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Purpose of review—This review discusses the utility of pathogen-specific antibody biomarkers 

for improving estimates of the population burden of waterborne infections, assessing the fraction 

of infections that can be prevented by specific water treatments, and understanding transmission 

routes and the natural history and ecology of disease in different populations (including 

asymptomatic infection rates).

Recent findings—We review recent literature on the application of pathogen-specific antibody 

response data to estimate incidence and prevalence of acute infections and their utility to assess the 

contributions of waterborne transmission pathways. Advantages and technical challenges 

associated with the use of serum versus minimally invasive salivary antibody biomarkers in cross-

sectional and prospective surveys are discussed.

Summary—We highlight recent advances and challenges and outline future directions for 

research, development, and application of antibody-based and other immunological biomarkers of 

waterborne infections.
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Introduction

Waterborne infections cause an estimated two million deaths and four billion episodes of 

diarrheal illness per year worldwide [1]. Waterborne diseases will continue to be of broad 

public health importance as peri-urban populations rapidly expand at a pace that exceeds 

developing countries’ abilities to invest in infrastructure [2]. While most of these illnesses 

occur in developing countries, industrialized countries also bear a substantial burden of 

waterborne diseases [3]. For high-income countries, if investments in water supply and 

sewer systems do not enable proper maintenance and timely replacement of aging 

infrastructure, the risk of waterborne infections is likely to increase [4].

Waterborne disease outbreaks are defined as two or more persons experiencing a similar 

illness after exposure to water where epidemiologic evidence implicates water as the 

probable source of the outbreak [5]. Waterborne pathogens that result in human infections 

include bacteria (e.g., Campylobacter spp., Shigella spp.), viruses (e.g., norovirus, rotavirus), 

and protozoa (e.g., Cryptosporidium spp., Giardia spp.), and these pathogens may be 

conveyed to humans via drinking and/or recreational water transmission routes [6]. The 

health outcome most commonly associated with exposure to waterborne pathogens is acute 

gastrointestinal illness (AGI). AGI is defined in various ways, and definitions used in 

epidemiological research range widely [7]. One commonly used definition is as follows: 

diarrhea (three or more loose stools in a 24-h period), vomiting, nausea, stomach ache, fever, 

and/or interference with regular activities (missed time from work or school or missed 

regular activities as a result of illness) [8–10]. Other illnesses caused by waterborne 

pathogens include viral hepatitis (hepatitis A and E viruses [11]), skin and soft tissue 

infections and sepsis (Vibrio spp., Staphylococcus aureus [12]), primary amoebic 

meningoencephalitis (Naegleria fowleri [13]), and pneumonia (Legionella pneumophila 
[14]).
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In this review, we summarize the latest evidence on use of pathogen-specific antibodies as 

biomarkers (defined as “any substance, structure, or process that can be measured in the 

body or its products and can influence or predict the incidence of outcome or disease” [15]) 

of infection for the waterborne pathogens that cause the greatest population burden of AGI 

in the USA (norovirus, Shiga toxin-producing E. coli, and Cryptosporidium spp.) [16] and in 

developing countries globally (rotavirus, Cryptosporidium spp., Shigella, Giardia spp., 

Vibrio cholerae, and Campylobacter spp.) [17, 18]. We also include hepatitis A and E 

viruses because these pathogens are the most common causes of feces-transmitted acute 

viral hepatitis worldwide (Table 1) [19, 20]. Such pathogen-specific antibody biomarkers 

represent promising tools to identify causative agents in population-based studies of AGI, 

including waterborne disease outbreak investigations, surveillance studies, and observational 

and randomized intervention studies to test hypotheses related to transmission routes, water 

treatments, and disease ecology. Because not all individuals who become infected with 

waterborne pathogens will experience symptoms of AGI—i.e., a waterborne infection may 

be asymptomatic (without clinical disease) or symptomatic (clinical disease observable) [21]

—biomarkers of host immunological response can be used to identify a causative pathogenic 

agent and estimate symptomatic and/or asymptomatic waterborne disease burden. 

Knowledge of the waterborne pathogens responsible for asymptomatic infections can 

improve estimates of waterborne infections in source populations and advance 

understanding of upstream risk factors and transmission routes. Not knowing these can 

hinder the development of effective prevention strategies to reduce waterborne outbreaks 

and/or contamination events (e.g., via infrastructure improvements or other interventions 

prior to onset of symptoms).

