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Abstract of the Dissertation

Mathematical Modeling and Computational Methods for

Structured Populations

by

Mingtao Xia

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2023

Professor Tom Chou, Chair

Structured population models are fundamental in the fields of biology, ecology, and social

sciences, as they provide both theoretical insights and practical applications. Different struc-

tured population models range from modeling cellular population proliferation and popula-

tion dynamics to simulating disease spread on social networks. However, there has been little

work on modeling populations across different scales that could link individual behavior to

population dynamics. Additionally, for existing mathematical models on structured popu-

lations, several computational challenges arise as how to develop efficient numerical solvers

to simulate those models and to control the dynamics of those models.

Overall, my dissertation covers three related topics: modeling structured populations,

developing efficient numerical solvers to simulate these models, and developing control al-

gorithms to control population dynamics. Specifically, my dissertation focuses on modeling

and devising algorithms for two types of structured populations: i) age, size, or added

size-structured cell population for describing cellular proliferation and ii) the structured

infected-time- or number-of-contact-based human population for describing disease spread.

Regarding the structured cellular population, we derive mathematical models at both the

macroscopic population dynamics level and microscopic individual behavior level, leading to

structured partial differential equation (PDE) models for cellular proliferation with different

ii



structure variables such as cellular age, size, or added size.

Next, we develop an efficient adaptive spectral method for numerically solving spatiotem-

poral PDEs, which was inspired by simulating the blowup behavior in the unbounded-domain

PDE model for cellular populations. In addition to the structured population models, the

adaptive spectral method proves efficient and accurate in solving a wide range of spatiotem-

poral PDEs in unbounded domains such as the Schrödinger equations in quantum mechanics.

Regarding the structured human population, we introduce an infected-time-structured

PDE model and a number-of-contact-structured ODE model for simulating disease spread,

e.g., COVID-19, in the population. Then, for the number-of-contact-structured ODE model,

we develop classic Pontryagin-maximum-principle-based and reinforcement-learning-based

optimal control algorithms. These two algorithms can effectively mitigate the spread of

disease by appropriately allocating limited test kits or vaccination resources.
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while in (c) and (d) we used a broader differential division function in which

σr = 0.3, δ = 0.7. Realizations from Monte-Carlo simulations are overlayed.

In (b) and (d), divisions are accumulated up to time T = 12. . . . . . . . . . 19

2.5 (a) Size distributions n̄(x, t) for σa = 0.2 at times t = 1, 2, 4, 10. (b) n̄(x, t =

1, 2, 4, 10) for σa = 1, σr = 0.1, and δ = 0. (c) The corresponding mean cell

sizes ⟨x(t)⟩. The curve associated with the σa = 0.2 saturates while the one

corresponding to σa = 1 exhibits blow-up. However, the blowup is suppressed

if a death term (µ = ln 2) is included. . . . . . . . . . . . . . . . . . . . . . . 21

xi



2.6 Population-level evolution of cellular growth rate. Parameters used are λ̄ =
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the preferred mean value λ̄ = ln 2. (c) The evolution of the mean ⟨λ(t)⟩ for
different values of correlation R. Note that the steady-state values ⟨λ(∞)⟩
depend on the correlation R. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
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errors in the whole domain Λ = Λi ∪ Λe under 2 × 10−4 until the final time t = 5

where the exterior domain Λe is determined by the “first moving then scaling”

technique built in to Alg. 3. We adopt the Laguerre spectral approximation (5.2.2)

with N = 40 in the exterior domain Λe = (xL,+∞), the first order backward finite

difference method with spacing ∆x = 0.02 in the interior domain Λi = (0, xL], and

the second order improved Euler time marching scheme with ∆t = 0.001. The last

plot displays the absolute difference between the numerical solution U(x, t) and the

analytical one u(x, t) at different times. . . . . . . . . . . . . . . . . . . . . . . 98

5.7 Errors, frequency indicators, and scaling factors obtained with MMGFs in solving

Eq. (5.6.1) for s = 0.1 (first row), 0.5 (second row) and 0.8 (third row). Both the

error and the frequency indicator are well maintained under appropriate adjustment

of the scaling factor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.8 Numerical results obtained by the scaling algorithm Alg. 1 for the structured cell

population proliferation model Eq. (5.8.1) with the nonlocal boundary Eq. (5.8.2):

The scaled method gives better results than the unscaled one till t = 10. The

latter experiences a growth in error because inappropriate scaling factors are used,

whereas the former gains a faster spectral convergence in the expansion order N .

