 147 

of most biological processes to a point, including the rates at which organisms respire, [16-17], grow, 148 

and reproduce [18,19,22].  Metabolic and growth rates of primary producers are generally less 149 

temperature-sensitive than those of consumers [17] and can have different temperature dependencies 150 

[20].  This can lead to differential rates of consumer production relative to primary production as 151 

temperature changes [21], thus affecting transfer efficiency.  In many cases, increasing ocean 152 

temperatures are associated with increasing stratification, decreased resource availability [19] or 153 

reduced food quality [22], complicating detection of direct temperature effects.  Ecological 154 

stoichiometry has demonstrated theoretically and empirically that nutrition of prey relative to predator 155 
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demands determines transfer efficiency [23].  Consumers feeding on high quality prey (i.e., rich in 156 

macronutrients and essential fatty acids) have higher growth rates [24] resulting in greater transfer 157 

efficiencies [25-28].   158 

 159 

Life cycle 160 

Life cycles (Fig. 1C) shape the translation of anabolic reproductive investments into production 161 

observed at each trophic level.  The most volatile life cycle element for an individual species is survival 162 

through early life stages (i.e., recruitment in the fisheries context [29]).  Subtle changes in food 163 

resources and metabolism have been implicated in large changes in early stage growth and survival at 164 

the species level [30-32].  Changes in timing of food availability due to climate change can have strong 165 

impacts on the reproductive success of a species [33].  Since volatility in survival is species-specific, food 166 

web structure can be maintained by having one species in a similar trophic position compensate for 167 

another, resulting in resilience in trophic structure and transfer efficiency at the ecosystem level.  168 

However, fluctuations in species abundances can control energy pathways through food webs, and 169 

systems dominated by a small number of species may have limited resilience, [34-35].  For example, a 170 

food web with multiple forage fish species will be more resilient to changes in abundance of a specific 171 

forage fish species due to reduced reproduction, as the other species can play the same trophic role and 172 

provide alternative energy pathways to higher trophic levels (Figure 1D).  Furthermore, climate change 173 

is projected to affect the timing of consumer life cycles and critical resources, increasing the probability 174 

of extreme mismatches affecting species reproduction and growth, capable of restructuring food webs 175 

and reducing ecosystem level transfer efficiencies [36-40].   176 

 177 

Food web structure 178 
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Transfer efficiency is further shaped at the ecosystem scale by a diversity of food web 179 

interconnections and non-predatory fluxes of organic material.  Alternative pathways for primary 180 

production through food webs have different efficiencies and the emergent transfer efficiency 181 

integrates across these pathways.  Prominent examples from the plankton food web are small 182 

phytoplankton dominated oligotrophic systems where multiple zooplankton consumer links are 183 

required to reach forage fish [2,41].  These systems are contrasted by productive coastal areas 184 

dominated by large phytoplankton, where forage fish are often only one trophic level removed from 185 

phytoplankton [2,41].  The partitioning between these pathways can be controlled by passing eddies 186 

and fronts leading to a time-varying trophic organization that does not always reflect the average state 187 

[42].  The spatial distribution or patchiness of prey can also influence transfer efficiency.   Variation in 188 

phytoplankton abundances at the micro- to meso-scales has been suggested to enhance production, 189 

which is especially important for explaining high transfer efficiencies in oligotrophic regions [43]. 190 

Non-predatory loss mechanisms include any food web processes that prevent energy from 191 

reaching higher trophic (e.g., burial of organic matter that has sunk to the sea floor – Figure 1D).  Viral 192 

lysis, for example, cycles bacterial and phytoplankton biomass back to dissolved organic material where 193 

detritivores such as bacteria are the consumers [44].  Exudation (leakage) of fixed organic carbon by 194 

phytoplankton [45] has similar trophic consequences.  If viewed as external to the natural ecosystem, 195 

fishing also results in a removal of energy that reduces ecosystem-scale transfer efficiency between 196 

subsequent trophic levels.  For pelagic ecosystems, the sinking of organic material as phytoplankton 197 