We review the challenges in measuring population burdens of infection that can be attributed 

to waterborne versus other transmission routes (contaminated food, hygiene, sanitation, 

person-to-person and animal-to-person contact). Antibodies as biomarkers of waterborne 

infections are then discussed to highlight their current and future utility in population-based 

settings. Antibody responses to specific pathogens are described as they relate to measuring 

immunoconversions (defined as a change from antibody negative to antibody positive in 

serial samples or a four-fold increase in antibody titer in serial samples), rates, and time 

intervals of infection. The use of antibody biomarkers in serum is presented, followed by the 

discussion of novel salivary antibody biomarkers and their potential to improve upon 

estimates of waterborne infections. The utility of antibody biomarkers for detection of acute 

and chronic infections in population-based settings is discussed, including how estimates of 

the incidence of acute short-term infections can be obtained within the context of both cross-

sectional and prospective study designs. Finally, the technical challenges involved with using 

minimally invasive saliva samples as a matrix for the detection of pathogen-specific 

antibodies are presented along with future directions for salivary immunoassay work.

Challenges with Epidemiologic Estimates of Waterborne AGI in Population-Based Settings

The outcome most commonly employed in epidemiologic studies of waterborne disease is 

self-reported AGI symptoms. Because most AGI symptoms are self-limited, only a small 

proportion of the individuals who experience AGI actually seek medical care and have a 

stool sample submitted for testing. Furthermore, clinical diagnostic laboratories are not 
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always able to identify a pathogenic agent responsible for AGI symptoms [22]. Thus, only a 

small proportion of AGI disease will be captured by studies of, or reporting systems 

involving, patient populations seeking a clinical diagnosis (Fig. 1). AGI symptoms are also 

non-specific, with numerous pathogens and transmission routes that must be investigated in 

order to determine the etiologic agent. These features of AGI symptoms mean that 

epidemiologic studies that rely upon AGI as a primary outcome may not provide an accurate 

estimate of the population burden of disease. The ability to determine a host's immunologic 

response to specific pathogens that are responsible for waterborne infections could improve 

the specificity and decrease the misclassification of AGI in epidemiologic studies. 

Biomarkers of pathogen-specific host immunologic response could improve studies of the 

effects of improved water treatment and/or source water protection as well as advance 

understanding of pathogen exposure (e.g., spatial and temporal distribution) and modifiable 

factors that are associated with progression from asymptomatic to symptomatic states of 

infection (e.g., natural history and ecology of disease) in populations. For example, objective 

biomarkers of asymptomatic waterborne infections have helped identify low water pressure 

at the faucet as an important risk factor for self-reported diarrhea in the control group of a 

case-control study of sporadic cryptosporidiosis [23].

Most evidence of waterborne transmission in developed countries comes from outbreaks of 

infectious diseases. In the USA, the Centers for Disease Control and Prevention (CDC) as 

well as state and local authorities investigate outbreaks and attempt to identify the source. 

CDC publishes the biannual Morbidity and Mortality Weekly Report on outbreaks 

associated with drinking and recreational water sources. For example, in 2011–2012 for 

drinking water, a total of 32 outbreaks were reported and associated with 431 illnesses, 102 

hospitalizations, and 14 deaths [16]. For recreational water in 2011–2012, there were 90 

outbreaks that resulted in at least 1788 cases, 95 hospitalizations, and one death [24].

Knowledge of the pathogen-specific etiology of waterborne infections would help identify 

different risk factors and transmission routes, which can improve the evidence base for 

decision making about management and prevention strategies. A classic example of this is 

the massive waterborne outbreak of cryptosporidiosis in Milwaukee in 1993 when the 

chlorine-based disinfectant used had little effect on Cryptosporidium parvum oocysts and 

the drinking water treatment plants consequently had to investigate alternative disinfectants 

such as UV light [25]. Another example is a study of the presence of enteric viruses in non-

disinfected drinking water from municipal wells and their relation with community 

incidence of AGI [26]. In this study, the authors noted a positive association between 

norovirus genogroup I (GI) and AGI. But, the associations between the presence of other 

enteric viruses—adenovirus and echovirus serotypes—and AGI were not statistically 

significant. This lack of association could be due to misclassification and/or the non-

specificity of AGI as an outcome in epidemiologic studies (e.g., potential influence of 

measurement error due to participant self-reporting of AGI symptoms).