We adopt the same N in both size x- and age a-dimensions and set N = 20 for the

last three plots. The frequency-dependent scaling is applied only in x-dimension for

tracking the blowup behavior in Eq. (5.8.3). The frequency indicator in x-dimension

is kept around 10−6 through constantly shrinking the scaling factor βx to capture

the blowup. The average size of the scaled solution is in good agreement with that

of the analytical solution, i.e., ⟨x(t)⟩ = 5 + t. . . . . . . . . . . . . . . . . . . . 114
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6.1 Numerically solving Eq. (6.2.8) with Chebyshev polynomials using Alg. 4. For

solutions that become increasingly oscillatory, the p-adaptive technique can increase

the expansion order effectively to capture the oscillations and maintain a small

error by keeping the frequency indicator low. A fixed N = 10 fails to maintain the

frequency indicator and results in a larger error, whereas using a fixed N = 29, the

largest expansion order appearing during the p-adaptive procedure, will not result

in higher accuracy at t = 6 than the p-adaptive technique but requires a higher

computational cost. The p-adaptive technique dynamically selects an expansion

order N that saves computational costs while maintaining accuracy. . . . . . . . 124

6.2 The p-adaptive technique applied to evaluating the singular function in Eq. (6.2.10).

The function u(x, t) becomes more oscillatory when t ∈ [0, 1] ∪ [2, 6] and less oscil-

latory when t ∈ [1, 2] and has a singularity at x = 1. The error of the approxima-

tion decreases very slowly with increasing expansion orders due to this singularity.

Applying the p-adaptive technique straightforwardly in the whole domain [−1, 1]

cannot substantially increase accuracy due to failure to approximate the singularity. 126

6.3 Dividing the function in Eq. (6.2.10) into the domains [−1, 1] = [−1, 0.99)∪ [0.99, 1]

and using the p-adaptive technique to separately approximate u(x, t) in each sub-

domain. Dividing the domain and separating the neighborhood of the singularity

leads to improved accuracy compared to approximating u(x, t) in the whole function

[−1, 1]. In the subdomain Iℓ, oscillatory behavior dominates, and properly adjust-

ing the expansion order Nℓ by the p-adaptive technique is necessary (red curve in

(d)). In the subdomain Ir, adjusting the expansion order Nr is not essential (blue

curve in (d)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
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6.4 Using the p-adaptive technique to approximate the two-dimensional function in

Eq. (6.2.11) with Legendre polynomials. Refinement is applied in each direction

simultaneously to capture increasing oscillations in both directions. Coarsening

is applied when large expansion orders are not needed. Anisotropic oscillatory

behavior requires adjusting the expansion order in each direction differently. The

frequency indicators in both dimensions are kept low, leading to a small error. . . 129

6.5 Flow chart of an adaptive spectral method in unbounded domains that includes

moving, scaling, refinement, and coarsening techniques. . . . . . . . . . . . . . . 134

6.6 Approximation to Eq. (6.3.3) with scaling and p-adaptive spectral methods. In-

creasing β by scaling can save computational burden while maintaining accuracy

by more efficiently redistributing allocation points. The approximation error is

controlled below the initial approximation error for both scaled and unscaled p-

adaptive methods, but the expansion order of the scaled method is smaller. On

the other hand, adjusting the scaling factor without decreasing N will not achieve

higher accuracy even with a much larger expansion order. . . . . . . . . . . . . . 139

6.7 Numerically solving the Schrödinger equation with vanishing potentials. Applying

scaling, moving, and p-adaptive techniques can successfully capture diffusive ad-

vective, and oscillatory behavior of the solution and yields an accurate numerical

solution that prevents the frequency indicator from growing too fast. The exterior-

error indicator is also kept small by moving the basis functions rightward to avoid

a deteriorating approximation at ∞. Failure to incorporate any of the moving,

scaling, or p-adaptive techniques results in a much larger error. . . . . . . . . . . 144

6.8 Numerically solving the 2-D Schrödinger equation Eq. (6.4.12). Applying scaling

and p-adaptive techniques can capture diffusive and oscillatory behavior of the

solution. The solution is heterogeneous in each dimension and requires adjusting

the scaling factors and frequency indicators differently in x- and y-directions. . . . 146
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6.9 Numerically solving the nonlinear Schrödinger equation in Eq. (6.4.14). The so-

lution translates rightward which may cause a false increase in the frequency in-

dicator leading to a large error if the moving technique is not applied. If moving

is not applied, the expansion order will need to be increased to give an accurate

solution. However, by properly moving the basis functions rightward using the mov-

ing technique, accuracy can be maintained without increasing the expansion order.