aggregates, fecal pellets, jelly falls or seasonal/diel migrations also present losses of energy losses that 198 

are ultimately reflected in transfer efficiency (Figure 1D);  [2,41,46-48].  The environmental, 199 

physiological, and ecological dynamics governing each of these processes are as complex as those 200 

governing trophic linkages, and alternative assumptions about the form of these losses can have 201 

significant effects on emergent transfer efficiency [49]. 202 
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Benthic and pelagic systems often have different energy pathways, which can lead to 203 

differential transfer efficiencies.  In benthic ecosystems, the flux of detritus from surface waters and 204 

vertically migrating organisms provide the primary energy inputs [50-51].  Analysis of global marine 205 

catch data has provided modest evidence for higher transfer efficiencies associated with benthic food 206 

webs [8], where food resources are concentrated in a two-dimensional space requiring less foraging 207 

[52].  However, in lake ecosystems, there is no clear agreement whether benthic or pelagic food webs 208 

exhibit higher transfer efficiency [53-55].  In near-shore coastal ecosystems, benthic and pelagic 209 

ecosystems are frequently coupled, and dynamic linkages in energy transfer are a key component of 210 

how they function [50].  For example, in coral reef ecosystems – known to be nutrient limited yet 211 

paradoxically highly productive and biodiverse – sponges consume dissolved organic material and 212 

excrete their cells as detritus, providing a critical energy pathway to higher trophic levels that increases 213 

transfer efficiency [51].  Additionally, cryptobenthic fishes on coral reefs have been found to provide 214 

larvae in the near-reef pelagic zone accounting for almost 60% of consumed reef fish biomass, 215 

providing a key energy pathway to higher trophic levels, producing greater ecosystem-scale transfer 216 

efficiency [56].  217 

Other food web factors impacting transfer efficiency include mixotrophs (capable of being 218 

producers and consumers) in planktonic food webs due to their ability to photosynthesize to 219 

compensate for respiratory losses or to reduce energy consumption by catabolic respiration [57].  220 

Predator and prey size diversity have also been found to affect transfer efficiencies in planktonic 221 

communities, with transfer efficiency decreasing with increasing prey size diversity and conversely 222 

increasing with greater predator size diversity [42].  Additionally, growth in individual prey size drives 223 

declines in transfer efficiency [15].  The wide range of processes and scales that influence transfer 224 

efficiency result in challenges in its estimation.    225 

 226 
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Estimating transfer efficiency 227 

While transfer efficiencies emerge from diverse metabolic, life cycle, and food web processes, 228 

estimating transfer efficiency requires knowledge of just two fundamental properties: the trophic level 229 

of organisms within an ecosystem determined by their diets, and the production at each trophic level.  230 

Neither of these, however, is easy to measure.  Indirect transfer efficiency estimates thus rely on 231 

combining limited direct measurements, theory, and models.  Although challenges exist to estimate 232 

transfer efficiency in aquatic ecosystems, there are several approaches that can been used, summarized 233 

below.   234 

 235 

Diet estimates 236 

Accurate accounting of trophic level is challenging.  Trophic level quantifies the number of 237 

feeding links between an organism and primary producers (Figure 1), and is a function of an organism’s 238 

diet, and the diet of their prey, etc.  Trophic level can be estimated from diets through direct 239 

observation of feeding behaviour and stomach content analysis.  Alternatively, stable isotope ratios 240 

can reveal trophic level due to fractionation that occurs during assimilation of prey.  However, 241 

estimating trophic level is highly dependent on how one chooses to resolve the relevant food web 242 

nodes (individuals, populations, species, functional groups, size classes).  It is further complicated by 243 

temporal variation in the diet of individuals depending on the species, food availability, and life stages 244 

present at any given time (e.g. juveniles and adults of the same species often eat different prey).  As the 245 

trophic level of each relevant food web unit is required to calculate transfer efficiency from one level to 246 

the next, any uncertainty in assigning trophic level to a single group will be propagated to calculations 247 

of transfer efficiency for the ecosystem.   248 
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Stable isotopes of nitrogen and carbon used jointly with biomass spectra can elucidate feeding 249 

