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ABSTRACT OF THE DISSERTATION

Single Cell Analysis of Chromatin Accessibility

by

Rongxin Fang

Doctor of Philosophy in Bioinformatics and Systems Biology

University of California San Diego, 2019

Professor Bing Ren, Chair

Professor Vineet Bafna, Co-Chair

The identity of each cell in the human body is established and maintained through
distinct gene expression program, which is regulated in part by the chromatin

accessibility. Until recently, our understanding of chromatin accessibility has depended
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largely upon bulk measurements in populations of cells. Recent advances in the
sequencing techniques have allowed for the identification of open chromatin regions in
single cells. During my Ph.D., | have developed and used single cell sequencing
techniques to study the diverse gene regulatory programs underlie the different cell types
in mammalian complex tissues. In chapter 1, colleague and | developed Single Nucleus
Assay of Transpose Accessible Chromatin using Sequencing (snATAC-seq), a
combinatorial barcoding-assisted single-cell assay for probing accessible chromatin in
single cells. We then used snATAC-seq to generate an epigenomic atlas of early
developing mouse brain. The high-level noise of each single cell chromatin accessibility
profile and the large volume of the datasets pose unique computational challenges. In
chapter 2, | developed a comprehensive bioinformatics software package called
SnapATAC for analyzing large-scale single cell ATAC-seq dataset. SnapATAC resolves
the heterogeneity in complex tissues and maps the trajectories of cellular states. As a
demonstration of its utility, SnapATAC was applied to 55,592 single-nucleus ATAC-seq
profiles from the mouse secondary motor cortex. To further determine the target genes
of the distal regulatory elements identified using shnATAC-seq in different cell types, in
chapter 3, colleague and | developed PLAC-seq, a cost-efficient method that identifies
the long-range chromatin interaction at kilobase resolution. PLAC-seq improves the
efficiency of detecting chromatin conformation by over 10-fold and reduces the input
requirement by nearly 100-fold compared to the prior techniques. Finally, to probe the in
vivo function of the regulatory sequences, | present a high-throughput CRISPR screening
method (CREST-seq) for the unbiased discovery and functional assessment of enhancer

sequences in the human genome. We used it to interrogate the 2-Mb POUS5F1 locus in

XiX



human embryonic stem cells and discovered that sequences previously annotated as
promoters of functionally unrelated genes can regulate the expression of POU5F1 from
a long distance. We anticipate that these studies will help us understand the gene
regulatory programs across diverse biological systems ranging from human disease to

the evolution of species.
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INTRODUCTION

Nearly two decades have passed since the human genome was first completely
sequenceds 2, yet the function of its roughly 3 billion nucleotides is still largely unknown.
Decoding the human genome, especially the non-protein coding portion that harbors most
of the sequence variants underlying the common human diseases, requires the
knowledge of the promoters, enhancers, insulators and other regulatory elementss.
Therefore, comprehensive mapping of the cis-regulatory sequences across diverse
tissues and cell types in the human body is critical to understand the role of gene

regulation in cell function and in human disease.

Since the cis-regulatory sequences are often marked by hypersensitivity to
nucleases or transposases when they are active or poised to act, approaches to detect
DNA accessibility, such as ATAC-seq (Assay for Transposase-Accessible Chromatin
using sequencing)s and DNase-seq (DNase | hypersensitive sites sequencing)s have
been widely used to map the candidate cis-regulatory sequences. However, conventional
assays that use bulk tissue samples as input cannot resolve cell type specific usage of
cis elements and lacks the resolution to study the temporal dynamics. To overcome this
challenge, several single cell sequencing techniques have been developed to profile the
chromatin accessibility in single cells. For instance, one approach relies on isolation of
cell using microfluidic devices (Fluidigm, Cl)s. Another type of approach involves
combinatorial indexing to simultaneously analyze tens of thousands of cells7. However,
to make these single cell analyses more widely applicable, it is necessary to optimize

them for primary tissues.



In Chapter 1, colleague and | show that it is possible to isolate single nuclei from
frozen tissues and assay chromatin accessibility in these nuclei in a massively parallel
manner. We further apply this technique on the mouse forebrain through eight
developmental stages, creating the first single cell epigenomic atlas of developing mouse

brain.

Despite the recent advances in single cell ATAC-seq techniques, the exceeding
sparsity of signals in each individual profile due to low detection efficiency (5-15% of
peaks detected per cell)7 and the growing volumes of the datasets present a unique
computational challenge. To address this challenge, a number of unsupervised
algorithms have been developed. For instance, one approach, chromVARs, groups
similar cells together by dissecting the variability of transcription factor (TF) motif
occurrence in the open chromatin regions in each cell. Another type of approach employs
the natural language processing techniques such as Latent Semantic Analysis (LSA)9
and Latent Dirichlet Allocation (LDA)10 to group cells together based on the similarity of
chromatin accessibility. A third approach analyzes the variability of chromatin accessibility
in cells based on the k-mer composition of the sequencing reads from each celli1,12. A
fourth approach, Cicerozis, infers cell-to-cell similarities based on the gene activity scores

predicted from their putative regulatory elements in each cell.

However, several limitations still apply to these methods. First, the current analysis

methods often require performing dimensionality reduction such as principle component



analysis (PCA) or singular value decomposition (SVD) on a cell matrix of hundreds of
thousands of dimensions, scaling the analysis to millions of cells remains very challenging
or nearly impossible. Second, the unsupervised identification of cell types or states in
complex tissues using scCATAC-seq dataset does not match the power of scRNA-seqi4.
One possibility is that the current methods rely on the use of pre-defined accessibility
peaks based on the aggregate signals that potentially introduces bias to the cell type

identification.

In Chapter 2, | will introduce a software package called Single Nucleus Analysis
Pipeline for ATAC-seq (SnapATAC). Unlike previous methods, SnapATAC does not
require population-level peak annotation prior to clustering. Instead, it resolves cellular
heterogeneity by directly comparing the genome-wide accessibility profiles between cells
with the use of the diffusion maps algorithmsis,i6, which is highly robust to noise and
perturbation. Furthermore, with the use of a sampling technique, Nystrém methodi7,17,1s,
SnapATAC improves the computational efficiency and enables the analysis of SCATAC-
seq from a million cells on regular hardware. Additionally, SnapATAC provides a
collection of frequently used features, including integration of SCATAC-seq and sScCRNA-
seq dataset, prediction of enhancer-promoter interaction, discovery of key transcription
factors, identification of differentially accessible elements, construction of trajectories
during cellular differentiation, correction of batch effect and classification of new dataset
based on existing cell atlas. Through extensive benchmarking using both simulated and
empirical datasets from diverse tissues and species, we show that SnapATAC

substantially outperforms its counterparts in accuracy, sensitivity, scalability and



reproducibility for cell type identification from complex tissues. Furthermore, we
demonstrate the utility of SnapATAC by building a high-resolution single cell atlas of the
mouse secondary motor cortex. This atlas comprises of ~370,000 candidate cis-
regulatory elements in 31 distinct cell types, including rare neuronal cell types that
account for less than 0.1% of the total population analyzed. Through motif enrichment
analysis, we further infer potential key transcriptional regulators that control cell type

specific gene expression programs in the mouse brain.

Formation of long-range chromatin loops is a crucial step in transcriptional
activation of target genes by distal enhancersis. Mapping such structural features can
help define target genes for enhancers and annotate non-coding sequence variants linked
to human diseasesi9o-21. Study of the higher-order chromatin organization has been
facilitated by the development of chromosome conformation capture (3C)-based
technologies22,23. Among the commonly used high-throughput 3C approaches are Hi-C24
and chromatin interaction analysis by paired-end tag sequencing (ChlA-PET)2s. Global
analysis of long-range chromatin interactions using Hi-C has been achieved at kilobase
resolution but requires billions of sequencing reads2s. High-resolution analysis of long-
range chromatin interactions at selected genomic regions can be attained cost-effectively
through ChlA-PET2s5,27. However, ChlA-PET requires hundreds of million cells as starting

materials, limiting its application to biological problems with limited materials.

In chapter 3, college and | developed Proximity Ligation-Assisted ChiP-seq (PLAC-

seq) to reduce the amount of input materials and to improve the sensitivity and robustness



of the assay. Unlike ChlA-PET, PLAC-seq conducts proximity ligation in nuclei prior to
chromatin shearing and immunoprecipitation. As a result, we demonstrated that,
compared to ChlA-PET, PLAC-seq greatly improves the efficiency of detecting the long-

range chromatin conformation reads and significantly lowers the input materials.

Despite that millions of candidate cis-regulatory sequences have been annotated
in the human genome on the basis of biochemical signatures such as histone
modification, transcription factor (TF) binding, and chromatin accessibilitys,2s-32, only a
handful of these candidate elements have been functionally validated in the native
genomic context. High-throughput CRISPR—Cas9-mediated mutagenesis by single guide
RNAs (sgRNAs) has been used to functionally characterize cis-regulatory elements in
mammalian cellsss-37. However, current approaches are limited because (1) not all
sequences are suitable for CRISPR—Cas9-mediated genome editing, owing to the lack of
protospacer-adjacent motifs (PAMs), which are required for targeting and DNA cutting by
CRISPR-Cas938-40; (2) CRISPR—-Cas9-mediated genome editing with individual sgRNAs
tends to cause point mutations or short insertions or deletions, thus necessitating the use
of an unrealistically large number of sgRNAs to interrogate the human genome; and (3)

it has been challenging to distinguish cis- and trans-regulatory elements.

In chapter 4, colleagues and | developed CREST-seq that allows the efficient
discovery and functional characterization of the regulatory elements through the
introduction of massively parallel kilobase-long deletions in the genome. We provide

evidence in support of the utility of CREST-seq for the large-scale identification of cis-



regulatory elements in human embryonic stem cells (hRESCs). We report the discovery of
45 regulatory sequences of POU5SF1, and a surprisingly large number of enhancer-like
promoters. Our results highlight a commonality that promoter of one gene can behave

like an enhancer to regulate the expression of another gene.
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CHAPTER 1: SINGLE-NUCLEUS ANALYSIS OF ACCESSBILE CHROMATIN IN

DEVELOPING MOUSE FOREBRAIN

1.1 Abstract

Analysis of chromatin accessibility can reveal the transcriptional regulatory
sequences, but heterogeneity of primary tissues poses a significant challenge in mapping
the precise chromatin landscape in specific cell types. Here, we report single nucleus
ATAC-seq (snATAC-seq), a combinatorial barcoding-assisted single cell assay for
transposase-accessible chromatin that is optimized for use on flash-frozen primary tissue
samples. We apply this technique on the mouse forebrain through eight developmental
stages. Through analysis of more than 15,000 nuclei, we identify 20 distinct cell
populations corresponding to major neuronal and non-neuronal cell-types. We further
define cell-type specific transcriptional regulatory sequences, infer potential master
transcriptional regulators, and delineate developmental changes in forebrain cellular
composition. Our results provide insight into the molecular and cellular dynamics that
underlie forebrain development in the mouse and establish technical and analytical

frameworks that are broadly applicable to other heterogeneous tissues.
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1.2 Introduction

Transcriptional regulatory elements in the genome (cis regulatory elements) play
fundamental roles in development and disease,2. Analysis of chromatin accessibility in
primary tissues using assays such as DNase-seqs4 and ATAC-segss has identified
millions of candidate cis elements in the human and mouse genomesz,7. However, we still
lack precise information about the cis regulatory elements in specific cell types, because
previous experiments performed on heterogeneous tissue samples yield an ensemble
average signal from multiple constituent cell types. In some cases, specific cell types can
be isolated from heterogeneous tissues using protein markerss,s-10, but a more general
strategy is needed to enable the study of cell type specific gene regulation on a larger

scale.

In theory, single cell-based chromatin accessibility studies can be used for
unbiased identification of subpopulations in a heterogeneous biological sample, and for
identification of the regulatory elements active in each subpopulation. Indeed, proof of
principle has been reported using cultured mammalian cells and cryopreserved blood cell-
typesii-13. However, to make these approaches more widely applicable, it is necessary
to optimize them for primary tissues. One major difficulty in working with primary tissues
is that they are typically preserved by flash freezing, which is not amenable to the isolation
of intact single cells. Here, we show that it is possible to isolate single nuclei from frozen

tissues and assay chromatin accessibility in these nuclei in a massively parallel manner.
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1.3 Results

nvork. We adopted a
combinatorial barcoding assisted single cell ATAC-seq strategyi2 and optimized it for
frozen tissue samples (Supplementary Methods). Compared to previous reportsiz, key
modifications were made to maximally preserve nuclei integrity during sample processing
and optimize transposase-mediated fragmentation of chromatin in individual nuclei
(Figure S1.1-S1.2). We applied this modified protocol, hereafter referred to as ShnATAC-
seq (single nucleus ATAC-seq), to mouse forebrain tissue from 8-week-old adult mice
(P56) and from mouse embryos at seven developmental stages from embryonic day 11.5
(E11.5) to birth (PO) (Figure 1.1a, b). DNA libraries were sequenced to near saturation
as indicated by a read duplication rate of 36-73% per sample. The barcode collision rate
which assesses the probability of two nuclei sharing the same barcode combination was
~16% and slightly higher than expected and reported before (Figure S1.3c)12. We filtered
out low-quality datasets using three stringent quality control criteria including read depth
(Figure S1.3d), recovery rate of constitutively accessible promoters in each nucleus
(Figure S1.3e), and signal-over-noise ratio estimated by fraction of reads in peak regions
(Figure S1.3f, Supplementary Methods). In total, 15,767 high-quality snATAC-seq
datasets were obtained. The median read depth per nucleus ranged from 9,275 to 18,397,
with the median promoter coverage at 11.6% and the median fraction of reads in peak
regions at 22%. Our protocol maintains the extraordinary scalability of combinatorial
indexing, while featuring a ~6-fold increase in read depth per nucleus compared to
previous reports. The high quality of the single nucleus chromatin accessibility maps was

supported by strong concordance between the aggregate snATAC-seq data and bulk
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ATAC-seq data (R > 0.9), and excellent reproducibility between independent snATAC-

seq experiments (R > 0.91, Figure 1.1c, Figure S1.4).

The snATAC-seq profiles from each forebrain tissue arise from a mixture of distinct
cell types. Enhancer regions are well known to display cell type-dependent chromatin
accessibilityis, and are more effective at classifying cell types than promoters or
transcriptomic datai1 (Figure S1.5a, b). Thus, we focused on Transcriptional Start Sites
(TSS)-distal accessible chromatin regions (defined as all genomic elements outside a 2
kb window upstream the TSS), corresponding to putative enhancers, to group individual
nucleus profiles into distinct cell types. We developed a novel computational framework
to uncover distinct cell types from the snATAC-seq datasets without requiring prior
knowledge (Supplementary Methods). First, we determined the open chromatin regions
from the bulk ATAC-seq profiles of mouse forebrain tissue in seven fetal development
time points and in adults, resulting in a total of 140,103 TSS-distal elements (Figure 1.1d
and Supplementary Methods). Next, we constructed a binary accessibility matrix of
open chromatin regions, using 0 or 1 to indicate absence or presence of a read at each
open chromatin region in each nucleus (Figure 1.1d). We then calculated the pairwise
similarity between cells using a Jaccard index, and applied a non-linear dimensionality
reduction method, t-SNE1s, to project the Jaccard index matrix to a low-dimension space
(Figure 1.1d)1e. The final t-SNE plot depicts cell types as distinct clusters in a three-

dimensional space (Figure 1.1d).
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Identification of forebrain cell types from snATAC-seq profiles. We applied

this computational framework first to 3,033 high-quality shnATAC-seq profiles obtained
from the adult forebrain (Figure 1.2a). As a negative control, we included 200 “shuffled”
nuclear profiles (Figure S1.5¢c, d and Supplementary Methods). This analysis revealed
10 total clusters. As expected, the shuffled nuclei formed a distinct cluster with low intra-
cluster similarity. In addition, one other cluster showed low intra-cluster similarity likely
represents low quality nuclei or accessibility profiles resulting from barcode collision
events (Figure S1.3c). After eliminating these nuclei, we determined 8 distinct cell type
clusters from the adult forebrain (Figure 1.2a and Figure S1.5c, d). Notably, the
clustering results were highly reproducible for two independent experiments (Figure

S1.5¢, f).

To categorize each cluster, we generated aggregate chromatin accessibility maps
for each cluster and examined the patterns of chromatin accessibility at known cell type
marker genes. We found three clusters with chromatin accessibility at Neurod6 and other
excitatory neuron-specific genesi7 (clusters EX1-3, Figure 1.2b, Figure S1.6a); two
clusters with accessibility at the gene locus of Gad1 likely representing inhibitory neurons
(clusters IN1-2, Figure 1.2b, Figure S1.6a)1s; one cluster with accessibility at the Apoe
locus and other known astroglia markersio (cluster AC, Figure 1.2b); one cluster with
accessibility at the Mog gene locus and other oligodendrocyte marker genes2o (cluster
OC, Figure 1.2b); and one microglia cluster with accessibility at genes encoding
complement factors including the gene Clqgb (cluster MG, Figure 1.2b, Figure S1.6c-

e)21. We also compared the aggregate chromatin accessibility maps for each cluster to
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previously published maps from sorted excitatory neuronss, GABAergic neuronss,
microgliazs and NeuN negative nuclei (which mostly comprise non-neuronal cells
including astrocytes and oligodendrocytes22; Figure 1.2b and Figure S1l1.7a-c).
Consistent with the accessibility patterns at marker gene loci, we observed that clusters
EX1-3 were highly similar to sorted excitatory neurons. To further characterize the distinct
excitatory neuron clusters, we compared EX1-3 with published bulk ATAC-seq data from
different cortical layers and from dentate gyrus. Interestingly, we found that EX1 and EX3
were more similar to upper and lower cortical layers, respectively, whereas EX2 showed
properties of dentate gyrus neurons (Figure S1.8a). Clusters IN1 was highly similar to
sorted cortical GABAergic neurons2s. Surprisingly, IN2 was more similar to sorted
excitatory neurons than cortical GABAergic neurons. Distinctions between the inhibitory
neuron clusters (IN1 and IN2) were not clear at this stage but came into focus later when
we analyzed transcription factor (TF) motifs enriched in the accessible chromatin regions
(described below). Clusters OC and AC resembled sorted NeuN negative cells, and

cluster MG is similar to sorted microglia (Figure 1.2b, c)

According to our snATAC-seq data, the adult mouse forebrain consists of 52%
excitatory neurons, 24% inhibitory neurons, 12% oligodendrocytes and 6% astrocytes
and microglia, respectively (Figure 1.2d). Since the cell type proportion varies between
different forebrain regions, for example cortex and hippocampus, the percentages derived
from snATAC-seq represent an average of all forebrain regions (Figure S1.7d, e; Figure

1.2e). The predominance of neuronal nuclei derived from adult forebrain tissue was
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confirmed by flow cytometry analysis using staining against the post-mitotic neuron

marker NeuN2z2 (Figure S1.6b; Figure S1.7b, e; Figure 1.2e).

lineation of the ci | land : ic cell i the adul

forebrain. The power of the sSnATAC-seq is not simply to delineate cell types, but further,
to reveal the cis-regulatory landscape within each cell type. To this end, we calculated
the cell type specificity of each putative cis regulatory element (i.e. chromatin accessibility
region) using a Shannon entropy index (Figure S1.9). As expected, proximal promoter
elements were accessible in more cell types, while the distal enhancer elements showed
significantly higher cell type-specificity (Median value of 4.2% for proximal elements vs.
0.4% for distal elements) (Figure S1.9a-d). We next developed a feature selection
method (Supplementary Methods) to identify the subset of elements that could best
distinguish the 8 cell type clusters from each other. This approach identified 4,980
elements showing clear cell type dependent accessibility (Figure 1.2e). To gain insight
into the key transcriptional regulators and pathways active in each cell type, we performed
k-means clustering followed by motif enrichment analysis for these genomic elements
(Figure 1.2e, f and Figure S1.9d). For each cell type, we observed an enrichment of
binding motifs corresponding to key TFs (Figure 1.2f). For example, the binding motif for
ETS-factor PU.1 was enriched in MG elements24, motifs for SOX proteins were enriched
in OC elementszs, bHLH motifs were enriched in EX1-3 elements, and DLX homeodomain
factor motifs were enriched in IN elements (Figure 1.2f)2s. Moreover, this analysis
revealed an important difference between the inhibitory neuron clusters IN1 and IN2. We

found that a binding motif for MEIS factors was enriched in a subset of elements specific
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to IN2. Previous reports showed that MEIS2 plays a major role in generation of medium
spiny neurons, the main GABAergic neurons in the striatumz7. Accordingly, we identified
gene loci of Ppplrlb and Drd1, which encode markers of medium spiny neurons, to be
highly accessible in IN2 but not IN1 (Figure S1.10)27. These data suggest that IN2 may
represent medium spiny neurons, while IN1 could represent a distinct class of GABAergic
neurons. We also identified motifs that were differentially enriched between EX1, EX2
and EX3. Notably, regions specific for EX1 and 3 were enriched for motifs from the
Forkhead family and EX2 was enriched for motifs recognized by MEF2C (Figure S1.8c),
which has been shown to play an important role in hippocampus mediated memoryzs. A
comparison with data from cell-type specific differentially methylated regions identified by
single cell DNA-methylation analysis of neurons showed that both methods were able to

identify inhibitory and excitatory neuron specific elements (Figure S1.11)29.

Profiling _embryonic forebrain development using snATAC-seq. We next

extended our framework by analyzing the snATAC-seq profiles derived from fetal mouse
forebrains at seven developmental stages (Figure 1.1b), seeking to reveal developmental
dynamics of transcriptional regulation at the cellular level. The developmental stages
examined cover key events from the onset of neurogenesis to gliogenesisso. From 12,733
high-quality snATAC-seq profiles we identified 12 distinct sub-populations (Figure 1.3a)
that exhibit changes in abundance through development (Figure 1.3a-c). This broad cell-
type classification allowed us to profile the dynamic cis-regulatory landscape of forebrain
development. Based on accessibility profiles at gene loci of known marker genes, we

assigned these cell populations to radial glia, excitatory neurons, inhibitory neurons,
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astrocytes and erythromyeloid progenitors (EMP) (Figure 1.3b)z24,31. Interestingly, the
EMP cluster was restricted to E11.5, whereas the astrocyte cluster was present after
E16.5 and expanded dramatically around birth (Figure 1.3b, c)so, highlighting two
developmental processes: invasion of myeloid cells into the brain prior to neurogenesis,
and gliogenesis succeeding neurogenesis after E16.530. Mature excitatory neurons
(eEX2) were indicated by increased accessibility at Neurod6 which encodes a post-mitotic
neuron marker, and absence of signal at the Hes5 gene, which encodes a Notch effector
and a marker gene for neuronal progenitors (Figure 1.3b, c¢)31. This cell type expanded
in abundance between E12.5 and E13.5 and followed the emergence of early
differentiating neurons (eEX1, Figure 1.3b, c). Remarkably, inhibitory-neuron-like cells

were already present at E11.5 (Figure 1.3Db).

forebrain development. To identify the transcriptional regulatory sequences in each sub-

population, we identified 16,364 genomic elements that show cell-population-specific
chromatin accessibility and best separate the sub-cell populations (Figure 1.4a). To
further characterize these elements, we performed motif enrichment analysis and gene
ontology analysis of each cluster using GREAT32. Our analysis showed that genomic
elements that were mostly associated with radial glia like cell groups (Figure 1.4a, RG1-
4) fell into regulatory regions of genes involved in early forebrain developmental
processes including “Forebrain regionalization” (Figure 1.4b, K1), “Central nervous
system development” (Figure 1.4b, K3) or “Forebrain development” (Figure 1.4b, K5).

These elements were enriched for homeobox motifs corresponding to LHX-transcription
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factors including LHX2 (Figure 1.4c, K1,3,5), which is critical for generating the correct
neuron numbers by regulating proliferation of neural progenitorsss and for temporally
promoting neurogenesis over astrogliagenesisss. Remarkably, one of these clusters was
also enriched for both the proneural bHLH transcription factor ASCL1 (Mash1l) and its co-
regulator POU3F3 (Brnl) (Figure 1.4c, K5)3s. ASCL1 is required for normal proliferation
of neural progenitor cells and implicated in a DLX1/2 associated network that promotes
GABAergic neurogenesisss,sz. In line with this, associated genomic elements were also

accessible in one inhibitory neuron cluster (eIN2, Figure 1.4c, K5).

We also identified transcriptional regulators that were specifically associated either
with neurogenesis or gliogenesis during forebrain development. For example, the early
astrocyte (eAC)-specific elements were located in open chromatin regions near genes
involved in “glia cell fate commitment” and the top enriched transcription factor motif was
NF1-halfsite (Figure 1.4a-c, K2). Previous studies showed that NF1 transcription factor
NF1A alone is capable of specifying glia cells to the astrocyte lineage2s. NFIX is another
NF1 family member with proneural functionss. This motif is enriched together with the
bHLH transcription factor NEUROD1 binding sites mainly in open chromatin regions
found in the excitatory neuron cell population (Figure 1.4c, K4,12,13)31. Based on
chromatin accessibility profiles at marker gene loci, we have previously assigned two cell
clusters to the excitatory neuron lineage (eEX1, eEX2, Figure 1.3b). Compared to cluster
eEX2, eEX1 showed increased accessibility at both radial glia associated open chromatin
(Figure 1.4a, K4; Figure 1.3b) and chromatin regions associated with “CNS neuron

differentiation” (Figure 1.4a, K12). In addition, eEX1 nuclei preceded the emergence of
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eEX2 nuclei during development (Figure 1.3c). These findings indicate that eEX1 might

represent a transitional state during excitatory neuron differentiation.

The bHLH transcription factor family consists of several subfamilies that recognize
different DNA motifszs. NEUROD1 belongs to a sub-family of transcription factors that
bind to a central CAT motif whereas other transcription factors such as TCF12
preferentially bind to a CAG motifss. Our SnATAC-seq profiles revealed an enrichment of
the TCF12-binding motif in regions associated with “Cortex GABAergic interneuron
differentiation” in contrast to the excitatory neuron associated enrichment for NEUROD1
(Figure 1.4a-c, K4, 11-13)40. Analysis of the inhibitory neuron cluster eIN3 specific
genomic elements showed a remarkable bias in proximity to genes associated with
“Skeletal muscle organ development” (Figure 1.4a, b, K8). More detailed analysis
revealed that the underlying genes Mef2c/d and Foxpl/2 as well as Drd2/3 encode
transcription factors and dopamine receptors indicating differentiating striatal medium
spiny neuronss4i42. This finding was consistent with the enrichment for MEIS-
homeodomain factors in these regions (Figure 1.4c, K8) comparable to the medium spiny
neuron cluster in adult forebrain (Figure 1.2e, f, K8; Figure S1.10). Further, genomic
elements specific to the EMP cluster were associated with genes involved in “Myeloid cell
development” (Figure 1.4a-c, K14) and enriched for motifs of the ubiquitous AP-1
transcription factor complexes that have been described to play a role in shaping the

enhancer landscape of macrophagesas.
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Finally, we attempted to identify developmental dynamics of elements within each
cell cluster (Figure S1.11). Our analysis revealed between 41 and 2,114 dynamic
genomic elements for each cell type (Figure S1.12c-g). Regions that are more accessible
after birth (PO) compared to early time points were enriched for the RFX1 motif in the
GABAergic neuron including the cluster eIN1 as well as in the excitatory neuron cluster
eEX2 (Figure S12d, e) indicating a general role of the evolutionary conserved RFX
factors in perinatal adaptation of brain cells. Several family members including RFX1 are
expressed in the brain and have been implicated to regulate cilia e.g. in sensory

neuronsa44.

elements. While assessment of open chromatin plays an important role in predicting
regulatory elements in the genome. it does not provide direct information of functional
activity. To address this point, we asked if cluster-specific trannsposase accessible
chromatin in the embryonic forebrain overlaps with genomic elements tested in reporter
assays to validate enhancer activity in mouse embryonic forebrain in vivoass.First, we
focused our analysis on all genomic elements with validated functional activity in the
forebrain and a subset shown to be active only in the subpalliumas,47. The subpallium is a
brain region that gives rise to GABAergic and cholinergic neuronsass. In total, 63.1 %
(275/436) of all forebrain enhancer and 64.8% (59/91) of subpallial enhancer were
represented in our subset of genomic elements, respectively, indicating a high degree of
sensitivity. Next, we calculated the relative enrichment of subpallial enhancers over total

forebrain enhancers for each cluster. Remarkably, subpallial enhancers were only
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enriched in clusters K9-11, which were assigned to the GABAergic neuron lineage
(Figure 1.4d, e; Figure S1.13). Next, we found that elements mainly accessible in radial
glia cells were active in pallial regions (Figure 1.4a, K1, 3, 4; Figure S1.13). Surprisingly,
elements of cluster K5 were active in dorsal and lateral pallial regions as well as in the
lateral ganglionic eminence indicating conserved roles for these genomic elements in a
wide variety of regions in the developing forebrain (Figure 1.4a; Figure S1.13).
Integration of genomic elements identified by snATAC-seq in specific cell clusters with
transgenic enhancer assays confirms the high specificity and sensitivity of SnATAC-seq

in identifying cell populations and their underlying regulatory elements.
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1.4 Discussion

Tissue heterogeneity has been a significant hurdle in the dissection of gene
regulatory programs driving mammalian development. While single cell-based analysis
of chromatin accessibility has been reported, a major challenge lies in the requirement
for fresh cell populations by the published methods, whereas most biological biopsy
samples tissue banks are either frozen or in Formalin Fixed Paraffin Embedded blocks.
We report here a general approach (snATAC-seq) and a computational framework that
can be used to dissect cellular heterogeneity and delineate cell-type-specific gene
regulatory sequences in snap frozen primary tissues. We applied snATAC-seq to
heterogeneous forebrain samples from adult and embryonic mice and resolved specific
cell types in these samples. Similar to other approaches such as single cell RNA-seqas
and single cell DNA methylation analysisz29, ShATAC-seq can be used to identify cell types
de novo in a heterogeneous tissue, facilitating generation of cell atlases in the brain and
other tissues. In addition, SnATAC-seq catalogues the candidate enhancers for each cell
type, enabling the dissection of gene regulatory programs without the need to purify
specific cell types. As such, this method is particularly suitable for studying cell
populations in complex tissues where cellular surface markers are not available. The
current framework allows analysis of major cell-types with a relative abundance of at least
5% as shown for microglia in the adult forebrain. It is expected that increasing the number
of cells profiled per experiment will linearly increase the sensitivity of cell type detection.
Indeed, the presented combinatorial barcoding protocol can be scaled up to > 5,000 high

guality nuclei per experiment simply by working in 384-well plate format rather than 96

25



well plates. Increasing the number of barcodes during tagmentation will also help to lower

the final barcode collision rate without limiting the throughput.

