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SIGNALING AND CELL PHYSIOLOGY
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Abstract Physiological stimulation of pancreatic acinar
cells by cholecystokinin and acetylcholine activate a
spatial-temporal pattern of cytosolic [Ca+2] changes that
are regulated by a coordinated response of inositol 1,4,5-
trisphosphate receptors (IP3Rs), ryanodine receptors (RyRs)
and calcium-induced calcium release (CICR). For the
present study, we designed experiments to determine the
potential role of Bcl-2 proteins in these patterns of cytosolic
[Ca+2] responses. We used small molecule inhibitors that
disrupt the interactions between prosurvival Bcl-2 proteins
(i.e. Bcl-2 and Bcl-xl) and proapoptotic Bcl-2 proteins (i.e.
Bax) and fluorescence microfluorimetry techniques to
measure both cytosolic [Ca+2] and endoplasmic reticulum
[Ca+2]. We found that the inhibitors of Bcl-2 protein
interactions caused a slow and complete release of

intracellular agonist-sensitive stores of calcium. The release
was attenuated by inhibitors of IP3Rs and RyRs and
substantially reduced by strong [Ca2+] buffering. Inhibition
of IP3Rs and RyRs also dramatically reduced activation of
apoptosis by BH3I-2′. CICR induced by different doses of
BH3I-2′ in Bcl-2 overexpressing cells was markedly
decreased compared with control. The results suggest that
Bcl-2 proteins regulate calcium release from the intracellu-
lar stores and suggest that the spatial-temporal patterns of
agonist-stimulated cytosolic [Ca+2] changes are regulated
by differential cellular distribution of interacting pairs of
prosurvival and proapoptotic Bcl-2 proteins.

Keywords Pancreas . Pancreatic acinar cell .

Acetylcholine . Transport . Signal transduction . Cell death

Introduction

Calcium is the predominant intracellular second messenger
in the pancreatic acinar cell mediating its normal physio-
logic function of digestive enzyme secretion [1]. Calcium
also plays a key role in the acinar cell pathobiologies of
pancreatitis [2–4]. There are differences in patterns of
calcium release from intracellular stores which are respon-
sible for the changes in cytosolic [Ca2+] observed between
physiological and pathobiological conditions in the pancre-
atic acinar cell. For example, normal physiological stimu-
lation of acinar cells by cholecystokinin (CCK) and
acetylcholine causes cytosolic [Ca2+] transients (oscilla-
tions) originating in the apical pole of the cell (the location
of the secretory granules) with propagation of each
cytosolic [Ca2+] transient toward the basolateral membrane
(wave) without reaching the basolateral membrane. That is,
with physiological stimulation the oscillations of cytosolic
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[Ca2+] are contained in the apical pole of the cell [5–7]. In
contrast, excessive stimulation of acinar cells with CCK or
acetylcholine leads to global and sustained increases in
cytosolic [Ca2+] resulting in cellular pathologies of pancre-
atitis [2, 3].

The patterns of cytosolic [Ca2+] changes described
above are due to both a differential distribution of calcium
release channels on the intracellular calcium stores and the
phenomenon of calcium-induced calcium release (CICR).
Inositol 1,4,5-trisphosphate receptors (IP3Rs) calcium
release channels are concentrated in the apical region [5,
8, 9]. Whereas ryanodine receptors (RyRs) are distributed
evenly throughout the cell [10–13]. CICR occurs by a
mechanism whereby a rise in cytosolic [Ca2+] facilitates
the release of further calcium from intracellular stores [7,
13]. Thus, a small increase in cytosolic [Ca2+] triggers a
greater increase resulting in augmentation of the signal.
Several models that have been proposed to explain
cytosolic [Ca2+] spatiotemporal include CICR as a key
component [5, 14, 15].