relationships in food webs [58-60].  Due to differences in fractionation, the tissues of predators 250 

preferentially incorporate heavier nitrogen isotopes from their diet, resulting in a systematic 251 

enrichment in nitrogen-isotope ratio (𝛿15N =15N/14N) with increasing trophic level [61,62].  Size-252 

fractionated stable isotope analysis is commonly used to quantify the flow of energy in size spectrum 253 

models and to inform predator-prey mass ratios (PPMR [58,63-64]).  The slope (b) of 𝛿15N, an indicator 254 

of trophic level, as a function of logarithmic body size class is first used to estimate PPMR: PPMR = n(Δ/b), 255 

where Δ is the fractionation of 𝛿15N and n is the logarithmic base of the size classes [65].  Size spectra 256 

are often used in aquatic ecosystems to illustrate the relationship between abundance and/or biomass 257 

with size, again grouped in logarithmic classes.  Biomass size spectra provide information about the 258 

amount of production in each size class, under the metabolic theory assumption that individual 259 

biomass production is a function of body size [66-67].  Combining the production per size class from the 260 

slope of biomass size spectra data (ß), and the change in trophic level with size from PPMR, allows the 261 

estimation of transfer efficiency (TE): TE = PPMRß+0.75 [17,59,68].  One caution, however, is that stable 262 

isotope estimates of PPMR have been shown to be particularly sensitive to the trophic enrichment 263 

factors used in analyses [62,69-71].  For example, using a trophic enrichment factor of 2 instead of 3.4 264 

can yield PPMR estimates that are 1-3 orders of magnitude lower, and transfer efficiency estimates that 265 

are 2-4 times higher [69].   266 

 267 

Production estimates 268 

Productivity – the rate at which energy or biomass is generated  – can be estimated by tracking 269 

population development through time by assessing mass-specific growth and mortality rates using size 270 

or age-structured observations [72].  Quantification of primary production in the oceans relies on 14C 271 



 13 

measurements [73] and can be estimated by satellite – albeit with some uncertainty in deeper waters 272 

[74]  – by leveraging diverse algorithms (e.g., [75]).  Empirical production to biomass ratios from 273 

metabolic theory can be applied to abundance data to estimate productivity where it is not possible to 274 

make such observations of primary production or to estimate production of higher trophic levels  [72].  275 

These ratios are generally combined with other variables (e.g., biomass) to form an integrated picture 276 

of an ecosystem from which transfer efficiencies can be derived [48,76] .   277 

Production-based transfer efficiency estimates for temperate Northern hemisphere marine 278 

ecosystems yielded an average transfer efficiency of 13% (ranging from 11-17%) for trophic levels 1-2 279 

(phytoplankton to herbivorous mesozooplankton and benthic organisms) and an average transfer 280 

efficiency of 10% (ranging from 7-12%) for trophic levels 2-3 (zooplankton and benthic organisms to 281 

fish) [76].  Laboratory plankton feeding experiments have yielded higher transfer efficiencies than wild 282 

populations because wild populations often feed at suboptimal prey concentrations (which can be 283 

controlled in the lab) and lab conditions can prevent loss of production to the microbial loop that is not 284 

consumed in wild populations (Figure 1D; [76]).  The impacts of energy fluxes through these different 285 

food web pathways highlight the importance of integrating processes at the ecosystem scale.      286 

 287 

Model based estimates 288 

Given the wide range of processes controlling, and factors affecting transfer efficiency at 289 

multiple scales, models can be used as an integration tool, to test hypotheses, and to make predictions.  290 

Food web models provide a means of integrating all available diet and production data.  Transfer 291 

efficiency values can be estimated from food web models by calculating how much energy or biomass 292 

production is transferred between species, functional groups, size classes or trophic levels (e.g. [77-79]).  293 

However, a priori estimates of transfer efficiency have often directly or indirectly influenced the choice 294 



 14 

of model parameters and processes that modellers consider to describe energy flows.  For example, the 295 