Through integrative analysis of single nuclei chromatin accessibility profiles, we
tracked changes in the relative proportions of these cell types during development,
identified putative regulatory elements active within each cell type, and used those
regulatory elements to reveal key TFs in specific forebrain cell types. Therefore, our
results provide a unique view of the cell type specific cis regulatory landscape in the
forebrain. We expect that with larger cell numbers in the future it will be possible to
uncover previously unknown regulatory elements in rare cell types. Moreover, applying
SnATAC to human tissues samples and integration with genomic variants variant calls
may reveal relative contributions of distinct cell-types to diseases like schizophrenia or
Alzheimer’s. We anticipate that our snATAC-seq approach will be a valuable tool for
analysis of other brain regions and non-neuronal tissues and will help to pave the way to

a better understanding of mammalian developmental programs.
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1.7 Figures
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Figure 1.1. Overview of the experimental and computational procedures of
SNATAC-seq. (a) Following nuclei isolation from frozen forebrain tissue biopsies,
tagmentation of 4,500 permeabilized nuclei was carried out using barcoded Tn5 in 96-
well plates. After pooling, 25 nuclei were sorted into each well of a 384-well plate and
PCR was carried out to introduce the second set of barcodes. FANS: Fluorescence
assisted nuclei sorting. (b) Overview of the developmental time points examined in the
current study. E: embryonic day; P: postnatal day; (c) Chromatin accessibility profiles of
aggregate snATAC-seq (black tracks) agree with bulk ATAC-seq (grey, top track) and are
consistent between independent experiments. (d) Framework of computational analysis
of sShATAC-seq data.
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Figure 1.2. Deconvolution of cell types in the p56 mouse forebrain and
identification of potential master regulators of each cell type. (a) Clustering of single
nuclei from both experiments revealed 8 different cell groups in adult forebrain. (b)
Aggregate chromatin accessibility profiles for each cell cluster and the bulk ATAC-seq for
the sorted cell populations or the whole forebrain at several marker gene loci (Bulk data
are shaded in grey). (c) Hierarchical clustering of aggregate single nuclei ATAC-seq data
and the bulk ATAC-seq data sets. (d) Cellular composition of adult forebrain derived from
SNATAC-seq data. (e) K-means clustering of 4,980 genomic elements based on
chromatin accessibility. (f) enrichment analysis for transcription factor motifs in each cell
group. For enrichment of known motifs, one-tailed Fisher's Exact test was used to
calculate significanceas. Displayed p-values are Bonferroni corrected for multiple testing.
For de novo motif enrichment testing a hypergeometric test was usedso. Displayed p-
values are not corrected for multiple testing.
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Figure 1.3. SnATAC-seq analysis reveals the timing of neurogenesis and
gliogenesis during embryonic forebrain development. (a) Clustering of single nuclei
from both independent experiments revealed 12 different cell groups with changing
relative abundance. (b) Aggregate chromatin accessibility profiles for cell clusters and at
marker gene loci used to assign cell types. For better visualization, Hes5 gene locus is
grey shaded. (c) Quantification of cellular composition during forebrain development.
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regulatory elements and

transcriptional regulators of lineage specification in the developing forebrain. (a) A
heat map shows the results of K-means clustering of 16,364 candidate cis regulatory
elements based on chromatin accessibility in different cell types. (b) Gene ontology
analysis of each cell type using GREAT32. (¢) Transcription factor motifs enriched in each
groupso. (d) Enrichment of enhancers that were functionally validated as part of the VISTA
databasess. (e) Representative images of transgenic mouse embryos showing LacZ
reporter gene expression under control of the indicated subpallial enhancers. Pictures
were downloaded from the VISTA databaseass.
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1.8 Supplementary Methods

Mouse tissues. All animal experiments were approved by the Lawrence Berkeley
National Laboratory Animal Welfare and Research Committee or the University of
California, San Diego, Institutional Animal Care and Use Committee. Forebrains from
embryonic mice (E11.5-E16.5) and early postnatal mice (P0O) were dissected from one
pregnant female or one litter at a time and combined. For breeding, animals were
purchased from Charles River Laboratories (C57BL/6NCrl strain) or Taconic Biosciences
(C57BL/6NTac strain) for E14.5 and PO. Breeding animals for other time points were
received from Charles River Laboratories (C57BL/6NCrl). Dissected tissues were flash
frozen in a dry ice ethanol bath. For the adult time point (P56), the forebrain from 8-week
old male C57BL/6NCrl mice (Charles River Laboratories) were dissected and flash frozen
in liquid nitrogen separately. Tissues were pulverized in liquid nitrogen using pestle and

mortar. For each time point two replicates were processed (n = 2 per time point).

Transposome generation. To generate A/B transposomes, A and B oligos were

annealed to common pMENTSs oligos (95°C 2 min, 14°C « (cooling rate: 0.1°C/s))
separately. Next, barcoded transposons were mixed in a 1:1 molar ratio with unloaded
transposase Tn5 which was generated at lllumina. Mixture was incubated for 30 min at
room temperature. Finally, A and B transposomes were mixed. For combinatorial
barcoding we used 8 different A transposons and 12 distinct B transposons which

eventually resulted in 96 barcode combinationssi.
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Combinatorial barcoding assisted single nuclei ATAC-seq. Combinatorial

ATAC-seq was performed as described previously with modificationsi2. 5-10 mg frozen
tissue was transferred to a 1.5 ml Lobind tube (Eppendorf) in 1 mI NPB (5 % BSA (Sigma),
0.2 % IGEPAL-CA630 (Sigma), cOmplete (Roche), 1 mM DTT in PBS) and incubated for
15 min at 4 °C. Nuclei suspension was filtered over a 30 um Cell-Tric (Sysmex) and
centrifuged for 5 min with 500 x g. Nuclei pellet was resuspended in 500 pl of 1.1x DMF
buffer (36.3 mM Tris-acetate (pH = 7.8), 72.6 mM K-acetate, 11 mM Mg-acetate, 17.6 %
DMF) and nuclei were counted using a hemocytometer. Concentration was adjusted to
500 /ul and 4500 nuclei were dispensed into each well of a 96 well plate. For
tagmentation, 1 pl barcoded Tn5 transposome (0.25 uM)s1 was added to each well, mixed
5 times and incubated for 60 min at 37°C with shaking (500 rpm). To quench the reaction
10 ul 40 mM EDTA were added to each well and plate was incubated at 37°C for 15 min
with shaking (500 rpm). 20 ul sort buffer (2 % BSA, 2 mM EDTA in PBS) were added to
each well and all wells combined afterwards. Nuclei suspension was filtered using a 30
pm CellTric (Sysmex) into a FACS tube and 3 uM Draq7 (Cell Signalling) was added.
Using a SH800 sorter (Sony) 25 nuclei were sorted per well into 4 96-well plates (total of
384 wells) containing 18.5 pl EB (50 pM Primer i7, 200 ng BSA (Sigma)). Sort plates were
shortly spun down. After addition of 2 ul 0.2 % SDS samples were incubated at 55°C for
7 min with shaking (500 rpm). 2.5 pl 10% Triton-X was added to each well to quench
SDS. Finally, 2 pl 25 uM Primer i5 and 25 pl NEBNext® High-Fidelity 2X PCR Master Mix
(NEB) and samples were PCR amplified for 11 cycles (72°C 5 min, 98°C 30 s,[ 98°C 10
s, 63°C 30 s, 72°C 60 s] x 11, 72°C ). Following PCR, all wells were combined (around

15.5 mL) and mixed with 80 ml PB including pH-indicator (1:2500, Qiagen) and 4 ml Na-

35



Acetate (3 M, pH =5.2). Purification was carried out on 4 columns following the MinElute®
PCR Purification Kit manual (Qiagen). DNA was eluted with 15 ul EB and eluate from all
four columns was combined in a LoBind Tube (Eppendorf). For Ampure XP Bead
(Beckmann Coulter) cleanup 170 pl EB buffer and 110 pl Ampure XP Beads (0.55x) were
added to 30 pl eluate. After incubation at room temperature for 5 min and magnetic
separation supernatant was transferred to a new tube and another 190 yul Ampure XP
Beads (1.5x) were added. After incubation beads were washed twice on the magnet using
500 pl 80 % EtOH. After drying the beads for 7 min at room temperature library was eluted
with 20 yl EB (Qiagen). Libraries were quantified using Qubit fluoromoeter (Life
technologies) and nucleosomal pattern was verified using Tapestation (High Sensitivity
D1000, Agilent). 25 pM library was loaded per lane of a HiSeq2500 sequencer (lllumina)
using custom sequencing primerssi and following read lengths: 50 + 43 + 37 + 50 (Readl
+ Index1 + Index2 + Read?2). The first 8 bp of Index1 correspond to the p7 barcode and
the last 8 bp to the i7 barcode. The first 8 bp of Index2 correspond to the i5 barcode and
the last 8 bp to the p5 barcode. Since Index1 and 2 each contain 2 barcodes separated
by a common linker sequence, we generated a spike-in library using different transposon
and PCR primer sequences to balance the bases within each detection cycle. For the
human-mouse mixture experiment, E15.5 forebrain and GM12878 nuclei were mixed in
a 1:1 ratio prior to tagmentation. Samples were processed as above with the exceptions
that just 96 wells were used after nuclei sorting and PCR amplification was performed for
13 cycles. The final library was loaded at 15 pM and sequenced using a MiSeq (lllumina)

with following read lengths: PE 44 + 43 + 37 +44 (Readl + Index1 + Index2 + Read?2).
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Cell culture. GM12878 (Coriell Institute for Medical Research) cells were cultured
in RPMI1640 medium (Thermo Fisher Scientific) containing 2 mM L-glutamine (Thermo
Fisher Scientific), 15% foetal bovine serum (Gemini Bioproducts) and 1 % Penicillin-
Streptomicin (Thermo Fisher Scientific) in T25 Flasks (Corning) at 37°C under 5% carbon
dioxide. For the snATAC-seq mixture experiment, cells were harvested by centrifugation,
washed with PBS (Thermo Fisher Scientific) and resuspended in NPB (5 % BSA (Sigma),
0.2 % IGEPAL-CA630 (Sigma), cOmplete (Roche), 1 mM DTT in PBS). Samples were
incubated 5 min at 4 °C and finally nuclei were pelleted by centrifugation (500g, 5min, 4
°C). Nuclei pellet was resuspended in 500 pl of 1.1x DMF buffer (36.3 mM Tris-acetate
(pH=7.8), 72.6 mM K-acetate, 11 mM Mg-acetate, 17.6 % DMF) and nuclei were counted

using a hemocytometer.

NeuN negative sorting. 10 mg adult forebrain tissue (P56) were resuspend in 500

pl lysis buffer (0.5% BSA, 0.1% Triton-X, cOmplete (Roche), 1 mM DTT in PBS) and
incubated for 10 min at 4°C. After spinning down (5 min, 500 x g) sample was
resuspended in 500 pl staining buffer (0.5% BSA in PBS). Nuclei suspension was
incubated with anti-NeuN antibody (1:5000, MAB377, Lot 2806074, EMD Millipore) for 30
min at 4°C. After centrifugation nuclei were resuspend in 500 pl staining buffer (0.5% BSA
in PBS) containing anti-mouse Alexa488-antibody (1:1000, A11001, Lot 1696425,
Thermo Fisher Scientific). After incubating for 30 min at 4°C, nuclei were pelleted (5 min
500 x g) and resupended in 700 ul sort buffer (1% BSA, 1mM EDTA in PBS). After filtration
into a FACS tube 5 ul DRAQ7 (Cell Signalling Technologies) was added and NeuN-

negative nuclei were sorted using a SH800 sorter (Sony) into 5% BSA (Sigma) in PBS.
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Bulk ATAC-seq. ATAC-seq was performed on 20,000 sorted nuclei as described
previously with minor modificationss2. After adding IGEPAL-CA630 (Sigma) in a final
concentration of 0.1 % nuclei were pelleted for 15 min at 1000 x g. Pellet was resupended
in 19 pl 1.1x DMF buffer (36.3 mM Tris-acetate (pH = 7.8), 72.6 mM K-acetate, 11 mM
Mg-acetate, 17.6 % DMF). After addition of 1 pl Tn5 transposomes (0.5 uM) tagmentation
was performed at 37°C for 60 min with shaking (500 rpm). Next, samples were purified
using MinElute columns (Qiagen), PCR-amplified for 8-10 cycles with NEBNext® High-
Fidelity 2X PCR Master Mix (NEB, 72°C 5 min, 98°C 30 s,[ 98°C 10 s, 63°C 30 s, 72°C
60 s] x cycles, 72°C «). Amplified libraries were purified using MinElute columns (Qiagen)
and Ampure XP Bead (Beckmann Coulter). Sequencing was carried out on a HiSeq2500

or 4000 (50 bp PE, lllumina).

Single nuclei ATAC-seq data processing pipeline. Our in-house pipeline

implements the following major steps:

e Step 1. Read alignment. Paired-end sequencing reads were aligned to mm10

reference genome using Bowtie2s3 in paired-end mode with following parameters

“‘bowtie2 -p 5 -t -X2000 --no-mixed --no-discordant"

e Step 2. Alignment filtering. Non-uniquely mapped (MAPQ < 30) and improperly paired

(flag = 1804) alignments were filtered.

e Step 3. Barcode error correction. Each barcode consists of four 8 bp long indexes (i5,

i7, p5, p7). Reads with barcode combinations containing more than 1 mismatch (or 1
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edit distance) for any index were removed. Index with less than 1 mismatch were
changed to its closest index.

Step 4. Reads separation. Reads were separated into individual cells based on the

barcode combination.

Step 5. Mark and remove PCR duplicates. For individual cells, we sorted reads based
on the genomic coordinates using “samtools sort’s4, then marked and removed PCR
duplicates using Picard tools (MarkDuplicates).

Step 6. Mitochondrial reads removal. Reads mapped to the mitochondrial genome

were filtered.

Step 7. Adjusting position of Tn5 insertion. All reads aligning to the + strand were

offset by +4 bp, and all reads aligning to the - strand were offset -5 bp.

Step 8. Quality assessment of each single cell. Calculate coverage of constitutively
accessible promoters (promoters that are accessible across all tissues/cell line from
ENCODE DHS), number of reads and signal-over-noise ratio estimated by “reads in
peaks” ratio for each cell.

Step 9. Cell selection. We only kept cells that pass our threshold (1) coverage of
constitutively accessible promoter > 10%; 2) number of reads > 1,000; 3) reads in
peak ratio greater than estimation from corresponding bulk ATAC-seq level.

Step 10. Replicates separation. Selected cells were separated into two replicates

based on the predefined barcode combination.

Single nuclei ATAC-seq cluster analysis. Cluster analysis partitions cells into

groups such that cells from the same group have higher similarity than cells from different
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groups. Here, we developed a pipeline to obtain cell clusters
(https://github.com/r3fang/snATAC). We first generated a catalogue of accessible
chromatin regions using bulk ATAC-seq data and created a binary accessible matrix.
Chromatin sites were 1 for a given cell if there was a read detected within the peak region.
Next, we calculated paired-wise Jaccard index between every two cells on the basis of
overlapping open chromatin regions. Next, we applied a non-linear dimensionality
reduction method (t-SNE) to map the high-dimensional structure to a 3-D spaceis. This
transforms high-dimensional structures to dense data clouds in a low-dimensional space,
allowing partitioning of cells using a density-based clustering methodzis. We then identified
the optimal number of cell clusters using the Dunn indexss. Finally, we compared our
cluster results to those of “shuffled” to further verify our cluster result is not driven by

library complexity or other confounding factors.

e Stepl. Determining accessible chromatin sites in single cells. To catalogue accessible

chromatin sites in individual cells, we first created a reference map of open chromatin
sites determined by bulk ATAC-seq. The chromatin accessibility maps from different
time points (from E11.5 to P56) were merged into a single reference file using
BEDtoolsss. For clustering of single cells, we have tested clustering performance using
accessible promoters (2kb upstream of TSS) and distal elements, respectively, and
found that clusters by distal elements outperformed promoters with lower Kullback-
Leibler divergence (Figure S1.5). Therefore, we decided to only focus on distal
genomic elements as features to perform clustering. Reads in individual cells

overlapping with accessible sites were identified. We generated an accessible matrix
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of the reads counts overlapping each individual accessible sites (columns) in each cell
(row).

Step 2. Binary Accessible Matrix. We next converted the chromatin accessibility matrix

to a binary matrix My, in which M;; is 1 if any read in cell i mapped to region j.

Step 3. Jaccard Index Matrix. Jaccard index matrix Jyy were calculated between
every two cells in which J;; measures the commonly shared open chromatin regions
between cell C; and C; as following:

_ M n M|

Jiy = |M; U M|

Diagonal elements of Jyxy are set to be 0 as required by t-SNE analysis.

Step 4. Dimensionality reduction using t-SNE. Using Jaccard index matrix Jyxy as
input, we next applied t-SNE to map the N-dimensional data to a 3-D spaceis. Since
t-SNE has a non-convex objective function, it is possible that different runs yield
different solutionsis. Thus, we ran t-SNE several times with different initiations and
used the result with the lowest Kullback-Leibler divergence and best visualization. In
a previous study sequencing depth was a confounding factor and highly correlated
with the first principle component of PCA analysis (Pearson correlation >0.95)12.
However, we did not observe correlation between sequencing depth and any of the t-
SNE dimension. We expected that the coherent structure of the open chromatin
landscape of cells with high similarity would rely on a continuous and smooth 3-D
structure and cells for different groups would locate to distinct parts of the plot. We

used t-SNE to transform the high-dimensional structures to dense data clouds in the
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3-D spaceis. Finally, we applied a density-based clustering method to identify different
cell populations within the embedded 3-D spacezs.

Step 5. Density-based clustering. We applied a density-based clustering method to
partition cells into groups in the embedded 3-D spaceis. The method identifies cluster
centres that are characterized by two properties: 1) high local density p; and 2) large
distance §; from points of higher density, which are centers of the clustersie. Any cells
that showed values above defined thresholds (p,, §,) were considered as centers of
cluster. Next, the rest of cells were assigned to the center as described hereis. Clearly,
different thresholds (p,, 5,) will generate different number of clusters. To find the
optimal number of clusters, we adopted the method developed by Habib et al to
evaluate the quality of different cluster resultsss.

Step 6. Number of clusters. In detail, Habib’s method applied the Dunn index to

guantify the quality of cluster result as followingss:

Dh = min, <i<j<nA(G;, C})

max;<x<nA(Cy)

in which A(C;, C;) represents the inter-cluster distance between cluster C; and C;, A(Cy)
represents the intra-cluster distance of cluster C,. We used the “MaxStep” distance
developed by Habib et al to calculate the distance for Dunn indexss. Finally, we iterated
all possible (p,, §,) combinations that yield different clusters and calculated its Dunn
index. The clustering result with the highest Dunn index was chosen as final cluster.

Step 7. “Shuffled” cells. Due to the limited genome coverage of each single cell, cells

may cluster according to their sequencing depth rather than ‘true’ co-variationi2. To
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verify that our cluster results are not driven by such artefacts, we compared our results
to a simulated data set. For this data set in which binary accessible sites within each
cell were randomly shuffled across all accessible sites. In other words, we shuffled the
data and removed the biological significance, but maintained the distribution of
sequencing depth across cells. “Shuffled” cells were uniformly distributed as a “ball”
in the embedded 3-D space without clear partition of cells. However, we did observe
that there is a small portion of cells that tend to form a cluster but did not pass the cut-

off (py, 8,) used for the P56 forebrain data setiz.

Identification of cluster-specific features. We next developed a computational

method which combines stability selection with LASSOs7 to identify genomic elements
(features) that potentially distinguish cells belonging to different clusters. LASSO
regression enables sparse feature selections through the use of L1 penalty. However,
LASSO regression often does not result in a robust set of selected features and is
sensitive to data perturbation. This is especially true when features are correlated. To
overcome these limitations, we adopted stable lasso to robustly identify features that
distinguish every two cell clusters (Algorithm 2). Finally, we combined all identified
features that distinguish different cell types to identify genomic elements (features) that

potentially distinguish cells belonging to different clusters.

Bulk ATAC-seq data analysis. Paired-end sequencing reads were aligned to the

mm10 reference genome using Bowtie2 in paired-end mode with following parameters

“‘bowtie2 -p 5 -t -X2000 --no-mixed --no-discordants3 and PCR duplicates were removed
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using samtoolss4. Next, mitochondrial reads were removed and the position of alignments

adjustedss. For visualization the bamCoverage utility from deepTools2 was usedso.

Hierarchical clustering of ATAC-seq profiles in adult forebrain. DeepTools2 was

used for correlation analysis and hierarchical clustering of ATAC-seq profiles from cell
clusters and sorted cell-types in the adult forebrainse. First, we computed read coverage
for each data set against the merged list of genomic elements that separate two cell
clusters in the adult forebrain using the multiBamSummary utility. Next we used
plotCorrelation to generate hierarchical clustering using Spearman correlation coefficient

between two clustersso.

Accessibility analysis and clustering of genomic elements. To cluster genomic

elements based on their accessibility profile we used these promoter distal elements that
were capable to distinguish two cell clusters. For each feature we extended the summits
identified by MACS2s0 in both directions by 250 bp and generated a union set of elements
using mergeBED functionality of BEDTools v2.17.0s6. Next, we intersected cluster
specific bam files with the peak list using the coverageBED functionality of BEDTools
v2.17.0s56. We discarded elements that had less than five reads on average. After adding
a pseudocount of one we calculated cluster-specific RPM (reads per million sequenced
reads) values for each genomic element. We divided the RPM value for a given cluster
by the average value of all clusters (fold over mean) and finally log2 transformed the data.
The generated matrix was used for k-means clustering of the elements using Ward’s

method. We performed this analysis for all adult clusters, the excitatory neuron clusters
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and the 12 developmental cell clusters, respectively. To compare clusters of genomic
elements in the adult forebrain with previously described single cell DNA methylation
dataz9, we calculated the fraction of cell-type specific differentially methylated regions
(DMR) with each cluster using intersectBED functionality of BEDTools v2.17.0s6 and
normalized it by the total number of elements. Since Luo et al.29 focused on frontal cortex
and specifically purified neurons, we centered the comparison on clusters associated with

excitatory an inhibitory neuron.

Motif enrichment analysis. To identify potential regulators of chromatin accessibility

we performed motif analysis using the AME utility of the MEME suitess. For enrichment of
known motifs, one-tailed Fisher's Exact test was used to calculate significance. P-values
were corrected by the Bonferroni method for multiple testing. A P-Value cut-off of < 10-5
was chosen for known motifs from the JASPAR database
(JASPAR_CORE_2016_vertebrates.meme)s1. For identification of de novo motifs

HOMER tools was used with default settingsso.

Annotation of genomic elements. The GREAT algorithm was used to annotate

distal genomic elements using following settings to define the regulatory region of a gene:
Basal+extension (constitutive 1 kb upstream and 0.1 kb downstream, up to 500 kb max
extension)s2. Gene ontology categories “Molecular Function” and “Biological Processes”

were used.
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Analysis of dynamic chromatin accessibility within a cell cluster. First, the ATAC-

seq reads were counted in all peaks for each stage, cell type and replicate. For each cell
cluster, only stages with more than 250,000 reads overlapping ATAC-seq peaks and
more than 50 nuclei were used for dynamic analysis. Peaks with greater than 1 read per
million reads (RPM) in at least 2 samples were kept. We used edgeRs2 to assess the
significance of difference between adjacent stages for cell clusters with at least 4 out of
7 stages passing filtering criteria. P-values were corrected using the Bonferroni method.
Peaks with a Bonferroni p-value less than 0.05 were called dynamic peaks. The total
number of dynamic peaks in each cell type are listed in (Figure S1.11c). For each cell
type, the read counts in each peak were normalized into a unit vector (i.e values were
divided by the square root of the sum of the squares of the values). K-means was used
for clustering of cell clusters with more than 200 dynamic elements (K=3). Motif

enrichment analysis was performed for each peak cluster using HOMERso.

VISTA analysis. Genomic locations of 484 VISTA validated elementsss were
downloaded from https://fenhancer.Ibl.gov using the search term “forebrain”. Genomic
locations were converted from mm9 to mm10 using the liftOver tool (minimum rematch
ratio of 0.95). 91 of these were showed specific activity in the subpalliumas. To identify
developmental clusters that are enriched for subpallial enhancers we first calculated the
ratio of elements per k-means cluster overlapping with the total forebrain enhancer list
and the subpallial subset separately. Finally, we calculated the relative enrichment using
the ratio of subpallial over the complete forebrain regions. For anatomical annotation of

distinct clusters, we intersected these regions with enhancers that are active in specific
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areas in the developing mouse forebrainaz. After filtering clusters with less than 5
overlapping regions, we performed a binomial test to identify anatomical regions enriched

for each cluster. The enrichment score is defined as - log10(binomial P-value).
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1.9 Supplementary Figures

Figure S1.1. SnATAC-seq protocol optimization. (a) Overview of critical steps for the
SNATAC-seq procedure for nuclei from frozen tissues. (b) IGEPAL-CA630 but not Triton-
X100 was sufficient for tagmentation of frozen tissues (n = 1 experiment). (c)
Tagmentation was facilitated by high salt concentrations in reaction buffer (n = 1
experiment; Wang, Q. et al. Nature protocols, 2013, doi:10.1038/nprot.2013.118: Sos, B.
C. et al. Genome biology, 2016, doi:10.1186/s13059-016-0882-7). (d) Maximum number
of fragments per nucleus could be recovered when quenching Tn5 by EDTA prior to FANS
and denaturation of Tn5 after FANS by SDS. Finally, SDS was quenched by Triton-X100
to allow efficient PCR amplification. (e) Increasing tagmentation time from 30 min to 60
min can result in more DNA fragments per nucleus (n = 1 experiment). (f) Number of
sorted nuclei was highly correlated with the final library concentration. Tn5 loaded with
barcoded adapters showed less efficient tagmentation as compared to Tn5 without
barcodes. Wells were amplified for 13 cycles, purified and libraries quantified by gPCR
using standards with known molarity (n = 1 experiment). (g) Tagmentation with barcoded
Tn5 was less efficient and resulted in larger fragments than Tn5 (550 bp vs. 300 bp).
Ratio for barcoded Tn5 was based on concentration of regular Tn5. (h) Doubling the
concentration of barcoded Tn5 increased the number of fragments per nucleus by 3-fold.
Further increase resulted only in minor improvements (n = 1 experiment). (i) Dot blot
illustrating the amount of library from 25 nuclei per well. Each well was amplified for 11
cycles and quantified by gPCR. This output was used to calculate the number of required
PCR cycles for snATAC-seq libraries to prevent overamplification (n = 28 wells). (j) Size
distribution of a successful snATAC-seq library from a mixture of E15.5 forebrain and
GM12878 cells shows a nucleosomal pattern. SnATAC-seq was performed including all
the optimization steps described above with barcoded Tn5 in 96 well format (n = 1
experiment; snATAC libraries for forebrain samples showed comparable nucleosomal
patterns: n = 16 experiments).
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Figure S1.2. Isolation of single nuclei after tagmentation. (a-d) Density plots
illustrating the gating strategy for single nuclei. First, big particles were identified (a), then
duplicates were removed (b, c¢) and finally, nuclei were sorted based on high DRAQ7
signal (d), which stains DNA in nuclei. (e) Verification of single cell suspension after FANS
was done with Trypan Blue staining under a microscope.
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Figure S1.3. Overview of snATAC-seq sequencing data and quality filtering for
single nuclei. (a) Distribution of insert sizes between reads pairs derived from
sequencing of snATAC-seq libraries indicates nucleosomal patterning. (b) Individual
barcode representation in the final library shows variability between barcodes. (c) To
assess the probability of two nuclei sharing the same nuclei barcode, single nuclei ATAC-
seq was performed on a 1:1 mixture of human GM12878 cells and mouse E15.5 forebrain
nuclei. A collision was indicated by < 90% of all reads mapping to either the mouse
genome (mm9) or the human genome (hgl9). We identified 8.2% of these barcode
collision events. (d) Read coverage per barcode combination after removal of potential
barcodes with less than 1,000 reads. (e) Constitutive promoter coverage for each single
cell. The red line indicates the constitutive promoter coverage in corresponding bulk
ATAC-seq data sets from the same biological sample. Cells with less coverage than the
bulk ATAC-seq data set were discarded. (f) Fraction of reads falling into peaks for each
single nucleus. The red line indicates fraction of reads in peak regions in corresponding
bulk ATAC-seq data sets from the same biological sample. Nuclei with lower reads in
peak ratios coverage than the bulk ATAC-seq data set were discarded from downstream
analysis.
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Figure S1.4. SnATAC-seq data sets are robust and reproducible. Pearson correlation
of chromatin accessibility profiles from two independent experiments derived from bulk
ATAC-seq (left column) and from aggregate snATAC-seq after aggregating single nuclei
profiles (middle column) is shown in each plot. In the right column the correlation between
bulk ATAC-seq and aggregate snATAC-seq are displayed for the experiment on the first
set of forebrain tissues. Data are displayed from forebrain tissues from following time
points: a. E11.5, b. E12.5, c. E13.5,d. E14.5, e. E15.5, f. E16.5, g. PO, and h. P56. For
bulk ATAC-seq data generated by the ENCODE consortium were processed.
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Figure S1.5. Clustering strategies, quality control of clusters and clustering result
for individual experiments in adult forebrain. (a, b) T-SNE visualization of clustering
using (a) distal element (regions outside 2 kb of refSeq transcriptional start sites) or (b)
promoter regions (KL: Kullback-Leibler divergence reported by t-SNE). c. Box plot of read
coverage for each cluster (sample size for cluster is EX1: 190, C2: 946, MG: 126, AC:
120, OC: 252, IN2: 320, EX2: 366, EX3: 519, IN1: 195, shuffled: 199; 25% quantile is
EX1:1076, C2: 665, MG: 595, AC: 884.25, OC: 755, IN2: 754, EX2: 106, EX3: 1104, IN1:
881, shuffled: 880; median value is EX1: 1372, C2: 855, MG: 726, AC: 1079, OC: 871,
IN2: 899, EX2: 1334, EX3: 1482, IN1: 1102, shuffled: 1178; 75% quantile is EX1: 2045,
C2: 1196, MG: 972, AC: 1489, OC: 1188, IN2: 1134, EX2: 1929, EX3: 2102, IN1: 1496,
shuffled: 1652). (d) Box plot of similarity analysis between any two given cells in a cluster.
Cluster C2 was discarded before downstream analysis due to low its intra-group similarity
(median < 10). As a negative control, randomly shuffled cells were included in the analysis
displaying exceptionally low in-group similarity (sample size is EX1: 190, C2:946,
MG:126, AC:120, OC: 252, IN2: 320, EX2: 366, EX3: 519, IN1: 195, shuffled: 199; 25%
quantile is EX1:13.34, C2: 6.84, MG: 15.15, AC: 19.89, OC: 20.60, IN2: 9.88, EX2: 10.53,
EX3: 11.81, IN1: 12.58, shuffled: 3.02; median is EX1: 16.34, C2: 9.12, MG: 19.68, AC:
24.835, OC: 26.23, IN2: 12.77, EX2: 13.00, EX3: 15.23, IN1: 15.50, shuffled: 4.20; 75%
quantile is EX1: 20.07, C2: 11.74, MG: 25.58, AC: 30.860, OC: 32.95, IN2: 16.11, EX2:
16.02, EX3: 19.46, IN1: 19.25, shuffled: 5.56). (e, f) T-SNE visualization of single cells
from (e) replicate 1 and (f) replicate 2. The projection and color coding are the same as
in Figure 1.2d.
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Figure S1.6. Ranking of gene loci (TSS + 10kb) compared to other clusters in adult
forebrain. Negative binomial test shows enrichment for (a) excitatory neuron markers (b)
inhibitory neuron markers (c) astrocyte markers (d) oligodendrocyte markers and (e)
microglia markers extending the examples shown in Figure 1.2b. Please note for general
assignment accessibility profiles for Ex1-3 and IN1/2 were merged, respectively. For each
cell type, data from two experiments (n = 2) were used to carry out the negative binomial
test.
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Figure S1.7: Flow cytometric analysis of adult mouse forebrain and comparison to
single cell RNA-seq data from different brain regions. a-c Dot blots illustrating nuclei
from adult forebrain stained for flow cytometry with Alexa488 conjugated secondary
antibodies. (a) Displayed are representative blots for experiments without antigen specific
primary antibody and (b) with antibodies recognizing the post-mitotic neuron marker
NeuN22 (n = 3, average £ SEM). (c) NeuN negative nuclei were sorted for ATAC-seq
experiments and purity (> 98%) was confirmed by flow cytometry of the sorted population.
(d) Relative composition of different forebrain regions derived from single cell RNA-seq
shows region specific differencesio. () Relative composition derived from snATAC-seq
(compare to Figure 1.2c¢) of adult forebrain shows values in between.
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Figure S1.8. Sub-classification of excitatory neurons into hippocampal and cortical
neuron types. (a) Hierarchical clustering of aggregate single cell data for excitatory
neuron cluster and sorted bulk data sets corresponding to different anatomical regions
(grey shaded). (b) Chromatin accessibility at marker gene loci. (¢) K-means clustering of
promoter distal genomic elements and enrichment analysis for transcription factor motifs.
Statistical test for motif enrichment: One-tailed Fisher's Exact test; displayed p-values are
Bonferroni corrected for multiple testingso.
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Figure S1.9. Cell-type specificity and coverage of the cis elements. (a-c) Graphs
illustrate cell-type specificity of genomic elements as measured by Shannon entropy
based on normalized read counts for each cell-type and percentage of nuclei in which a
genomic element was called accessible as indicated by presence of at least 1 read
overlapping with the element a peak. Analysis was performed for the adult forebrain (P56)
against (a) TSS-proximal genomic elements (TSS - 2kb), (b) distal elements and (c) the
subset of genomic elements that separated two cell clusters. d. Violin plots illustrate
higher cell-type specificity for distal elements compared to proximal elements indicated
by significantly lower Shannon entropy value (p < 2.2e-16). In addition, all genomic
elements that separate two clusters as well as subsets identified from k-means clustering
of genomic elements depending on chromatin accessibility in adult forebrain are
displayed (related to Figure 1.2e). (all proximal peaks n = 14,262
(minimum/median/maximum; 0/1.96/2.08), all distal peaks n = 140,102 (0/1.38/2.08), all
differentially accessible peaks n = 4,980 (0.07/1.4/2.06), K1 n =529 (0.08/1.49/2.06), K2
n =586 (0.14/1.13/2.04), K3 n =737 (0.07/1.18/2.05), K4 n = 270 (0.33/1.55/2.01), K5 n
=601 (0.74/1.43/2.05), K6 n =513 (0.28/1.48/2.05), K7 n = 538 (1.19/1.64/2.02), K8 n =
490 (0.13/1.28/2.05), K9 n = 282 (0.73/1.65/2.02), K10 n = 434 (0.32/1.42/2.04). TSS:
transcriptional start site.
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Figure S1.10. Distinct chromatin accessibility profiles of two GABAergic neuron
clusters. IN2 is depleted for chromatin accessibility at the genes Pax6 and DIx1 (a) but