Previously [7], we directly measured CICR sensitivity in
the different regions of the acinar cell by locally releasing
caged calcium and monitoring for CIRC-induced cytosolic
[Ca2+] waves. Releasing caged calcium in the apical region
resulted in a cytosolic [Ca2+] wave that propagated toward
the basal region of the cell. In contrast, CICR could not be
initiated by uncaging calcium in the basolateral region of
the cell despite the fact that IP3Rs and RyRs are present
there. IP3Rs and RyRs were both necessary for CICR
because application of inhibitors specific for each of the
receptors prevented CICR stimulated by release of caged
calcium. CICR has similarly been observed by others in
pancreatic acinar cells [16]. The underlying mechanism of
the differential CICR responses in different regions of the
cell and the mechanisms regulating CICR are unknown.

Proteins of the Bcl-2 family are known as major
regulators of mitochondrial function and mitochondrial-
mediated cell death pathways [17, 18]. The Bcl-2 family
proteins also participate in calcium signalling [19]. Based
on their function and structure, the Bcl-2 family proteins are
divided into three groups [18, 20, 21], namely, prosurvival
proteins such as Bcl-2 and Bcl-xl containing four BH
domains (BH1-BH4); proapoptotic proteins such as Bax,
Bak and tBid containing three homologous BH domains
(BH1–BH3); and pro-apoptotic proteins such as Bad, Bim
and Puma containing one BH3 domain only. In relation to
mitochondrial function, the prosurvival Bax and Bak form
channels in the outer membrane of the mitochondria
resulting in release of proapoptogenic signals such as
cytochrome c. BH3-only proteins Bad, Bim and Puma
promote the formation of Bax/Bak channels. Proteins Bcl-
xL and Bcl-2 bind to and sequester the proapoptotic
proteins resulting in the inhibition of apoptosis.

There is substantial evidence that members of the Bcl-2
family of proteins regulate calcium content and release
from intracellular stores [19]. However, their roles in CICR
have not been determined. During the past several years,
small-molecule inhibitors of prosurvival Bcl-2/Bcl-xL have
been developed and shown to cause dissociation of
prosurvival and proapoptotic Bcl-2 proteins and initiate
apoptosis in cancer cells [22, 23].

Because of the previous reports showing potential roles
for Bcl-2 proteins in regulating calcium stores and the
possibility that Bcl-2 protein interactions could explain the
differential sensitivity of stores to CICR, we undertook a
set of studies using two small molecular inhibitors that
cause dissociation of prosurvival and proapoptotic Bcl-2
proteins to determine the role of such Bcl-2 protein
interactions in the mechanism of acinar cell calcium
metabolism.

Materials and methods

Antibodies against Bcl-xL, Bcl-2 and p44/42 MAP kinase
(ERK1/2) were from Cell Signalling (Beverly, MA); Bax
and protein disulfide isomerise (PDI) from Santa Cruz
Biotechnology (Santa Cruz, CA); COX IV, from Molecular
Probes (Eugene, OR). CCK-8, from American Peptide
(Sunnyvale, CA). The Bcl-xL/Bcl-2 inhibitor 3-iodo-5-
chloro-N-[2-chloro-5-(4chlorophenyl)-sulphonyl)phenyl]-2-
hydroxybenzamide (BH3I-2′) was from Calbiochem (La
Jolla, CA); ethyl 2-amino-6-bromo-4-(1-cyano-2-ehtoxy-2-
oxoethyl)-4H-chromene-3-carboxylate (HA 14-1), from
ALEXIS Biochemicals (San Diego, CA). Fluo-4 and
Fluo-5AM esters were from Molecular Probes/Invitrogen
(Eugene, OR). Other reagents were from Sigma Chemical
(St. Louis, MO).