Therefore, the moving technique is required in addition to the p-adaptive method. 148

6.10 Numerically solving the Schrödinger equation with non-vanishing potentials. Rapidly

increasing oscillations of the solution over time require much refinement and proper

scaling to maintain accuracy. It is again verified that proper scaling can avoid un-

necessary refinement and avoid unnecessary computational burden by adaptively

adjusting the scaling factor. Without scaling, the expansion order soon reaches

the upper bound for N (the expansion order of the reference solution) and the ap-

proximation soon deteriorates due to an inability to further increase N or adjust

β and maintain a low frequency indicator. Failure to accommodate the p-adaptive

technique will also result in a larger error because of an inability to capture the

oscillatory behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.11 Numerically solving the Schrödinger equation in Eq. (6.4.17) with a time-dependent

potential in Eq. (6.4.18) as ε→ 0+. Rapidly increasing oscillations of the solution

require significant refinement by the p-adaptive technique in order to maintain ac-

curacy. The expansion order increases faster over time as ε becomes smaller. In

general, the p-adaptive technique is appropriate for solving Eq. (6.4.17) in the meso-

scopic regime for ε that is not too small. . . . . . . . . . . . . . . . . . . . . . . 152
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7.1 Flow chart of an adaptive Hermite spectral method equipped with scaling, moving,

and p-adaptive techniques. x0 and x̃0 are the displacements before and after the

moving technique is used. β and β̃ are the scaling factors before and after scaling

when the scaling technique is used. N and Ñ are the expansion orders before and

after adjusting the expansion order when the p-adaptive technique is used. . . . . 156

7.2 Plots of the error at t = 2 and the scaling factor β or the displacement x0 when

tuning the scaling factor adjustment ratio q and the scaling threshold ν or the

minimum displacement δ and the moving threshold µ. (a) The error tends to be

smaller as q decreases to 1, indicating that q ≲ 1 is crucial for proper adjustment

of the scaling factor. (b) As ν is increased, the scaling technique could be impeded,

but the error is not very sensitive to ν if q is small. (c) The error is strongly

correlated with x0 and a large δ can lead to over-adjustment of the displacement

x0, resulting in a larger error. (d) A large µ will make it harder to activate the

moving technique, leading to a smaller x0 and a larger error. . . . . . . . . . . . 179

7.3 Plots of the real part of the analytic solution Re(u)(x, t) at different times, the

error and the expansion order N at t = 2 when we vary the refinement threshold

adjustment ratio γ, the initial refinement threshold η, and the coarsening threshold

η0. (a) The real part of the analytic solution, which translates rightward, becomes

more diffusive, and is increasingly oscillatory over time. (b) The error increases with

γ while the expansion order decreases with γ. A larger γ implies a faster-increasing

refinement threshold η. (c) A larger initial refinement threshold η results in a smaller

expansion order at t = 2, yet the error is not reduced as η decreases and N increases

with the initial γ. This indicates that as long as γ is small enough, a larger initial

η can be tolerated to lead to a smaller computational cost without compromising

accuracy. (d) The expansion order N tends to increase as the coarsening threshold

η0 increases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
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7.4 Distribution of the collocation points of generalized Hermite functions {Ĥβ
i,x0
}Ni=0

with β = 1, x0 = 0, and N = 24. xL := xβ
[N
3
]
and xR := xβ

[ 2N+2
3

]
are marked in red.

The number of collocation points that are in the right-exterior region (xR,∞) for

calculating ER and in the left-exterior region (−∞, xL) for calculating EL are both

approximately N/3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

7.5 Plots of the error, x0, the left exterior-error indicator Eq. (7.4.5), and the right

exterior-error indicator Eq. (7.4.6). (a) The bidirectional moving technique Alg. 6

can main the smallest error while failure to accommodate either leftward or right-

ward displacement leads to much larger errors. (b,c,d) The displacement x0, the left

exterior-error indicator, and the right exterior-error indicator of spectral methods

with the bidirectional, the leftward-only, the rightward-only moving technique, and

the spectral method without any moving. . . . . . . . . . . . . . . . . . . . . . 186