Waterborne outbreaks usually occur from causative factors such as weather events, wastes 

from animals, agriculture, or humans, and failures in water treatment [27]. Drinking water-

associated outbreaks are often caused by contaminated source waters, inadequacies in 

treatment, or contamination occurring within the distribution system [28]. Whereas, 
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recreational water-associated outbreaks have been attributed to swimming in waters 

impacted by inadequate chlorination or other disinfection (swimming pools) [29], fecal 

contamination shed by swimmers (swimming pools and natural waters) [30], runoff from 

publicly owned treatment work (POTW) wastewater effluents, sanitary and combined sewer 

overflows of untreated sewage, private on-site septic systems, agricultural production, and 

wildlife [31].

Most cases of waterborne infections are sporadic or diffuse, low-level outbreaks. Ingestion 

of waterborne pathogens can also result in a completely asymptomatic infection depending 

on the interplay of pathogen-specific and host-specific factors, such as a pathogen's 

virulence and a host's immune response [32]. They may be caused by deficiencies in 

drinking water treatment, resulting in contamination with waterborne pathogens, and 

transmission to consumers [33]. Waterborne pathogens that are resistant to chlorination 

(especially Cryptosporidium spp.) [34] or physical removal (especially viruses) can pass 

through the water treatment barrier and contaminate tap water even when water quality 

indicators based on surrogate bacteria (total and/or fecal coliforms, E. coli) are within the 

regulatory limits [35]. Viruses, such as noroviruses, can filter through the soil, contaminate 

shallow groundwater sources and present a health risk in drinking water systems that are 

groundwater supplied and do not use chemical disinfection [26]. Individual sporadic cases of 

AGI usually cannot be linked to a specific source in the framework of routine surveillance, 

contributing to the underestimation of waterborne infections in the population.

Antibody Biomarkers of Waterborne Infection

Specific antibody responses can be used as biomarkers of infection in epidemiological 

studies to estimate the prevalence and incidence of infections and to assess the contribution 

of waterborne transmission. Different pathogens result in different temporal distributions of 

antibody response and infection. Both symptomatic and asymptomatic infections typically 

cause an antibody response in the host [33]. A preexisting antibody response can be a factor 

affecting host's susceptibility to re-infection or the probability of developing symptoms if 

infection occurs [36]. The presence of antibodies specific to the pathogen of interest in 

biological samples (e.g., serum, saliva, stool, breast milk) is an indication of current or prior 

infection [33]. The major immunoglobulin isotypes (IgG, IgA, IgM) have different utility as 

estimates of population disease frequency and burden. Single time-point measurements of 

pathogen-specific IgG have utility as an estimate of historical/prior exposure or prevalent 

infection, whereas IgA and/or IgM has utility as an estimate of acute phase or incident 

infection [37, 38]. Immunoconversion is used to detect incident infections in prospective 

survey settings. This change from an antibody-negative sample to an antibody-positive 

sample in a time series of two or more samples, or a fourfold increase in antibody titer in a 

time series of two or more antibody-positive samples, is used to measure new, acute cases in 

a defined population over a defined time period [39–41].

Serologic Antibody Response

Serum is the most accurate and widely used matrix to monitor population immune responses 

to pathogens. Sera can be collected by sampling populations, or residual blood banks can be 

used. However, there are significant drawbacks to both since blood collection requires 
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trained individuals to visit participants [42] and may be cost prohibitive along with low 

response rates that have been shown in Europe due to the invasive nature of blood collection 

[43, 44]. Its application in prospective studies and especially in studies involving children is 

problematic due to high attrition and low compliance [45]. Relying on previously collected 

samples from sera banks overcomes these issues; however, they are usually anonymous with 

limited data available on the patient and, importantly, their background as it pertains to 

water, sanitation, and hygiene-related behaviors and activities [46]. However, a number of 

studies have successfully used seroepidemiological methods in the context of waterborne 

disease [47, 48]. Frost et al. found that people who live in cities using surface-derived 

drinking waters had an increased risk of Cryptosporidium infection compared to those using 

drinking water from municipal groundwater sources [47]. And, in the context where 

sanitation conditions are poor and clean water supplies are limited, Priest et al. found IgG 

antibody responses during Cryptosporidium infections with C. parvum, Cryptosporidium 
felis, and Cryptosporidium meleagridis and with four different subtypes of Cryptosporidium 
hominis [48].

Salivary Antibody Response

The utility of novel salivary antibody biomarkers as a measure of host immune response to 

specific pathogens has the potential to improve upon estimates of waterborne infections that 

rely on invasive collection of serum. Saliva collection is minimally invasive and can be self-

collected and returned by mail [49••], allowing for a larger sampling of the population than 

is possible with serum. Saliva is a mixture of secretions from salivary glands. Oral fluid 

contains saliva (enriched with secre-tory IgA) and crevicular fluid (flows from between the 

gum margins and teeth) and is enriched with serum antibodies [50]. Some oral fluid 

sampling techniques are specifically designed to collect samples enriched with crevicular 

fluid for measurements of systemic antibody responses [51, 52, 53•].