Isolation of pancreatic acinar cells Freshly isolated mouse
pancreatic acinar cells, obtained from male CD-1 mice,
were prepared using collagenase (Worthington Biochemical
Corporation, Lakewood, NJ, USA) digestion as previously
described [24]. Pancreata were obtained from adult male
mice (CD1) that had been killed by cervical dislocation in
accordance with the Animals (Scientific Procedures) Act of
1986 (UK). Training and oversight of procedures were
conducted by competent personnel from the University of
Liverpool (in compliance with national requirements). The
standard extracellular solution used throughout cell isola-
tion and during all experiments contained (in mM): NaCl
140, KCl 4.7, CaCl2 1, MgCl2 1.13, glucose 10, HEPES 10
(adjusted to pH 7.2 with NaOH). In some experiments,
where indicated, CaCl2 was omitted from the extracellular
solution. All experiments were performed at room temper-
ature and cells were used within 3–4 h after isolation.
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Subcellular fractionation Subcellular fractionation of pan-
creatic tissue was performed by differential centrifugation
as described in [25, 26]. The dissected pancreas was
homogenised in 8 ml of homogenization buffer with five
full strokes, and the nuclei and cell debris were sedimented
at 150×g. The post-nuclear supernatant was centrifuged at
1,300×g, and the pellet containing zymogen granules was
discarded. The supernatant was further centrifuged at
12,000×g, and both the 12,000×g pellet and supernatant
were collected. Total protein in the fractions was measured
by Bradford assay (Bio-Rad Laboratories, Hercules, CA).

Immunoprecipitation Tissue was lysed in a buffer containing
10mMHEPES, pH 7.4, 140 mMKCl, 5 mMMgCl2, 0.5 mM
EGTA, 2% CHAPS containing 1 mM dithiothreitol,10 μg/ml
each leupeptin and aprotinin, 1 mM PMSF [27]. The lysates
were clarified by centrifugation, and 500 μg of protein was
subjected to overnight immunoprecipitation with either
Bcl-xL or Bcl-2 antibody at 4°C using Catch and Release
Reversible Immunoprecipitation System from Millipore
(Billerica, MA).

Western blot analysis Western blot analysis was performed
on cell homogenates, subcellular fractions and immunopre-
cipitates as previously described [24, 28]. Proteins were
separated by SDS-PAGE and electrophoretically transferred
onto nitrocellulose membranes. Nonspecific binding was
blocked by 1-h incubation of the membranes in 5% (w/v)
nonfat dry milk in Tris-buffered saline (pH 7.5). Blots were
then incubated for 2 h at room temperature (or overnight at
4°C) with primary antibodies in the antibody buffer
containing 1% (w/v) nonfat dry milk in TTBS (0.05%
(v/v) Tween-20 in Tris-buffered saline), washed three times
with TTBS, and finally incubated for 1 h with a peroxidase-
labeled secondary antibody in the antibody buffer. Blots
were developed for visualisation using enhanced chemilu-
minescence detection kit (Pierce, Rockford, IL).

Cytosolic Ca2+ measurements For fluorescent imaging of
Ca2+, cells were loaded with 3 μM fluo-4 AM. Loading
was carried out at room temperature for 30 min in darkness.
Once loaded, cells were placed onto glass coverslips and
continuously perfused with extracellular solution from a
gravity-fed perfusion system. Confocal imaging was carried
out using a Leica SP2 MP system (Leica Microsystems AG,
Wetzlar, Germany) with a×63 1.2 NA objective. Fluores-
cence was excited at 476 nm and emission was collected
between 500 and 550 nm. An analysis of images was
performed using Leica software.

Two-photon permeabilization and measurements of Ca2+

in intracellular ER [Ca2+] store measurements were per-
formed as described previously [29]. Briefly, cells were
loaded with 5–7.5 μM Fluo-5N AM, for 45 min at 36.5°C,

and then transferred onto poly-L-lysine-coated coverslips in
a perfusion chamber. Cells were washed with an intracel-
lular K-Hepes solution, containing (mM): KCl, 127; NaCl,
20; Hepes KOH, 10; ATP, 2; MgCl2, 1; EGTA, 0.1; CaCl2
0.05; pH 7.2; 291 mosmol/l. Thereafter, cells were
permeabilized using a two-photon microscope, as previous-
ly described [29]. In the [Ca2+] clamp experiments 10 mM
BAPTA and 2 mM CaCl2 were included into K-Hepes
solution. Cells were observed using a Leica SP2 MP dual
two-photon microscope using excitation 476 nm and
emission at 500–600 nm.