10% transfer efficiency estimated by Pauly and Christensen [4] and the 5%, 10%, and 15% efficiencies 296 

for upwelling, temperate, and tropical ecosystems respectively, estimated by Coll et al. [80] and 297 

Libralato et al. [5] often guide the choice of parameters in the well-established and commonly-used 298 

food web and fisheries modelling framework, Ecopath with Ecosim [77]. However, if all other model 299 

parameters are fixed, the mass-balancing of Ecopath with Ecosim models can be used to estimate 300 

transfer efficiencies within food webs.  301 

The emergence of regularities in observation-based estimates provides a foothold for 302 

modellers simulating the flow of energy through marine ecosystems using theoretical approaches.  303 

Early models of biomass spectra lack mechanistic details, but can resolve patterns emerging from 304 

transfer efficiency estimates [67,81,82].  Energy flux models aim to find relationships between 305 

biodiversity and the flow of energy through ecosystems and include efficiency terms, however have not 306 

yet been applied to estimate transfer efficiency [83-84].    Size spectrum models are based on 307 

allometric principles that predators tend to be bigger than their prey, so that species can be ignored, 308 

and size classes of organisms can be used to track energy flow instead.  Size spectrum models have 309 

been used to derive transfer efficiency by scaling up from individual level principles of how 310 

consumption, search rate, prey choice, and assimilation efficiency vary with body size [15,48,85].  As 311 

the number of observational studies reporting these properties grows, it is becoming possible to 312 

examine how transfer efficiency differs with both size and functional group – e.g. small versus large 313 

zooplankton, filter feeders versus mobile predatory benthic invertebrates, fishes of different sizes and 314 

feeding modes, ectotherms versus endotherms – and to add these trait-specific properties to models 315 

[52,86].  316 

Process-based plankton food web models from global Earth system models produce primary 317 

and secondary production estimates that can be used to calculate transfer efficiency and global 318 
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fisheries catches at the large marine ecosystem (LME) scale [8].  Using this approach, empirical model 319 

predictions best matched observed catches when the microbial loop and benthic and pelagic 320 

compartments were included in the formulation [8].  The ecosystem transfer efficiencies needed to 321 

reconcile simulated primary production with observed fish catches were 14% on average, with tropical 322 

and subtropical systems reduced at 74% of temperate values, and benthic transfer efficiencies greater 323 

than pelagic values [8].   324 

FEISTY is a spatially explicit, mechanistic model of three fish functional types based on 325 

allometric scaling principles, basic life cycles, trophic interactions between fishes and their benthic and 326 

pelagic food resources, and fisheries [78].  When coupled with a global Earth system model to provide 327 

environmental conditions and plankton abundances as model inputs, FEISTY recreated general 328 

historical patterns of global fisheries catches [78].  The ecosystem-scale transfer efficiency values 329 

estimated by FEISTY ranged from 5-18% in oceanic, 5-27% in coastal, and 4-23% in upwelling provinces  330 

(Box 2).       331 

The EcoTroph model quantifies the fraction of secondary production transferred between 332 

trophic levels using taxon-specific consumption to production rates based on life history traits [82,87], 333 

thermal habitat [82,88], and also accounts for respiration, excretion, accumulation, and transfer to 334 

detritus.  Using fisheries catch data as an indicator of fish biomass by trophic level, EcoTroph estimated 335 

coastal ecosystem transfer efficiency from secondary production to trophic level 4 that varied as 5.9% 336 

in upwelling, 6.5% in tropical, 8.1% in temperate, and 10.4% in polar regions [79].  This transfer 337 

efficiency from trophic levels 2–4 increased from 7.1% to 7.6% from 1950-2010, a finding that was 338 

consistent across all coastal ecosystem types and may be explained by increased fishing exploitation 339 