Salivary assays have been used to identify various viral, bacterial, and parasitic infections 

[54] (see Table 2). Measuring antibodies in saliva is appropriate for both children and adults 

and is suitable for population-based surveillance settings [40]. Salivary immunoassays have 

been developed for pathogens such as Helicobacter pylori, Toxoplasma gondii, 

Cryptosporidium, and noroviruses [52••]. Griffin et al. (2011) applied the Luminex xMAP 

microsphere-based technology (Luminex Corp., Austin, TX) assay to measure antibodies to 

multiple pathogens within a single saliva sample volume [52••]. The Norwalk virus assay 

developed in Griffin et al. (2011) was subsequently validated using samples from a human 

volunteer challenge study [53•]. A similar salivary immunoassay is being applied to measure 

the incidence of norovirus infections following recreational water exposures at beaches in 

Puerto Rico, Iowa, and Wisconsin where saliva has been collected as part of the 

Environmental Protection Agency's National Epidemiologic and Environmental Assessment 

of Recreational Water Study [55].

An important challenge in using saliva to measure immunologic responses is the greater 

inter- and intra-individual variability in saliva composition and immunoglobulin levels. 

While saliva contains a high level of secretory IgA (SIgA) antibodies, there can be 

significant diurnal, age, and oral health-related variability [56], making these factors 
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important to consider in community-based field studies. The salivary concentrations of IgG 

and IgM isotypes are lower than in serum. Thus, a salivary antibody assay targeting IgG has 

to be sensitive enough to quantify low-intensity antibody responses. Typically, it is necessary 

to assay saliva at relatively low dilutions, where matrix effects (e.g., inhibition, high 

background signal) can be pronounced in some pathogen-specific antibody assays [57]. For 

each pathogen-specific antibody target, it is critical to optimize the conditions that may 

influence assay performance and sensitivity and specificity [53•].

There is scant evidence on the temporal patterns of salivary antibody responses to infection 

with a specific pathogen (peak levels and rates of decline for different antibody isotypes). 

Our current understanding of generalized trajectories (Fig. 2) comes from prospective 

studies using serum or saliva from individuals with confirmed infections, such as volunteer 

challenge studies for norovirus [40, 58, 59], Cryptosporidium [60], Giardia lamblia [61, 62], 

and Shigella [63]. The pattern of antibody isotypes may be used in diagnostic and research 

settings to provide information on the infection state (acute versus convalescent) and to 

assess the timing of infection [33]. Typically, the IgA and/or IgM response to a waterborne 

pathogen ramps up before the IgG response [36, 58, 59]. The generalized trajectories of 

different antibody isotype levels during a transient acute infection from a waterborne 

pathogen are depicted in Fig. 2. After the convalescent stage, IgG pathogen-specific 

antibodies may remain detectable for weeks to years, depending on the causative agent, and 

may remain elevated above preinfection levels [36, 64]. There can be vast differences in 

these temporal patterns of antibody responses depending on the pathogen causing the 

infection. Thus, an area of future work is to develop population-based antibody infection 

curves for specific waterborne pathogens.

Platforms and Assay Types

Various immunoassay platforms have different costs, quantitation levels, dynamic ranges, 

and multiplexing potentials [65]. The most basic of these platforms is the indirect enzyme 

immunoassay; however, the low through-put and high sample volume requirements make it 

less desirable for population-based analyses where multiple pathogens are being analyzed 

and sample volume is limited. Multiplex immunoassays, such as those based on the Luminex 

(Luminex Corp., Austin, TX) microbead suspension fluorescence immunoassay platform, 

require a low sample volume to analyze multiple pathogen-specific antibody analytes 

simultaneously. They are also less labor intensive because more data are generated per test/

analyte and thus are more cost-effective [52••, 53•, 66–69]. Another immunoassay platform 

that is used and allows multiplexing is the Meso Scale Discovery (MSD; Rockville, M D) 

electrochemiluminescence (ECL) platform. Platforms that facilitate multiplexing can be 

used to expand the range of available options for testing the signal of pathogen-specific 

antibody responses as well as background signals. The adjustment of the pathogen-specific 

antibody signal for background signals, such as those produced by total IgA or total IgG or 

by antigen tags such as glutathione-S-transferase (used during antigen purification), can 

improve the performance of antibody assays [52••, 53•]. Multiplexing of these target signals 

can also reduce excess use of biospecimen sample volume because all signals can be 

measured in one sample volume in a single reaction well. Thus, multiplexing testing 

platforms can facilitate a broader application of antibody testing of serum and/or saliva 
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biospecimens in population-based epidemiologic investigations of diverse waterborne 

pathogens.