Overexpression of Bcl-2 Protein in AR42J Cells

Rat pancreatic tumour cell line AR42J was maintained in
RPMI 1640 medium supplemented with 10% FBS, 10 mM
HEPES, 50 μg/ml gentamycin and 2.5 μg/ml fungizone at
37°C 5% CO2.

Cells were transfected with pEGFP-C1 plasmid contain-
ing human Bcl-2 insert obtained through Addgene (plasmid
17999) using PromoFectin reagent (PromoKine) according
to the manufacturer's protocol. After 48–72 h cells were
loaded with 5 μM fura-2 AM (Invitrogen) at 37°C for 1 h
in NaHepes 1 mM Ca2+. Fura-2 ratiometric measurements
of intracellular calcium changes were performed by
sequential excitation with 340 and 380 nm.

Apoptosis Measurements with caspase substrate

Measurements using generic fluorescent caspase substrate
rhodamine 110 bis-L-aspartic acid amide (Invitrogen) were
conducted as described previously [43]. Briefly, isolated
pancreatic acinar cells were washed and suspended in
calcium-free buffer solution (140 mM NaCl, 1.13 mM
MgCl2, 4.7 mM KCl, 10 mM glucose, 2 mM EDTA,
10 mM HEPES, pH 7.2). Cells were then loaded with
caspase substrate (10 μm) at room temperature for 20 min.
After loading, cells were washed and treated with BH3I-2′
(15 μM) in the absence or in the presence of ruthenium
red (10 μM) and 2-APB (100 μM). Cells were analysed
using confocal microscopy (excitation 488 nm, emission
505–543 nm).

Results

In order to determine the location of Bcl-2 and Bcl-xl in
pancreatic acinar cells and the effects of Bcl-2/Bcl-xl
inhibitors on associations of Bcl-2 family proteins, we
performed the series of Western blot analyses illustrated in
Fig. 1. For the experiment shown in Fig. 1a, we determined
differential localization of Bcl-2 and Bcl-xl in a two post-
nuclear fractions of pancreatic tissue-the 12,000×g pellet
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and 12,000×g supernatant. We monitored organelle markers
COX IV that is specific for mitochondria and PDI that is
specific for endoplasmic reticulum. The results (Fig. 1a)
show that the 12,000×g pellet fraction contains mitochon-
dria and endoplasmic reticulum as well as both Bcl-2 and
Bcl-xl; and that the 12,000×g supernatant fraction contains
no mitochondria but does contain endoplasmic reticulum as
well as Bcl-2 and Bcl-xl. Importantly, the supernatant
fraction with endoplasmic reticulum devoid of mitochon-
dria had a greater concentration of the Bcl-2 proteins
compared to the mitochondrial containing fraction indicat-
ing a potential role for Bcl-2 proteins in endoplasmic
reticulum function.

The immunoprecipitation/Western blot in Fig. 1b, c were
performed to determine the effects of the two putative Bcl-
2/Bcl-xl inhibitors, 5 μM BH3I-2′ and 30 μM HA14-1, on
associations of a BH3-only Bcl-2 family member (Bax) and
Bcl-2 or Bcl-xl. Disruptions of the interactions are a
measure of inhibitory activity. As shown in these two

figures (Fig. 1b, c) both BH3I-2′ and HA14-1disrupt the
interactions of Bax with Bcl-2 and Bcl-xl confirming their
inhibitory activity in pancreatic tissue.