[79,89].  Using sea surface temperature projections to 2100, EcoTroph projected global transfer 340 

efficiency in coastal ecosystems to decline by 0.1% until 2040 under both low and high emissions 341 

scenarios (RCP2.6 and 8.5 respectively; [79]).  From 2040-2100, transfer efficiencies were projected to 342 
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remain stable under low emissions and decrease from 7.7% to 7.2% under high emissions – with smaller 343 

average declines in tropical ecosystems [79].  Overall, fishing pressure was positively correlated with 344 

transfer efficiency [89], while sea surface temperature was negatively correlated [79].   345 

 346 

Estimated transfer efficiencies across ocean biomes 347 

Our summary of transfer efficiency estimates indicates that it is highly variable and can range 348 

from less than 1% - 27% in upwelling regions, from 2% - 34% in temperate regions, and from 8% - 52% 349 

in tropical and subtropical regions (Box 1).  This large amount of variation in transfer efficiency 350 

estimates means that fish production could vary by one order of magnitude in upwelling provinces, two 351 

orders in coastal, and up to three orders of magnitude in oceanic provinces (Box 2).  Transfer efficiency 352 

has been observed to be highly variable at the ecosystem scale, influenced by ecosystem type (Box 1 & 353 

2) [90,91], trophic level [1,78], size [69], and is affected by fishing pressure [89], climate change [92-96] 354 

temperature [79,97], and varies through time [6,79,89].  Both process-level analysis and observed 355 

macroscale variations suggest that transfer efficiency increased due to fishing exploitation in the last 356 

half of the 20th century and will decline with increasing temperatures due to climate change [79].  357 

Globally, fishing exploitation has tended to target large and long-living species leading to declines in 358 

abundance compared to smaller species with faster life histories affecting transfer efficiency [98-101].  359 

These fishing-induced changes in species assemblages may have contributed to the past observed 360 

increase in transfer efficiency [79].  The large variation in transfer efficiency estimates highlights the 361 

need for more explicit consideration, rather than the tradition of relying on average values (Boxes 1, 362 

Outstanding Questions ).   363 

 364 

Concluding remarks 365 
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More than 50 years after Ryther’s [2] seminal paper highlighting the potential for fisheries 366 

production to be influenced by transfer efficiency variability (Boxes 1,2), it remains a key uncertainty in 367 

marine ecosystem, fisheries, and climate change research.  Early observational and modelling evidence 368 

suggests that processes (e.g. metabolism, life cycle, and food web structure) and factors (e.g. 369 

ecosystem properties) influencing transfer efficiency are sensitive to environmental conditions and 370 

fisheries exploitation.  Though there are key sources of uncertainty, these processes have received less 371 

research attention than other efforts to estimate future changes in temperature, primary production, 372 

and fish distribution and biomass.  373 

  At this stage, it is unclear if transfer efficiency is truly highly variable in space and time or if 374 

there is large measurement error around estimates.  Improving transfer efficiency estimates by 375 

reducing uncertainty in empirically based estimates and more fully resolving transfer efficiency-376 

controlling processes in predictive models is a priority for effectively anticipating changing marine 377 

resource baselines in response to climate change to avoid overexploitation (see Outstanding 378 

Questions).  This may be possible as new technologies emerge that enable us to better observe 379 

biomass, productivity, and species interactions.  Crucially, it is important to not limit transfer efficiency 380 

values in models, but allow the potential range of transfer efficiency to emerge from other constraints.  381 

The transfer efficiency field of research is ripe for further inquiry to build confidence in our 382 

understanding of how energy flows through marine ecosystems.   383 

 384 

Boxes  385 

Box 1. How variable are transfer efficiency estimates and how do they vary according to biome?  386 

Summary of three studies evaluating transfer efficiency values with Ecopath with Ecosim (EwE) [77] 387 

models by oceanographic biome [79,102,103].  Values from [102] were estimated from 234 published 388 
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EwE models.  Values from [103] were estimated from the EcoTroph database of EwE models from 1950-389 