8.1 Solving unbounded domain problems with spectrally adapted physics-informed neu-

ral networks for functions uN (x, t) that can be expressed as a spectral expansion

uN (x, t) =
∑N

i=0wi(t)ϕi(x). (a) An example of a function uN (x, t) plotted at

three different time points. (b) Decaying behavior of a corresponding basis func-

tion element ϕi(x). (c) PDEs in unbounded domains can be solved by combin-

ing a PINN with a neural network approximation of the spectral representation,

uN (x, t, ; Θ) =
∑N

i=0wi(t; Θ)ϕi(x), and minimizing the loss function L. Spatial

derivatives of basis functions are explicitly defined and easily obtained. Here, g

denotes an activation function such as the ReLU function. . . . . . . . . . . . . . 195
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8.2 Example 24: Function approximation. Approximation of the target function Eq. (8.2.3)

using both standard feed-forward neural networks and a spectral multi-output neu-

ral network that learns the coefficients wi(t; Θ) in the spectral expansion Eq. (8.2.1).

Comparison of the approximation error using a spectral multi-output neural net-

work (red) with the error incurred when using a standard neural-network function

approximator (black). Here, both the spectral and non-spectral function approxi-

mators use the same number of parameters, but the spectral multi-output neural

network converges much faster on the training set and has a smaller validation error

than the standard feed-forward neural network. (a) The training curve of the spec-

tral multi-output neural network decreases much faster than that of the standard

feed-forward neural network. (b) Since the spectral multi-output neural network is

better at fitting the data by taking advantage of the spectral expansion in x, its

validation error is also much smaller and decreases faster. (c) Asymptotic behavior

of the spatial derivatives of the analytic solution ∂xu(x, t), the feed-forward neural

network ∂xũ(x, t; Θ̃) (Eq. (8.2.5)), and the spectral neural network ∂xuN (x, t; Θ)

(Eq. (8.2.7)). The feed-forward neural network fails to capture the function’s be-

havior when |x| is large because ∂xũ(x, t; Θ̃) is not vanishing for large |x|, but the

spectral approximation Eq. (8.2.7) leads to smaller errors because ∂xuN (x, t; Θ) bet-

ter approximates ∂xu(x, t) especially when |x| is large. Here, t = 0.937 is randomly

chosen from one of the training samples. . . . . . . . . . . . . . . . . . . . . . . 198
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8.3 Example 25: Solving Eq. (8.3.5) in a bounded domain. L2 errors, frequency indica-

tors, and expansion order associated with the numerical solution of Eq. (8.3.5) using

the adaptive s-PINN method with a timestep ∆t = 0.01. (a) In a bounded domain,

the s-PINNs, with and without the adaptive spectral technique, have smaller errors

than the standard PINN (black). Moreover, the s-PINN method combined with a

p-adaptive technique that dynamically increases the number of basis functions (red)

exhibits a smaller error than the non-adaptive s-PINN (blue). The higher accuracy

of the adaptive s-PINN is a consequence of maintaining a small frequency indicator

Eq. (8.3.6), as shown in (b). (c) Keeping the frequency indicator at small values is

realized by increasing the spectral expansion order. . . . . . . . . . . . . . . . . 203

8.4 Example 26: Solving equation (8.3.7) in an unbounded domain. L2 error, fre-

quency indicator, and expansion order associated with the numerical solution of

equation (8.3.7) using the s-PINN method combined with the spectral scaling tech-

nique. (a) The s-PINN method with the scaling technique (red) has a smaller error

than the s-PINN without scaling (blue). The higher accuracy of the adaptive s-

PINN is a consequence of maintaining a small frequency indicator equation (8.3.6),

as shown in (b). (c) Keeping the frequency indicator at small values is possible by

reducing the scaling factor so that the basis functions decay more slowly at infinity.