To investigate the role of Bcl-2/Bcl-xL proteins on
calcium release from the internal stores we loaded freshly
isolated pancreatic acinar cells with the AM ester form of
calcium sensitive fluorescent cytosolic dye Fluo-4. All
experiments shown in Fig. 2 were performed in the
nominally calcium-free solution in order to focus on release
of calcium from internal stores only. Fluorescence was
monitored using confocal microscopy. Inhibition of Bcl-2/
Bcl-xL was induced by either 5 μM BH3I-2′ or 30 μM
HA14-1. Each of the agents caused a slow transient
increase of [Ca2+] in the cytosol followed by partial return
of cytosolic [Ca2+] toward baseline levels and plateau
formation (Fig. 2a, b). Subsequent addition of a supra-
maximal dose of CCK was unable to further release
calcium (Fig. 2a, b) suggesting that the content of internal
calcium stores in each case was substantially reduced by
treatments with BH3I-2′ and HA14-1.

In contrast to the observations with BH3I-2′ and HA14-
1, application of 5 nM CCK in the absence of external
calcium produced a rapid and transient [Ca2+] rise in the
cytosol with complete recovery of [Ca2+] to the basal level;
and the subsequent application of the Bcl-2/Bcl-xL inhib-
itors induced very slow dose dependent increases in
cytosolic [Ca2+] followed by a plateau in cytosolic [Ca2+]
(Fig. 2c, d). Formation of the plateau in cytosolic [Ca2+]
induced by Bcl-2 inhibitors shows that there is a new
equilibrium in cellular calcium level probably resulting
from the balance of Ca2+ influx and Ca2+ extrusion.

Experiments shown in Figs. 3 and 4 were performed to
measure calcium changes in intracellular stores using two-
photon fluorescence microscopy and permeabilized pancre-
atic acinar cells loaded with calcium sensitive low affinity
indicator Fluo-5N AM as we described previously [29].
Application of 5 μM BH3I-2′ caused a reduction in
fluorescence (18.5%±2.2 SE) indicating a decrease of the
calcium content in internal stores (Figs. 3a and 4g; n=12).
Similarly, 30 μM HA14-1 decreased Ca2+ in the intracel-
lular stores (Figs. 3b and 4g; 21%±1.5 SE, n=10). Pre-
treatment of the permeabilized cells with mixture of 10 μM
rotenone and 10 μM oligomycin did not prevent BH3I-2′-
and HA14-1-dependent calcium loss indicating that the
effects of BH3I-2′ and HA14-1 were independent of
mitochondrial or ATP effects that these inhibitors might
have in the cells (Figs. 3c, d and 4g).

When [Ca2+] was clamped in the buffer with 10 mM
BAPTA/2 mM CaCl2 in order to block calcium-induced
calcium release (CICR) from the stores, the effects of both
BH3I-2′ or HA14-1 were markedly inhibited (Figs. 3e, f
and 4g; 6.8%±0.3 SE, n=6 for BH3I-2′; 6.1%±0.3 SE, n=
6 for HA14-1).

Fig. 1 Bcl-2 and Bcl-xL are present in the ER fraction of acinar cells
and release bound Bax with addition of inhibitors 5 μM BH3I-2′ and
30 μM HA14-1. a Pancreas was homogenised and postnuclear
supernatant was first centrifuged at 1,300×g. The pellet enriched in
zymogen granules was removed and the supernatant was further
centrifuged at 12,000×g. Both the pellet and supernatant (SN) were
analysed using Western blot for the presence of the mitochondrial
marker COX IV, ER marker PDI and Bcl-2, and Bcl-xL. b and
c Pancreatic acini were incubated in the presence or absence of 5 μM
BH3I-2′ or 30 μM HA14-1 for 1 h followed by cell lysis and
immunoprecipation with antibodies to (b) Bcl-xL or (c) Bcl-2.
Immunoprecipitates were probed with antibodies against Bcl-xL,
Bcl-2 or Bax. The results are representative of 2 experiments which
gave the same results
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A blocker of IP3Rs, 2-APB (100 μM), reduced the
amplitude of BH3I-2′- and HA14-1-induced Ca2+ release
from internal stores but did not inhibit the responses
completely (Fig. 4a, b, g; 13%±1.9 SE, n=8 for BH3I-2′;
11.7%±0.9 SE, n=5 for HA14-1). Also, inhibition of RyRs
with ruthenium red (10 μM) partially inhibited BH3I-2′-and
HA14-1-induced reduction of Ca2+ in the stores (Fig. 4c, d,
g; 12.5%±1.2 SE, n=5 for BH3I-2′; 12%±1.4 SE, n=5 for
HA14-1). A mixture of 2-APB (100 μM) and ruthenium red
(10 μM) inhibited Bcl-2/Bcl-xl inhibitor-induced calcium
release to a greater extent than either agent alone although
the inhibition was not complete (Fig. 4e–g; 8.8%±0.5 SE,
n=5 for BH3I-2′; 7.3%±0.9 SE, n=5 for HA14-1).