2010.  Values from [79] were estimated from the EcoTroph database of EwE models 2000-2010.  390 

 391 

Biome Trophic level Low Mean High 

Polar/Subarctic-Boreal 2 to 3 & 3 to 4 3.5% 12.0% 25.5% 

Temperate 2 to 3 & 3 to 4 1.9% 9.6% 34.4% 

Tropical/Subtropical 2 to 3 & 3 to 4 0.8% 8.6% 52.0% 

Upwelling 2 to 3 & 3 to 4 0.3% 8.0% 27.1% 

 392 

Methods 393 

Transfer efficiency values from [102] were extracted from the boxplot in their Figure 19. Values 394 

for their trophic level groups III and IV, which represent transfers from trophic level 2 to 3, and trophic 395 

level 3 to 4 respectively, were both used.   396 

Transfer efficiency values from Maureaud et al. [103] reflect mean values published in the main 397 

text. Regional minima and maxima were estimated from the table of efficiency cumulated indicator 398 

(ECI) values by large marine ecosystem (LME) in the supplementary materials.  The LME figure in [79] 399 

was used to assign each LME to a biome and only those LMEs that were entirely of one biome type 400 

were used.  Minimum and maximum ECI per region were found over the complete time range  (1950-401 

2010).  Transfer efficiency (TE) was then calculated from ECI using: TE = ECI1/2.  ECI is transfer efficiency 402 

from trophic level 2 to trophic level 4, thus these values of transfer efficiency reflect mean transfer 403 

efficiency from trophic levels 2 to 3 and from trophic levels 3 to 4. 404 

Transfer efficiency values from [79] reflect mean values published in their Figure 4a.  Minima 405 

and maxima per region were extracted from the violin plots in Figure 4a.  These values of transfer 406 
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efficiency reflect the mean transfer efficiency from trophic levels 2 to 3 and from trophic levels 3 to 4 407 

over the years 2000-2010. 408 

 409 

Box 2.  How does estimated fish production vary considering variation in transfer efficiency 410 

estimates?   411 

Impact of transfer efficiency variability on estimated fish production based on Ryther’s ocean provinces 412 

[2] calculated using primary productivity and mean number of trophic levels.  Observed fisheries 413 

catches also included for reference. 414 

Province 

Area-
integrated 

primary 
production 

(tons 
organic C 
per year) 

Mean # 
trophic 
levels 

Transfer efficiency 
range 

Estimated fish production 
(tonnes wet weight) 

Actual 
catch 

(tonnes wet 
weight) 

   low high low high  

Oceanic 4.08E+10 6 0.05 0.18 7.82E+04 6.04E+07 8.80E+06 

Coastal 9.00E+09 4 0.05 0.27 1.25E+07 1.63E+09 8.14E+07 

Upwelling 2.50E+08 2.5 0.04 0.23 1.89E+07 2.55E+08 1.98E+07 

Total 5.00E+10           1.10E+08 

 415 

Methods 416 

1. Provinces were taken directly from [2]. For FEISTY model output [47] and Sea Around Us 417 

fisheries catch data [97] they were defined as upwelling: LMEs 3, 13, 27, 29; coastal: all non-418 

upwelling LMEs; oceanic: the remaining ocean. 419 

2. Ryther [2] had a total estimate of area-integrated primary production (APP) of 2x1010 tonnes 420 

organic carbon per year. Modern estimates are 50 Pg carbon per year = 5x1016 g C = 5x1010 421 
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tonnes [104].  To update Ryther’s estimates, a total of 50 Pg C was used with his proportional 422 

distribution of APP across the three provinces.  These proportions were oceanic = 81.5%, 423 

coastal = 18.0%, upwelling = 0.5%.  424 

3. Mean number of trophic levels equals Ryther’s [2] trophic level +1 because his Table 3 listed the 425 

number of trophic levels between primary producers and human consumers, whereas the 426 

number here includes primary producers. 427 

4. Low and high transfer efficiency values were the 5th and 95th percentiles of FEISTY model [78] 428 

output of TEeff_ATL (transfer efficiency from trophic level 1 - 5) from each province, which 429 

were then converted to transfer efficiency.  It is calculated as the production of all large fishes 430 