enriched for marker genes of medium spiny neurons as compared to IN1 cluster (b).
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Figure S1.11. Comparison of chromatin accessibility and differentially methylated
regions in neuronal subtypes. Displayed is the fraction of cell-type specific differentially
methylated2o that overlapped with genomic elements accessible in excitatory (EX) and
inhibitory neurons (IN). This analysis illustrates that cis regulatory elements specific for
inhibitory neurons and excitatory neurons, respectively, could be identified by both
methods. Clusters (K) from this study are the same as in Figure 1.2e (m: mouse; L: layer;
DL: deep layer).
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Figure S1.12. Dynamics of chromatin accessibility within distinct cell groups. (a)
Number of reads in peaks per developmental time point for a specific nuclei cluster. (b)
Number of nuclei per time point for a specific nuclei cluster. For analysis of dynamics only
cell clusters with > 3 stages with > 50 nuclei and > 250,000 reads in peaks were
considered. (c) Overview of dynamic elements identified per cell cluster (see
supplementary methods) (d-g). K-means clustering and motif enrichment analysis for
nuclei clusters with > 200 dynamic genomic elements. Statistical test for motif enrichment:
hypergeometric test. P-values were not corrected for multiple testingso. (e: embryonic;
RG: Radial glia; EX: Excitatory neuron; IN: Inhibitory neuron; EMP: Erythromyeloid
progenitor cell; AC: Astrocyte).
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Anatomical location with enhancer activity
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Figure S1.13. Distal genomic element clusters are associated with distinct
anatomical locations in the developing forebrain. Displayed is the enrichment of
clusters of open chromatin for enhancers that are active in distinct regions of the
developing forebrain (n = 95)47. As expected, elements mainly associated with radial glia
and excitatory neuron cell-types (Figure 1.2e, K1, 3, 4) were enriched for pallial
subregions, whereas inhibitory neuron associated elements (Figure 1.2e, K9-11) were
enriched in LGE and MGE regions. Clusters with less than 5 overlapping elements were
excluded from the analysis. Binomial testing was used for statistical analysis. The p-
values were not corrected. Anatomically annotated enhancers: n = 14647; open chromatin
regions: K1: n = 880; K3: n = 1838; K4: n = 1015; K5: n = 1276; K9: n = 1042; K10: n =
1238; K11: n = 623.
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CHAPTER 2: COMPREHENSIVE ANALYSIS OF SINGLE CELL ATAC-SEQ DATA

2.1 Abstract

Identification of the cis-regulatory elements controlling cell-type specific gene
expression patterns is essential for understanding the origin of cellular diversity.
Conventional assays to map cis regulatory elements via open chromatin analysis of
primary tissues is hindered by heterogeneity of the samples. Single cell analysis of
transposase-accessible chromatin (SCATAC-seq) can overcome this limitation. However,
the high-level noise of each single cell profile and the large volumes of data could pose
unigue computational challenges. Here, we introduce SnapATAC, a software package for
analyzing scATAC-seq datasets. SnapATAC overcomes these challenges by employing
diffusion maps, a non-linear dimensionality reduction algorithm that is highly robust to
noise, to resolve the heterogeneity in complex tissues and map the trajectories of cellular
states. Using the Nystrom method, a sampling technique that generates the low rank
embedding for large-scale dataset, SnapATAC can process data from a million cells. In
addition, SnapATAC provides tools for integration of scATAC-seq and scRNA-seq,
prediction of enhancer-promoter pairing, correction of batch effects and annotation of new
datasets based on an existing reference cell atlas. As a demonstration of its utility,
SnapATAC was applied to 55,592 single-nucleus ATAC-seq profiles from the mouse
secondary motor cortex. The analysis results revealed ~370,000 candidate regulatory
elements active in 31 distinct cell populations and inferred candidate transcriptional
regulators in each of the cell types. These results demonstrate that SnapATAC is a

systematic and powerful tool for analyzing single cell ATAC-seq datasets.
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2.2 Introduction

Human body comprises of divergent cell types that are highly specialized to carry
out distinct functionsi. The identity of each cell type is established during development
through complex gene expression programs, which are driven in part by sequence-
specific transcription factors that interact with cis-regulatory sequences in a cell-type
specific mannerz. Thus, identifying the cis-elements and their cellular specificity is an

essential step towards understanding the cell type specific gene expression programs

Since the cis-regulatory elements are often marked by hypersensitivity to
nucleases or transposases when they are active or poised to act, approaches to detect
DNA accessibility, such as ATAC-seq (Assay for Transposase-Accessible Chromatin
using sequencing)s and DNase-seq (DNase | hypersensitive sites sequencing)s have
been widely used to map candidate cis-regulatory sequences. However, conventional
assays that use bulk tissue samples as input cannot resolve cell type specific usage of
cis elements and lacks the resolution to study the temporal dynamics. To overcome these
limitations, a number of methods have been developed for measuring chromatin
accessibility in single cells. One approach involves combinatorial indexing to
simultaneously analyze tens of thousands of cellss. This strategy has been successfully
applied to embryonic tissues in D. melanogasters, developing mouse forebrains7 and
adult mouse tissuess. A related method, called scTHS-seq (single-cell transposome
hypersensitive site sequencing), has also been applied to study chromatin landscapes
at single cell resolution in the adult human brainso. A third approach relies on isolation

of cell using microfluidic devices (Fluidigm, C1)10 or within individually indexable wells
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of a nano-well array (Takara Bio, ICELL8)11. More recently, single cell ATAC-seq
analysis has been demonstrated on droplet-based platformsiz,13, enabling profiling of
chromatin accessibility from even hundreds of thousands of cells in a single
experimenti2. Hereafter, these methods are referred to collectively as single cell ATAC-

seq (ScCATAC-seq).

The growing volumes of sScCATAC-seq datasets and the sparsity of signals in each
individual profile due to low detection efficiency (5-15% of peaks detected per cell)s
present a unique computational challenge for resolving cellular heterogeneity. To address
this challenge, a number of unsupervised algorithms have been developed. One
approach, chromVAR14, groups similar cells together by dissecting the variability of
transcription factor (TF) motif occurrence in the open chromatin regions in each cell.
Another approach employs the natural language processing techniques such as Latent
Semantic Analysis (LSA)s and Latent Dirichlet Allocation (LDA)1s to group cells together
based on the similarity of chromatin accessibility. A third approach analyzes the variability
of chromatin accessibility in cells based on the k-mer composition of the sequencing
reads from each celli2,16. A fourth approach, Ciceroziz, infers cell-to-cell similarities based

on the gene activity scores predicted from their putative regulatory elements in each cell.

Because the current methods often require performing linear dimensionality
reduction such as principle component analysis on a cell matrix of hundreds of thousands
of dimensions, scaling the analysis to millions of cells remains very challenging or nearly

impossible. In addition, the unsupervised identification of cell types or states in complex
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tissues using scATAC-seq dataset does not match the power of scRNA-seqis. One
possibility is that the current methods rely on the use of pre-defined accessibility peaks
based on the aggregate signals. There are several limitations to this choice. First, the cell
type identification could be biased toward the most abundant cell types in the tissues.
Second, sufficient number of single cell profiles are required to create robust aggregate
signal for calling peaks. Third, these techniques lack the ability to reveal regulatory

elements in the rare cell populations, which are underrepresented in the aggregate signal.

To overcome these limitations, we develop a software package, Single Nucleus
Analysis Pipeline for ATAC-seq — SnapATAC (https://github.com/r3fang/SnapATAC).
SnapATAC does not require population-level peak annotation prior to clustering. Instead,
it resolves cellular heterogeneity by directly comparing the genome-wide accessibility
profiles between cells with the use of the diffusion maps algorithmae,2o, which is highly
robust to noise and perturbation. Furthermore, with the use of a sampling technique,
Nystrom method21,21,22, SnapATAC improves the computational efficiency and enables
the analysis of sSCATAC-seq from a million cells on regular hardware. Additionally,
SnapATAC provides a collection of frequently used features, including integration of
SCATAC-seq and scRNA-seq dataset, prediction of enhancer-promoter interaction,
discovery of key transcription factors, identification of differentially accessible elements,
construction of trajectories during cellular differentiation, correction of batch effect and
classification of new dataset based on existing cell atlas. Thus, SnapATAC represents a

comprehensive solution for SCATAC-seq analysis.
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Through extensive benchmarking using both simulated and empirical datasets
from diverse tissues and species, we show that SnapATAC substantially outperforms
current methods in accuracy, sensitivity, scalability and reproducibility for cell type
identification from complex tissues. Furthermore, we demonstrate the utility of SnapATAC
by building a high-resolution single cell atlas of the mouse secondary motor cortex. This
atlas comprises of ~370,000 candidate cis-regulatory elements in 31 distinct cell types,
including rare neuronal cell types that account for less than 0.1% of the total population
analyzed. Through motif enrichment analysis, we further infer potential key transcriptional

regulators that control cell type specific gene expression programs in the mouse brain.

78



2.3 Results

Overview of SnapATAC workflow. SnapATAC first performs pre-processing of

sequencing reads including demultiplexing, reads alignments and filtering, duplicate
removal and barcode selection using SnapTools (https://github.com/r3fang/SnapTools)
(Supplementary Methods), and then generates a “snap” (Single-Nucleus Accessibility
Profiles) file specially formatted for storing single cell ATAC-seq datasets (Figure S2.1a).
SnapTools is substantially faster than another popular tool - CellRanger for preprocessing
(Figure S2.1b). To remove potential doublets, SnapATAC adopts a recently reported

algorithm Scrublet2s (Supplementary Methods and Figure S2.2).

Next, SnapATAC resolves the heterogeneity of cell population by assessing the
similarity of chromatin accessibility between cells. To achieve this goal, each single cell
chromatin accessibility profile is represented as a binary vector, the length of which
corresponds to the number of uniform-sized bins that segment the genome. Through
systematic benchmarking, an optimal bin size of 5kb is chosen (Supplementary
Methods and Figure 2.3). A bin with value “1” indicates that one or more reads fall within
that bin, and the value “0” indicates otherwise. The set of binary vectors from all the cells
are converted into a Jaccard similarity matrix, with the value of each element calculated
from the fraction of overlapping bins between every pair of cells. Because the value of
Jaccard Index could be influenced by sequencing depth of a cell (Supplementary
Methods), a regression-based normalization method is developed to remove this
confounding factor (Supplementary Methods and Figure S2.4 and S2.5). Using the

normalized similarity matrix, eigenvector decomposition is performed for dimensionality
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reduction. Such procedure is known as the diffusion maps alogrithmie,20. This approach
is chosen because it preserves the nonlinear structure of the data through a random-walk
process on the data and is highly robust to perturbation and noise19,20, which makes it
particularly well suited for the sparse single cell ATAC-seq dataset. Finally, in the reduced
dimension, SnapATAC uses Harmony2s to remove potential batch effect between

samples introduced by technical variability (Supplementary Methods).

The computational cost of the diffusion maps algorithm scales exponentially with
the number of cells. To improve the scalability of SnapATAC, a sampling technique - the
Nystrom method21 — is used to efficiently generate the low-rank diffusion maps embedding
for large-scale datasets (Supplementary Methods). Nystrém method contains two major
steps: 1) it computes the diffusion maps embedding for a subset of selected cells (also
known as landmarks); 2) it projects the remaining cells to the embedding learned from
the landmarks. This achieves significant speedup considering that the number of
landmarks could be substantially smaller than the total number of cells. Through
benchmarking, we further demonstrate that this approach will not sacrifice the
performance once the landmarks are carefully chosen (Supplementary Methods and

Figure S2.6; Figure S2.7) as reported before22.

Nystrom method is stochastic and could yield different clustering results in each
sampling. To overcome this limitation, a consensus approach is used that combines a
mixture of low-dimensional manifolds learned from different sets of sampling

(Supplementary Methods). This consensus algorithm naturally fits within the distributed
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computing environments where their computational costs are roughly the same as that of

the standard single sampling method.

As a standalone software package, SnapATAC also provides a number of

commonly used functions for SCATAC-seq analysis, as described below:

First, to facilitate the annotation of resulting cell clusters, SnapATAC provides three
different approaches: i ) SnapATAC annotates the clusters based on the accessibility
score at the canonical marker genes (Supplementary Methods); ii) it infers cell type
labels by integrating with corresponding single cell RNA-seq datasets (Supplementary
Methods and Figure 2.2a); iii) it allows supervised annotation of new single cell ATAC-

seq dataset based on an existing cell atlas (Supplementary Methods).

Second, SnapATAC allows identification of the candidate regulatory elements in
each cluster by applying peak-calling algorithms to the aggregate chromatin profiles.
Differential analysis is then performed to identify cell-type specific regulatory elements.
Candidate master transcription factors in each cell cluster are discovered through motif
enrichment analysisi4,25 of the differentially accessible regions in each cluster. SnapATAC
further conducts Genomic Regions Enrichment of Annotation Tool (GREAT) analysiszs to

identify the biological pathways active in each cell type.

Third, SnapATAC incorporates a new approach to link candidate regulatory

elements to their putative target genes. In contrast to previous methodi7 that relies on
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analysis of co-accessibility of distal elements and promoters, SnapATAC infers the
linkage based on the association between gene expression and chromatin accessibility
in single cells where scRNA-seq data is available (Supplementary Methods). First,
SnapATAC integrates scATAC-seq and scRNA-seq in a way that significantly
outperforms existing methods on the accuracy (Wilcox two-sided rank test P < 2.2e-16;
Figure S2.8a). Second, for each scATAC-seq profile, a corresponding gene expression
profile is imputed based on the weighted average of its k-nearest neighboring cells in the
ScRNA-seq dataset. Thus, a “pseudo” cell is created that contains the information of both
chromatin accessibility and gene expression. Finally, logistic regression is performed to
guantify the association between the gene expression and binarized accessibility state at
distal elements (Supplementary Methods). This new approach is used to integrate ~15K
peripheral blood mononuclear cells (PBMC) chromatin profiles and ~10K PBMC
transcriptomic profiles (Figure 2.2a) and represent them in a joint t-SNE embedding
space (Figure 2.2a). Over 98% of the single cell ATAC-seq cells can be confidently
assigned to a cell type defined in the scRNA-seq dataset (Figure S2.8b). Enhancer-gene
pairs are predicted for 3,000 genes differentially expressed between cell types in PBMC
as determined by scRNA-seq using Seuratis (Supplementary Methods). The accuracy
of these predictions is supported by several lines of evidence. First, the promoters exhibit
the highest association with the gene expression (Figure S2.8c). Second, the association
score exhibits a distance decay from the TSS, consistent with the distance decay of
interaction frequency observed in chromatin conformation study27 (Figure S2.8c). Finally,
the predictions match well with the expression quantitative trait loci (cis-eQTLs) derived

from interferon-y and lipopolysaccharide stimulation of monocytes2s, with the gene-
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enhancer pairs overlapping with 64% of cis-eQTLs, nearly two-fold of that is expected for
genes located at the same distances (Figure 2.2c and Supplementary Methods). While
the predictions require further experimental validation, statistical association between
SCATAC-seq and scRNA-seq provides another approach to symmetrically link enhancers

to their putative target genes.

Fourth, SnapATAC has incorporated a function to construct cellular trajectories
from single cell ATAC-seq with the use of the diffusion maps algorithm, previously used
to define cellular trajectories from single cell RNA-seq dataset2o. As a demonstration of
this feature, SnapATAC is used to analyze a dataset that contains 4,259 cells from the
hippocampus in the fetal mouse brain (E18). Immature granule cells originating in the
dentate gyrus give rise to both mature granule cells (DG) and pyramidal neurons (CA3).
Analysis of 4,259 cells with diffusion maps reveals a clear branching structure in the first
two diffusion components (DC) (Figure 2.3a), the pattern of which is remarkably similar
to the result previously obtained from single cell transcriptomic analysis2e (Figure S2.9b).
For instance, the DG-specific transcription factor Prox1 is exclusively accessible in one
branch whereas Neurod6 and Spock1 that is known to be specific to CA3 are accessible
in the other branch. Markers of progenitors such as Hes5 and Mki67, however, are
differentially accessible before the branching point (Figure S2.3b). Further using lineage
inference tool such as Slingshotzo, SnapATAC defines the trajectories of cell states for
pseudo-time analysis (Figure 2.3a). These results demonstrate that SnapATAC can also

reveal lineage trajectories with high accuracy.
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Performance evaluation. To compare the accuracy of cell clustering between
SnapATAC and published scATAC-seq analysis methods, a simulated dataset of
SCATAC-seq profiles are generated with varying coverages, from 10,000 (high coverage)
to 1,000 reads per cell (low coverage) by down sampling from 10 previously published
bulk ATAC-seq datasets (Supplementary Methods). The performance of each method
in identifying the original cell types is measured by Adjusted Rank Index (ARI). This
comparison shows that SnapATAC is the most robust and accurate method across all
ranges of data sparsity (Wilcoxon signed-rank test, P < 0.01; Figure 2.4a; Figure S2.10).
SnapATAC performs especially well on the sparse datasets (Figure 2.4a), likely due to
the fact that the diffusion maps algorithm is highly robust to noise and perturbation. Next,
a set of 1,423 human cells corresponding to 10 distinct cell types generated using C1
Fluidigm platform, where the ground truth is knownis , is analyzed by SnapATAC and
other methods. Again, SnapATAC correctly identifies the cell types with higher accuracy

than alternative approaches (Figure S2.11).

To compare the sensitivity of SnapATAC to detect rare cell types to that of
previously published methods, we analyzed three scCATAC-seq datasets representing
different types of bio-samples. The first dataset contains 9,529 single nucleus open
chromatin profiles generated from the mouse secondary motor cortex. SnapATAC
uncovers 22 distinct cell populations (Figure 2.4b and Figure S$2.12) whereas
alternative methods fail to distinguish the rare neuronal subtypes including Sst (Gad2+
and Sst+), Vip (Gad2+ and Vip+), L6b (Sulfl- and Tl4e+) and L6.CT (Sulf1+ and Foxp2+)

(Figure S2.13). The second dataset includes 4,098 cells from the adult mouse brain (10X
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genomics). SnapATAC again uncovers more well-known neuronal populations than
alternative approaches (Figure S2.14-S2.15). The third dataset contains 4,792 PBMC.
SnapATAC successfully separates the pre-B cells from B cell progenitor cells, while
alternative methods fail to distinguish these two subtypes (Figure S2.16-S2.17). These

results suggest that SnapATAC outperforms existing methods in sensitivity.

To compare the scalability of SnapATAC to that of existing methods, a previous
SCATAC-seq dataset that contains over 80k cells from 13 different mouse tissuess is used.
This dataset is down sampled to different number of cells, ranging from 20,000 to 80,000
cells. For each sampling, SnapATAC and other methods are performed, and the CPU
running time of dimensionality reduction is monitored (Supplementary Methods). The
running time of SnapATAC scales linearly and increases at a significantly lower slope
than alternative methods (Figure 2.4c). Using the same computing resource, when
applied to 100k cells, SnapATAC is much faster than existing methods (Figure 2.4c). For
instance, when applied to 100k cells, SnapATAC is nearly 10 times faster than LSA and
more than 100 times faster than cisTopic. More importantly, because SnapATAC avoids
the loading of the full cell matrix in the memory and can naturally fit within the distributed
computing environments (Supplementary Methods), the running time and memory
usage for SnapATAC plateau after 20,000 cells, making it possible for analyzing datasets
of even greater volumes. To test this, we simulate one million cells of the same coverage
with the above dataset (Supplementary Methods) and process it with SnapATAC, LSA
and cisTopic. Using the same computing resource, SnapATAC is the only method that is

able to process this dataset (Figure 2.4c and Supplementary Methods). These results
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demonstrate that SnapATAC provides a highly scalable approach for analyzing large-

scale scATAC-seq dataset.

To evaluate the clustering reproducibility, the above mouse scATAC-seq dataset
is down-sampled to 90% of the original sequencing depth in 5 different iterations. Each
down sampled dataset is clustered using SnapATAC and other methods. Clustering
results are compared between sampled datasets to estimate the stability. SnapATAC has
a substantially higher reproducibility of clustering results between different down-sampled

datasets than other methods (Figure 2.4d; two-side t-test Pvalue < 1e-2).

The improved performance of SnapATAC likely results from the fact that it
considers all reads from each cell, not just the fraction of reads within the peaks defined
in the population. To test this hypothesis, clustering is performed after removing reads
overlapping with the predefined peak regions. The outcome largely recapitulates the
majority of cell types obtained from the full dataset (Figure S2.18). This holds true for all
three datasets tested (Figure S2.18). One possibility is that the off-peak reads may be
enriched for the euchromatin (or compartment A) that strongly correlates with active
genesz7 and varies considerably between cell typessi. Consistent with this hypothesis,
the density of the non-peak reads in scATAC-seq library is highly enriched for the
euchromatin (compartment A) as defined using genome-wide chromatin conformation
capture analysis (i.e. Hi-C) in the same cell types2 (Figure S2.19). These observations
suggest that the non-peak reads discarded by existing methods can actually contribute

to distinguish different cell types.
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Including the off-peak reads, however, raises a concern regarding whether
SnapATAC is sensitive to technical variations (also known as batch effect). To test this,
SnapATAC is applied to four datasets generated using different technologies. Each
dataset contains at least two biological replicates produced by the same technology. In
all cases, the biological replicates are well mixed in the t-SNE embedding space showing
no batch effect (Figure S2.20a-d), suggesting that SnapATAC is robust to the technical
variations. To test whether SnapATAC is robust to technical variation introduced by
different technological platforms, it is used to integrate two mouse brain datasets
generated using plate and droplet-based scATAC-seq technologies. In the joint t-TSNE
embedding space, these two datasets are separated based on the technologies (Figure
S2.21a). To remove the platform-to-platform variations, Harmonyz4, a single cell batch
effect correction tool, is incorporated into the SnapATAC pipeline (Supplementary
Methods). After applying Harmony, these two datasets are fully mixed in the joint t-SNE
embedding (Figure S2.21b) and clusters are fairly represented by both datasets (Figure

S2.21¢).

A _high-resolution cis-regulatory atlas of the mouse motor cortex. To
demonstrate the utility of SnapATAC in resolving cellular heterogeneity of complex
tissues and identify candidate cis-regulatory elements in diverse cell type, it is applied to
a single nucleus ATAC-seq dataset generated from the secondary mouse motor cortex
in the adult mouse brain as part of the BRAIN Initiative Cell Census Consortium2se (Figure

S2.22a). This dataset includes two biological replicates, each pooled from 15 mice to
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minimize potential batch effects. The aggregate signals show high reproducibility between
biological replicates (Pearson correlation = 0.99; Figure S2.22b-d) and a significant
enrichment for transcription start sites (TSS), indicating a high signal-to-noise ratio
(Figure S2.22e). After filtering out the low-quality nuclei (Figure S2.22a) and removing
putative doublets using Scrubletzs (Figure S2.23b), a total of 55,592 nuclear profiles with
an average of ~5,000 unique fragments per nucleus remain and are used for further
analysis. To our knowledge, this dataset represents the largest single cell chromatin

accessibility dataset generated for the mouse brain to date.

SnapATAC identifies initially a total of 20 major clusters using the consensus
clustering approach (Figure S2.24). The clustering result is highly reproducible between
biological replicates (Pearson correlation=0.99; Figure S2.25a) and is resistant to
sequencing depth effect (Figure S2.25b). Based on the gene accessibility score at the
canonical marker genes (Figure S2.26), these clusters are classified into 10 excitatory
neuronal subpopulations (Snap25+, Slcl7a7+, Gad2-; 52% of total nuclei), three
inhibitory neuronal subpopulations (Snap25+, Gad2+; 10% of total nuclei), one
oligodendrocyte subpopulation (Mog+; 8% of total nuclei), one oligodendrocyte precursor
subpopulation (Pdgfra+; 4% of total nuclei), one microglia subpopulation (C1gb+; 5% of
total nuclei), one astrocyte subpopulation (Apoe+; 12% of total nuclei), and additional
populations of endothelial, and somatic muscle cells accounting for 6% of total nuclei

(Figure 2.5a).
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In mammalian brain, GABAergic interneurons exhibit spectacular diversity that
shapes the spatiotemporal dynamics of neural circuits underlying cognitionss. To examine
whether iterative analysis could help tease out various subtypes of GABAergic neurons,
SnapATAC is applied to the 5,940 GABAergic nuclei (CGE, Sst and Vip) identified above,
finding 17 distinct sub-populations (Figure S2.27a) that are highly reproducible between
biological replicates (Pearson correlation = 0.99; Figure S2.27b). Based on accessibility
level at the marker genes (Figure S2.28), these 17 clusters are classified into five Sst
subtypes (Chodl+, CbIn4+, Igfbp6+, Myh8+ and C1ql3+), two Pv subtypes (Tacl+ and
Ntf3+), two Lamp5 subtypes (Smad3+ and Ndnf+), four Vip subtypes (Mybpcl+, Chat+,
Gpc3+, Crhr2+), Sncg and putative doublets (Figure 2.5b). These clusters include a rare
type Sst-Chodl (0.1%) previously identified in single cell RNA analysisza. This represents
the first time this population is recapitulated by single cell chromatin accessibility analysis.
While the identity and function of these subtypes require further experimental validation,
our results demonstrate the exquisite sensitivity of SnapATAC in resolving distinct

neuronal subtypes with only subtle differences in the chromatin landscape.