The results shown in Figs. 2, 3 and 4 suggest that
inhibition of Bcl-2 proteins by both BH3I-2′ and HA14-1
induces Ca2+ release from the ER stores. IP3Rs and RyRs
are both partially involved in the Ca2+ release but their role
seems to be limited to amplification of the leak probably by
CICR.

To determine if CICR is dependent on antiapoptotic
proteins we overexpressed Bcl-2 in AR42J cells. Applica-
tion of BH3I-2′ in the range between 2 and 15 μM induced
calcium release measured with Fura-2 with clear a CICR
component in control cells. However, in Bcl-2 overexpress-
ing cells the increasing phases of responses were substan-

tially diminished (Fig. 5 a, b). Responses to 1 μM of BH3I-
2′ were markedly decreased in Bcl-2 overexpressing cells
(P>0.39, n=16) so that the response was essentially
abolished. These further support our suggestion that Bcl-2
protein interactions are an essential component the CICR.

We have also performed experiments to further confirm
that calcium responses we observed with BH3I-2′ were due
to release from the internal stores. 5 μM of BH3I-2′ was
applied to pancreatic acinar cells in calcium free solution
and 100 μM of the calcium chelator EGTA (Fig. 5c, n=7).
The responses to 5 μM of BH3I-2′ returned to the basal
level within 700 s after application. These data show that
the main source of calcium for the BH3I-2′ -induced
calcium responses is in intracellular stores while external
calcium plays effectively a minor role.

Because Bcl-2 family proteins play a major role in
apoptosis, we measured the apoptosis induction by Bcl-2
family inhibitor BH3I-2′ in three series of independent
experiments with 20–80 cells each. Fifteen micromolars
of BH3I-2′ induced apoptosis in the majority of treated
cells (58.4±2.5%). In the presence of the mixture of
inhibitors of IP3Rs (2-APB (100 μM) and RyRs (ruthe-
nium red (10 μM)) percentage of apoptotic cells was
reduced to 15.8±0.7%, only slightly greater than control
values (7.3±3.7%).

Fig. 2 Cytosolic [Ca2+]
responses to application of Bcl-
2/Bcl-xL inhibitors –BH3I-2′
and HA14-1 in pancreatic acinar
cells. Experiments were per-
formed in Fluo-4 loaded acinar
cells incubated in the absence
of external CaCl2. a Typical
calcium response in the cytosol
induced by application of 5 μM
BH3I-2′ in freshly isolated pan-
creatic acinar cells. A subse-
quent application of 5 nM CCK
did not produce any additional
response. b Typical trace of
[Ca2+] response in the cytosol
elicited by application of 30 μM
HA14-1 followed by addition of
5 nM CCK. c The 5 nM CCK
elicited a global [Ca2+] response
in the cytosol. Subsequent addi-
tions of 5 μM and 30 μM BH3I-
2′ induced slow elevations of
Ca2+ and plateau formation
d The 5 nM CCK elicited global
[Ca2+] response in the cytosol.
Additions of 30 μM HA14-1
induced slow elevations of
[Ca2+] and plateau formation
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These data demonstrate the importance of Bcl-2-
dependent CICR-type calcium release from intracellular
stores in the mechanism of apoptosis.