Applications of Pathogen-Specific Antibody Biomarkers in Population-Based Studies of 
Waterborne Infections

To improve current epidemiologic estimates of AGI from waterborne pathogens in 

population-based settings, pathogen-specific antibody biomarkers can be used. For chronic 

infections, antibody responses can be positive or negative and can be validated against 

diagnostic tests. The proportion of IgG-positive results in serum or saliva can serve as a 

direct measure of infection prevalence in the population [70, 71]. In contrast, for acute short-

term infections, such as noroviruses and Cryptosporidium, the presence of pathogen-specific 

antibodies in serum or saliva may indicate an ongoing infection or more commonly a past 

infection with or without symptoms. Thus, the concept of “positive” antibody response to an 

acute short-term infection or seroprevalence of positive responses often reflects the 

proportion of results above an arbitrary threshold, such as a detection limit of the method or 

by standardizing response intensities to the response of a reference sample of positive 

control sera [72–75] or saliva.

One approach to estimating incidence of acute infections using antibody data is to use 

immunoconversion in prospective study settings as a marker of new infections. The 

sensitivity and specificity of an immunoconversion test are related to its ability to detect 

infections that occur during the interval between two sampling dates. In prospective studies, 

biological sampling (serum or saliva) can be combined with symptom diaries to produce 

information on the association of certain infections with specific types of symptoms and/or 

the association of exposures with infections or interventions (designed to reduce exposure) 

with a lack of symptoms [76].

Prior studies have used pathogen-specific antibody markers and demonstrated their ability to 

identify waterborne infections that were more widespread than previously appreciated. In the 

massive Cryptosporidium outbreak in Milwaukee in April 1993, a retrospective analysis was 

conducted with banked serum specimens from children that had routine lead level 

surveillance in blood from March to May of that year and showed a seroprevalence increase 

from 15–17 % to 82–87 % for levels of IgG antibody against the immunodominant Triton-17 

and 27 kDa C. parvum antigens [77]. This demonstrated that the outbreak had affected a 

greater proportion of the population with infection when accounting for both symptomatic 

and asymptomatic infections than the previous estimate of 26 % that only surveyed the 

population using the cryptosporidiosis case definition (watery diarrhea) [78]. Teunis et al. 

applied these approaches in the European Union to estimate seroconversion rates for 

Campylobacter infections and found that they were several orders of magnitude higher than 

the notification rates, reflecting both detection deficits in the surveillance and the reality that 

these enteric infections often remain asymptomatic [79]. Frost et al. used serum antibodies 

to Cryptosporidium from a population in Hungary to determine that those using groundwater 

had significantly lower serological responses than those using conventionally filtered and 

disinfected surface water and found that riverbank filtration may be an effective alternative 

treatment to reduce Cryptosporidium exposures and infections for individuals using surface 
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water sources [80]. Tollestrup et al. focused on non-outbreak settings where a low 

probability of outbreak detection should be expected and found a significant association for 

residents in the River Valley of New Mexico using onsite wastewater systems combined with 

private wells to have a strong response to the 27 kDa Cryptosporidium antigen [75]. And 

lastly, in the first postal population-based survey that used saliva, Morris-Cunnington et al. 

used approximately 5500 self-collected oral fluid samples along with a questionnaire of 

demographic and social information to successfully demonstrate that antibody prevalence 

data along with risk factor data can be used to assess the population-based immunity to 

common viral infections in England and Wales [49••].

Such applications of immunological biomarkers in epidemiologic studies also can improve 

knowledge of the temporal patterns of antibody responses, which can be used to extrapolate 

incidence estimates based on cross-sectional data on pathogen-specific antibody responses in 

the population [79, 81, 82]. Others have expanded this approach using parametric statistical 

models [67, 83–85] to determine incidence of infection based on pathogen-specific antibody 

results from a single cross-sectional sampling time. The person-to-person variability in 

antibody responses to a specific pathogen and limited data on temporal patterns of antibody 

responses in various populations affect the precision of such estimates. A pattern of antibody 

responses may also be affected by the number of prior infections and the time interval since 

the previous infection. This may further limit the applicability of the available antibody 

pattern data to populations with comparable epidemiological characteristics or to research 

questions focused on intra-individual variability in antibody responses over time.