(trophic level 5) divided by the net primary production (trophic level 1) in each model grid cell.  It 431 

is converted to one transfer efficiency estimate by raising to the power of 1 over the number of 432 

transfer steps (trophic level 5 – trophic level 1 = 4), TEeff_ATL¼.  433 

5. Low and high estimates of fish production use the low and high estimates of transfer efficiency 434 

combined with the area-integrated primary production (APP) and mean number of trophic 435 

levels to calculate fish production as 9 * APP * transfer efficiency ^ (trophic level-1), where 9 is 436 

the constant wet weight to carbon ratio of 9:1 of Pauly & Christensen [4]. 437 

6. Actual catch is based on global average annual reported and reconstructed catches from 2005-438 

2014 [105] multiplied by the proportion of catch in each of Ryther’s [2] provinces.  The global 439 

total catch average over this 10 year time period was 110 tonnes wet weight with the following 440 

proportions: oceanic = 8%, coastal = 74%, and upwelling = 18%. 441 

 442 

Outstanding questions  443 

1. What new data acquisition methods are needed to improve transfer efficiency estimates?  444 
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2. Over what spatial and temporal scales do transfer efficiencies vary for different species and 445 

functional groups?  What mechanisms explain this variation?  446 

3. What are the impacts of reduced oxygen and increased ocean acidification on transfer 447 

efficiency?  448 

4. How do individual level processes integrate into community level dynamics and affect transfer 449 

efficiency response to environmental change?  450 

5. How does transfer efficiency respond to changes in species distributions that essentially create 451 

new ecosystems (i.e., new interactions, disrupted feeding patterns, differing adaptation rates) 452 

and what processes are fundamental for models to capture in order to accurately explain 453 

observed variation in transfer efficiency?  454 

  455 
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Figures 456 

Figure 1. Processes controlling transfer efficiency. A – A trophic pyramid depicts the classic view of 457 

production flowing from primary producers to secondary consumers. Roman numerals indicate trophic 458 

level.  A 10% transfer efficiency of production is indicated by lighter grey in the pyramid, highlighting 459 

how little primary production gets transferred to the top of the food web. B – At the individual scale, 460 

metabolic processes determine growth efficiency. C – At the species population scale, maturation, 461 

reproduction, and survival of individual life cycles influence transfer efficiency.  D – At the ecosystem 462 

scale, complex energy pathways, including the microbial loop (depicted middle left which includes 463 

dissolved organic carbon (DOC)) and differing paths through benthic and pelagic communities, 464 

influence transfer efficiency.  Food web diagram after [106].    465 

 466 
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Highlights  1 

 Transfer efficiency is a key parameter describing ecosystem structure and function and is used 2 

to estimate fisheries production, however, it is also one of the most uncertain parameters.  3 

 Questions remain about how habitats, food resources, fishing pressure, spatiotemporal scales, 4 

temperature, primary production, and other climate drivers impact transfer efficiency.  5 

 Direct measurements of transfer efficiency are difficult, but observations of marine population 6 

abundances, diets, productivity, stable isotope analysis, and models integrating these 7 

constraints can provide transfer efficiency estimates.    8 

 Recent estimates suggest that transfer efficiency is more variable than previously thought, 9 

compounding uncertainties in marine ecosystem predictions and projections.  10 

 Increased understanding of factors contributing to variation in transfer efficiency will improve 11 

projections of fishing and climate change impacts on marine ecosystems.  12 

Highlights



 1 

Outstanding questions  1 

1. What new data acquisition methods are needed to improve transfer efficiency estimates?  2 

2. Over what spatial and temporal scales do transfer efficiencies vary for different species and 3 

functional groups?  What mechanisms explain this variation?  4 

3. What are the impacts of reduced oxygen and increased ocean acidification on transfer 5 

efficiency?  6 

4. How do individual level processes integrate into community level dynamics and affect transfer 7 

efficiency response to environmental change?  8 

5. How does transfer efficiency respond to changes in species distributions that essentially create 9 

new ecosystems (i.e., new interactions, disrupted feeding patterns, differing adaptation rates) 10 

and what processes are fundamental for models to capture in order to accurately explain 11 

observed variation in transfer efficiency?  12 

Outstanding Questions