Discussion

The results of the current study demonstrate that the
endoplasmic reticulum of the pancreatic acinar cell contains
significant quantities of Bcl-2 family proteins and that the
two small molecule inhibitors of Bcl-2/Bcl-xl with mark-
edly dissimilar molecular structures cause dissociation of
proapoptotic Bax from prosurvival Bcl-2 and Bcl-xl.
Importantly, this dissociation of Bcl-2 proteins was associ-
ated with the ability of these agents to cause release of
calcium from intracellular stores of the pancreatic acinar
cell. Furthermore, the treatment with the Bcl-2/Bcl-xl
inhibitors had identical and specific effects on calcium
releasing receptors strongly supporting a role for Bcl-2
proteins in regulating these receptors.

We previously showed [30] that Bcl-2/Bcl-xl inhibitors
cause depolarization of pancreatic mitochondria and stim-

ulate cytochrome c release. However, the effects described
in this report were not due to the potential effects on
mitochondrial energetics because complete inhibition of
mitochondrial function with a combination of rotenone and
oligomycin did not cause release of calcium from the
intracellular stores and did not alter the ability of the Bcl-2/
Bcl-xl inhibitors to do so.

Importantly, the investigation of the mechanism of the
effect of the Bcl-2/Bcl-xl inhibitors showed that both IP3R
and RyR functions are necessary for their effects on release
of calcium from intracellular stores. That is, the IP3R and
RyR blockers, 2-APB and ruthenium red [31], respectively,
each partially prevented the decrease of calcium in stores
caused by the inhibitors. Further, the effects of the blockers
of IP3Rs and RyRs were additive suggesting a role for both
types of calcium releasing receptors in the mechanism of
effect of the Bcl-2/Bcl-xl inhibitors. Interestingly, the effect
of inhibitors in intact cells usually causes substantial
calcium release with a long calcium plateau even in the
calcium-free medium. Pancreatic acinar cells are known to
respond to stimulation in calcium-free solution for very
long time [32]. A calcium plateau in similar conditions has

Fig. 3 Ca2+ release from the
internal stores in response to
Bcl-2/Bcl-xL inhibitors in per-
meabilized pancreatic acinar
cells. Pancreatic acinar calcium
stores were loaded with Fluo-5N
and incubated in K-Hepes solu-
tion. a and b Typical trace of
5 μM BH3I-2′ (a)- or 30 μM
HA14-1 (b)-elicited Ca2+

release from the intracellular
stores. c and d Pre-treatment of
permeabilized cells with mixture
of 10 μM rotenone and 10 μM
oligomycin did not prevent
reduction of calcium content
induced by both inhibitors.
e and f In the condition of
clamped Ca2+ (10 mM BAPTA/
2 mM CaCl2) responses of
internal stores to 5 μM BH3I-2′
(e) or 30 μM HA14-1 (f) were
reduced but resolvable. Pancre-
atic acinar cells were loaded
with Fluo-5N in AM form
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been observed previously [33], particularly in relation to
inhibited calcium extrusion [34]. By adding a relatively
small amount of calcium chelator EGTA (100 μM) we
completely removed this effect. Therefore, calcium release
from intracellular stores is the major effect of application of
Bcl-2 family inhibitors while the calcium plateau is a
secondary minor event.

The effect of the Bcl-2/Bcl-xl inhibitors on calcium
release from intracellular stores was also nearly completely

prevented by clamping the [Ca2+] surrounding the store
compartment. The best interpretation of the combined
findings listed here is that dissociating proapoptotic Bcl-2
proteins such as Bax from prosurvival Bcl-2 proteins Bcl-2
and Bcl-xl increases the sensitivity of IP3Rs and RyRs to
activation by calcium, a mechanism of CIRC in pancreatic
acinar cells described previously [7, 16]. Of note, this
sensitization to calcium did not require addition of ligands
for these receptors showing that the alteration of their