In low-income communities where there is less developed drinking water and wastewater 

infrastructure and individuals may experience repeated exposures to multiple waterborne 

pathogens, the application of immunological biomarkers can be used as a monitoring and 

evaluation tool for infrastructure and point-of-use interventions. The multiplex immunoassay 

methodology targeting salivary IgG and IgA responses to potentially waterborne pathogens 

[52••] can be applied as a minimally invasive and objective exposure and outcome screening 

tool to assess the efficacy of interventions designed to reduce pathogen exposure and/or AGI 

illness within a specified population. Such multiplex pathogen antibody measurements could 

improve the evaluation and prioritization of a range of water, sanitation, hygiene, and health 

programs and interventions. Integration of these biomarkers into monitoring activities for the 

Sustainable Development Goals recently adopted at the 2015 UN Summit (https://

sustainabledevelopment.un.org/topics) could improve the evidence base for improved health 

outcomes related to Goal 6, which is to “by 2030, achieve access to adequate and equitable 

sanitation and hygiene for all and end open defecation” (Target 6.2) [86].

Biomarkers of pathogen-specific antibody response can also be used to improve monitoring 

and evaluation of vaccination coverage for specific waterborne infections. Several 

waterborne pathogen vaccines for which antibody response data can be generated include 

Shigella [87], rotavirus [88], cholera [89, 90], and hepatitis A [91] and E [92], among others. 

Such pathogen-specific antibody response biomarkers have particular utility in remote, 

resource-limited population-based settings because they can provide objective measures of 

vaccination coverage when paper-based records and/or recall of vaccination history is 

lacking.
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Challenges and Perspectives for Future Work

Pathogen-specific antibody assays represent a promising tool for understanding the relative 

contribution of waterborne versus other pathways to infectious disease burden in population-

based settings. However, assays based on invasive serum specimens may fail to capture a 

majority of cases in population-based field studies. Because saliva swabs can be self-

administered and returned by mail [49••], salivary antibody assays may increase 

participation in surveys of potentially waterborne infections in populations that are difficult 

to reach, including children, pregnant women, and individuals living in remote, resource-

limited settings. This may facilitate a more fine-scale, spatiotemporal study of the ecology 

and natural history of waterborne disease, including elucidation of optimal points of 

intervention to prevent waterborne pathogen transmission.

While such minimally invasive pathogen-specific salivary antibody biomarkers are 

promising, challenges remain in their broad application to diverse pathogen exposures and 

infections. Not all pathogens elicit a robust systemic or salivary antibody response. 

Additionally, a majority of waterborne infections may be asymptomatic and not result in 

adverse health effects. Therefore, the incidence of infections estimated from cross-sectional 

antibody data may not be representative of disease burden but only reflect recent or 

historical exposure to a pathogen [93]. Nevertheless, cross-sectional antibody response data 

can provide an improved estimate of human exposure to specific pathogens and can be used 

as an epidemiological tool to estimate the contribution of waterborne versus other pathways 

to the total infection pressure. However, the underlying infection and immune response to 

the pathogen must be considered in the interpretation of cross-sectional seroprevalence 

estimates and depend on whether the infection results in lifetime immunity following one 

exposure or the infection is acute and immunity wanes following exposure.

The detection of cytokines in serum and saliva also presents an opportunity to measure the 

onset of waterborne infections. However, cytokines are not capable of identifying a specific 

causative agent; rather, they are more generic biomarkers of infection. The hallmark for a 

viral infection begins with a wave of cytokine production [94], and their presence can be 

employed as a marker of infection (Table 2). Cytokine levels in serum of individuals infected 

with norovirus that were shown to be significantly increased included IFN-gamma, 

interleukin 6 (IL-6), IL-8, IL-12p70, MCP-1, and TNF-alpha 2 days following exposure 

[95]. Evidence has shown that the elevation of cytokines in a newborn's salivary gland 

epithelium promotes secretory immunity [96]. Proinflammatory cytokines can upregulate the 

polymeric Ig receptor (pIgR), including IL-17, which is particularly abundant at mucosal 

sites [97]. The extracellular part of pIgR is essential for resistance against proteolytic 

degradation of the secretory component of IgA (SIgA) found in saliva and the gut mucosa 