A key utility of single cell chromatin accessibility analysis is to identify regulatory
sequences in the genome. By pooling reads from nuclei in each major cluster (Figure
2.5a), cell-type specific chromatin landscapes can be obtained (Figure 2.5b and
Supplementary Methods). Peaks are determined in each cell type, resulting in a total of
373,583 unique candidate cis-regulatory elements. Most notably, 56% (212,730/373,583)
of these open chromatin regions cannot be detected from bulk ATAC-seq data of the

same brain region (Supplementary Methods). The validity of these additional open
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chromatin regions identified from scATAC-seq data are supported by several lines of
evidence. First, these open chromatin regions are only accessible in minor cell
populations (Figure S2.29a) that are undetectable in the bulk ATAC-seq signal. Second,
these sequences show significantly higher conservation than randomly selected genomic
sequences with comparable mappability scores (Figure S2.29c). Third, these open
chromatin regions display an enrichment for transcription factor (TF) binding motifs
corresponding to the TFs that play important regulatory roles in the corresponding cell
types. For example, the binding motif for Mef2c is highly enriched in novel candidate cis-
elements identified from Pvalb neuronal subtype (P-value = 1e-363; Figure S2.29d),
consistent with previous report that Mef2c is upregulated in embryonic precursors of Pv
interneuronsss. Finally, the new open chromatin regions tend to test positive in transgenic
reporter assays. Comparison to the VISTA enhancer databasess shows that enhancer
activities of 256 of the newly identified open chromatin regions have been previously
tested using transgenic reporter assays in ell.5 mouse embryos. Sixty five percent
(167/256; 65%) of them drive reproducible reporter expression in at least one embryonic
tissue, which was substantially higher than background rates (9.7%) estimated from
regions in the VISTA database that lack canonical enhancer marks7. Four examples are

displayed (Figure S2.29e).

SnapATAC identifies 294,304 differentially accessible elements between cell types
(Supplementary Methods and Figure 2.5e). Motif enrichment analysis (Figure 2.59)
and GREAT analysis (Figure 2.5f) then identify the master regulators and transcriptional

pathways active in each of the cell types. For instance, the binding motif for ETS-factor
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PU.1 is highly enriched in microglia-specific candidate CREs, motifs for SOX proteins are
enriched in Ogc-specific elements, and bHLH motifs are enriched in excitatory neurons-
specific CREs (Figure 2.5g). Interestingly, motifs for candidate transcriptional regulators,
including NUCLEAR FACTOR 1 (NF1), are also enriched in candidate CREs detected in
rare neuronal populations such as two inhibitory neuron subtypes (Lamp5.Ndnf and
Lamp5.Smad3). Motif for CTCF, a multifunctional protein in genome organization and
gene regulationss, is highly enriched in Sst-Chodl, indicating that CTCF may also play a
distinct role in neurogenesis. Finally, motifs for different basic-helix-loop-helix (bHLH)
family transcription factors, known determinants of neural differentiationss, show
enrichment for distinct Sst subtypes. For instance, E2A motif is enriched in candidate
CREs found in Sst.Myh8 whereas AP4 motif is specifically enriched in peaks found in
Sst.CbIn4, suggesting specific role that different bHLH factors might play in different

neuronal subtypes.

Unsupervised clustering of sSCATAC-seq datasets frequently requires manual annotation,
which is labor-intensive and limited to prior knowledge. To overcome this limitation,
SnapATAC provides a function to project new single cell ATAC-seq datasets to an
existing cell atlas to allow for supervised annotation of cells. First, the diffusion maps
algorithm is used to project the query cells to the low-dimension manifold pre-computed
from the reference cells (Supplementary Methods). In the joint manifold, a neighborhood-
based classifier is used to determine the cell type of each query cell based on the label

of its k nearest neighboring cells in the reference dataset (Supplementary Methods). The
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accuracy of this method is determined by five-fold cross validation using the mouse motor
cortex atlas. On average, 98% (+1%) of the cells can be correctly classified, suggesting

a high accuracy of the method (Figure 2.6a).

To demonstrate that SnapATAC could be applied to datasets generated from
distinct technical platforms, it is used to annotate 4,098 scATAC-seq profiles from mouse
brain cells generated using a droplet-based platform. After removing batch effect
introduced by different platforms using Harmony, the query cells are well mixed with the
reference cells in the joint diffusion maps embedding (Figure 2.30). The predicted cluster
labels are also consistent with the cell types defined using unbiased clustering analysis

(NMI=0.85, ARI=0.68; Figure 2.6b).

To investigate whether SnapATAC could recognize cell types in the query dataset
that are not present in the reference atlas, multiple query data sets are sampled from the
above mouse motor cortex dataset and a perturbation is introduced to each sampling by
randomly dropping a cell cluster. When this resulting query dataset is analyzed by
SnapATAC against the original cell atlas, the majority of the cells that are left out from the
original atlas are filtered out due to the low prediction score (Figure 2.31), again
suggesting that our method is not only accurate but also robust to the novel cell types in

the query dataset.
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2.4 Discussion

In summary, SnapATAC is a comprehensive bioinformatic solution for single cell
ATAC-seq analysis. The open-source software runs on regular hardware, making it
accessible to a broad spectrum of researchers. Through extensive benchmarking, we
have demonstrated that SnapATAC outperforms existing tools in sensitivity, accuracy,

scalability and robustness of identifying cell types in complex tissues.

SnapATAC differs from previous methods in at least seven aspects. First,
SnapATAC represents the only comprehensive solution for single cell ATAC-seq data
analysis to date. In addition to clustering analysis, SnapATAC provides preprocessing,
annotation, trajectory analysis, peak calling, differential analysis, batch effect correction
and motif discovery all in one package. Second, SnapATAC identifies cell types in an
unbiased manner without the need for population-level peak annotation, leading to
superior sensitivity for identifying rare cell types in complex tissues. Third, SnapATAC
employs the diffusion maps algorithm to identify cell types in heterogeneous tissues and
map cellular trajectories, which is ideally suited for the sparse and noisy scCATAC-seq
datasets. Fourth, with Nystrom sampling method, SnapATAC significantly reduces both
CPU and memory usage, enabling analysis of large-scale dataset of a million cells or
more. Fifth, SnapATAC not only integrates sSCATAC-seq with scRNA-seq dataset but also
provides a new method to predict promoter-enhancer pairing relations based on the
statistical association between gene expression and chromatin accessibility in single

cells. Sixth, our method achieves high clustering reproducibility using a consensus
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clustering approach. Finally, SnapATAC also enables supervised annotation of a new

SCATAC-seq dataset based on an existing reference cell atlas.

It is important to note that a different strategy has been used to overcome the bias
introduced by population-based peak annotations. This approach involves iterative
clustering, with the first round defining the “crude” clusters in complex tissues followed by
identifying peaks in these clusters, which are then used in subsequent round(s) of
clustering. However, several limitations still apply. First, the “crude” clusters represent the
most dominate cell types in the tissues; therefore, peaks in the rare populations may still
be underrepresented. Indeed, when applied to the 10X mouse brain dataset, this
approach is only able to reveal ~150,000 peaks in the adult mouse brain, less than half
of the total peaks defined in the mouse brain from a current study12. Second, using these
extended peaks as features for clustering does not improve the sensitivity of identifying
rare cell populations compared to that using population-defined peak list (Figure S2.32).
This is likely due to the fact that this method ignores the off-peak reads that contribute
significantly to cell type identification as demonstrated in this study. Third, this approach
requires multiple rounds of clustering, reads aggregation and peak calling, limiting its
application to large scale dataset. Finally, peak-based methods hinder multi-sample

integrative analysis where each sample has its own unique peak reference.

SnapATAC is applied to a new in-house dataset including 55,592 high quality
single nucleus ATAC-seq profiles from mouse secondary motor cortex, producing a single

cell atlas of candidate cis-regulatory elements for this mouse brain region. The cellular
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diversity identified by chromatin accessibility is at an unprecedented resolution and is
consistent with mouse neurogenesis and taxonomy revealed by single cell transcriptome
data. Besides characterizing the constituent cell types, SnapATAC identifies candidate
cis-regulatory sequences in each of the major cell types and infers the likely transcription
factors that regulate cell-type specific gene expression programs. Importantly, a large
fraction (56%) of the candidate cis-elements identified from the scATAC-seq data are not
detected in bulk analysis. While further experiments to thoroughly validate the function of
these additional open chromatin regions are needed, the ability for SnapATAC to uncover
cis-elements from rare cell types of a complex tissue will certainly help expand the catalog

of cis-regulatory sequences in the genome.
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2.7 Figures
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Figure 2.1. Schematic overview of SnapATAC analysis workflow. See main text for
description of each step.
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Figure 2.2. SnapATAC links distal regulatory elements to putative target genes. (a)
Joint t-SNE visualization of sSCATAC-seq and scRNA-seq datasets from peripheral blood
mononuclear cells (PBMC). Cells are colored by modality (left) and predicted cell types
(right). (b) Cell-type specific chromatin landscapes are shown together with the
association score between gene expression of C3AR1 and accessibility at its distal
regulatory elements. Dash lines highlight the significant gene-enhancer pairs. Yellow line
represents the SNP (rs2072449) that is associated with C3AR1 expressionzs. (C)
Distribution of the scATAC/scRNA association P-value for 456 cis-eQTL pairs (left) and
456 negative control pairs matched for distances (Supplementary Methods).
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Figure 2.3. SnapATAC constructs cellular trajectories for the developing mouse
brain. (a) Two-dimensional diffusion component visualization of a dataset that contains
4,259 single cell chromatin profiles from the hippocampus and ventricular zone in
embryonic mouse brain (E18) reveals two-branch differentiation trajectories from
progenitor cells to Granule Cells (DG) and Pyramidal Neurons (CA3) (left). The cellular
trajectory is determined by Slingshotso. (b) Gene accessibility score of canonical marker
genes is projected onto the diffusion component embedding. See also Figure S2.9b for
dentate gyrus cell lineage identified using single nucleus RNA-seq.

100



a c d
Accuracy Scalability Stability
1.004 .- — ! —— —— 6.0 -
n=10 H ' : _ & 0.95 {n=10
LT im g 5
0.75 + - s ¥ 0.90
_ : 8 40 _ 5. &
x 050 o @ 0854
< E <
. = 30 }
; k: 0.80
L fe LSA 2 20]e LSA : ‘ o LSA
H : ie cisTopic S cisTopic cisTopic
0 ! : e SnapATAC 1.0]® SnapATAC M 0.75 1 ® SnapATAC
1,000 2.,500 5,000 10,000 § § § § = 0,6-‘/\ <& S,
Sparsity Level (reads per cell) %, 2 %.
% B2
number of cells o
b
LSA cisTopic SnapATAC
75 o
&% 3 101 8 ' 101 3 1011021
- 5 02 @12 sme A 02 012 spe Re B ©2 @12 22
< /1 # 3013 & R 3013 8] MY “ 3013
8 o W * o4 014 RAK A T LT sng gy~ T es e
X W g *» .. e5e15 & boaEty ese1s [ Lad Sl 5 @15
g B » Gy ec et é saffs TR G AR 06 @16 z L‘gf"' o6 ®16
o o | VA (o ®7 OV - - & o7 017 ol & & o7 017
ﬁz & sstepy o 8 ®18 & “ $§5’<‘ 3 ®18 & 5 Big
S iy 9 &3 9 19 9 19
<E: 8 ®10 g e10 20 3 ®10 20
50 -25 0 25 50 50 -25 0 25 50 50 25 0 25 50

TSNE-1 TSNE-1

Figure 2.4. SnapATAC outperforms current methods in accuracy, sensitivity,
scalability and stability of identifying cell types in complex tissues. (a) A set of
simulated datasets are generated with varying coverage ranging from 1,000 to 10,000
reads per cell cells (Supplementary Methods). For each coverage, n=10 random
replicates are simulated, and clustering accuracy measurement is based on Adjusted
Rank Index (ARI). (b) T-SNE representation of an in-house dataset that contains 9,529
single nucleus ATAC-seq profiles from the mouse secondary motor cortex analyzed by
LSA (left), cisTopic (middle) and SnapATAC (right). The black circles highlight the cell
types only identified by SnapATAC. See also Figure S2.12 for gene accessibility score
at canonical marker genes and Figure S2.13 for pairwise comparison of three methods.
(c) Mouse datasets is sampled to different number of cells ranging from 20k to 1M. For
each sampling, we compared the CPU running time of different methods for
dimensionality reduction (Supplementary Methods). SnapATAC is the only method that
is able to process a dataset of one million (1M) cells. (d) A set of perturbations (n=5) are
introduced to the mouse dataset by down sampling to 90% of the original sequencing
depth. Clustering outcomes are compared between different down sampled datasets to
estimate the reproducibility.
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Figure 2.5. A high-resolution cis-regulatory atlas of mouse secondary motor cortex
(MOs). (a) T-SNE visualization of 20 cell types in MOs identified using SnapATAC. (b)
Fourteen GABAergic subtypes revealed by iterative clustering of 5,940 GABAergic
neurons (Sst, Pv and CGE). (c) Gene accessibility score of canonical marker genes for
GABAergic subtypes projected onto the t-SNE embedding. Marker genes were identified
from previous scRNA-seq analysisz4. (d) Genome browser view of aggregate signal for
each of the cell types. (e) k-means clustering of 294,304 differentially accessible
elements based on chromatin accessibility. (g) Gene ontology analysis of each cell
type predicted using GREAT analysiszs. (e) Transcription factor motif enriched in each
cell group identified using Homerzs.
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Figure 2.6. SnapATAC enables supervised annotation of new scATAC-seq dataset
using reference cell atlas. (a) MOs snATAC-seq dataset is split into 80% and 20% as
training and test dataset. A predictive model learned from the training dataset predicts
cell types on the test dataset of high accuracy (error rate = 2%) as compared to the
original cell type labels (right). (b) A predictive model learned from the reference dataset
- MOs (snATAC) — accurately predicts the cell types on a query dataset from mouse brain
— that is generated using a different technological platform, the 10X scATAC-seq. The t-
SNE embedding is inferred from the reference cell atlas (left) or generated by SnapATAC
in an unbiased manner from 10X mouse brain dataset (middle and right). Cells are
visualized using t-SNE and are colored by the cell types predicted by supervised
classification (middle) compared to the cluster labels defined using unsupervised
clustering (right).
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2.8 Supplementary Methods

Qutline of the SnapATAC Pipeline. Barcode Demultiplexing. Using a custom

python script, we first de-multicomplex FASTQ files by integrating the cell barcode into

the read name in the following format:

"@"+"barCOde"+":"+"Original_read_name",

Alignment & Sorting. Demulticomplexed reads are aligned to the corresponding
reference genome (i.e. mm10 or hg19) using bwa (0.7.13-r1126) in pair-end mode with
default parameter settings. Aligned reads are then sorted based on the read name using

samtools (v1.9) to group together reads originating from the same barcodes

Eragmentation & Filtering. Pair-end reads are converted into fragments and only

those that meet the following criteria are kept: 1) properly paired (according to SMA flag
value); 2) uniquely mapped (MAPQ > 30); 3) insert distance within [50-1000bp]. PCR
duplicates (fragments sharing exactly the same genomic coordinates) are removed for

each cell separately. Tn5 offset is then adjusted for each fragment.

Snap File Generation. Using the remaining fragments, we next generate a snap-

format (Single-Nucleus Accessibility Profiles) file using shaptools

(https://github.com/r3fang/SnapTools). A snap file is a hierarchically structured hdf5 file

that contains the following sessions: header (HD), cell-by-bin matrix (BM), cell-by-peak

matrix (PM), cell-by-gene matrix (GM), barcode (BD) and fragment (FM). HD session
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contains snap-file version, date, alignment and reference genome information. BD
session contains all unique barcodes and corresponding meta data. BM session contains
cell-by-bin matrices of different resolutions. PM session contains cell-by-peak count
matrix. GM session contains cell-by-gene count matrix. FM session contains all usable
fragments for each cell. Fragments are indexed based on barcodes that enables fast

retrieval of reads based on the barcodes.

Creating Cell-by-Bin Count Matrix. Using the resulting snap file, we next create

cell-by-bin count matrix. The genome is segmented into uniform-sized bins and single cell
ATAC-seq profiles are represented as cell-by-bin matrix with each element indicating
number of sequencing fragments overlapping with a given bin in a certain cell. In the

below example, a cell-by-bin matrix of 5kb resolution is added to demo.snap file.

Barcode Selection. We identify the high-quality barcodes based on two criteria: 1)
total number of unique fragment count [>1,000]; 2) fragments in promoter ratio — the
percentage of fragments overlapping with annotated promoter regions [0.2-0.8]. The
promoter regions used in this study are downloaded from 10X genomics for hgl9 and

mm10.

Doublets Detection & Removal Using Scrublet (Optional). To identify doublets from

single cell ATAC-seq datasets, we use doublets detection algorithm Scrubletzs. We have
found that cell-by-bin matrix can identify doublets with higher sensitivity and accuracy

than cell-by-peak matrix (Figure S2.2). Thus, we choose to use 5kb cell-by-bin matrix as
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input to identify doublets in single cell ATAC-seq dataset. Doublets detection is performed

in this study when noted.

Optimizing the Bin Size. To evaluate the effect of bin size to clustering

performance, we apply SnapATAC to three datasets namely 5K PBMC (10X), Mouse
Brain (10X) and MOs-M1 (snATAC). These datasets are generated by both plate and
droplet platforms using either cell or nuclei with considerably different depth, allowing us

to systematically evaluate the effect of bin size.

For each dataset, we first define the “landmark” cell types in a supervised manner.
First, we perform cisTopicis for dimensionality reduction and identify cell clusters using
graph-based algorithm Louvain4o with k=15. Second, we manually define the major cell
types in each dataset by examining the gene accessibility score at the canonical marker
genes. Third, clusters sharing the same marker genes are manually merged and those
failing to show unique signatures are discarded. In total, we define nine cell types in
PBMC 5K (10X), 14 types in Mouse Brain 5K (10X) and 14 types in MOs M1 (snATAC).
Among these cell types, 14 cell populations that account for less than 2% of the total

population are considered as rare cell populations (Figure 2.3a)

We next evaluate the performance of bin size using three metrics: 1) cluster
connectivity index (Cl) which estimate the degree of connectedness of the landmark cell
types; a lower CI represents a better separation; 2) coverage bias which estimates the

read depth distribution in the two-dimensional embedding space; 3) sensitivity to identify
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rare populations. Overall, we observe that regardless of sequencing depth and
technological platform, bin size of 5kb results in optimal separation of different cell types
(Figure 2.3b-c) and successfully identifies all rare cell populations in the dataset (Figure

2.3d). Therefore, we choose 5kb bins the optimal bin size in this study.

Matrix Binarization. We found the vast majority of the elements in the cell-by-bin
count matrix is “0”, indicating either closed chromatin or missing value. Among the non-
zero elements, some has abnormally high coverage (> 200) perhaps due to the alignment
errors. These items usually account for less than 0.1% of total non-zero items in the
matrix. Thus, we remove the top 0.1% items in the matrix to eliminate potential alignment

errors. We next convert the remaining non-zero elements to “1”.

Bin Filtering. We next filter out any bins overlapping with the ENCODE blacklist
downloaded from http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/. Second,
we remove reads mapped to the X/Y chromosomes and mitochondrial DNA. Third, we
observe that the bin coverage roughly obeys a log-normal distribution. We sort the bins
based on the coverage and filter out the top 5% to remove the invariant features such as
housekeeping gene promoters. For a dataset that has low coverage (average fragment
number less than 5,000), we find the log-normal distribution does not apply, therefore, we

do not perform coverage-based bin filtering.

Diffusion Maps Algorithm. We next apply diffusion maps algorithm, a nonlinear

dimensionality reduction technique that discovers low dimensional manifolds by
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performing harmonic analysis of a random walk in the data. A typical diffusion maps

algorithm contains the following steps:

Now, let us express the diffusion maps algorithm in matrix notation. Let X € R™™
be a dataset with n cells and m bins and X = {0,1}. For diffusion maps algorithm, the first
step is to compute a similarity matrix between the m high-dimensional data points to
construct the n-by-n pairwise similarity matrix using a kernel function k that is an

appropriate similarity metric. A popular choice is Gaussian kernel:

k(x“ )_ exp( [[2;— x]”)

where [|.|| is a distance metric to measure the distance between observations i and j.

Due the binarization nature of single cell ATAC-seq dataset, in this case, we
replace the Gaussian kernel with Jaccard coefficient which estimates the similarity

between cells simply based on ratio of overlap over the total union:

i 0%

jaccard(x;,x;) = [ Ux|

For instance, given two cells x; ={0,1,1,0} and x; ={1,0,1,1}, the Jaccard
coefficient is jaccard(xl-,xj) = 1/4. The Jaccard coefficient has the following properties

that meet the requirement of being a kernel function:
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jaccard(xi,xj) = jaccard(xj, x;) (Symmetric)

jaccard(x;,x;) = 0 (positivity preserving)

Using jaccard as a kernel function, we next form a symmetric kernel matrix J €

R™™ where each entry is obtained as J; ; = jaccard(x;, x;)

Theoretically, the similarity /; ; would reflect the true similarity between cell x; and
x;. Unfortunately, due to the high-dropout rate, this is not the case. If there is a high
sequencing depth for cell x; or x;, then J; ; tend to have higher values, regardless whether

cell x; and x; is actually similar or not.

This can be proved theatrically. Given 2 cells x; and x; and corresponding
coverage (number of “1”s) C; = ¥\ x; and C; = X" xj, let P, = C;/m and P; = C;/m be
the probability of observing a signal in cell x; and x; where m is the length of the vector.
Assuming x; and x; are two “random” cells without any biological relevance, in another
word, the “1”s in x; and x; are randomly distributed, then the expected Jaccard index

between cell x; and x; can be calculated simply as:

E = P X P;
Y7 P+ P — PP

because P; X P; > 0 (no empty cells allowed), then
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1
E.. =
Yoo A/Pi+1/P—1)

The increase of either P; or P; will result in an increase of E;; which suggests the

Jaccard similarity between cells is highly affected by the read depth.

To learn the relationship between the E;; and J;; from the data, we next fit a curve
to predict the observed Jaccard coefficient J;; as a function of its expected value E;; by

fitting a polynomials regression of degree 2 using R function Im.

Jij = Bo + B1Eij + B2E};

This fitting provided estimators of parameters {B,, 51, B2}. As such, we could use it

to normalize the observed Jaccard coefficient by:

Nij=Jij/ Bo + BrEij + B;Elzj

The fitting of the linear regression, however, can be very time consuming with a
large matrix. Here we test the possibility of performing this step on a random subset of y
cells in lieu of the full matrix. When selecting a subset of y cells to speed up the first step,
we do not select cells at random with a uniform sampling probability. Instead, we set the

probability of selecting a cell i to
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1
d(logso(x)

where d is the density estimate of all log10-transformed cell fragment count and x; is the
mean fragment count for cell i. Similar approach was first introduced in SCTranscformaz

to speed up the normalization of single cell RNA-seq.

We then proceed to normalize the full Jaccard coefficient matrix J € R™*™ using the
regression model learned from y cells and compared the results to the case where all
cells are used in the initial estimation step as well. We use the correlation of normalized
Jaccard coefficient to compare this partial analysis to the full analysis. We observe that
using as few as 2000 cells in the estimation gave rise to virtually identical estimates. We
therefore use 2,000 cells in the initial model-fitting step. To remove outliers in the
normalized similarity, we use the 0.99 quantile to cap the maximum value of the

normalized matrix.

Next, using normalized Jaccard coefficient matrix N , we form a row-normalized

matrix by:

A=DIND2

where D € R™" is a diagonal matrix which is composed as D;; = ¥; N; ;. This allows us

to compute the eigen decomposition
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A=UAUT

The columns ¢; € R™ of U € R™*™ are the orthonormal eigenvectors. The diagonal

matrix A € R™" has the eigenvalues 1; > 1, > --- = 0 in descending order as its entries.

Removing batch effects using Harmony. When the technical variability is at a larger

scale than the biological variability, we apply batch effect corrector — Harmony — to
eliminate such confounding factor. Given two datasets X = {X!, X2} generated using
different technologies, we first calculate the joint low-dimension manifold U = {U?l,U?}
using diffusion maps as described above. We next apply Harmonyz4 to U to regress out
batch effect, resulting in a new harmonized embedding U". This is implemented as a

function “runHarmony” in SnapATAC package.

Selection of Eigenvector and Eigenvalues. We next determine how many

eigenvectors to include for the downstream analysis. Here we use an ad hoc approach
for choosing the optimal number of components. We look at the scatter plot between
every two pairs of eigenvectors and choose the number of eigenvectors that start

exhibiting “blob”-like structure in which no obvious biological structure is revealed.

Nystrém Landmark Diffusion Map. The computational cost of the diffusion maps

algorithm scales exponentially with the increase of number of cells. For instance,

calculating and normalizing the pair-wise kernel Matrix N becomes computationally
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infeasible for large-scale dataset. To overcome this limitation, here we combine the
Nystrom method (a sampling technique) and diffusion maps to present Nystrom

Landmark diffusion map to overcome this limitation.

A Nystrom landmark diffusion maps algorithm includes three major steps: i)
sampling: sample a subset of K (K < N) cells from N total cells as “landmarks”. Instead
of random sampling, here we adopt a density-based sampling approach developed in
SCTransform to preserve the density distribution of the N original points; ii) embedding:
compute a diffusion map embedding for K landmarks; iii) extension: project the remaining
N — K cells onto the low-dimensional embedding as learned from the landmarks to create

a joint embedding space for all cells.

This approach significantly reduces the computational complexity and memory
usage given that K is considerably smaller than N. The out-of-sample extension (step iii)
further enables projection of new single cell ATAC-seq datasets to the existing reference
single cell atlas. This allows us to further develop a supervised approach to predict cell

types of a new single cell ATAC-seq dataset based on an existing reference atlas.

A key aspect of this method is the procedure according to which cells are sampled
as landmark cells, because different sampled landmark cells give different
approximations of the original embedding using full matrix. Here we employ the density-
based sampling as described above which preserves the density distribution of the

original points
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Let X € R™™ be a dataset with n cells and m variables (bins) and N € R™*™ be a
symmetric kernel matrix calculated using normalized Jaccard coefficient. To avoid
calculating the pairwise kernel matrix and performing eigen-decomposition against a big
matrix N € R™", we first sample k (k « n) landmarks without replacement. This breaks

down the original kernel matrix N € R™" into four components.

V= (o o)

in which N¥k € Rkxk is the pairwise kernel matrix between k landmarks and N*¥ €
R(=R)*k s the similarity matrix between (n — k) cells and k landmarks. Using N**, we

perform diffusion map to obtain the r-rank diffusion map embedding U** € R¥*" py:

Akk — (Dkk)—%(Nkk)(Dkk)—%

ARk = prkk gkk ik
where D*F € R¥* is a diagonal matrix which is composed as D/ = ¥ ; N .

Using N*¥ which estimates the similarity between n — k cells and k landmark cells,
we project the rest of n — k cells to the embedding previously obtained using k landmark

cells as:

Akv = (DRV)—%(NRV)(Dkk)—%
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where D*V € R(~R)*(n=k) js g diagonal matrix which is composed as D/ = ¥; N/¢.

Ukv — Akakk/Akk

The resulting U € R™=x" s the approximate r-rank low dimension
representation of the rest n — k cells. Combing U** and U* creates a joint diffusion map

embedding space for all cells:

Ukv

In the approximate joint r-rank embedding space U, we next create a k-nearest
neighbor (KNN) graph in which every cell is represented as a node and edges are drawn
between cells within k nearest neighbors defined using Euclidean distance. Finally, we
apply community finding algorithm such as Louvain (implemented by igraph package in
R) to identify the ‘communities’ in the resulting graph which represents groups of cells

sharing similar profiles, potentially originating from the same cell type.

Optimizing the Number of Landmarks. To evaluate the effect of number of

landmarks, we apply our method to a complex dataset that contains over 80k cells from
13 different mouse tissues. We employ the following three metrics to evaluate the
performance. First, using different number of landmarks (k) ranging from 1,000 to 10,000,

we compare the clustering outcome to the cell type label defined in the original study. The
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goal of this is to identify the “elbow” point that performance drops abruptly. Second, for
each sampling, we repeat for five times using different set of landmarks to evaluate
stability between sampling. Third, we spiked in 1% Patski cells to assess the sensitivity
of identifying rare cell types. We choose Patski cells because these cells were profiled

using the same protocol by the same groups to minimize the batch effect

We observe that using as few as 5,000 landmarks can largely recapitulate the
result obtained using 10,000 landmarks (Figure 2.6a), and 10,000 landmarks can achieve
highly robust embedding between sampling (Figure 2.6b) and successfully recover
spiked-in rare populations (Figure 2.6c¢) without showing batch effect between replicates
(Figure 2.6d). To obtain a reliable low-dimensional embedding, we use 10,000 landmarks
for all the analysis performed in this study. We next apply our method to another three
large-scale datasets (Figure 2.7). SnapATAC can identify substantial heterogeneity,

suggesting the generality of our method.

Ensemble Nystrom Method. Nystrém method is stochastic in its nature, different

sampling will result in different embedding and clustering outcome. To improve the
robustness of the clustering method, we next employ Ensemble Nystrom Algorithm which
combines a mixture of Nystrém approximation to create an ensemble representation.
Supported by theoretical analysis, this Ensemble approach has been demonstrated to
guarantee a convergence and in a faster rate in comparison to standard Nystrém method.

Moreover, this ensemble algorithm naturally fits within distributed computing
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environments, where their computational costs are roughly the same as that of the

standard Nystrom single sampling method.

We treat each approximation generated by the Nystrdém method using k landmarks
as an expert and combined p = 1 such experts to derive an improved approximation,

typically more accurate than any of the original experts.

The ensemble set-up is defined as follows. Given a dataset X € R™™ of n cells.
Each expert S; receives k landmarks randomly selected from matrix X using density-
based sampling approach without replacement. Each expert S, r € [1,p] is then used to
define the diffusion maps embedding U] € R™T" as described above. For each low-
dimension embedding L7] € R™", we create a KNN-graph as G;. Thus, the general form

of the approximation, G¢", generated by the ensemble Nystrom method is

cen — P iGi
G = wa
j=1

where u’ is the mixture weights that can be defined in many ways. Here we choose to
use the most straightforward method by assigning an equal weight to each of the KNN-
graph obtained from different samplings, u/ = 1/p,r € [1,p]. While this choice ignores
the relative quality of each Nystrom approximation, it is computational efficient and

already generates a solution superior to any one of the approximations used in the
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combination. Using the ensemble weighted KNN graph G¢", we next apply community

finding algorithm to identify cell clusters.