Fig. 4 Inhibition of IP3 and
RyR receptors reverses the
effect of Bcl-2/Bcl-xl inhibitors
in permeabilized pancreatic
acinar cells. a and b Pre-
incubation of permeabilized
cells with 100 μM 2-APB par-
tially reduced responses to 5 μM
BH3I-2′ (e) or 30 μM HA14-1
(f). In the condition of clamped
Ca2+ (10 mM BAPTA/2 mM
CaCl2) responses of internal
stores to 5 μM BH3I-2′ (e) or
30 μM HA14-1 (f) were reduced
but resolvable. c and d Pre-
incubation of permeabilized
cells with 10 μM ruthenium red
partially reduced responses to
5 μM BH3I-2′ (a) or 30 μM
HA14-1 (b). e and f Pre-
incubation of permeabilized
cells with mixture of 100 μM
2-APB and 10 μM ruthenium
red substantially reduced
responses to 5 μM BH3I-2′
(c) or 30 μM HA14-1
(d). g Summary of data obtained
on permeabilized cells with ad-
dition of both inhibitors to con-
trol permeabilized cells and to
cells treated with either 10 μM
rotenone/10 μM oligomycin or
100 μM 2-APB or 10 μM
ruthenium red or mixture
100 μM 2-APB and 10 μM
ruthenium red or in the presence
of 10 mM BAPTA/2 mM CaCl2.
Cells were loaded with Fluo-5N
in AM form
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calcium sensitivity alone can activate their release function.
This finding is reminiscent of CICR in the apical pole of the
acinar cell where release of caged calcium alone can
activated CICR [7]. Also, the large effects of the inhibitors
suggest a key role for the association of antiapoptotic and
proapoptotic in regulating calcium signalling.

Over expressing Bcl-2 in AR42J cells substantially
reduced the [Ca2+] response to Bcl-2 family inhibitor
BH3I-2′, confirming our conclusions about the role of
Bcl-2 in the response. Importantly, these responses highly
influence cell fate, i.e. by inhibiting IP3Rs and RyRs,
apoptosis was dramatically reduced. Interestingly, the
inhibition of IP3Rs and RyRs neither completely blocked
calcium release induced by Bcl-2 family inhibitors nor
completely blocked apoptosis induction.

Although there are no previous studies we are aware of,
that would demonstrate any role of Bcl-2 proteins in CICR,
there are numerous studies showing a role of Bcl-2 family
members in calcium metabolism [35–42] and for review
[19]. Previous findings provide certain insights indirectly
linked to the CICR in the present study, such as the

demonstration that Bcl-2 and/or Bcl-xl physically bind to
the IP3R and alter its ability to release calcium [41, 42]. In
one study [42], Bcl-xl was found to bind directly to the C-
terminal domain of IP3R increasing its sensitivity to IP3,
This effect was prevented by addition of Bax or tBid. Taken
together with our results showing that dissociation of Bcl-xl
from Bax is associated with calcium release from intracel-
lular stores, increasing evidence suggests a model whereby
prosurvival Bcl-2 and Bcl-xl regulate calcium releasing
channels as a function of their association with one or more
proapoptotic Bcl-2 proteins. When associated with proa-
poptotic proteins, the prosurvival Bcl-2 proteins inhibit the
calcium releasing channels. On the other hand when
dissociated from proapoptotic Bcl-2 proteins, Bcl-2 and
Bcl-xl increase the sensitivity of the channels to calcium
release.

In conclusion, the present findings show that a treatment
that dissociates proapoptotic Bcl-2 sequestrated by prosur-
vival Bcl-2 proteins increases the sensitivity of IP3Rs and
RyRs for activation by calcium. Considering previous
studies showing that calcium activation of these receptors
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(CICR) is normally restricted to the apical pole of the acinar
cell and that CICR is hypothesised to underlie physiological
cytosolic [Ca+2] oscillations and waves, it is tempting to
speculate that there is a differential distribution of associ-
ations between Bcl-2 proteins in the apical and basolateral
regions of the acinar cell to account for these phenomena.
Further, changes in distribution and/or associations between
Bcl-2 proteins could account for the global increases of
[Ca+2] that occur during pathologic conditions.
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