[98]. A challenge in using cytokines in saliva is to determine if there is a serum-saliva 

association, for which there is currently limited evidence [99]. The most likely hypothesis is 

that much of the variation in salivary cytokines (e.g., IL-1b, TNF-α, IL-6, IL-8) may be due 

to inflammatory processes in the mouth caused by poor oral health [100] and/or other 

disease processes [101–103]. However, there could be specific hyper-inflammatory 

physiological states (systemic infection/sepsis, burns, etc.) when more of the variance in 

salivary levels of cytokines could be due to systemic circulating cytokine levels [99]. IL-6, 
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which has a major role in the regulation of inflammatory processes, was found to be elevated 

in concentration in both the saliva and serum of inflammatory bowel disease patients when 

compared to reference persons [104]. An area for future study is identifying if a specific 

waterborne pathogen generates a unique or predictive cytokine profile that is observable in 

both saliva and serum.

Conclusion

The ability to estimate waterborne infections via measurements of host immunological 

response at the population level is improving as technological and analytical advancements 

are made. Diagnostic advancements are enabling a paradigm shift in how waterborne 

infections can be measured, not just in clinical settings or outbreak settings but also more 

widely as tools for population-based screening of incidence and prevalence. The 

measurement of salivary antibody responses to specific pathogens as biomarkers of 

waterborne infection holds great potential to expand surveillance to reach larger numbers of 

people in diverse population-based settings. Future work lies in the development of sensitive 

and specific multiplexed serum and salivary immunoassays to measure exposures to, and 

infections with, specific waterborne pathogens.
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Fig. 1. 
The iceberg concept of waterborne infection surveillance. Some of the “host response” 

information listed in Fig. 1 is adapted from Kaslow et al. [105]
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Fig. 2. 
Temporal pattern of antibody responses during infection with a waterborne pathogen
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Table 1

Studies that measured specific waterborne pathogens and estimated which are responsible for the greatest 

population burden of waterborne infection

Region Data source Top waterborne pathogens identified

USA CDC Morbidity Mortality Weekly Report (MMWR) Surveillance for 
waterborne disease outbreaks associated with drinking water, 2011–
2012 [16]

Norovirus and Shiga toxin-producing E. coli

CDC MMWR for Outbreaks of illness associated with recreational 
water, 2011–2012 [24]

Cryptosporidium spp.

Developing countries The Global Enteric Multicenter Study (GEMS)[17] Rotavirus, Cryptosporidium spp., Shigella, 

Giardia spp.,
a
 Campylobacter spp., Vibrio 

choleraeb

The Etiology, Risk Factors, and Interactions of Enteric Infections and 
Malnutrition and the Consequences for Child Health and 
Development Project (MAL-ED) [18]

Giardia spp.
c

Ishii et al. (2015) [19] and Hoomagle et al. (2012) [20]
Hepatitis A and E virus

d

a
In univariate analyses, Giardia was identified significantly more frequently in controls than in patients with moderate-to-severe diarrhea aged 12–

59 months in ten of the 14 age-site strata [17]

b
Important in selected sites in GEMS study [17]

c
Giardia spp. were among the top five pathogens in terms of the highest prevalence in diarrheal and non-diarrheal stools for both the 0–11- and the 

12–24-month age groups [18]

d
Hepatitis A and E viruses are the most common causes of feces-transmitted acute viral hepatitis worldwide [19, 20]
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Table 2

Immunological biomarkers of infection for waterborne pathogens that are responsible for the greatest global 

burden of acute gastrointestinal illness (AGI)

Pathogen of interest Specimen Immunologic biomarker response Reference

Cryptosporidium spp. Serum IgG antibody Priest, J. W., et al. [106]; Chappell, C. L., et al. 
[60]; Crump, J. A., et al. [107]; Sarkar, R., et al. 
[108]; Becker, D. J., et al. [109]; Checkley, W., et 
al. [110]

Saliva IgG and IgA antibody Cozon, G., et al. [111]; Moss, D. M., et al. [69]; 
Egorov, A. I., et al. [112]; Griffin, S. M., et al. 
[52••];

Campylobacter Serum IgG, IgM, and IgA antibodies Ang, C. W., et al.; [93]; Teunis, P. F., et al. [81]; 
Rokosz-Chudziak, N. and W. Rastawicki [113].