Visualization. We use the t-SNE implemented by FlI-tsne, Rtsne or UMAP

(umap_0.2.0.0) to visualize and explore the dataset.

Gene Accessibility Score. To annotate the identified clusters, SnapATAC

calculated the gene-body accessibility matrix ¢ using “calGmatFromMat” function in

SnapATAC packge where G, ; is the number of fragments overlapping with j-th genes in
i-th cell. G;; is then normalized to CPM (count-per-million reads) as G. The normalized

accessibility score is then smoothed using Markov affinity-graph based method:

GAt

(o)
1

where A is the adjacent matrix obtained from K nearest neighbor graph and t is number

of steps taken for Markov diffusion process. We set t = 3 in this study.

Read Aggregation & Peak Calling. After annotation, cells from the same cluster

are pooled to create aggregated signal for each of the identified cell types. This allows for
identifying cis elements from each cluster. MACS2 (version 2.1.2) is used for generating
signal tracks and peak calling with the following parameters: --nomodel --shift 100 --ext
200 --qval le-2 -B —SPMR. This can be done by “runMACS” function in SnapATAC

package.
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Motif Analysis. SnapATAC incorporates chromVAR to estimate the motif variability
and Homer for de novo motif discovery. This is implemented as function “runChromVAR”

and “runHomer” in SnapATAC package.

Identification of differentially accessible peaks. For a given group of cells C;, we

first look for their neighboring cells C; (|C;| = |C;|) in the diffusion component space as
“background” cells to compare to. If C; accounts for more than half of the total cells, we
use the remaining cells as local background. Next, we aggregate C; and C; to create
two raw-count vectors as V; and V;; .We then perform differential analysis between V,;
and V., using exact test as implemented in R package edgeR (v3.18.1) with BCV=0.1.

P-value is then adjusted into False Discovery Rate (FDR) using Benjamini-Hochberg
correction. Peaks with FDR less than 0.01 are selected as significant DARs. However,

the statically significance is under powered for small clusters.

GREAT analysis. SnapATAC incorporates GREAT analysis to infer the candidate
biological pathway active in each cell populations. This is implemented as function

‘runGREAT” SnapATAC package.

Integration with single cell RNA-seq. We use canonical correlation analysis (CCA)

embedded in Seurat V31s to integrate single cell RNA-seq and single cell ATAC-seq.
We first calculate the gene accessibility account at variable genes identified using

single cell RNA-seq dataset. This can be done using a function called
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‘createGmatFromMat” in SnapATAC package. Next, SnapATAC converts the snap
object to a Seurat v3 object using a function called “SnapToSeurat” in preparation for
integration. Different from integration method in Seurat, we use the diffusion maps
embedding as the dimensionality reduction method in the Seurat object. We next follow
the vignette in Seurat website
(https://satijalab.org/seurat/v3.0/atacseq_integration_vignette.html) to integrate these
two modalities. The cell type for sScATAC-seq is predicted using function “TransferData”

in Seurat V3.

Finally, for each single cell ATAC profile, we infer its gene expression profile by
calculating the weighted average expression profile of its nearest neighboring cells in
the single cell RNA-seq datasetis. By doing so, we create pseudo-cells that contain
information of both chromatin accessibility and gene expression profiles. The

imputation of gene expression profile is done by “TransferData” function in Seurat V3.

Linking distal elements to putative target genes. Using the “pseudo” cells, we

next sought to predict the putative target genes for regulatory elements based on the
association between expression of a gene and chromatin accessibility at its distal
elements. Given a gene G, we first identify its surrounding regulatory elements within 1MB
window flanking G. Let Y¢ be the imputed gene expression value for gene G among n
cells. We perform logistic regression using Y¢ as variable to predict the binary state for
each of peaks surrounding G. The idea behind using logistic regression is that if there is a

relationship between the gene expression (continuous variable) and chromatin
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accessibility (categorical variable), we should be able to predict chromatin accessibility
from the gene expression. Logistic regression does not make many of the key assumptions
such as normality of the continuous variables. In addition, since we only have one variable

(gene expression) for prediction every time, there is no problem of multicollinearity.

We next fit logistic regression between each of flanking peak and gene expression
using “glm” function in R with binomial(link="logit') as the family function. By doing so, we
obtain the regression coefficient g, and its corresponding P-value for each peak
separately. Here we used 5e-8, a standard P-value cutoff for human genome-wise
association study to determine the significant association. While this cutoff is less sample
or gene specific compared to more complicated methods such as permutation test, it is
computational efficient and already generates a reasonable set of gene-enhancer

pairings.

To evaluate the performance of our methods, we compare our prediction with cis-
eQTL derived from interferon-y and lipopolysaccharide stimulation of monocytes.
Significant cis-eQTL associations are downloaded from supplementary material in Fairfax
(2014). We filter cis-eQTL based on two criteria: 1) only cis-eQTLs that overlap with the
peaks identified in PBMC dataset are considered; 2) In addition, we only keep the cis-
eQTLs whose genes overlap with the variable genes determined by scRNA-seq. This

filtering reduced the cis-eQTL list to 456 hits.
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Next, we estimate the association for each of cis-eQTLs by preforming logistic
regression test as described above. To make a comparison, we derive a set of negative
pairs matched for the distance. For instance, given a SNP at 100kb upstream of its target

gene, we look for another pair that has the same distance but downstream to this gene.

Simulation of sScATAC-seq datasets. First, we download the alignment files (bam

files) for ten bulk ATAC-seq experiment from ENCODE. From each bam file, we simulate
1,000 single cell ATAC-seq datasets by randomly down sampling to a variety of
coverages ranging from 1,000 to 10,000 reads per cells. We next create a cell-by-bin
matrix of 5kb which is used for SnapATAC clustering. Merging peaks identified from each
bulk experiment, we create cell-by-peak matrix used for LSA, Cis-Topic, Cicero and
chromVAR for clustering. We repeat the sampling for n=10 times to estimate the variability

of the clustering.

Comparison of scalability. To compare the scalability between SnapATAC to

other methods, we next simulate multiple datasets of different number of cells ranging
from 20k to 1M. We simulate these datasets in the following manner. Using the 80k mouse
atlas dataset, we randomly sample this dataset to different number of cells ranging from
20k to 1M cells. For the sampling that has cells more than 80K, we sample with
replacement and introduce perturbation to each cell by randomly removing 1% of the “1”s
in each of the cells. This removes the duplicate cells and largely maintains the density of

the matrix.
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For each sampling, we then perform dimensionality reduction using LSA and
cisTopic and compare their CPU running time. Specifically, we monitor the running time
for 1) TF-IDF transformation and Singular Value Decomposition (SVD) for LSA, 2)
function “runModels” with topics = ¢(2, 5, 10, 15, 20, 25, 30, 35, 40) and “selectModel”

function in cisTopic. The time for matrix loading is not counted.

SnapATAC is implemented in the following way to allow processing large-scale
dataset. We apply SnapATAC to the sampled datasets using a custom R script. Given
1M cells, we first randomly split the 1M cells into 100 chunks with each containing 10K
cells. This can be done during the preprocessing by splitting the master bam file into
multiple small bam files and generating multiple “snap” files. We next randomly sample
10K cells from 1M cells as landmarks using density-based sampling approach as
described above. We next perform diffusion maps embedding to landmarks using function
‘runDiffusionMaps” in SnapATAC package. The “snap” object for landmarks is saved as
“rds” file to the disk. We then compute the low dimension embedding for each of the 10K
cells by projecting onto the diffusion maps embedding learned from the landmarks using
function “runDiffusionMapsExtension” in SnapATAC package. This streaming-like
process 1) avoids loading of the entire large cell matrix of 1M cells and 2) requires limited
memory for each processor, representing a symmetrical approach for analyzing very
large-scale datasets. The time for matrix loading and preprocessing is not counted for the
comparison. All the comparisons were tested on a machine with 5 AMD Operon (TM)

Processor 6276 CPUs.
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Projection of single cell ATAC-seq datasets to reference atlas. We reason that

landmark diffusion maps algorithm can also be extended to project new single cell ATAC-
seq datasets to a reference atlas. Given a query dataset Y € R*™ that contains [ query
cells with m bins and a reference dataset X € R™*™ with n reference cells of m bins. We
first randomly sample k=10,000 landmarks from X using density-based sampling as
described above. Next, we compute the pairwise similarity using normalized jaccard
coefficient for k landmarks as N¥* € R¥*k and obtain diffusion map manifold U* € R¥*",
We then compute N* € R™¥* which estimates the similarity between [ query cells and k
landmark cells, and then project the [ query cells to the embedding pre-computed for k

landmark cells as following:

AL = (DY 2(UR)(DR)

where D' € R is a diagonal matrix which is composed as D}; = ¥; N}; and D* € R**k

is a diagonal matrix which is composed as Df; = ¥; Nf;

Ul :AlUk/Ak

The resulting U! € R™" is the predicted low-dimension manifold for [ query cells.

In the joint embedding space [U*,U'], we next identify the mutual nearest

neighbors between query and landmark cells. For each cell i; € X* belonging to the

landmarks, we find the k.nearest (5) cells in the query dataset with the smallest distances
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to i;. We do the same for each cell in query cell dataset to find its k. nearest (5) neighbors
in the landmark dataset. If a pair of cells from each dataset is contained in each other’s
nearest neighbors, those cells are considered to be mutual nearest neighbors or MNN
pairs (or “anchors”). We interpret these pairs as containing cells that belong to the same
cell type or state despite being generated in both landmark and query cells. Thus, any
differences between cells in MNN pairs should theoretically represent the non-
overlapping cell types. Here we removed any query cells that failed to identify an MNN

pair correspondence in the reference dataset.

To make a classification of the remaining query cells according to the reference
dataset, we next apply the neighborhood-based classifier and wish to highlight the
pioneering work by Seurat V3. First, we score each anchor (or MNN pair) using shared
nearest neighbor (SNN) graph by examining the consistency of edges between cells in
the same local neighborhood as described in the original study. Second, we define a
weight matrix that estimates the strength of association between each query cell ¢, and
each landmark i. For each query cell ¢, we identify the nearest s landmarks in the
reference dataset in the joint diffusion maps space. Nearest anchors are then weighted
based on their distance to the cell ¢ over the distance to the s-th anchor cell. For each

cell c and anchor i, we compute the weighted distances as:

dist(c, a;)

 dist(c, aS))Sai

Dc,i =(1
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where dist(c,i) is the Euclidean distance in the joint diffusion maps embedding space
and S,; is the weight for the corresponding MNN pair (anchor). We then apply a Gaussian

kernel:

we set s = 50.

Let L € R*** be the binary label matrix for k landmarks with ¢ clusters. L;; = 1
indicates the class label for i-th landmark cell is j-th cluster. The row sum of L must be 1,
suggesting each landmark cell can only be assigned to one cluster label. We then

compute label predictions for query cells as P*:

pt=LwT

The resulting P! is a probability matrix within 0 and 1, P}J- indicates the probability

of a cell i belong to j cluster. Similarly, we infer the t-SNE position of query cells by

replacing L with t-SNE coordinates of reference points. It is important to note that the

127



distance between cells in the inferred t-SNE coordinate does not neccessarily reflect the

cell-to-cell relationship.

Tissue collection & nuclei isolation. Adult C57BL/6J male mice were purchased
from Jackson Laboratories. Brains were extracted from P56-63 old mice and immediately
sectioned into 0.6 mm coronal sections, starting at the frontal pole, in ice-cold dissection
media. The secondary motor cortex (MOs) region was dissected from the first three slices
along the anterior-posterior axis according to the Allen Brain reference Atlas
(http://mouse.brain-map.org/). Slices were kept in ice-cold dissection media during
dissection and immediately frozen in dry ice for posterior pooling and nuclei production.
For nuclei isolation, the MOs dissected regions from 15-23 animals were pooled, and two
biological replicas were processed for each slice. Nuclei were isolated as described in
previous studies, except no sucrose gradient purification was performed. Flow cytometry

analysis of brain nuclei was performed as described in Luo et al.

Tn5 transposase purification & loading. Tn5 transposase was expressed as an

intein chitin-binding domain fusion and purified using an improved version of the method
first described by Picelli et al. T7 Express lysY/l (C3013I, NEB) cells were transformed
with the plasmid pTXB1-ecTn5 E54K L372P (#60240, Addgene). An LB Ampicillin culture
was inoculated with three colonies and grown overnight at 37°C. The starter culture was
diluted to an OD of 0.02 with fresh media and shaken at 37°C until it reached an OD of
0.9. The culture was then immediately chilled on ice to 10°C and expression was induced

by adding 250 uM IPTG (Dioxane Free, C18280-13, Denville Scientific). The culture was
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shaken for 4 hours at 23°C after which cells were harvested in 2 L batches by
centrifugation, flash frozen in liquid nitrogen and stored at -80°C. Cell pellets were
resuspended in 20 ml of ice cold lysis buffer (20 mM HEPES 7.2-KOH, 0.8 M NaCl, 1 mM
EDTA, 10% Glycerol, 0.2% Triton X-100) with protease inhibitors (cOmplete, EDTA-free
Protease Inhibitor Cocktail Tablets, 11873580001, Roche Diagnostics) and passed three
times through a Microfluidizer (lining covered with ice water, Model 110L, Microfluidics)
with a 5 minute cool down interval in between each pass. Any remaining sample was
purged from the Microfluidizer with an additional 25 ml of ice-cold lysis buffer with
protease inhibitors (total lysate volume ~50ml). Samples were spun down for 20 min in
an ultracentrifuge at 40K rpm (L-80XP, 45 Ti Rotor, Beckman Coulter) at 4°C. ~45 ml of
supernatant was combined with 115 ml ice cold lysis buffer with protease inhibitors in a
cold beaker (total volume = 160 ml) and stirred at 4°C. 4.2ml of 10% neutralized
polyethyleneimine-HCI (pH 7.0) was then added dropwise. Samples were spun down
again for 20 min in an ultracentrifuge at 40K rpm (L-80XP, 45 Ti Rotor, Beckman Coulter)
at 4°C. The pooled supernatant was loaded onto ~10ml of fresh Chitin resin (S6651L,
NEB) in a chromatography column (Econo-Column (1.5 x 15 cm), Flow Adapter:
7380015, Bio-Rad). The column was then washed with 50-100 ml lysis buffer. Cleavage
of the fusion protein was initiated by flowing ~20ml of freshly made elution buffer (20 mM
HEPES 7.2-KOH, 0.5 M NaCl, 1 mM EDTA, 10% glycerol, 0.02% Triton X-100, 100mM
DTT) onto the column at a speed of 0.8ml/min for 25 min. After the column was incubated
for 63 hrs at 4°C, the protein was recovered from the initial elution volume and a
subsequent 30 ml wash with elution buffer. Protein-containing fractions were pooled and

diluted 1:1 with buffer [20 MM HEPES 7.2-KOH,1 mM EDTA, 10% glycerol, 0.5mM TCEP)
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to reduce the NaCl concentration to 250mM. For cation exchange, the sample was loaded
onto a 1ml column HiTrap S HP (17115101, GE), washed with Buffer A (10mM Tris 7.5,
280 mM NacCl, 10% glycerol, 0.5mM TCEP) and then eluted using a gradient formed using
Buffer A and Buffer B (10mM Tris 7.5, 1M NaCl, 10% glycerol, 0.5mM TCEP) (0% Buffer
B over 5 column volumes, 0-100% Buffer B over 50 column volumes, 100% Buffer B over
10 column volumes). Next, the protein-containing fractions were combined, concentrated
via ultrafiltration to ~1.5 mg/mL and further purified via gel filtration (HiLoad 16/600
Superdex 75 pg column (28989333, GE)) in Buffer GF (100mM HEPES-KOH at pH 7.2,
0.5 M NaCl, 0.2 mM EDTA, 2mM DTT, 20% glycerol). The purest Tn5 transposase-
containing fractions were pooled and 1 volume 100% glycerol was added to the

preparation. Tn5 transposase was stored at -20°C.

To generate Tn5 transposomes for combinatorial barcoding assisted single
nuclei ATAC-seq, barcoded oligos were first annealed to pMENTSs oligos (95 °C for
5 min, cooled to 14 °C at a cooling rate of 0.1 °C/s) separately. Next, 1 ul barcoded
transposon (50 uM) was mixed with 7 ul Tn5 (~7 uM). The mixture was incubated on
the lab bench at room temperature for 30 min. Finally, T5 and T7 transposomes were
mixed in a 1:1 ratio and diluted 1:10 with dilution buffer (50 % Glycerol, 50 mM Tris-
HCI (pH=7.5), 100 mM NaCl, 0.1 mM EDTA, 0.1 % Triton X-100, 1 mM DTT). For
combinatorial barcoding, we used eight different T5 transposomes and 12 distinct T7

transposomes, which eventually resulted in 96 Tn5 barcode combinations per sample.
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Bulk ATAC-seqg data generation. ATAC-seq was performed on 30,000-50,000

nuclei as described previously with modifications. Nuclei were thawed on ice and pelleted
for 5 min at 500 x g at 4 °C. Nuclei pellets were resuspended in 30 ul tagmentation buffer
(36.3 mM Tris-acetate (pH = 7.8), 72.6 mM K-acetate, 11 mM Mg-acetate, 17.6 % DMF)
and counted on a hemocytometer. 30,000-50,000 nuclei were used for tagmentation and
the reaction volume was adjusted to 19 pl using tagmentation buffer. After addition of 1
pul TDEL (lllumina FC-121-1030), tagmentation was performed at 37°C for 60 min with
shaking (500 rpm). Tagmented DNA was purified using MinElute columns (Qiagen), PCR-
amplified for 8 cycles with NEBNext® High-Fidelity 2X PCR Master Mix (NEB, 72°C 5
min, 98°C 30 s, [98°C 10 s, 63°C 30 s, 72°C 60 s] x 8 cycles, 12°C held). Amplified
libraries were purified using MinElute columns (Qiagen) and SPRI Beads (Beckmann
Coulter). Sequencing was carried out on a NextSeg500 using a 150-cycle kit (75 bp PE,

[llumina).

Bulk ATAC-seq data analysis. ATAC-seq reads were mapped to reference

genome mm10 using BWA and samtools version 1.2 to eliminate PCR duplicates and
mitochondrial reads. The paired end read ends were converted to fragments. Using
fragments, MACS2 version 2.1.2 was used for generating signal tracks and peak calling

with the following parameters: --nomodel --shift 100 --ext 200 --qval 1e-2 -B —SPMR.

Single-nucleus ATAC-seq data generation. Combinatorial ATAC-seq was

performed as described previously with modifications. For each sample two biological

replicates were processed. Nuclei were pelleted with a swinging bucket centrifuge (500 x
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g, 5 min, 4°C; 5920R, Eppendorf). Nuclei pellets were resuspended in 1 ml nuclei
permeabilization buffer (5 % BSA, 0.2 % IGEPAL-CA630, 1mM DTT and cOmpleteTM,
EDTA-free protease inhibitor cocktail (Roche) in PBS) and pelleted again (500 x g, 5 min,
4°C; 5920R, Eppendorf). Nuclei were resuspended in 500 pL high salt tagmentation buffer
(36.3 mM Tris-acetate (pH = 7.8), 72.6 mM potassium-acetate, 11 mM Mg-acetate, 17.6%
DMF) and counted using a hemocytometer. Concentration was adjusted to 4500 nuclei/9
ul, and 4,500 nuclei were dispensed into each well of a 96-well plate. Glycerol was added
to the leftover nuclei suspension for a final concentration of 25 % and nuclei were stored
at -80°C. For tagmentation, 1 uyL barcoded Tn5 transposomes were added using a
BenchSmart™ 96 (Mettler Toledo), mixed five times and incubated for 60 min at 37 °C
with shaking (500 rpm). To inhibit the Tn5 reaction, 10 uL of 40 mM EDTA were added to
each well with a BenchSmart™ 96 (Mettler Toledo) and the plate was incubated at 37 °C
for 15 min with shaking (500 rpm). Next, 20 yL 2 x sort buffer (2 % BSA, 2 mM EDTA in
PBS) were added using a BenchSmart™ 96 (Mettler Toledo). All wells were combined
into a FACS tube and stained with 3 uM Draq7 (Cell Signaling). Using a SH800 (Sony),
20 nuclei were sorted per well into eight 96-well plates (total of 768 wells) containing
10.5 yL EB (25 pmol primer i7, 25 pmol primer i5, 200 ng BSA (Sigma). Preparation of
sort plates and all downstream pipetting steps were performed on a Biomek i7 Automated
Workstation (Beckman Coulter). After addition of 1uL 0.2% SDS, samples were
incubated at 55 °C for 7 min with shaking (500 rpm). We added 1 pL 12.5% Triton-X to
each well to quench the SDS and 12.5 yL NEBNext High-Fidelity 2x PCR Master Mix
(NEB). Samples were PCR-amplified (72 °C 5min, 98 °C 30s, (98 °C 10s, 63 °C 30s,

72 °C 60s) x 12 cycles, held at 12 °C). After PCR, all wells were combined. Libraries

132



were purified according to the MinElute PCR Purification Kit manual (Qiagen) using a
vacuum manifold (QIAvac 24 plus, Qiagen) and size selection was performed with SPRI
Beads (Beckmann Coulter, 0.55x and 1.5x). Libraries were purified one more time with
SPRI Beads (Beckmann Coulter, 1.5x). Libraries were quantified using a Qubit fluorimeter
(Life technologies) and the nucleosomal pattern was verified using a Tapestation (High
Sensitivity D1000, Agilent). The library was sequenced on a HiSeq2500 sequencer
(Ilumina) using custom sequencing primers, 25% spike-in library and following read

lengths: 50 + 43 + 40 + 50 (Readl + Index1 + Index2 + Read2).
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2.9 Supplementary Figures
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Figure S2.1. Overview of SnapTools workflow. (a) Demultiplexing: SnapTools first
demultiplexed the fastq files by adding the cell barcodes to the beginning of each read
name; Pre-processing: raw sequencing reads were aligned to the reference genome
using BWA followed by filtration of erroneous alignments. A snap file was generated to
store indexed reads and multiple cell matrices including cell-by-peak, cell-by-gene and
cell-by-bin matrix. (b) Running time comparison between SnapTools and alternative
method — cellRanger for alignment and preprocessing. Both methods were tested on a
machine with 10 AMD Opteron (TM) Processor 6276 CPUs using 10K PBMC dataset
(10X v1) from 10X genomics.
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Figure S2.2. SnapATAC removes putative doublets using Scrublet. (a) T-SNE
representation of a dataset (hgmm_1k 10X) that contained 1,000 human (GM12878) and
mouse (A20) cells. Cells are colored by species determined based on the alignment ratio
between human and mouse genome. Orange: A20; blue: GM12878; green: putative
doublets. (b) Distribution of doublet score for putative doublets and simulated doublets
estimated using Scrublet. (c) Doublets are predicted using cell-by-peak and cell-by-bin
matrix separately. Venn diagram show the overlap between Scrublet-predicted doublets
using peak or bin matrix and doublets identified based on alignment ratio. (d) Doublets
scores projected onto the UMAP embedding.
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Figure S2.3. Choosing the optimal bin size. (a) UMAP visualization of landmark cell
types identified in three benchmarking datasets. UMAP embedding was computed using
cisTopic and cell types were manually annotated based on the gene accessibility score
at canonical marker genes (Supplementary Methods). See also Figure S2.12, S2.14,
S2.16 for corresponding gene accessibility score plot. Blue dash line highlights the rare
cell populations that account for less than 2% of the total population. (b) Relationship
between connectivity index (Cl) and bin sizes. Connectivity index were calculated
between landmark cell types in the reduced decimation using function “connectivity” in R
package “clv’. A lower Cl indicates a better separation of landmark cell types. (c) UMAP
representation of three benchmarking datasets generated using SnapATAC using 5kb
bin size. Cells colored by read depth to illustrate the sequencing depth effect. (d) Cells
are colored by cluster labels identified by SnapATAC.

136



Cl

UMAP-2

8000
6000
4000
2000
1000

UMAP-2

5K PBMC (10X)

CD14+ Mono

wc sl
S

f””
“'Dendritic

Bcell
CD 8 Naive
Double negative

NK & \Y

CD4 Naive

2

CD4 Memory

UMAP-1

5K PBMC (10X)

>

Cl

5]
=
o

00s

-
=
o

@0k

bin size

5K PBMC (10X)
(5kb bin)

PI0S

UMAP-2

UMAP-1

5K PBMC (10X)
(5kb bin)

LU
h/ pDC

) NK

5

g
v-'Dendritic

UMAP-1

Mouse Brain (10X)

MOs M1 (snATAC)

w0
e % o
Mgc & Asc - Mac
o | asc o na MGE @
sl T - 4 Meis2 L [Asc o NP
= PR R = |®. (Yo
; MGE we‘ A > ser G LecT
LBIT 2PT 4 :
. -
L6.oT NP TR AP L
2 LSPT L51Ta
UMAP-1 UMAP-1
Mouse Brain (10X) MOs M1 (shATAC)
2000 8000 {
16001 6000 - \\v/
1200] — 4000 1
] ) |
800+ A 2000 | A
400: 1000 {
0 0:
wm - wm - W [4)] = (%) — w
8 & & 28 2 8 & & 2 8
o o [=2 o
bin size bin size
Mouse Brain (10X) MOs M1 (snATAC)
(5kb bin) (5kb)
a¥ o
o o
< 4 <
= =
= =
g min E min
UMAP-1 UMAP-1
Mouse Brain (10X) MOs M1 (snATAC)
(5kb bin) (5kb bin)
. CGE *L5PT
< NP
MGE / ,
o al e £ =
S| &7 sl
= Q -~ = o
S| LspT S |ceeE” fope
Y - s
one SN
S aMeis2
UMAP-1 UMAP-1

* blue circles highlight rare cell populations account for less than 2% of total population

137



Mouse Brain (10X) MOs M1 (snATAC) PFC (sciATAC)

SnapATAC (bfore norm)
UMAP-2
L
UMAP-2
UMAP-2

log(reads)

U max
min

b UMAP-1 UMAP-1 UMAP-1

Mouse Brain (10X) MOs M1 (snATAC) PFC (sciATAC)

L3

SnapATAC
UMAP-2
UMAP-2
UMAP-2

log(reads)

u max
min

UMAP-1 UMAP-1 UMAP-1

Mouse Brain (10X) MOs M1 (SnATAC) PFC (SCIATAC)

£

cisTopic
UMAP-2
UMAP-2
UMAP-2

log(reads)

u max
min

L4

UMAP-1 UMAP-1 UMAP-1

Mouse Brain (10X) MOs M1 (snATAC) PFC (sciATAC)

»

LSA
UMAP-2
UMAP-2
UMAP-2

g
log(reads)