The timestep is ∆t = 0.05. (d) The errors for the spectral method with and without

scaling at t = 2. When the scaling factor is properly adjusted, very high accuracy

can be obtained with only a few basis functions. Not dynamically adjusting the

scaling factor leads to a much slower convergence. . . . . . . . . . . . . . . . . . 205
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8.5 Example 27: Solving a 2D unbounded domain PDE (Eq. (8.3.9)). L2 error, scaling

factor, and frequency indicators associated with the numerical solution of equa-

tion (8.3.9) using s-PINNs, with and without dynamic scaling. (a) L2 error as a

function of time. The s-PINNs that are equipped with the scaling technique (red)

achieve higher accuracy than those without (black). (b) The scaling factors βx

(blue) and βy (red) as functions of time. Both scaling factors are decreased to

match the spread of the solution in both the x and y directions. Scaling factors are

adjusted to maintain small frequency indicators in the x-direction (c), and in the

y-direction (d). In all computations, the timestep is ∆t = 0.1. . . . . . . . . . . . 208

8.6 Example 29: Solving the Schrödinger equation (Eq. (8.3.15)) in an unbounded

domain. Approximation error, scaling factor, displacement, and expansion order

associated with the numerical solution of Eq. (8.3.15) using adaptive (red) and non-

adaptive (black) s-PINNs. (a) Errors for numerically solving Eq. (8.3.15) with and

without adaptive techniques. (b) The change in the scaling factor which decreases

over time as the solution becomes more spread out. (c) The displacement of the

basis functions xL which is increased as the solution moves rightwards. (d) The

expansion order N increases over time as the solution becomes more oscillatory. A

timestep ∆t = 0.1 was used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

8.7 Example 31: Parameter (diffusivity) inference. The parameter κ inferred within

successive time windows of ∆t = 0.1, the SSE error Eq. (8.4.1), the scaling factor,

and the frequency indicators associated with solving Eq. (8.4.2), for different noise

levels σ. Here, the SSE was minimized to find the estimate θ̂ ≡ κ̂ and the solutions

uN at intermediate timesteps tj + cs∆t. (a, b) Smaller σ leads to smaller SSE

Eq. (8.4.2) and a more accurate reconstruction of κ̂. When the function has spread

out significantly at long times, the reconstructed κ̂ becomes less accurate, suggesting

that unboundedness and small function values render the problem susceptible to

numerical difficulties. (c, d) Noisy data results in a larger proportion of high-

frequency waves and thus a large frequency indicator, impeding proper scaling. . . 220
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8.8 Example 32: Source recovery. SSE0 plotted against the reconstructed heat source

∥hN∥2 as given by equation (8.4.6), as a function of λ for various values of σ (an

“L-curve”). When λ is large, the norm of the reconstructed heat source ∥hN∥2
always tends to decrease while the “error” SSE0 tends to increase. When λ = 10−1,

∥hN∥2 is small and the SSE0 is large. A moderate λ ∈ [10−2, 10−3] could reduce

the error SSE0, compared to using a large λ, while also generating a heat source

with smaller ∥hN∥2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

9.1 Mortality estimates. (a–b) Estimates of mortality ratios (see Eqs. (9.2.9) and

(9.2.14)) of SARS-CoV infections in Hong Kong (2003) [Org20a] and SARS-CoV-2

infections in Italy. (c) Evolution of the cumulative number of infected (red), death

(black), and recovered (green) cases. The size of the circles indicates the number of

cases in the respective compartments on a certain day. Note that CFR and M0
p(t)

have exhibited qualitatively similar behavior across different epidemics. The data

are based on Ref. [DDG20]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

9.2 Individual mortality. (a) Recovery time after first symptoms occurred based on

individual data of 178 patients [COV20]. The inset shows the age distribution of

these patients. (b) Death- and recovery rates as defined in Eq. (9.2.4). The death

rate µ(τ1) approaches µ1 for τ1 > τinc, where τinc is the incubation period and τ1

is the time the patient has been infected before first being tested positive. (c) The

individual mortality ratio M1(t|τ1) for τinc = 6.4 days at different values of τ1. Note

that the individual death probability Pd(t|τ1) and M1(t|τ1) are nonzero only after

t > τinc−τ1. (d) The asymptotic individual mortality ratio M1(∞) (see Eq. (9.2.3))

as a function of τ1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
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9.3 Population-level mortality estimates. Outbreak evolution and mortality ra-

tios without containment measures (a,c) and with quarantine (b,d). The curves are

based on numerical solutions of Eqs. (9.2.10) using the initial condition I(τ, 0) =

ρ(τ ; 8, 1.25) (see Eq. (9.2.7)). The death and recovery rates are defined in Eqs. (9.2.4)

and (9.2.5). We use an infection rate (Eq. (9.2.16)) defined by β0S0 = 4.64/day,

which we estimated from the basic reproduction number of SARS-CoV-2 [LSK20].