Stool Cytokines (IL-1β, IL-6, IL-8, TNF-α, and IFN-γ), 
IgA antibodies

Tribble, D. R., et al. [114]; Islam, D., et al. [115];

Saliva IgG and IgA antibodies (responses to acid-glycine 
extracts of C. jejuni strain 81116 and an 
aflagellate mutant, and a whole-cell R2 sonicate)

Cawthraw, S. A., et al. [116]

Giardia intestinalis Serum IgG and IgA antibodies Crump, J. A., et al. [107]; Jiménez, J. C., et al. 
[117]; Priest, J. W., et al. [66]; Moss, D. M., et al. 
[68]

Saliva sIgA, IgA, and IgG antibody (responses against G. 
duodenalis)

Rodriguez, O. L., et al. [118]; El-Gebaly, N. S., et 
al. [119]

Hepatitis A virus Serum IgM and IgG antibodies Vitral, C. L., et al. [11]; Hundekar, S., et al. [120]

Saliva IgM and IgG antibodies Laufer, D. S., et al. [121]; Ochnio, J. J., et al. 
[122]; Morris-Cunnington, M. C., et al. [49••]; 
Tourinho, R. S., et al. [123]

Hepatitis E virus Serum IgG and IgM antibody, cytokines (IL-5, IL-6, 
IL-8, IL-10, IL-2, IFN-γ,TNF-α,TGF-β1, IL-1β

Adjei, A. A., et al. [124]; Pas, S. D., et al. [125]; 
Wu, W. C., et al. [38]; Kumar, A., et al. [126]; Gu, 
G., et al. [127]; Cong, W., et al. [37]; Heaney, C. 
D., et al. [128], Kmush, B. L., et al. [129]

Norovirus Serum IgG and IgA antibodies, cytokines (IL-1, IL-2, 
IL-4, IL-5, IL-6, IL-8, IL-10, and IL-12, IFN-
β,TNF-α)

Erdman, D. D., et al. [64]; Monroe, S. S., et al. 
[39]; Moe, C. L., et al. [40]; Lindesmith, L., et al. 
[58]; Crump, J. A., et al. [107]; Newman, K. L., et 
al. [95]

Stool IgA antibody Iritani, N., et al. [130]; Ramani, S., et al. [131]

Saliva IgA and IgG antibodies Moe, C. L., et al. [40]; Lindesmith, L., et al. [59]; 
Lindesmith, L., et al. [58]; Griffin, S. M., et al. 
[52••]; Griffin, S. M., et al. [53•]

Rotavirus Serum IgM, IgA, and IgG antibodies, cytokines (IFN-γ, 
TNF-α, IL-8, and IL-10)

Grimwood, K., et al. [132]; Azim, T., et al. [133]; 
Xu, J., et al. [134]; Premkumar, P., et al. [135]; 
Sindhu, K. N., et al. [136]; Moon, S. S., et al. 
[137]

Stool IgM, IgA, and IgG antibodies Stals, F., et al. [138]; Grimwood, K., et al. [132]; 
Azim, T., et al. [133]

Saliva IgM, IgA, and IgG antibodies Stals, F., et al. [138]; Grimwood, K., et al. [132]; 
Aiyar, J., et al. [139];
    Friedman, M. G., et al. [140];

Shiga toxin-producing Serum IgG antibodies against 51 O serogroup strains, B 
subunit of Stx2 and Stx1

Ludwig, K., et al. [141]; Kulkarni, H., et al. [142]; 
Fernández-Brando, R. J., et al. [143]; Guirro, M., 
et al. [144]

        Escherichia coli Saliva IgM and IgA antibodies Ludwig, K., et al. [145]; Chart, H., et al. [146]

Shigella Serum IgA, IgM, and IgG subtypes to S. sonnei O-
antigen, IgA and IgG antibodies to S. flexneri 2a 
lipopolysaccharide, total IgA antibody-secreting 
cells (ASC), and anti-LPS IgA ASC, cytokines 
(IFN-γ,TNF-α,TNF-β, IL-4, IL-6, TGF-β)

Van De Verg, L. L., et al. [147]; Raqib, R., et al. 
[148]; Rasolofo-Razanamparany, V., et al. [149]; 
Levine, M. M., et al. [150]; Muhsen, K., et al. 
[151]; Thompson, C. N., et al. [152]
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Pathogen of interest Specimen Immunologic biomarker response Reference

Stool Cytokines (TNF-α, IL-6) Azim, T., et al. [153]

Saliva IgA antibody Schultsz, C., et al. [154];

Vibrio cholerae Serum IgA and IgG antibodies, IgG, IgM, and IgA ASC Chowdhury, F., et al. [155]; Johnson, R. A., et al. 
[156]; Fujii, Y., et al. [157]; Khan, A. I., et al. 
[158]

Stool IgA antibody Qadri, F., et al. [159]

Saliva IgA antibody Jertborn, M., et al. [160]
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