U max
min

UMAP-1 UMAP-1 UMAP-1

Figure S2.4. SnapATAC is robust to sequencing depth. Two dimensional UMAP
representation of three benchmarking datasets analyzed by four methods (a) SnapATAC
without normalization; (b) SnapATAC with normalization; (c) cisTopic and (d) Latent
Sematic Analysis (LSA). Cells are color by log-scaled read depth.
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Figure S2.5. SnapATAC is robust to other biases. Potential bias in single cell ATAC-
seq dataset projected onto the UMAP visualization generated using different analysis
methods (a) SnapATAC (b) cisTopic and (c) LSA. Duplicate: percentage of fragments
that are PCR duplicates. TSS: percentage of fragments overlapping or are within 1kb of
a TSS. TSS position is based on the GENECODE V28 (Ensemble 92). DNase: the
percentage of fragments overlapping a master DNase peak list. The DNase peak list is
created by combining all ENCODE1 DNase peaks from hg19. Blacklist: the percentage of
fragments overlapping with the ENCODE blacklist. FRiP: the percentage of fragments
overlapping with the peaks defined from the aggregate signal. Mapping: the percentage
of fragments that are uniquely mapped. chrM: the percentage of fragments mapped to
mitochondria DNA.
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Figure S2.6. Nystrom sampling improves the scalability without sacrificing the
performance. (a) A line plot comparing the performance of clustering using various
sampling parameters. The performance is evaluated using Adjusted Rank Index (ARI).
SnapATAC was applied to the mouse atlas dataset that contained over 80k cells using
different number of landmark cells (k) ranging from 1k to 10k. For each k, we performed
clustering for n=5 times using different sets of randomly selected landmarks. (b) A line
plot comparing the stability of clustering results between five samplings (pairwise
comparison n=10). (c) To evaluate the sensitivity of identifying rare cell types, we spiked
in 1% mouse Pastki cells generated using the same protocol in Cusanovich 20155 and
this rare cell population was recapitulated using 10,000 landmarks (right). (d) Two-
dimensional t-SNE representation of 80,000 mouse atlas cells colored by cluster labels
identified using SnapATAC (left) and biological replicates (right).
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Figure S2.7. SnapATAC delineates cellular heterogeneity in published large-scale
SCATAC-seq datasets. Using 10,000 landmarks, SnapATAC is applied to three recently
published large-scale scCATAC-seq datasets and reveals substantial heterogeneity in the
adult mouse braini2 (a), human bone marrow:2 (b) and BCC TMEi3 (c). Harmony is
applied when analyzing human bone marrowiz2 (b) and BCC TMEui3 (c) because batch
effect was observed and reported in these datasets in the original study.
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Figure S2.8. SnapATAC predicts gene and enhancer pairing by integrating
SCATAC-seq and scRNA-seq. (a) Prediction score distribution for single cell ATAC-seq
(5K PBMC 10X) by Seurat (left) and SnapATAC (right). When predicting the cell type for
SCATAC-seq using corresponding scRNA-seq dataset (10K PBMC 10X), each cell in
SCATAC-seq was assigned with a prediction score indicating the confidence of the
prediction. It ranges from 0 to 1, a higher score indicates a higher confidence. (b)
Prediction score distribution for SnapATAC on 15K PBMC scATAC-seq. (c) Distance
decay curve for the association (-logPvalue) between regulatory elements and the TSS

of their putative target genes.
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Figure S2.9. SnapATAC constructs cellular trajectories for the developing mouse
brain. (a) Diffusion component representation of a dataset that contained 4,259 single
cell ATAC-seq profiles from the hippocampus and ventricular zone in embryonic mouse
brain (E18) revealed differentiation trajectories from progenitor cells to Granule Cells (DG)
and Pyramidal Neurons (CA3) (left). Gene accessibility score at canonical differentiation
marker genes were projected onto the diffusion components. The lineage was defined
using Slingshot. (b) T-SNE representation of 1,944 single nucleus gene expression
profiles from hippocampus reveals Dentate Gyrus cell lineage, highly similar with result
obtained using sCATAC-seq in (a). Figures were modified and adopted from Rosenberg
201829.
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Figure S2.10. Evaluation of clustering accuracy of SnapATAC relative to alternative
methods on simulated datasets. T-SNE visualization of clustering results on 1,000
simulated cells sampled from 10 bulk ATAC-seq datasets (see Supplementary Methods
for the simulation) analyzed by five different methods — chromVAR14, LSAs, Cicero17, Cis-
Topicis and SnapATAC. Clustering results are compared to the original cell type label
and the accuracy is estimated using Normalized Mutual Index (nmi). Mono: monocyte;
Mega: megakaryocyte; GMPC: granulocyte monocyte progenitor cell; MPC:
megakaryocyte progenitor cell; NPT: neutrophil; G1E: G1E; T cell: regulatory T cell;
MEPC: megakaryocyte-erythroid progenitor cell; HSC: hematopoietic stem cell.
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Figure S2.11. Evaluation of clustering accuracy on published single cell ATAC-seq
datasets. SnapATAC (left), CisTopic (middle) and LSA (right) clustering performance on
single cell ATAC-seq dataset from ten human cell lines generated using Fluidigm C1
platformis. (a) Clustering results are visualized using t-SNE and cells are colored by
cluster labels identified by each of analysis methods. (b) T-SNE visualization of the
human cells colored by the cell type labels. Clustering accuracy of each method is
estimated by comparing the predicted clustering labels to the cell type labels. Blast: acute
myeloid leukemia blast cells; LSC: acute myeloid leukemia leukemic stem cells; LMPP:
lymphoid-primed multipotent progenitors; Mono: monocyte; HL60: HL-60 promyeloblast
cell line; TF1: TF-1 erythroblast cell line; GM: GM12878 lymphoblastoid cell line; BJ:
human fibroblast cell line; H1: H1 human embryonic stem cell line.
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Figure S2.12. Gene accessibility score of canonical marker genes projected onto t-
SNE embedding of mouse secondary motor cortex (MOs-M1) snATAC-seq dataset
to guide the cluster annotation. T-SNE is generated using SnapATAC; cell type specific
marker genes were defined from previous single cell transcriptomic analysis in the adult
mouse brainz4; gene accessibility score is calculated using SnapATAC (Supplementary
Methods).
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Figure S2.13. Evaluation of clustering sensitivity on in-house mouse secondary
motor cortex dataset. Three methods (cisTopic, LSA and SnapATAC) were used to
analyze a dataset that contained ~10k single nucleus ATAC-seq profiles from the mouse
secondary motor cortex. Pairwise comparison of the clustering results is shown by
projecting the cluster label identified using one method onto the t-SNE visualization
generated by another method (cluster vs. visualization). Black dash line circles highlight
the rare pollutions (Sst, Pv, L6b and L6.CT) that were only identified by SnapATAC.
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Figure S2.14. Gene accessibility score of canonical marker genes projected onto t-
SNE embedding for a 10X scATAC-seq dataset of the mouse brain to guide the
cluster annotation. T-SNE is generated using SnapATAC; cell type specific marker
genes is defined from previous single cell transcriptomic analysisss; gene accessibility
score is calculated using SnapATAC (Supplementary Methods).
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Figure S2.15. Evaluation of clustering sensitivity on a 10X scATAC-seq dataset
from the Mouse Brain. Three methods (cisTopic, LSA and SnapATAC) were used to
analyze a dataset that contained ~5k single cell ATAC-seq profiles from the adult mouse
brain. Pairwise comparison of the clustering results is shown by projecting the cluster
label identified using one method onto the t-SNE visualization generated by another
method (cluster vs. visualization). Black dash line circles highlight the rare pollutions (Sst,
Pv, Car3, End and Smc) that were only identified by SnapATAC.
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Figure S2.16. Gene accessibility score of canonical marker genes projected onto
the t-SNE embedding from 5K PBMC 10X dataset to guide the annotation of the
clusters. T-SNE is generated using SnapATAC; cell type specific marker genes are
defined from previous single cell transcriptomic analysis; gene accessibility score is
calculated using SnapATAC (Supplementary Methods).
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Figure S2.17. Evaluation of clustering sensitivity on a 5K PBMC 10X dataset. Three
methods (cisTopic, LSA and SnapATAC) were used to analyze a dataset that contains
~5k single cell ATAC-seq profiles from PBMC. Pairwise comparison of the clustering
results is shown by projecting the cluster label identified using one method onto the t-
SNE embedding generated by another method (cluster vs. visualization). Dash-line
circles highlight the rare pollutions (Pre-B and B cell progenitor) that are only
distinguished by SnapATAC.
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Figure S2.18. Off-peak reads can be used to distinguish different cell types. (a-c)
SnapATAC clustering result on three benchmarking datasets using all bins versus
clustering result only using bins that are not overlapped with peaks.
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Figure S2.19. Off-peak reads reflect higher-order chromatin structure. At 500kb bin
resolution, profile of compartments identified using Hi-C32 in GM12878 overlaid the
density of “off-peak” reads for 314 cells from GM12878 10X scATAC-seq library.
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Figure S2.20. SnapATAC is robust to technical variation. Two-dimensional t-SNE
visualization of four benchmarking datasets generated using SnapATAC. Cells are color
by cluster label (left) and sample label (right). (a) 15k PBMC (10X) — a combination of two
datasets (PBMC 5k and 10k) publicly available from 10X genomics. (b) MOs (snATAC) —
an in-house dataset that contains two biological replicates from secondary motor cortex
in the adult mouse brain generated using single nucleus ATAC-seq. (c) Mouse Atlas
(Cusanovich 2018) — a published dataset that contains over 80K cells from 13 different
mouse tissues generated using multiplexing single cell ATAC-seq. (d) Mouse Brain
(Lareau dscATAC) — a published dataset that contains 46,652 cells from 8 samples in the
adult mouse brain generated using BioRad droplet-based single cell ATAC-seq.
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Figure S2.21. SnapATAC eliminates batch effect using Harmony. The joint UMAP
visualization of two datasets of mouse brain generated using combinatorial indexing
single nucleus ATAC-seq (MOs-M1 snATAC) and droplet-based platform (Mouse Brain
10X) before (a) and after (b) performing batch effect correction using Harmony.
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Figure S2.22. Single nucleus ATAC-seq datasets are reproducible between
biological replicates. (a) lllustration of dissection. Posterior view of three 0.6 mm coronal
slices from which the secondary motor cortex (MOs) was dissected. The right side on
each image depicts the corresponding view from the Allen Brain Atlas. The left side
correspond to the Nissl staining of the posterior side of each slice. The MOs region was
manually dissected according to the dashed lines on each slice and following the MOs as
depicted in plates 27, 33, and 39 of the Allen Brain Atlas (left side images in figure). Each
slice contains two biological replicates named as Al, A2, M1, M2, P1 and P2 (A: Anterior;
M: Middle; P: Posterior). In this study, A1, M1 and P1 is combined as replicate 1 and A2,
M2 and P2 are combined as replicate 2. (b) Genome-browser view of aggregate signal
for two biological replicates. (c) Pearson correlation of count per million (CPM) at peaks
between two replicates. (d) Insert size distribution and (e) TSS enrichment score for two
biological replicates.
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Figure S2.23. Barcode selection of MOs. (a) Cells of unique fragments within the range
of 1,000-100,000 and fragments in promoter ratio within the range of 0.2-0.7 were
selected. This resulted in 30,409 and 30,205 nuclei for two replicates. (b) Putative
doublets were identified using Scrublets, which predicted 2,555 (8.4%) and 2,467 (8.9%)
nuclei to be doublets for each replicate. The predicted doublet ratio is similar to the
theoretical calculation of doublet ratio for multiplexing single cell ATAC-seq experiments,r.
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Figure S2.24. Consensus clustering of MOs. (a) Five clustering results were generated
using SnapATAC with different set of landmarks (10,000). (b) These five clustering
solutions were combined to create a consensus clustering which identified 20 clusters in

MOs (Supplementary Methods).
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Figure S2.25. MOs clustering result is reproducible between biological replicates.
(a-b) T-SNE visualization of cells from two biological replicates. (c) The cluster
composition is highly reproducible between two biological replicates (r=0.99; P-value <
le-22); (d) T-SNE visualization of cells with color scaled by sequencing depth.
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Figure S2.26. Gene accessibility score of canonical marker genes projected onto
MOs t-SNE embedding to guide the cluster annotation. T-SNE is generated using
SnapATAC for MOs; cell type specific marker genes was defined from previous single
cell transcriptomic analysis in adult mouse brainzs; gene accessibility score is calculated
using SnapATAC (Supplementary Methods) and projected to the t-SNE embedding.
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Figure S2.27. lterative clustering identifies 17 GABAergic neuronal subtypes. (a)
Sub-clustering of 5,940 GABAergic neurons identified 17 distinct cell clusters. (b) Cluster
composition was highly reproducible between two biological replicates. (c) TSNE
visualization of 5,940 GABAergic neurons colored by cell types identified in the initial
clustering (shown in Figure 2.5a). Black circles mark clusters that are potential doublets,
a mixture of multiple cell types. (d) TSNE plot of GABAergic neurons colored by

sequencing depth.
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Figure S2.28. Gene accessibility score of marker genes projected onto t-SNE
embedding from GABAergic neurons to guide the cluster annotation. lterative
clustering is performed against GABAergic neurons to identify subtypes. Twenty eight cell
type specific marker genes were defined from previous single cell transcriptomic analysis
in adult mouse brainss; gene accessibility score is calculated using SnapATAC
(Supplementary Methods).
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Figure S2.29. SnapATAC uncovers novel candidate cis-regulatory elements in rare
cell types. (a) Genome browser view of 20Mb region flanking gene Vip. Dash line
highlight five regulatory elements specific to Vip subtypes that are under-represented in
the conventional bulk ATAC-seq signal. (b) Over fifty percent of the regulatory elements
identified from 20 major cell populations are not detected from bulk ATAC-seq data. (c)
Sequence conservation comparison between the new elements and randomly chosen
genomic regions. (d) Top seven motifs enriched in Pv-specific new elements. (f)
Examples of four new elements that were previously tested positive in transgenic mouse

forebraimn

@

assays and reported in the VISTA database.
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Figure S2.30. Joint diffusion maps embedding for query (Mouse Brain 10X) and
reference dataset (MOs snATAC). The query dataset (10X) is projected onto the
diffusion component (DC) space precomputed for the reference dataset (SnATAC). Batch
effect is corrected using Harmony. Pairwise plot of the first four diffusion components
(DCs) in which cells are colored by dataset - red for query cells (Mouse Brain 10X) and
black for reference cells (MOs snATAC).
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Figure S2.31. SnapATAC is robust for supervised annotation of datasets containing
cell types missing in the reference atlas. (a) Two-dimensional t-SNE visualization of
the reference dataset MOs (SnATAC). (b) A five-fold cross validation is performed to this
reference dataset. For each fold, we introduce perturbation to the 80% training dataset
by randomly dropping one cell type (Asc, Mgc, L2/3b, CGE and L6.1T). We then predict
on the 20% test dataset using the model learned from the perturbed training dataset. The
prediction accuracy for each fold is shown in (b) and cell type removed from the training

dataset are highlighted by the dash-line circles.
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Figure S2.32. Iterative clustering does not substantially improve the clustering
sensitivity. One approachs aims to overcome the bias introduced by population-level
peak annotation by involving iterative clustering, with the first round defining the “crude”
clusters in complex tissues followed by identifying peaks in these clusters, which are then
used in subsequent round(s) of clustering. To test if this method can improve the
sensitivity of identifying rare cell, we apply it to a 10X scATAC-seq dataset from mouse
brain using both LSA and cisTopic. We first identify the major types and define peaks in
each of clusters of more than 100 cells. We then merge these peaks to create a master
peak reference and create a new cell-by-peak matrix for clustering. Iterative clustering
result (2 rounds) is compared to 1-round clustering for both cisTopic (a) and LSA (b).
Dash line circles highlight rare populations identified by SnapATAC as shown in Figure
S2.15.
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CHAPTER 3: MAPPING OF LONG-RANGE CHROMATIN INTERACTIONS BY

PROXIMITY LIGATION-BASED CHIP-SEQ

3.1 Abstract

Formation of long-range chromatin loops is a crucial step in transcriptional
activation of target genes by distal enhancers. Mapping such structural features can help
define target genes for enhancers and annotate non-coding sequence variants linked to
human diseases. Here we present PLAC-seq, a cost-efficient method to map chromatin
conformation. PLAC-seq improves nearly 10-fold improvement on the detection
efficiency, reduces over 100-fold input requirement and lowers at least 10-fold cost
compared to prior technique in detection of long-range chromatin interactions in

mammalian cells.
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3.2 Introduction

Formation of long-range chromatin loops is a crucial step in transcriptional
activation of target genes by distal enhancersi. Mapping such structural features can help
define target genes for enhancers and annotate non-coding sequence variants linked to
human diseasesi-3. Study of the higher-order chromatin organization has been facilitated
by the development of chromosome conformation capture (3C)-based technologiesa,s.
Among the commonly used high-throughput 3C approaches are Hi-Ces and chromatin
interaction analysis by paired-end tag sequencing (ChlA-PET)7. Global analysis of long-
range chromatin interactions using Hi-C has been achieved at kilobase resolution but
requires billions of sequencing readss. High-resolution analysis of long-range chromatin
interactions at selected genomic regions can be attained cost-effectively through either
ChIA-PET7,9 or targeted capture and sequencing of Hi-C librariesio. ChlA-PET has been
used to identify long-range interactions at promoters and enhancers at high resolution in
various cell types and speciesii. However, this procedure requires hundreds of million
cells as starting materials, likely because chromatin immunoprecipitation and proximity
ligation are performed after chromatin shearing, which potentially leads to great disruption
of protein/DNA complexes. To reduce the amount of input materials and improve the
sensitivity and robustness of the assay, we developed Proximity Ligation-Assisted ChliP-
seq (PLAC-seq), in which proximity ligation is conducted in nuclei prior to chromatin
shearing and immunoprecipitation (Figure 3.1a; Figure S3.1a). We demonstrated that by
switching the order of proximity ligation and chromatin shearing steps, PLAC-seq greatly
improves the efficiency and accuracy over ChlIA-PET79 in detection of long-range

chromatin interactions in mammalian cells.
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3.3 Results

We performed PLAC-seq in mouse embryonic stem (ES) cells using antibodies
against RNA Polymerase Il (Pol 1l), H3K4me3 and H3K27ac to determine long-range
chromatin interactions at promoters and enhancers in the genome. As shown in Figure
3.1b, PLAC-seq yielded libraries with higher number of unique read pairs compared with
ChIA-PET. As expected, the sequencing reads were strongly enriched at the factor-
binding sites detected by ChiP-seq analysis in the mouse ES cellsi2 (Supplementary
Methods; Figure S3.1b-d; S3.1f-h). Additionally, the PLAC-seq experiments generated
long-range chromatin contacts that were highly reproducible between biological replicates
(Pearson correlation > 0.90; Supplementary Methods; Figure S3.1e). To identify long-
range chromatin interactions, we used 'FitHiC'13 to analyze the combined datasets from
two biological replicates (Supplementary Methods). A total of 72 074, 273 145, and 155
545 chromatin loops (FDR < 0.01) were identified from the Pol Il, H3K4me3, and H3K27ac
PLAC-seq experiments, respectively. We found that PLAC-seq could be performed with
much fewer cells than ChlA-PET. Even with 0.5 million (M) cells, a majority of strong long-
range interactions could be detected (Figure 3.1c; Figure S3.1i and Supplementary

Methods).

Several lines of evidence support the superior performance of PLAC-seq over
ChIA-PET. First, PLAC-seq was nearly 100 times more cost-effective than ChIA-PET in
generating long-range intra-chromosomal read pairs, which are typically used to infer
chromatin loops. Using 20-fold fewer cells (5 M vs 100 M), Pol Il PLAC-seq produced 10

times more reads (175 M vs 16 M) with lower PCR duplication rate (30% vs 44%) than a
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previously published Pol II ChlA-PET experimenti4. In addition, PLAC-seq generated
more long-range intra-chromosomal pairs (67% vs 9%) and fewer inter-chromosomal
pairs (11% vs 48%) (Figure 3.1b). Second, PLAC-seq uncovered chromatin loops in the
mouse ES cells with much higher sensitivity and specificity than ChlA-PET. Additionally,
PLAC-seq chromatin interactions were typically supported by 24 unique read pairs
(medium) compared to 3 PETs supporting ChlA-PET interactionsi4 (Figure 3.1d). Pol I
PLAC-seq analysis identified 57% of Pol Il ChlA-PET interactions (FDR < 0.05 and PET
count >= 3, 10 kb to 3Mb) and a lot of additional interactions (Figure 3.1e). PLAC-seq
covered more regulatory elements, such as promoters and distal DNase | hypersensitive
sites (DHSs), than ChIA-PET (Supplementary Methods; Figure S3.1j). As a reference,
we performed in situ Hi-C with the mouse ES cell line and collected nearly 1.2 billion
paired-end sequencing reads, from which we identified 68 781 long-range chromatin
interactions (FDR < 0.01) using FitHiC13. Compared with chromatin interactions identified
by in situ Hi-C, PLAC-seq is 8 times more sensitive than ChIA-PET and also more
accurate (Figure 3.1f). Third, we performed 4C-seq analysis of four randomly selected
genomic regions (Supplementary Methods). Although both ChIA-PET and PLAC-seq
identified many common chromatin interactions (Figure 3.1g; Supplementary Methods;
Figure S3.2b,c), PLAC-seq uncovered seven additional strong interactions (marked 2, 4
and 5in Figure 3.1g, and 1-4 in Supplementary Methods, Figure S3.2a-c) detected by
4C-seq. Taken together, the results above support the superior sensitivity and specificity

of PLAC-seq over ChlA-PET.
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We also developed a new computational algorithm to identify chromatin
interactions at high resolution from PLAC-seq data. We used the binomial test
(Supplementary Methods) to determine the enrichment of read pairs for an interaction
due to chromatin immunoprecipitation using in situ Hi-C analysis result as an estimation
of background interaction frequency (Figure 3.1h). We termed this type of interactions as
'PLACE' (PLAC-Enriched) interactions. A total of 28 822 and 19 429 significant H3K4me3
and H3K27ac PLACE interactions (FDR < 0.05) in the mouse ES cells were identified,
respectively. These corresponded to different sets of chromatin interactions, with 26% of
H3K27ac PLACE interactions overlapping with 19% of H3K4me3 PLACE interactions
(Figure 3.1i). A majority of H3K27ac PLACE interactions were enhancer-associated
(74%) while H3K4me3 PLACE interactions were generally promoter-associated (78%)
(Figure 3.1j). Genes involved in H3K27ac PLACE interactions had significantly higher
expression levels than genes associated with H3K4me3 PLACE interactions (P < 2.2e-
16, Figure 3.1k), suggesting that H3K27ac PLAC-seq could be used to discover
chromatin interactions at active enhancers and H3K4me3 PLAC-seq at active or poised

promoters.

In summary, we developed a fast, sensitive and cost-effective method to map long-
range chromatin interactions in mammalian cells. Using PLAC-seq, we obtained high-
resolution maps of chromatin interactions at enhancers and promoters in the mouse ES
cells. The ease of experimental procedure and small amount of input materials required

will allow the mapping of long-range chromatin interactions in a broad set of species, cell
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types, and experimental settings. A similar method called HiChIP was recently reported

by Mumbach et al.15 when our manuscript was under review.
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3.6 Figures

Figure 3.1. PLAC-seq reveals chromatin interactions in mammalian cells at high
sensitivity and accuracy. (a) Overview of the PLACseq workflow. Formaldehyde-fixed
cells were permeabilized and digested with a 4-bp cutter Mbol, followed by biotin-tagged
nucleotide fill-in and in situ proximity ligation. Nuclei were then lysed and the chromatin
was sheared by sonication. The soluble chromatin fraction was then subjected to
immunoprecipitation using specific antibodies against a transcription factor or a histone
modification. Finally, after reverse-crosslinking the biotin-labeled DNA corresponding to
ligation junctions was enriched followed by library preparation and paired-end DNA
sequencing. (b) Comparison of the sequence outputs between PLAC-seq and ChIA-PET.
(c) Comparison of short-range signals (short) and long-range chromatin interactions
(interactions) identified by H3K27ac PLAC-seq using 2.5 M and 0.5 M cells in the
indicated genomic region. Only the interactions with one end overlapping with a selected
anchor point (chr8: 87 510 000-87 515 000, black rectangle) were shown. PLAC-seq
interactions are marked by red arcs and interaction significance is denoted by —log (FDR).
(d) Box plots of number of the unique read pairs supporting interactions identified by
ChIA-PET and PLAC-seq. (e) Venn-diagram comparing the chromatin loops identified in
Pol Il PLAC-seq and Pol Il ChlA-PET experiments. (f) Comparison of sensitivity (SE) and
accuracy (AC) between PLAC-seq and ChIA-PET interactions using the loops detected
by in situ Hi-C as a reference (SE = number of in situ HIiC interactions overlapping with
PLAC-seq or ChIA-PET interactions / total number of in situ HiC interactions; AC =
number of PLAC-seq or ChlA-PET interactions overlapping with in situ HiC interactions /
total number of PLAC-seq or ChIA-PET interactions). (g) Comparison of chromatin
interactions identified by PLAC-seq, ChlA-PET and 4C-seq at the Mreg promoter (the
anchor point is marked by a black rectangle, chrl: 72 255 000-72 260 000). PLAC-seq
and ChIA-PET interactions were demonstrated by red and blue arcs, respectively;
significance of interactions in PLAC-seq is denoted by —log (FDR). (H) Normalized Pol I
PLAC-seq signals and PLACE (Supplementary Methods) analysis revealed chromatin
interactions between Sox2 and its super enhancer at nearly single-element resolution
(anchor region, chr3: 34 546 927-34 553 382). (i) Overlap between H3K27ac and
H3K4me3 PLACE interactions. (j) Distribution of promoter-promoter (P-P), promoter-
enhancer (P-E), enhancer-enhancer (E-E) and other interactions for H3K27ac and
H3K4me3 PLACE interactions. (k) Boxplot of expression of different groups of genes.
H3K27ac PLACE interactions are associated with genes with significantly higher
expression than other genes (P < 2.2e-16). 2.5 M cells were used for H3K27ac PLAC-
seq experiments in d, j and k.
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3.7 Supplementary Methods

Cell culture and fixation. The F1 Mus musculus castaneus x S129/SvJae mouse
ESC line (F123 line) was a gift from Dr. Rudolf Jaenisch and was previously described:.
F123 cells were cultured as described previously2. Cells were passaged once on 0.1%

gelatin-coated feeder-free plates before fixation.

To fix the cells, cells were harvested after accutase treatment and suspended in
medium without Knockout Serum Replacement at a concentration of 1x106 cells per 1ml.
Methanolfree formaldehyde solution was added to the final concentration of 1% (v/v) and
rotated at room temperature for 15 min. The reaction was quenched by addition of 2.5 M
glycine solution to the final concentration of 0.2 M with rotation at room temperature for 5
min. Cells were pelleted by centrifugation at 3,000 rpm for 5 min at 4 o C and washed
with cold PBS once. The washed cells were pelleted again by centrifugation, snap-frozen

in liquid nitrogen and stored at -80 oC.

PLAC-seq. PLAC-seq is comprised of three procedures: in situ proximity ligation,
chromatin immunoprecipitation or ChlP, biotin pull-down followed by library construction
and sequencing. The in situ proximity ligation and biotin pull-down procedures were
similar to previously published in situ Hi-C protocols with minor modifications as described
below: 1. In situ proximity ligation. 0.5 to 5 million of crosslinked F123 cells were thawed
on ice, lysed in cold lysis buffer (10 mM Tris, pH 8.0, 10 mM NacCl, 0.2% IGEPAL CA-630
with proteinase inhibitor) for 15 min, followed by a washing with lysis buffer once. Cells

were then resuspended in 50 pl 0.5% of SDS and incubated at 62 oC for 10 min.
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Permeabilization was quenched by adding 25 ul 10% Triton X-100 and 145 pl water, and
incubation at 37 oC for 15 min. After addition of NEBuffer 2 to 1x and 100 units of Mbol,
the digestion was performed for 2 h 37 oC in a thermomixer, shaking at 1,000 rpm.
Following inactivation of Mbol at 62 oC for 20 min, biotin fill-in reaction was performed for
1.5 h 37 oC in a thermomixer after adding 15 nmol of dCTP, dGTP, dTTP, biotin-14-dATP
(Thermo Fisher Scientific) each and 40 unit of Klenow. Proximity ligation was then
performed at room temperature with slow rotation in a total volume of 1.2 ml containing
1xT4 ligase buffer, 0.1 mg/ml BSA, 1% Triton X-100 and 4000 unit of T4 ligase (NEB). 2.
Chromatin immunoprecipitation (ChlP). After proximity ligation, the nuclei were spun
down at 2,500 g for 5 min and the supernatant was discarded. The nuclei were then
resuspended in 130 pl RIPA buffer (10 mM Tris, pH 8.0, 140 mM NaCl, 1 mM EDTA, 1%
Triton X-100, 0.1% SDS, 0.1% sodium deoxycholate) with proteinase inhibitors. The
nuclei were lysed on ice for 10 min and then sonicated using Covaris M220 with following
setting: power, 75 W; duty factor, 10%; cycle per burst, 200; time, 10 min; temp, 7 oC.
After sonication, the samples were cleared by centrifugation at 14,000 rpm for 20 min and
supernatant was collected. The clear cell lysate was mixed with Protein G Sepharose
beads (GE Healthcare) and then rotated at 4 oC for pre-cleaning. After 3h, supernatant
was collected and ~5% of lysate was saved as input control. The rest of the lysate was
mixed with 2.5 pg of H3K27Ac (ab4729, Abcam), H3K4me3 (04-745, Millipore) or 5 pg
Pol 1l (ab817, Abcam) specific antibody and rotate at 4 oC overnight. On the next day,
0.5% BSA-blocked Protein G Sepharose beads (prepared one day ahead) were added
and rotated for another 3 h at 4 oC. The beads were collected by centrifugation at 2,000

rpm for 1 min and then washed with RIPA buffer three times, high-salt RIPA buffer (10
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mM Tris, pH 8.0, 300 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% SDS, 0.1% sodium
deoxycholate) twice, LiCl buffer (10 mM Tris, pH 8.0, 250 mM LiCl, 1 mM EDTA, 0.5%
IGEPAL CA-630, 0.1% sodium deoxycholate) once, TE buffer (10 mM Tris, pH 8.0, 0.1
mM EDTA) twice. Washed beads were first treated with 10 pg Rnase A in extraction buffer
(10 mM Tris, pH 8.0, 350 mM NacCl, 0.1 mM EDTA, 1% SDS) for 1 h at 37 oC. Then 20
Mg proteinase K was added and reverse crosslinking was performed overnight at 65 oC
or at least 2 h. The fragmented DNA was purified by Phenol/Chloroform/Isoamyl Alcohol

(25:24:1) extraction and then ethanol precipitation.

Biotin pull-down and library construction. The biotin pull-down procedure was

performed according to in situ Hi-C protocol with the following modifications: 1) 20 pl of
Dynabeads MyOne Streptavidin T1 beads were used per sample instead of 150 ul; 2) To
maximize the PLAC-seq library complexity, the minimal number of PCR cycles for library

amplification was determined by qPCR.