To model quarantine effects, we set β0S0 = 0 for t > 50 days. We show the

mortality-ratio estimates M0
p(t) and M1

p(t) (see Eq. (9.2.14)) and CFRd(t, τres) (see

Eqs. (9.2.8), (9.2.12), and (9.2.14)). CFRd(t, τ res = 14 days) behaves very differ-

ently from CFR, initially decreasing for τres > 0 and significantly overestimating

M0
p(t) but providing a reasonable estimate of M̄1(t) = M1

p(t) without quarantine.

Note that under quarantine, CFR(∞), CFRd(∞), and M0
p(∞) approach the same

value since they reflect the mortality ratio of the total cohort at the time of quar-

antine. On the other hand, M̄1(t) = M1
p(t) reflects the ratio of the initial cohort at

the start of the outbreak and remains unchanged from the no-quarantine case. . . 242

9.4 Mortality estimates in different countries. Estimates of mortality ratios (see

Eqs. (9.2.8) and (9.2.14)) of SARS-CoV-2 infections in different countries. The

data are derived from Ref. [DDG20]. The case fatality rate, CFR, corresponds to

the number of deaths to date divided by the total number of cases to date. The

“delayed” mortality-ratio estimate CFRd corresponds to the number of deaths to

date divided by the total number of cases at time t− τres is also shown for China.

The population-based mortality ratios Mp(t) are also shown, except for the UK

which has reported an inexplicable M0
p(t) ∼ 1. . . . . . . . . . . . . . . . . . . . 244
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9.5 Population-level mortality estimate for two age groups. The mortality ratio

M0
p(t) without containment measures (a) and under quarantining (b). The curves

are based on numerical solutions of Eqs. (9.3.2) and (9.3.3) assuming constant

S(t) ≈ S0 and using the initial condition Ia(τ, 0) = Ib(τ, 0) = ρ(τ ; 8, 1.25)/2 (see

Eq. (9.2.7)), where the subscripts “a” and “b” denote the young and old age group,

respectively. The death and recovery rates for the younger age group are defined

in Eqs. (9.2.4) and (9.2.5). For the older age group, we set µb = 4µa and γb =

γa. We use an infection rate (Eq. (9.2.16)) defined by β a aS0 = 4.64/day, which

we estimated from the basic reproduction number of SARS-CoV-2 [LSK20]. The

remaining infection rates are defined via βa a =
√
2βb a =

√
2βa b = 2βb b. To

model quarantine effects, we set β0S0 = 0 for t > 50 days in (b). . . . . . . . . . 245

9.6 Fractional testing. An example of fractional testing in which a fixed fraction

f of the real total infected population is assumed to be tested. The remaining

1−f proportion of infected individuals is untested. Equivalently, if the total tested

fraction has a unit population, then the fraction of the population that remains

untested is 1/f − 1. (a) At short times after an outbreak, most of the infected

patients, tested and untested, have not yet resolved (red). Only a small number

have died (gray) or have recovered (green). (b) At later times, if the untested

population dies at the same rate as the tested population, Mp(t) and CFR remain

accurate estimates for the entire infected population. (c) If the untested population

is, say, asymptomatic and rarely dies, the true mortality M0,1
p (∞) ≈ fM0,1

p (∞)

can be significantly overestimated by the tested mortality M0,1
p (t). (d) Finally, in a

scenario in which untested infected individuals die at a higher rate than tested ones,

M0,1
p (t) and CFR based on the tested fraction underestimate the true mortalityM0,1

p .247
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10.1 Degree distribution of a Barabási–Albert network and a stochastic block model.

(a) The degree distribution of a Barabási–Albert network with 99,817 nodes. To

generate the network, we start with a dyad and iteratively add new nodes until we

reach 100,000 nodes. Each new node has 2 edges that connect it to existing nodes

using the linear preferential attachment. Isolated nodes or nodes with degrees larger

than 100 [BNM13] are then removed from the network. The grey solid line is a guide-

to-the-eye with slope -3 [AB02]. For illustration, the inset shows a realization of a

Barabási–Albert network with 100 nodes. Node size scales with their betweenness

centrality. (b) The conditional probability P (ℓ|k) associated with the Barabási–

Albert network generated in (a). (c) The degree distribution of a stochastic block

model with four blocks and 100,000 nodes. The inset shows a realization of a

stochastic block model with 800 nodes, but using the same block probability matrix.