PLAC-seq sequencing read mapping. We developed a bioinformatics pipeline

(https://github.com/r3fang/PLACseq) to map PLAC-seq and in situ Hi-C data. Paired-end
sequencing reads were mapped using BWA-MEMa to the reference genome (mm?9) in
single-end mode with default setting for each of the two ends separately. The
independently mapped ends were then paired-up and the read pairs were kept if both
ends uniquely mapped to the genome (MQAL>10). Inter-chromosomal pairs were
discarded. Next, read pairs were further removed if either end was mapped more than

500bp apart away from the closest Mbol site. Read pairs were next sorted based on
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genomic coordinates followed by PCR duplicate removal using MarkDuplicates in Picard
toolss. Finally, the mapped pairs were partitioned into “long-range” and “short-range”
based on the distance between the two ends, with a threshold of larger than 10kb or

smaller than 1kb, respectively.

entificati el i : ] | in situ Hi-C d _

The algorithm ‘FitHiC’s was used to identify long-range interactions (from 10kb to 3MB)
in PLAC-seq and in situ Hi-C datasets with 5kb resolution. The P-values were adjusted
to FDR using Benjamini and Hochberge approacyz. We consider a chromatin interaction
significant if the FDR was less than 0.01. In total, we identified 86,629, 290,350, 204,232
and 89,970 significant long-range interactions from Pol Il, H3K4me3 and H3K27ac (2.5M)
and H3K27ac (0.5M) PLAC-seq, with 83%, 94%, 76% and 82% occupied by
corresponding ChIP-seq peaks. We next filtered out interactions that were not occupied
by corresponding ChiP-seq peaks. After filtering, there were 72,074, 273,145, 155,545,
and 73,895 significant long-range interactions from Pol Il, H3K4me3 and H3K27ac (2.5M)
and H3K27ac (0.5M) PLAC-seq remaining. Using the same algorithm and FDR cutoff, we

also identified 68,781 interactions from our in situ Hi-C data.

lvsis_of | | | o dentified in_diff

datasets. We defined that two distinct interactions were overlapped if both ends of each

interaction intersect by at least one base pair.
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3.8 Supplementary Figures

Figure S3.1. Development and validation of PLAC-seq. (a) Comparison of input
material requirement of PLAC-seq and ChIA-PET. (b) Principal component analysis
(PCA) of short-range reads in different PLAC-seq experiments highlights the
reproducibility between biological replicates. (c) Box plots of reads per million (RPM)
calculated using PLAC-seq short-range cis pairs (distance < 1kb) suggest that PLAC-seq
signals are significantly enriched in ChlP-seq peaks compared to randomly chosen
regions (***Wilcoxon tests, P < 2.2e-16). (d) The signals of short-range reads (< 1kb) from
PLAC-seq were similar to those of ChiP-seq performed on the same set of factors in the
mouse ES cells. (e) Scatter plots of pair-wise interaction frequency on chromosome 3.
PLAC-seq biological replicates were highly reproducible (R2 =0.90). For the other
datasets: H3K27ac, 0.5 M cells, between biological replicates, R2 =0.86; H3K4me3, 1.3
M cells, between biological replicates, R2 =0.90; Pol Il, 5 M cells, between biological
replicates, R2 =0.81. (f-h) Long-range cis reads from PLAC-seq were significantly
enriched in the ChIP-seq peak regions compared to in situ Hi-C. (F) Box plots of reads
per million (RPM) at ChIP-enriched regions for PLAC-seq and in situ Hi-C. Only long-
range (>10kb) cis reads were considered (***Wilcoxon tests, P < 2.2e16). (g) Scatter plots
of pair-wise interaction frequency on chromosome 3 are shown. Interaction intensity is
skewed towards PLAC-seq for fragments with H3K27ac ChlP-seq peaks compared to in
situ Hi-C (R2 =0.76, Red dots represent fragment pairs with at least one end bound by
H3K27ac). For the other datasets: H3K27ac, 0.5 M cells, between replicate 1 and in situ
Hi-C, R2 =0.79; H3K4me3, 1.3 M cells, between replicate 1 and in situ Hi-C, R2 =0.72;
Pol 1l, 5 M cells, between replicate 1 and in situ Hi-C, R2 =0.67. (h) Examples of
enrichment of long-range cis reads in H3K4me3 PLAC-seq compared to in situ Hi-C
(visualized by Juicebox). (i) Long-range chromatin interactions identified by H3K27ac
PLAC-seq were highly reproducible using 2.5 million and 0.5 million cells. (j) Comparison
of coverage of promoters and distal cis regulatory elements between PLAC-seq and
ChIA-PET analyses. H3K27ac PLAC-seq refers to the experiment using 2.5 million cells.
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Figure S3.2. Comparison of chromatin interactions detected by 4C-seq, PLAC-seq,
and ChIA-PET at three genomic loci. PLAC-seq and ChIA-PET interactions were
demonstrated by red and blue arcs, respectively; significance of interactions in PLAC-seq
is —log (FDR). 1-4 mark the 4C interactions identified by Pol Il PLAC-seq but not ChlA-
PET. Only the interactions with one end overlapping with a selected anchor points
(marked by black rectangles) were shown. (a) Anchor point, chr5: 110,900,000-
110,905,000. No interactions detected by Pol Il ChIAPET. (b) Anchor point, chr3:
34545000-34,550,000. (c) Anchor point, chr4: 118680000- 118685000.
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CHAPTER 4: A TILING-DELETION BASED GENETIC SCREEN FOR CIS-

REGULATORY ELEMENT IDENTIFICATION IN MAMMALIAM CELLS

4.1 Abstract

Millions of cis-regulatory elements are predicted in the human genome, but direct
evidence for their biological function is still scarce. Here we report a high-throughput
method, Cis-Regulatory Element Scan by Tiling-deletion and sequencing (CREST-seq),
for unbiased discovery and functional assessment of cis regulatory sequences in the
genome. We use it to interrogate the 2Mbp POUS5F1 locus in the human embryonic stem
cells and identify 45 cis-regulatory elements of POUS5F1. A majority of these elements
display active chromatin marks, DNase hypersensitivity and occupancy by multiple
transcription factors, confirming the utility of chromatin signatures in cis elements
mapping. Notably, 17 of them are previously annotated promoters of functionally
unrelated genes, and like typical enhancers, they form extensive spatial contacts with the
POUSF1 promoter. Taken together, these results support the utility of CREST-seq for
large-scale cis regulatory element discovery and point to commonality of enhancer-like

promoters in the human genome.
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4.2 Introduction

Millions of candidate cis-regulatory elements have been annotated in the human
genome based on histone modification, transcriptional factor binding, and DNase |
hypersensitivityi-6. These putative regulatory sequences harbor a disproportionally large
number of sequence variants associated with diverse human traits and diseases,
supporting the hypothesis that non-coding sequence variants contribute to common traits
and diseases by disrupting transcriptional regulation7-s. However, research on the role of
these putative functional elements in human development and disease has been hindered

by a dearth of direct evidence for their biological function in the native genomic context.

High-throughput CRISPR/Cas9-mediated mutagenesis using single guide RNAs
(sgRNAs) has been used to functionally characterize cis-regulatory elements in
mammalian cellsio-15s. However, current approaches are limited because: (1) Not all
sequences are suitable for CRISPR/Cas9-mediated genome editing due to the lack of
protospacer adjacent motifs (PAMSs) that are required for targeting and DNA cutting by
CRISPR/Cas9i6-18; (2) CRISPR/Cas9 mediated genome editing with individual sgRNAs
tends to cause point mutations or short insertions or deletions, necessitating the use of
an unrealistically large number of sgRNAs to interrogate the human genome; (3) it has
been challenging to distinguish the cis- and trans-regulatory elements. To overcome
these limitations, we developed CREST-seq, short for Cis-Regulatory Elements Scan by
Tiling-deletion and Sequencing, which enables efficient discovery and functional
characterization of cis-regulatory elements by introducing massively parallel, kilobase-

long deletions to the genome. Below, we provide evidence supporting the utility of
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CREST-seq for large-scale cis-regulatory element identification in the human embryonic
stem cells (hESC). We report the discovery of 45 regulatory sequences of POU5F1 and

a surprisingly large number of enhancer-like promoters.
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4.3 Results

CREST-seq identified cis-regulatory elements of POU5SF1. In a CREST-seq

experiment, a large number of overlapping genomic deletions are first introduced to a
genomic locus by CRISPR/Cas9-mediated genome editing using paired sgRNAsie
(Figure 4.1a). Cells with lowered expression of the gene of interest (Figure 4.1b) are
then isolated and the enriched sgRNA pairs determined by high-throughput sequencing.
The enriched sgRNA-pair sequences are then used to infer the functional cis-regulatory
sequences of the gene (Figure 4.1a). To demonstrate the utility of CREST-seq, we
applied it to the 2Mbp POUSF1 locus. As a model cell system we used a hESC line in
which one POUSF1 allele was genetically tagged by eGFP, allowing transcription level of

this allele to be monitored by eGFP expressionis (Figure 4.1b).

We designed a total of 11,570 sgRNA pairs to introduce the same number of
genomic deletions (Figure 4.1a; Figure S4.1a) to the POU5SFL1 locus. The average size
of each deletion is ~2kb, with an overlap of 1.9kb between two adjacent deletions (Figure
S4.1a) such that each nucleotide in this locus is covered by ~20 distinct genomic deletions
on average. As negative controls, we included 424 sgRNA oligos lacking the PAM
sequence necessary for effective dsDNA breaks. As positive controls, we included six
sgRNA pairs that target the eGFP coding sequence. We constructed a lentiviral library
that express these sgRNA pairs (Figure S4.2a-e) and transduced it into the hESC line at
low multiplicity of infection (MOI = 0.1), which ensures that the majority of cells receives

one or no lentiviral particle (Supplementary Methods).
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To isolate mutant cells with deletion in POU5F1’s cis-regulatory sequences, we
used FACS to sort out cells showing lowered POU5F1 expression from the eGFP-tagged
allele but relatively unchanged expression from the non-tagged allele (Figure 4.1c). We
refer to this eGFP-/POUSF1+ subpopulation as “Cis” population (Figure 4.1b, c). As a
control, we also collected a sample of cells before FACS sorting (referred to as “Ctrl”).
Finally, we collected the eGFP+/POUSF1+ population (referred to as “High”) (Figure
4.1b, top; Figure 4.1c). Genomic DNA was purified from each cell populations, and the
SgRNA pairs present in each subpopulation were then determined by massively parallel
sequencing. The experiment was conducted in multiple replicates (Figure S4.3a), with
the abundance of sgRNA pairs highly reproducible between replicates (Pearson
Correlation Coefficients R=0.90 for “Cis”, R=0.92 for “Ctrl” and R=0.97 for “High”,

respectively) (Figure S4.3b).

To identify cis-regulatory elements of POU5F1, we first compared the abundance
of sgRNA pairs between the “Cis” population and the “Ctrl” population using a negative
binomial test and computed the fold enrichment and P-value of each sgRNA pair (Figure
S4.3c). We found 495 sgRNA pairs to be significantly enriched (P < 0.05 and log(fold
change) > 1) in the “Cis” samples (Figure 4.1d, red dots; Figure 4.1e red bars). As
expected, all six SgRNA pairs targeting the eGFP sequence were highly enriched in the
“Cis” population (Figure 4.1d, green circles). By contrast, only 2 of the 424 negative
control sgRNAs were enriched, corresponding to an empirical FDR smaller than 0.5%.
Further supporting the effectiveness of our experimental design, the sgRNA pairs with

significant enrichment in the “Cis” population were generally depleted in the “High”
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samples (Figure 4.1d, right panel). Next, we sought to identify cis-regulatory sequences
by taking full advantage of the tiling deletion design (Figure 4.1e). We began by ranking
all sgRNA pairs based on their enrichment levels in the “Cis” population relative to the
“Ctrl”. We then partitioned the 2MB POUS5F1 locus into 50bp bins, and used Robust Rank
Aggregation (RRA)20 to calculate a score for each bin to indicate whether the ranks of
deletions spanning that bin are skewed toward top of the sorted list (Supplementary
Methods). Altogether, we identified 45 genomic regions with a significant score (Figure
4.1e). Using the same criteria, no genomic region was identified as positive in the “High”
cell population (Figure S4.4a). We named each of the 45 CREST-positive elements
(referred to hereafter as “CRE”) using its relative genomic distance (kb) to the
transcription start site (TSS) of POU5F1, with a negative sign denoting upstream of
POUS5F1 and a positive for downstream. The 45 CREs include 4 previously identified
POUSF1-regulatory elements that act in cis: its promoter (Figure S4.4b), an upstream
enhancerz: (Figure S4.4b) and two temporarily phenotypic (TEMP) enhancersis (Figure
S4.4c, DHS_65 and DHS_108). The remaining 41 CREs are novel POU5F1-regulatory

sequences found in this study.

iched witl . I , | | d | In
order to determine chromatin features of the CREs, we examined the publicly available
chromatin accessibility data, transcription factor binding profiles and chromatin
modification datasets from the H1 hESC cell liness. We also generated ATAC-seq22 and
CTCF ChlIP-seq with the cell line used in the present study and ensured that the data

highly resembles the previous datasets from the same parental cell lines (Figure S4.5a,
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b). As expected, a majority of CREs were associated with biochemical features
characteristic of cis-regulatory elements, including DNase Hypersensitivity (69%),
transcription factor occupancy, active chromatin marks such as H3K27ac (22%),
H3K4me3 (31%), and H3K4mel (22%)s. Notably, CREs are also enriched for binding
sites of CTCF/RAD21 (29%), which have been linked to DNA looping and topologically
associating domain (TAD) boundaries2324 (Figure 4.2a, b). It has been reported that
transcription factor binding in human cells tend to form dense clusterszs-27. Accordingly,
we found that the CREST-positive regions overlap with dense clusters of TF binding sites
(16% CREs are bound by essential pluripotency master regulators and 44% by other TFs;
Figure 4.2a-c) and are bound by more transcription factors on average than DNase
hypersensitive sites (DHS) (Figure 4.2d, Wilcoxon tests P-value<6e-11). In general,
CREST-positive regions are significantly associated with active histones modifications
and transcription factor binding (Figure 4.2e), and depleted for repressive chromatin
marks H3K9me3 and H3K27me32s (Figure 4.2e, and see Figure S4.5c for other
features), consistent with previous studies highlighting the role of clustered TF binding
sites in gene regulationzs,29. Interestingly, five CREs lack any canonical chromatin
signatures associated with active cis-regulatory sequences (Figure 4.2a, Unmarked
region, 11%), suggesting existing of elements without canonical epigenetic signatures, as

recently reportedi2.

To validate the function of the novel POU5F1 CREs, we selected 6 for in-depth
analysis (Figure 4.1e, orange bars). The regions were chosen based on three criteria: 1)

they are located at a wide range of genomic distances, from 38kb to 694kb, from POU5F1
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TSS; 2) they are surrounded by phased SNPs so that allelic analysis of gene expression
could be performed; and 3) they represent a wide range of CREST-seq signals, ranking
9th, 13th, 23rd, 24th, and 37w out of 45. Additionally, while five CREs, CRE (-694), CRE (-
652), CRE (-571), CRE (-449) and CRE (+38), are marked by canonical chromatin marks
(Figure 4.2a; Figure S4.6a), one CRE, CRE (-521), is unmarked (Figure 4.2a; Figure
S4.6a). As a control, we tested a CREST-negative region (Figure 4.1; Figure S4.6a). We
used the CRISPR/Cas9 genome-editing to introduce mono-allelic deletions of lengths 2-
4kb to remove these regions in the hESC line (Figure S4.6a). As shown in Figure 4.2F,
all cell clones with mono-allelic deletion (green curves) on the P1 allele showed significant
reduction in eGFP expression (Figure S4.6b, t-test P-value <2.2e-16, error bars, s.d.).
By contrast, clones bearing mono-allelic deletions of the P2 allele showed normal eGFP
expression (Figure 4.2f, magenta curves), indicating that these sequences act in cis to
regulate POUS5SF1 expression. No change in eGFP expression was observed in clones
containing bi-allelic deletions of the negative control region (Figure 4.2f, “Ctrl site”, solid
and dash blue curves). Notably, deletion of CRE (-521), which lacks any canonical marks
of regulatory sequences (Figure S4.6a), also led to a decrease in POU5SF1 expression in
cis. Interestingly, while deletion of five CREs resulted in durable reduction of POU5F1,
deletion of the CRE (-652) element led to only temporary reduction of eGFP expression
that was fully recovered by day 50 (Figure 4.2f; Figure S4.6b), suggesting that it belongs
to the type of temporarily phenotypic enhancers (TEMP-enhancer) that we recently
reportedis. Taken together, these results provided strong evidence that CREST-seq can
be used to identify cis-regulatory sequences of a specific target gene in an unbiased and

high-throughput manner.

204



Promoters acting as distal enhancers. Results from the above CREST-seq

experiments showed that 18 gene promoters, including the POU5SF1 promoter, are
necessary for optimal POU5F1 expression in hESC. This is surprising because promoters
are traditionally thought to mediate transcription of its immediate downstream sequences.
Although recent reports indicated that some IncRNA and mRNA promoters may act as
enhancers of their adjacent genesiz,3o0,31, definitive evidence illustrating a causative role
of promoters acting as distal enhancers is still lacking. Identification of CRE(-449), CRE(-
571) and CRE(-694) as cis-regulatory elements of POU5F1 suggests that promoters of
PRRC2A, MSH5 and NEU1 genes may act as distal enhancers of POU5FL1 in the hESC
(Figure S4.6a). To rule out the possibility that promoter-proximal elements in these genes
were responsible for POUSF1 regulation, we deleted 216-285bp core promoter
sequences containing the TSS of each gene and carried out allelic expression analysis
in the resulting cell clones (Figure 4.3a; Figure S4.7). To avoid potential off-target effects,
we used two sets of SgRNA pairs (Deletion 1 and Deletion 2, Figure 4.3a; Figure S4.7)
for the genome editing, and recovered a total of 37 independent clones carrying mono-
allelic deletions for in-depth analysis (Figure S4.8). We found that all mutants with the P1
mono-allelic deletion displayed long-lasting reduction in eGFP expression (green curves
in Figure 4.3a, Figure S4.8a and Figure S4.8b; quantified in Figure S4.8c, error bars,
s.d.), while in mutant clones with the P2 mono-allelic deletion eGFP levels were
indistinguishable from WT (magenta curves in Figure 4.3a, Figure S4.8a and Figure
S4.8b; see Figure S4.8c for quantification, error bars, s.d.). The reduced eGFP

expression could not be due to loss of the PRRC2A, MSH5 or NEU1 gene products,
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because knockdown of each gene using two sets of sSiRNA (Figure 4.3b, ¢) and shRNAs
(Figure S4.9a-c) did not affect the POU5F1 mRNA or protein levels (Figure 4.3b, c;
Figure S4.9d). Thus, the core promoter sequences of PRRC2A, MSH5 and NEU1, but

not their gene products, are required for optimal POU5F1 expression.

To further show whether these gene promoters could function as enhancers in a
traditional reporter assay, we constructed reporter plasmids that contain the 360-bp
POUSF1 core promoter sequence driving a luciferase reporter gene, with the core
promoter fragments of PRRC2A, MSH5 or NEU1 inserted downstream of the reportersz.
We transfected these plasmids into the H1 hESC cells and assayed the luciferase
activities 3 days after transfection. All elements exhibited significant enhancer activities

compared to the control vector (Figure S4.9e).

To rule out the possibility that CRISPR/Cas9-mediated genome editing impacts
POUS5F1 expression through locus-wide, non-specific mechanisms, we performed FACS
analysis of the CRE deletion mutant clones to monitor levels of both POU5F1-eGFP and
HLA-C, located 100kb upstream of POU5F1 TSS. We found that deletion of a CRE
resulted in down-regulation of POU5F1-eGFP expression without affecting levels of HLA-
C (Figure S4.10a, b). To further exclude the possibility that CRISPR/Cas9 leads to
double-strand-DNA-break (DSB)- induced transcriptional silencing in the cells, we
examined phosphorylated H2AX (yH2AX, a DNA damage marker) in the mutant clonesss-
35. We found that none of the mutant clones stained positive for yH2AX at the time of the

experiments (25 days after transfection) (Figure S4.10a) when down-regulation of
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POUSF1 was detected. Therefore, identification of multiple promoters serving as distal
enhancers of POU5SF1 by CREST-seq was unlikely due to artifacts of the experimental

system.

The enhancer-like promoters are spatially close to POUS5SF1 TSS. To
understand potential mechanisms that allow the 17 CREST-positive promoters, among
promoters of ~120 genes in this 2MB locus, to specifically regulate POU5F1, we
examined the 3D chromatin organization of the locus, reasoning that long-range
chromatin interactions may allow these enhancer-like promoters to act as distal cis-
regulatory sequences. Indeed, analysis of H1L hESC Hi-C datase indicate that 14 of the 17
POUSF1-regulating promoters display significantly higher levels of chromatin interactions
with the POU5SF1 TSS than expected by chance (Figure 4.4a, b; Wilcoxon tests P-value
< 0.01). The enhancer-like promoters are also characterized by other chromatin features
that distinguish them from other promoters in the region, such as high levels of POL2
binding, H3K4me3, and H3K27ac (Figure S4.11a, b; permutation P-value < 0.01). In
addition, mRNA transcription from these promoters is significantly higher than other

genes in the same region (Figure S4.11c; Wilcoxon test, P-value < 0.01).

To further characterize the features of enhancer-like promoters, we developed a
random forest-based classifier capable of predicting which promoters are cis-regulatory
sequences of POUSF1. As input, we used datasets of transcription factor binding sites
(TFBS), histone modifications profiles, gene expression profiles, and the long-range

chromatin contacts centered at POUS5F1s3s. The performance of the classifier was
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evaluated using leave-one-out cross validation. Strikingly, our model can distinguish
POUSF1-regulating promoters from control promoters in the 2Mbp screen region with
high accuracy (Figure 4.4c, AUC = 0.89, error rate = 6.3% and PPV=97.2%). We next
determined feature importance by estimating the average decrease in node impurity after
permuting each predictor variable, finding that the chromatin interaction frequency is the
single most important predictor (Figure 4.4d and Figure S4.12; “Hi-C” for normalized Hi-
C interacting frequency). This result provides strong evidence that the enhancer-like
promoters specifically affect POU5SF1 expression through chromatin interactions. This
observation promoted us to use spatial proximity alone to make a single-variable random
forest model, which also achieves high accurate prediction (AUC=0.93, error rate=9.0%)
but lower PPV (74.5%), suggesting the physical proximity is an important predictor for

predicting regulatory relationship, but other factors are also crucial.
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4.4 Discussion

In summary, we have developed a high-throughput method for functional
screening of cis-regulatory elements in their native genomic context. We demonstrated
the utility of this method by applying it to the 2Mbp POU5F1 gene locus in human ES cells

and validated the results by extensive experiments using allelic gene expression analysis.

Our finding that nearly 40% of the cis-regulatory sequences of POUS5F1
correspond to promoters of other genes reveals the commonality and widespread use of
promoters as distal enhancers. Previous studies have suggested that promoters and
enhancers share common properties in terms of transcription factor binding and ability to
produce RNA transcriptssz. Recently, it was shown that the promoters of IncRNAs and
MRNAs could act as enhancers of adjacent genesss. The current study adds to the
accumulating literature that distal promoters can regulate the expression of a gene other
than the immediate downstream gene. Our results further showed that one potential
mechanism for promoters to act as enhancers is via long-range chromatin interactions.
This is consistent with previous studies showing extensive promoter-promoter
interactions in mammalian cellsss-46, and reports that many promoters indeed show

enhancer activity in heterologous ectopic luciferase reporter assayso,47.

CREST-seq is a highly scalable tool for unbiased discovery of cis-regulatory
sequences in the human genome. Compared to the previous CRISPR/Cas9 screens,
which typically require more than 100 gRNAs-expressing oligos to “saturate” a targeted

region, CREST-seq achieved 20x coverage for the entire 2Mbp POUS5F1 locus with less
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than six sgRNAs per kilobase. CREST-seq also outperforms the dCas9-KRAB based
CRISPRI screenis in which the size of H3K9me3 peaks generated by dCas9-KRAB is
less than 850bpass. Although the size of positive hits identified by CREST-seq are usually
larger than the size of element/motif identified by single sgRNA approach, by generating
overlapping deletions in a massively parallel fashion, CREST-seq allows functional
interrogation of a large fraction of the genome with high sensitivity and specificity. More
importantly, CREST-seq can distinguish cis- and trans-regulatory sequences by
monitoring the allelic expression of a reporter gene, without the knowledge of haplotypes
of the genome. Finally, it is feasible to design nested tiling deletions across a whole
chromosome or even the genome. Combination of CREST-seq and single sgRNA screen
approaches would allow us to achieve both high coverage and high resolution, thereby
enabling truly comprehensive discovery of transcriptional regulatory sequences in the

human genome.
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4.7 Figures

Figure 4.1. CREST-seq experimental design and application to the POU5F1 locus
in hESC. (a) Workflow of CREST-seq. A total of 11,570 oliogs containing dual sgRNA
sequences were cloned into a lentiviral library that was in turn transduced into the H1
POUS5F1-eGFP cells with MOI=0.1. After Puromycin selection, the cells were stained with
antibodies specifically recognizing POU5F1 (PE) or eGFP (APC), respectively. The
indicated “Cis” and “High” populations were sorted by FACS, and the integrated sgRNA
pairs were amplified by PCR from genomic DNA followed by high-throughput sequencing.
(b) Schematic illustration of mono-allelic or bi-allelic deletions of cis-regulatory elements
of POU5F1. The eGFP-tagging allele is designated as P1 and the wild-type allele as P2.
Mono-allelic disruption of a POU5F1 CRE on the P1 allele would lead to reduced eGFP
expression while POU5F1 protein levels remain relatively unchanged (eGFP-/POU5F1+).
Bi-allelic disruption of a POU5F1 CRE would lead to reduction of both eGFP and POU5F1
protein level. (c) FACS analysis of H1 POU5F1-eGFP cells transduced with control
lentivirus expressing Cas9 but not sgRNA (left) or the CREST-seq lentiviral library (right)
14-day post transduction. (d) The read counts of sSgRNA from “Cis” (left) and “High” (right)
are compared to those from a non-sorted control population (Ctrl). The fold changes
represent the ratios between read counts in the “Cis” or “High” populations and the “Ctrl”
population, with the significance of enrichment calculated by a negative binomial test.
Green circles denote eGFP targeting sgRNA pairs; Red dots correspond to sgRNA pairs
enriched in the “Cis” population with P-value < 0.05 and log(fold change) > 1. Black dots
denote the negative control sgRNA pairs and grey dots for the rest of pairs. (e) Genome
browser screenshot showing CREST-seq positive sgRNA pairs (P-value < 0.05, top) and
CREST-seq negative sgRNA pairs (P-value>0.05, black bars); genomic coverage of the
CREST-seq library (blue track); the computed CREST-seq signals (see Methods), and
the genomic regions identified as cis-regulatory sequences of POU5SF1 (peaks, green),
along with the CRE sites selected for further in-depth validation (orange bars). Yellow box
highlighted a region enriched for CREs with a close-up view in Figure 4.2b.
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Figure 4.2. CREs tend to be associated with canonical active chromatin markers of
cis-regulatory elements and dense TF clusters. (a) A matrix showing the chromatin
features and transcription factor binding at the 45 CREs. “Pluripotency TFs” denotes
POU5SF1, SOX2, NANOG, and PRDM14. (b) A close-up view of genome browser
snapshot of the yellow highlighted region in Figure 4.1e with tracks corresponding to
chromatin modifications, DHS, merged TFBS ChlIP-seq peaks and a heatmap of
normalized ChlP-seq signals for 22 transcription factors in hESCs. The height of merged
TFBS bars indicates the number of bound TF. Yellow bars highlighted regions where
CREs overlap with active chromatin marks and TFBS clusters. The green arrow points to
the CREs in (c). (c) A close-up view of a 5kb CRE occupied by a cluster of TFs. (d) A box
plot shows that transcription factor binding sites more frequently cluster at CREs than at
typical cis-regulatory elements represented by DHS. (Wilcoxon test P-value < 6e-11). (e)
A bar chart shows the degree of enrichment of each chromatin feature in the CREs. To
calculate the “Enrichment Test Score”, we first calculated the fraction of CREST-seq
peaks that intersected with sites associated with each feature as a ratio between the
observed over expected. An average ratio is calculated from 1,000 random permutations
of the CREs. The enrichment test score is defined as the percentage that observed ratio
is greater than expected. (*y? P-value < 0.01). (f) Six CREs and one CREST-seq negative
site (Ctrl) were selected (orange bars in Figure 4.1e) for individual validation. Mutant
clones were generated harboring bi-allelic deletion (Ctrl, blue curves), mono-allelic
deletion on the P1 allele (green curves), or mono-allelic deletion on the P2 allele (magenta
curves) at the indicated genomic loci. P1 is the eGFP-containing allele and P2 is the non-
eGFP allele. FACS analysis was performed for all the mutant clones and wide-type cells
(WT: black curves) at day 25 and day 50 after CRISPR/Cas9 transfection. The FACS

([ )

data was quantified with FlowJo and P-value is calculated with two-sample t-test. “p” in

Green and magenta letter “p” represent the P-values for mono-allelic mutants harboring
P1-specific or P2-specific deletion, respectively.
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Figure 4.3. The core promoter regions of MSH5, NEU1, and PRRC2A are required
for optimal POUSF1 expression in hESC. (a) The core promoter regions of MSH5,
NEUL, and PRRC2A were deleted by two sets of distinct sgRNAs (orange bars, Deletion
1 and 2). Mutant cell clones harboring mono-allelic deletions on the P1 allele (green
curves), or P2 allele (magenta curves) were identified after genotyping and sequencing
of the phased SNPs. FACS analysis was performed for all the mutant clones and wild-
type cells (WT: black curves) at day 25 and day 40 after transfection. The FACS data is
guantified with FlowJo. P-value is computed using two-sample t-test. (b, c) The H1
POUSF1-eGFP cells were transfected with either control scrambled siRNA or siRNAs
targeting the gene as indicated. Each gene is targeted by two sets of SIRNAs (SMARTpool
and WI design) with different sequences. The cells were analyzed 48 hours after
transfection. (b) Whole cell extract was collected and subjected to western blot analysis
with indicated antibodies. (c) An aliquot of cells was dissociated into single cells for FACS
analysis. Black, magenta, and green curves represent the data from cells treated with
Scrambled siRNA (Ctrl), SMARTpool siRNA and WI (http://sirna.wi.mit.edu/) designed
SiRNA, respectively.
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Figure 4.4. Analysis of chromatin interactions between the enhancer-like
promoters and POU5SF1 promoter in hESC. (a) A dot plot shows the distribution of
pairwise Hi-C contact frequencies within the 2Mbp locus, and between the POU5F1 TSS
and the 17 POU5F1-regulating promoters (red dots, promoter-CRES). The black dots and
the gray bar represent the average and standard deviation of Hi-C read counts at a given
genomic distance, respectively. (b) A boxplot shows the number of standard deviations
of the Hi-C read counts between POU5F1 TSS and the promoter-CREs (yellow dots)
compared to the expected (0, black line) (y? P-value < 0.01). (c) ROC curve shows that
POUSF1-regulating promoters can be separated from the other promoters in the 2Mbp
region with a high accuracy (AUC=0.89) using a random forest model built from binding
sites of 52 TFs, seven histone modifications profiles, gene expression profile and maps
of long-range chromatin interactions (see Supplementary Methods for more details). (d)
A bar chart shows the relative importance of each feature to the Random Forest classifier
in predicting enhancer-like promoters.
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4.8 Supplementary Methods

CREST-seq protocol. A detailed protocol of CREST-seq has been deposited

hereao.

Cell culture. The POU5F1-eGFP H1 hESC line was purchased from WiCell (Log
number: DL-02) and described previouslyis. The cells were cultured on Matrigel-coated
(Corning, Cat #354277) plates and maintained in TeSR-E8 media (STEMCELL
Technologies, Cat#05940), and passaged by Accutase (STEMCELL Technologies,
Cat#A1517001) with 10uM ROCK inhibitor Y-27632 (STEMCELL Technologies, Cat#
72302) supplement. The cells have been tested by WiCell Research Institute and UCSD

human Stem Cell Core facility to confirm no mycoplasma contamination.

Design of sgRNA pairs for CREST-Seq. CREST-seq library design is available

online (http://crest-seq.ucsd.edu/web/) and includes the following steps: 1) all 20-bp
potential sSgRNA sequences followed by PAM motif ‘NGG’ within the 2-MB screened
region were first identified; 2) Bowtieso was used to map these 20-bp sgRNA sequences
to the reference genome (hg19) with following parameter ‘-t -a -f -m 1000 --tryhard -v 3’
which outputs alignments up to 1000 candidates with less than 4 mismatches; 3) In order
to prevent off-target binding, a SgRNA sequence was filtered out if it a) perfectly maps to
another region on the genome; or b) has suboptimal alignment with 1 or 2 mismatched
bases outside the sgRNA “seed” region, i.e. the 10bp sequence adjacent to PAM motifsi;
or d) has suboptimal alignment with 3 mismatches but all three mismatched bases are

17-bp further to the PAM sequence; 4) the identified sgRNA sites were paired in order to
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generate 2kb-deletions evenly across the 2 Mbp-region. Based on the distribution of the
filtered sgRNA, a chain of unique single guide RNAs were selected as follows: First, the
initial SgRNA was picked, and the next sgRNA was chosen based on a pre-determined
distance cutoff (D, for example 100bp) and an odd number of step size (S, for example
15) such that the distance between the target sequences of the two sgRNAs is no less
than D; the procedure was repeated until no more unique sgRNA was found. Next, the
first sSgRNA pair was designed using the 1st sgRNA and the 16th (1+S) sgRNA, then the
second pair using 3rd and 18th (3+S), the procedure was repeated to the end of the chain.
The distance cutoff D and step S were both adjustable to allow for different deletion sizes
and genomic coverage. For example, using D=100, and S=15, the deletion size would be
a minimum of 1,500 bp, an average of 2,000 bp in the current design. The average
coverage was (1+S)/2, 8 times with S=15, since there were 8 sgRNAs (relatively 1st, 3rd,
... 15th) crossover to 8 guide RNAs on other side (relatively 16th, 18th, ... 30th) for any
region in the middle. Three different sets of deletion/steps were used: 100/15, 200/13,
500/13. An unique guide RNA was not used if it has been used in previous selection. After
a pair of dual CRISPR guide RNAs, namely {a, b}, were selected, we used the following
template to link two guide RNAs:
TGTGGAAAGGACGAAACACC{a}GTTTAGAGACG{rnd}CGTCTCACCTT{b}GTTTTAG
AGCTAGAAATAGCAAGTT, note that if a guide RNA start with A, C, or T, a G was added
in front. The ${rnd} was selected from all combinations of 9-bp nucleotide sequence
excluding either number of GC less than 4 or more than 6, or include any subsequence

within: {"AAAA", "CCCC", "TTTT", "GGGG", "GAGACG", or "CGTCTC"}.
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Oligo synthesis and library cloning. The CREST-seq oligo library with

sequences shown in Figure S4.2a was amplified with the following primers:

Forward primer: CTTGTGGAAAGGACGAAAC

Reverse primer: TTTTAACTTGCTATTTCTAGCTCTAAAAC

The PCR product was size selected and gel-purified with NucleoSpin Gel and PCR Clean-
Up Kit (Clontech, Cat# 740609), and then inserted into Bsmbl digested lentiCRISPRv2
plasmid by Gilbson Assembly (Addgene plasmid #52961). The end product was electro-
transformed into 5-alpha Electrocompetent E. coli (NEB, Cat#C2989K) and grown on
Agar plates. About 20 million independent bacterial colonies were collected and the
plasmids were extracted with QIAGEN Plasmid Giga Kit (Cat#12191). The resulting
plasmid DNA was linearized by Bsmbl digestion, gel purified and ligated with a DNA
fragment (see complete IDT gBlocks sequence) containing tracRNA(E/F) and the mouse
U6 promoter (mU6). The ligates was electro-transformed into 5-alpha Electrocompetent
E. coli and plated on Agar plates. About 20 million bacterial colonies were collected and

purified with EndoFree Plasmid Giga Kit (QIAGEN, Cat#12391)

Lentiviral library production. The CREST-seq lentiviral library was prepared as

previously describeds2 with minor modifications. Briefly, 5ug of lentiCRISPR plasmid
library was co-transfected with 4 ug PsPAX2 and 1 ug pMD2.G (Addgene #12260 and
#12259) into a 10-cm dish of HEK293T cells in DMEM (Life Technologies) containing
10% FBS (Life Technologies) by PolyJet transfection reagents (Signagen, Cat#
SL100688). Growth medium was replaced 6 hours after transfection. The supernatant of

cell culture media was harvested at 24 hours and 48 hours after transfection and filtered
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by Millex-HV 0.45 ym PVDF filters (Millipore, Cat# SLHV033RS). The viruses were further
concentrated with 100, 000 NMWL Amicon Ultra-15 Centrifugal Filter Units (Amicon,

Cat#UFC910008).

For viral titration, 0.5 million hESC POU5F1-eGFP cells were seeded per well on
6-well plate. 12 hours later, different amount (1ul, 2ul, 4ul, 8ul) of concentrated viral-
containing media were added to the cell culture media to infect the hESC following the
same protocol described in the lentiviral screening section. The same amount of non-
infected cells was seeded and not treated with puromycin as the control. 24 hours post-
infection, the viral infected cells were treated with 500ng/ml Puromycin (Life
Technologies, Cat#A1113802) for another 72 hours. We counted the number of
Puromycin resistant cells and the control cells to calculate the ration of infected cells, and
then viral titer. In the screening, about 10 million POU5F1-eGFP hESCs were used in
each independent screening replicate and infected with viral particles at low MOI (0.1) to

make sure each infected cell gets one viral particle.

Lentiviral transduction and FACS. Briefly, the screening was performed
following previous protocol described earlieris with minor modifications. In each
independent screen, about 10 million cells per 12-well plates were spin infected with
CREST-seq lentiviral library at MOI=0.1. 24 hours post infection, the cells were
dissociated with Accutase, and plated into I5cm culture dish coated with Matrigel (4 million
cells per dish). The cells were treated with E8 media containing 250ng/ml Puromycin for

7 days, followed by another 7-day culture without Puromycin treatment. For CREST-seq
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screen FACS sort, the cells were dissociated and co-immunostained with PE-POU5F1
antibody and APC-eGFP antibody. The eGFP-/POU5F1+, eGFP+/POU5F1+, and non-

sorted control cells were collected by FACS sort for further analysis.

Sequencing library construction. Genomic DNA was extracted from the eGFP-

/POU5SF1+, eGFP+/POUSF1+ or the non-sorted control cells populations. The sgRNAs
inserts were then amplified from genomic DNA PCR using the following primers:
Forward: AATGGACTATCATATGCTTACCGTAACTTGAAAGTATTTCG

Reverse: GGACTGTGGGCGATGTGCGCTCTG

The PCR products were gel purified and subjected to the 2nd PCR reaction to add lllumina
TruSeq adaptor sequence with the following primers:

Forward:
AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGAT
CTctTGTGGAAAGGACGAAAC

Reverse (N indicate the index sequence):
CAAGCAGAAGACGGCATACGAGANNNNNNGTGACTGGAGTTCAGACGTGTGCTCT

TCCGATCTTTTTAACTTGCTATTTCTAGCTCTAAAAC

Sequencing and processing of CREST-seq libraries. CREST-seq libraries

were sequenced using HiSeq 4000 in pair-ended mode with 100bp read length. A sgRNA
pair {a, b} was considered valid if it matched the initial sgRNA design and met the
following criteria: (1) a subsequence of the readl matched GGACGAAACACCG,

followed by 19 or 20 nucleotides (namely, {a'}), and GTTTAAGAGCTATGCTG, (2) a
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subsequence of read2 matched AAAC, followed by 19 or 20 nucleotides (namely, {b}),
and followed by CAA; (3) {a} exactly matched {a'} if length of {a'} was 20, or {a} exactly
matched G+{a'} if length of {a'} was 19; (4) {b} exactly matched reverse complementary
of {b'} if length of {b'} was 20, or {b} exactly matched G+reverse complementary {b'} if
length of {b'} was 19. Those sgRNA pairs with total read count less than 30 among all

samples were filtered out. In the end, we kept 10,159 sgRNA pairs for further analysis.

Peak calling in CREST-seq data. For each sgRNA pair, the MAGeCK algorithm

20 was used to estimate the statistical significance (using Negative Binomial test) of
enrichment in the cell population relative to the control population. Next, SQRNASs pairs
were ranked by log(NB P — value) X sign(log(exp/control)) in an increasing order.
Third, we partitioned the 2-MB screened region into a set of non-overlapping 50-bp bins
B = (by,...,b,), and a bin was considered positive if many of the sgRNA pairs spanning
it rank near the top of the sorted list. A Robust Rank Aggregation (RRA) algorithmss was
then used to identify the positive bins. Specifically, let R; = (1;4,...,1;;), be the vector of
ranks of sgRNA pairs that span bin b;, we normalized R; into percentiles U; = (u;q,..., Uix)
where u;; = r;;/M (M is the total number of sgRNA pairs). The goal was to identify the
bins whose normalized rank vector U; is strongly skewed toward zero. Under null
hypothesis where the normalized ranks follow a uniform distribution between 0 and 1, the
j-th smallest value among (u;y,...,u;) is an order statistics p(u;;) which can be calculated
by a beta distribution Beta(j, k + 1 — j). We defined the final score for the rank vector U;

as the minimum of negative score:
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p(U;) = ;min, p(u;;)

p(U;) score was converted to P-value by permutation test as proposed by Li et alzo and
finally P-value was finally adjusted to FDR. A bin was considered as significant if its FDR

was smaller than a given threshold.

Calculation of Enrichment Test Score. We downloaded DNase Hypersensitive
Sites (DHSs) and peaks of ChlP-seq datasets from H1 hESC from ENCODE data portals.
Enhancers were predicted using RFECSs4, and promoter coordinates were based on
RefSeq gene annotation. The observed overlap ratio o; of feature i was computed as the
fraction of CREST-seq peaks that overlapped with this feature. We then randomly
shuffled CREST-seq peaks in this region using ‘shuffleBed’ss, and the expected overlap
rate e; was counted as the fraction of shuffled peaks that overlapped with feature i. Fold
enrichment was computed as o;/e;. We repeated this process 1000 times for each feature
and defined the enrichment test score as the fraction of tests where the fold enrichment

was greater than 1. The significance of enrichment was derived using the y? test.

Analysis of chromatin signatures of POUS5SF1-regulating promoters. We
randomly shuffled CREST-seq peaks in the 2Mbp POUS5F1 region using ‘shuffleBed’ss
and only kept those permutations with 18 peaks overlapping promoter regions. The
expected overlap rate for each shuffle was counted as the fraction of permutations that
contain active promoter signature (Pol2/H3k4m3/H3k27ac). We repeated this process
1000 times and calculated permutation P-value as the percentage of tests in which the

overlap rate is above 0.78.
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lassificati [ ] lati I I  We
downloaded RefSeq annotated promoters (2,000bp upstream TSS) from UCSC genome
browser within the screened region. Promoters were divided into positive and control
groups based on their overlap with CREs. RNA-seq data was downloaded from previously
work and gene expression was estimated using software Cufflinks for each transcript.
Random forest implemented by R package “randomForest” was applied to classify
positive promoters from the negative ones with default parameter setting without further
model selection. Prediction performance was evaluated by leave-one-out cross
validation. Feature importance was estimated by the average decrease of node purity by

permuting each variable.

CRISPR/Cas9-mediated deletion. CRISPR/Cas9 constructs targeting genomic
loci indicated on Figure S4.6a was made following the protocol described earlieris. The
designed sgRNAs sequence was cloned into the pX330-U6-Chimeric_BB-CBh-hSpCas9
(Addgene plasmid #42230) vector. After validating the sgRNA sequences by Sanger
sequencing, a pair of plasmids targeting 5’- and 3’- boundary of the same element, were
mixed at 1:1 ratio and co-transfected with plasmid expressing mCherry into POU5F1-
eGFP cells by hESCs Nuclearfector Kits 2 (Lonzo, Cat#VPH-5022) according to the
manufacture’s instruction. To knockout POU5F1-regulatory core promoters, we used in
vitro synthesized CRISPR crRNA and CRISPR tracrRNA (IDT). The Cas9 recombinant
protein was purchased from NEB (Cat M0386M) and the Cas9/crRNA/tracRNA was

assembled in vitro by following a protocolss. The RNP complex was electro-transfeced
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into POUS5SF1-eGFP hESC reporter line with Neon Transfection System 10upl kit

(ThermoFisher Scientific, Cat#: MPK1096) with the default electrotranfection protocol #9.

After 72 hours post-transfection, the mCherry positive cells were collected by
FACS. The mCherry positive single cells were plated into Matrigel-coated plate at low
density (about 1000 cells per 10 cm coated petri-dish) and cultured in E8 media
supplemented with 10uM ROCK inhibitor. After 10 to 14 days, the surviving sorted single
cells formed colonies. Individual colonies were picked and expanded, followed by

genotyping and in-depth analysis.

Genotyping of mutant clones. The cells from mutant clones were collected and
treated with QuickExtract™ DNA Extraction Solution (Epicentre, Cat# QEO0905T),

followed by genotyping PCR. Then Topo cloning (Life Technologies, Cat#K2800-20) and

Sanger sequencing were conducted to verify the sequences.

EACS analysis. To directly monitor the eGFP expression levels, the wild type or
mutant POU5F1-eGFP cells were dissociated with Accutase and subjected to FACS
analysis with BD FACSAria Il. To examine the levels of HLA-C protein, the cells were
stained with PE-conjugated antibody specifically recognizing HLA-C (Millpore,
Cat#MABF233). To carry out immunostaining of eGFP, POU5F1, or H2AX, the cells were
fixed with 2% PFA for 30 minutes, followed by overnight permeabilization in Methanol at
-20°C. The treated cells were stained with the antibodies. PerCP-cy5.5-conjugated

mouse anti-H2AX(pS139) was purchased BD Biosciences (Cat#564718); PE-conjugated
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anti-human OCT4(OCT3) antibody was from STEMCELL Technologies (Cat#
60093PE.1) and APC-conjugated anti-GFPuv/eGFP antibody is available from R&D

Systems (Cat# IC4240A)

Luciferase reporter assays. Luciferase assays were conducted as previously

describedsz. Briefly, to test the enhancer activity of CREs with native POU5F1 promoter,
the 360bp POUSF1 minimal promoters2 (hgl8 Chr 6: 31,246,377-31,246,736) was
synthesized as gblock by IDT, and cloned into pGL3-promoter vector to replace the
original SV-40 promoter. The core promoter regions of pPPRRC2A, pMSH5, pNEU1 and
pTFC19 were PCR amplified from H1 hESC genomic DNA and cloned into a modified
pGL3-POUS5F1 vector (Promega), in which the SV40 promoter has been replaced by a
360bp minimal POUSF1 promoter by In-fusion cloning. After validation by Sanger
sequencing, the constructs were co-transfected with pRL-SV40 Renilla reporter vector in
H1 hESCs with Fugene HD (Roche) at a 4:1 reagent to DNA ratio. The transfected cells
were cultured for an additional 2 days prior to harvest for reporter assay. The Dual-
Luciferase Reporter Assay kit (Promega Cat#:E1960) was used according to
manufacturer’'s protocol. The adjusted firefly luciferase activity of each sample was

normalized to the average of activities of 3 negative control regions.

RNA interference. The siRNAs were purchased from Dharmacon in the format of

ON-TARGETplusSMARTpool-Human targeting MSH5, NEUl and PRRC2A,

respectively. We also designed siRNAs by using WI siRNA selection program. The
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siRNAs were transfected into hESC with Human Stem Cell Nucleofector Kit 2 (LONZA)

per manufacturer’s instruction.

Western blotting. Western blotting was performed by following the protocol
described previouslyss. Briefly, whole cell extracts (WCE) were collected and quantified
with Pierce™ BCA Protein Assay Kit (Cat#23225). 30ug WCE of each sample was
subjected to Western blot analysis with antibodies specifically recognizing NEU1(Thermo
Scientific, Cat#PA5-42552), PRRC2A (Abcam, Cat#ab188301), MSH5 (Abcam,
Cat#ab130484), Histone-H3(Abcam, Cat#ab1791), POU5F1 (Abcam, Cat#abl19875),

and eGFP (Abcam, Cat#ab190584).

ATAC-seq experiment and analysis. ATAC-seq was performed by following the

protocol described earlier 22. Briefly, each library starts with 100k cells which were
permeabilized with NPB (0.2% NP-40, 5%BSA, 1Mm DTT in PBS with one complete
proteinase inhibitor) at 4 degree for 10min, followed by spin down at 500g for 5min. The
resulting nuclei were resuspended in 20ul 1xDMF (33mM Tris-acetate (pH=7.8), 166mM
K-Acetate, 10mM Mg-Acetate, 16 % DMF). The chromatin tagmentation was done by

adding 0.5ul Tn5 into 10ul solution for 30min at 37 degrees.

We processed our ATAC-seq data in the following steps: 1) ATAC-seq sequencing
reads were mapped to hgl9 reference genome using Bowtie(61) in pair-end mode; 2)
poorly mapped, improperly paired and mitochondrial reads were filtered; 3) PCR

duplications were further removed using Picards MarkDuplicates
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(http://broadinstitute.github.io/picard.); 4) Mapping positions of reads were adjusted
accounting for Tn5 insertion; 6) Reads were next shifted for 75bp followed by peak calling
using MACS2s9 with following parameters “-q 0.01 --nomodel --shift 175 —B --SPMR --
keep-dup all --call-summits”; 7) ATAC-seq signal was normalized into RPKM using

deeptoolsso for visualization.

PCA analysis. We first extracted all 478 H1 DHS sites within the screened regions
and counted the average RPKM for each site using 122 public DHS datasets and our in-
house ATAC-seq dataset. Pair-wise Pearson correlation between the datasets were
calculated and used as input for PCA analysis. We found the first two principle
components accounted for 80% of the variance and therefore used for 2D visualization

as shown in Figure S4.5b.
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4.9 Supplementary Figures
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Figure S4.1. Design of sgRNA pairs. (a) A genome browser screenshot illustrating the
representative tiling design of CREST-seq sgRNA pairs in the POU5F1 locus. Each black
bar represents a sequence targeted by a pair of SgRNAS. (b) Distribution of the sizes of
deletions (top panel) and step sizes of two adjacent deletions (bottom panel).
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Figure S4.2 CREST-seq library construction and quality control. (a) (Top) Schematic
illustration of the oligonculeotides containing the pairs of sSgRNAs flanked by a common
adaptor sequence required for two-step library cloning. (Bottom) Workflow of the two-step
plasmid library cloning. The oligo library was synthesized by Custom Array (Seattle, WA),
PCR amplified, and cloned into lentiCRISPRv2 backbone via Gibson Assembly. The first
step cloning product were then digested by BsmBI and ligated with a DNA fragment
containing tracRNA(EF) and mouse U6 promoter (mU6) sequence. tracRNA(EF):
tracRNA with extended stem-loops and flipped A/T bases 65. (b) Lentiviral particles were
packaged as described previously 13 and transduced into H1 hESC via spin infection. 36
hours after viral transduction, the cells were cultured in E8 media containing Puromycin
for 72 hours, and in regular media for another 3 days. Genomic DNA was purified for
genotyping PCR. The PCR products with smaller sizes indicate the genomic deletion at
the target region. (c-e) After a two-step cloning procedure and plasmid DNA prep, the
dual-sgRNA inserts were amplified from the final CREST-seq plasmid library and
subjected to deep sequencing. The paired-end reads were mapped to CREST-seq oligo
design file. (c) The plasmid library recovered 96.21% of oligos in the CREST-seq library
design. (d, e) Distribution of CREST-seq oligo read counts (d) and cumulative frequency
in the plasmid DNA library (e).
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Figure S4.3. Quality control of CREST-seq data from replicates. Genomic DNA
isolated from “Cis”, “High” and “Ctrl” cell populations was subjected to PCR amplification
and then deep sequencing. (a) Unsupervised clustering analysis shows correlation of
biological replicates of five “Cis” (cis 1-5), three “high” (high 1-3) and two control (ctrl1,
ctrl2) samples. (b) Scatter plots show that sgRNA read counts correlate well between
replicates. (c) Genome browser screenshot showing the gene annotation in the 2Mbp
POUS5F1 locus (RefSeq genes), mean reads counts in control samples (“Ctrl”) and in Cis
samples (“Cis”), -10log (Adjusted P-value) (green tracks) and log2(Fold change) (blue) of
sgRNA pairs. We used edgeR to identify significantly enriched oligos (see
Supplementary Methods for more details).
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Figure S4.4. CREST-seq identifies the promoter and known enhancers of POU5F1.
(a) Genome browser screenshot showing the CREST-seq peak predicted from “Cis”
sample and “High” sample with the same peak calling method (detailed in Material and
Methods). (b) Genome browser screenshot showing the CREST-seq peak (top, red bar),
CREST-seq signal (dark green track), and the associate features surrounding POU5F1
gene body, promoter and well characterized enhancer (blue bar and the highlighted
region by yellow). (c) Genome browser screenshot showing the functional sites identified
by CREST-seq (red and green tracks on top) compared to previous single sgRNA based
screen (orange bars in the middle, DHS 65, DHS 108, DHS 113 and DHS_115). The
black box highlighted the 1Mbp POUS5F1 locus surveyed in our previous screen.
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Figure S4.5. Chromatin features enriched on CREs. (a) Genome browser snapshot
comparing the ENCODE DHS and CTCF-ChIP-seq signal with POU5F1-eGFP reporter
line ATAC-seq and CTCF ChIP-seq signal within the 2Mbp tested POU5F1 locus along
with gene annotation. (b) PCA analysis showing the clustering of 122 public available
DHS data sets, including data generated from K562 cell(10x), human lymphoblastoid cell
lines (GM, 3x), human fibroblast (Ag, 5x), human dermal microvascular endothelial cells
(Hmvec, 8x) and 96 other cell types. ENCODE H1 DHS data and POU5F1-eGFP reporter
hESC ATAC-seq data are also included. (c) Bar plot shows the enrichment test score for
57 features (49 for TFBS and 8 for histone modifications) at CREs compared to random.
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Figure S4.6. Genotype information for the mutant clones with genomic deletion on
selected CREs. (a) Genomic DNA was isolated from each indicated mutant clones and
the genotypes were confirmed by Sanger sequencing of genotyping PCR product after
TOPO cloning. The targeted deletion regions are showing on top of each panel. The blue
box, green box and red box contain the genotyping for bi-allelic, P1 allele or P2 allele
deletion, respectively. P1 is the eGFP containing allele while P2 is the allele with wild-
type sequence. The genome browser screenshot shows CREST-seq signhal/peak, and
other epigenetic features as indicated around each targeted locus including CRE(-694),
CRE(-652), CRE(-571), CRE(-521), CRE(-449), CRE(+38) and CREST-seq negative
region. (b) The eGFP levels on WT cells (WT Ctrl), bia-allelic deletion, P1 allele specific
deletion and P2 allele specific deletion mutants was quantified with FlowJo. Both early
passage cells (day 25) and long-term cultured cells (day 50) were subjected to FACS
analysis. Two-sample t-test was performed to compute the P-value, Error bars, s.d.
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Figure S4.7. Genotype information for core promoter mutant clones. The genotype
of each mutant clones was determined by genotyping PCR using genomic DNA as
template, followed by Sanger sequencing for verification. The blue box, green box and
red box highlight the genotyping for bi-allelic, P1 allele or P2 allele deletion, respectively.
P1 is the eGFP containing allele while P2 is the allele with wild-type sequence. The
genome browser screenshot shows CREST-seq signal/peak, and other epigenetic
features as indicated around each targeted locus. From top to bottom: Genotype
information of MSH5, NEU1, PRRC2A, and TCF19 core promoter deletion mutants,
respectively.
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Figure S4.8. Characterization and quantification of eGFP levels in multiple core
promoter deletion mutant clones. Total of 37 mutant clones were generated in the
same way as described in Figure 4.3a. In addition to the 12 mutant clones showing in
Figure 4.3a, the additional 25 multiple mutant clones were also subjected to FACS
analysis at (a) day 25 and (b) day 40 after CRISPR/Cas9 transfection. (c) The FACS data
of the mutant clones showing in (a), (b), and Figure 4.3a were analyzed with FlowJo to
guantify the eGFP level. P-value was calculated with two-sample t-test. Error bars, s.d.
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Figure S4.9. Quantification of POU5F1, MSH5, NEU1 and PRRC2A expression in
various samples. The H1 POU5F1-eGFP cells were transfected with either control
scrambled siRNA or siRNAs targeting each gene as indicated. Each gene is targeted by
two sets of sSiRNAs (siRNA #1 and #2) with different sequence. 48 hours after transfection,
the total RNA was collected from the cells for RT-qPCR analysis. We also packaged
lentiviral expressing two sets of ShRNAs targeting each gene as indicated (ShRNA#1 and
shRNA#2). 16 days after lentiviral infection and antibiotic selection (1mg/ml puromycin),
the cells were collected for RNA purification followed by gPCR analysis. We also selected
some mutant clones with core promoter deletion specified as in Figure S4.9c for g°PCR
analysis. (a-c) RT-gPCR analysis of NEU1, MSH5 and PRRC2A in the samples treated
with siRNA, shRNA expressing lentiviral, or deletion on core promoter sequence as
indicated. * P-value < 0.01, N.S. not significant, t-test, error bars, s.d. (d) RT-gPCR
qguantification of POUS5F1 mRNA levels in the samples with long-term knockdown of
MSH5, NEU1 and PRRC2A. * P-value < 0.01, N.S. not significant, t-test, error bars, s.d.
(e) Bar chart showing the results from reporter assays testing four different POU5F1-
regulatory core promoters. H1 hESC cells were transfected with various luciferase
reporter plasmid as indicated. 48 hours post-transfection, cells were lysed and subjected
to analysis of luciferase activities. All tested elements are cloned into the downstream of
luciferase gene coding sequence in the control reporter (Ctrl) plasmid, which contains the
360bp POU5SF1 minimal core promoter sequence to drive reporter gene expression. The
reporter activity of each element was compared to the control reporter plasmid containing
POUSF1 promoter only. (*t-test: P-value<0.05, error bars, s.d.).
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Figure S4.10. The reduced eGFP expression in bi-allelic or P1 allelic specific
mutants is not due to DSB induced transcription repression. (a)The mutant clones
with bi-allelic deletion (blue curves) or P1 allele deletion (green curves) on targeted CRE
sites were dissociated into single cells and stained with PE- or PerCP-Cy5.5- conjugated
antibodies specifically recognizing HLA-C or yH2AX, respectively. The black curves
represent the signal obtained from WT POU5F1-eGFP reporter cells. Grey curves: WT
cells without antibody staining; magenta curve: WT cells treated with 250M of Etoposide
for 6 hours to induce DNA double strand break (positive control for H2AX staining signal).
(b) WT POU5F1-eGFP reporter cells (top) and CRE(+12) biallelic (-/-) mutant (bottom,
day 25 after CRISPR/Cas9 transfection) were stained with HLA-C antibody, followed by

FACS analysis.
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Figure S4.11. Promoter-CREs are associated with active gene expression. (a) A Pie-
chart shows that 14 promoter-intersected CREST-seq peaks contain active promoter
signatures (Pol2/H3K4me3/H3K27ac). (b) A Bar chart shows that POU5SF1-regulating
promoters are enriched for active promoter signatures (Pol2/H3K4me3/H3K27ac)
compared to random promoters in the region (permutation P-value < 0.01). To estimate
the degree of the enrichment, we randomly shuffled 45 CREST-seq peaks within the
2Mbp region and calculated the ratio of peaks that contain active promoter marks
(Pol2/H3K4me3/H3K27ac) as expected active promoter ratio. This is repeated for 1,000
times, allowing definition of permutation P-value as the percentage of observations that
active-promoter ratio is above an observed ratio (78%) (see Supplementary Methods
for more details). (c) A Violin plot shows that transcriptional activities of the POU5F1-
regulating promoters are higher than other gene promoters in the 2Mbp region (Wilcoxon
P-value < 0.01). We used gene expression profiles from ENCODE previously quantified
and normalized using ENCODE uniform pipeline.
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Figure S4.12. List of features that distinguish POU5F1 regulatory promoters from
other non-POUSF1-regulatory promoters. Bar plot reveals the relative importance of

each feature to the prediction made by random forest model.
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Figure S4.13. Analysis of Cis- and Trans-regulatory elements with dual sgRNA
tiling deletion screen. (a) 18 and 20 single clones were randomly picked from the non-
sorted control population and the eGFP-/POUSF1+ “Cis” population, respectively.
Genomic DNA was isolated followed by PCR amplification of paired sgRNA sequence
and Sanger sequencing. After confirming the sgRNA sequence, genotyping PCR was
performed to check the sgRNA targeting genomic DNA sequence. (b, ¢) POU5F1-eGFP
reporter cells were infected with control (Ctrl) lentiviral or ShRNA targeting PRDM14 and
selected with Img/ml puromycin for 3 days. At day 5 and day 10 after infection, (b) total
RNA was collected and subjected to gPCR analysis to quantify the knockdown effect. *
P-value < 0.01, t-test. Error bars, s.d. (c) The cells were dissociated and analyzed by
FACS. (d-f) FACS analysis of H1 POU5F1-eGFP cells transduced with CREST-seq
lentiviral library (right) 14 days post transduction. The eGFP-/POU5SF1- cells (d) and
eGFP- cells (f) were collected for further studies. (e) The counts of SgRNA reads from
eGFP-/POU5F1+ cells (left, Cis) and eGFP-/POU5F1- (right) are compared to those from
a non-sorted control population (Ctrl). The fold changes represent the ratios between the
“Cis” or “eGFP-/POU5SF1-" sample compared to “Ctrl” sample, with the enrichment
significance calculated by negative binomial test using edgeR package. Green dots
denote eGFP targeting gRNA pairs; Red dots correspond to positive oligos enriched in
the testing population with P-value < 0.05 and log2 (fold change) > 1; blue dots indicate
negative control oligos which are enriched with P-value < 0.05 and log2 (fold change) >
1 in the testing samples compared to Ctrl. Grey dots for the rest of sgRNAs. (g) The
eGFP- cells were collected, processed and analyzed in the same way as Cis samples.
With same peak calling pipeline and cutoff, we identified 45 CREs (blue) and 52 GFP-
peaks (orange), with 35 sites overlapped. (h) FACS data showing that 45 CREs contains
cis-regulatory elements with strong (red) and weak (blue) effect on POU5F1/eGFP
expression while the 52 GFP- sites cover strong cis- and strong trans- elements.
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Figure S4.14. The eGFP levels correlate with P1 allele specific POU5F1 expression.
(a) Schemtic of phasing eGFP (P1) and non-eGFP (P2) alleles of HL POU5F1-eGFP line.
We performed PCR from genomic DNA in the 3' UTR between primer pairs (indicated by
black arrows) that would be broken by the inserted transgene, so the only allele that can
be amplified is the native one. We then infer what the SNPs on the nontargeted allele are
to deduce whether P1 or P2 is the targeted vs. non-targeted allele. (b) Total RNA was
purified from WT and promoter-CRE mutant clones followed by gPCR analysis to quantify
POUS5SF1 mRNA levels. * t-test, P-value<0.01, Error bars, s.d..
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