(d) The conditional probability P (ℓ|k) associated with the SBM. In both (b) and

(d), all elements that are strictly zero are uncolored. . . . . . . . . . . . . . . . . 257
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10.2 Optimal testing and quarantining strategy for T = 200 and discount factor δ =

0.95. We plot the optimal strategies and the corresponding susceptible, untested

infected, and tested infected fractions at each degree k across time t = n∆t. (a) A

heatmap of the PMP-optimal testing strategy (see Alg. 7) for the BA network. The

corresponding populations of degree-k susceptibles, untested infecteds, and tested

infecteds are plotted in (b-d), respectively. (e) Time-evolution of the total fraction

infected 1−∑K
k=1 sk(t) under the PMP-optimal testing strategy (dashed red). The

fractions infected under hypothetical uniform testing (dashed blue/circle) and no

testing (black) scenarios are shown for comparison. For the BA network, optimal

testing both delays and suppresses epidemic spreading more effectively than uniform

testing. The bottom row (f-j) shows analogous results for the SBM network. Panels

(f-i) show the corresponding optimal testing rates, susceptible, untested infected,

and untested infected populations with degree k as a function of time. Panel (j)

shows the fraction infected as a function of time. Although optimal testing and

quarantining reduce the fraction infected relative to uniform or no testing, its effects

are only modestly better. Given the same testing budget constraint, the effects of

optimal testing strategies are greater in the BA network because its distribution

of node degrees is more heterogeneous and testing and quarantining high-degree

nodes can more effectively control disease spread. However, since the node degree

distribution in the SBM network is sharply peaked, an optimal testing strategy is

less effective overall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
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10.3 Vaccination model optimized for T = 150 under different constraints. We plot

the optimal strategies and the corresponding susceptible, untested infected, and

tested infected fractions at each degree k across time t = n∆t. (a) Heatmap of the

optimal vaccination strategy vk(t)/(sk(t)Nk) for the BA network given by Alg. 7.

Panels (b,c) show the corresponding susceptible and infected subpopulations sk(t)

and ik(t), while (d) plots the fraction infected as a function of time, derived from

solving Eqs. (10.4.1)–(10.4.3) under optimal vaccination using a discount factor

δ = 0.95. The dashed red curve indicates the fraction infected under optimal

vaccination. For comparison, the infected population with no vaccination (solid

black) and constant, uniform (dashed blue/circles) vaccination are also plotted and

show how optimizing vaccination significantly suppresses infectivity. Panels (e-h)

show the corresponding quantities for the SBM network. Optimal vaccination is

less effective at decreasing infection in the SBM network than in the BA network,

again because of the SBM’s peaked (more homogeneous) node degree distribution.

Note from the logarithmic scale that vaccination is qualitatively more effective in

reducing infections than testing and quarantining. . . . . . . . . . . . . . . . . . 265
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10.4 Total fraction infected under testing or vaccination model as a function of different

intervention starting times t0. We minimize the corresponding loss function at

T = 150 and use δ = 0.95. (a) The fraction infected in the BA network as a function

of start times for different testing amplitudes F . The total infected fraction is fairly

insensitive to intervention starting times, especially for small intervention delays.

The effect of delayed vaccination on the fraction infected is shown in (c), with

the corresponding loss function shown in (d). For the SBM network, the fraction

infected as a function of the testing start time shown in (e) reflects the small effect

of testing on the infected population. However, the loss functions shown in (f) are

monotonic in the starting time. This implies that an early intervention time on

the SBM network is able to “flatten” the curve by postponing infection so even if

total infections stay roughly the same when t0 varies in ∼ [0, 50], the earlier the

intervention time, the fewer the earlier infections, with little change in the final

total infected fraction. The starting time dependence of the fraction infected on an

optimally vaccinated SBM network in (g) shows a monotonic and smooth decrease

in effectiveness as vaccination is delayed. In (h), the loss function for vaccination

on the SBM network also monotonically increases with the start time. . . . . . . 269
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10.5 Dependence of intervention effectiveness on the degree of the initial infected indi-

vidual. (a) The PMP-optimal testing strategy computed using IC2 (ki = 20) on

the BA network. Strategies for IC1 (ki = 3) and IC3 (ki = 90) are qualitatively

similar (not shown) with small differences at the beginning leading to the differ-

ent delays in the infection dynamics shown in (b). Specifically, for IC1 and IC3,

the initial transient of the optimal testing strategy maximizes the testing rate for

the subpopulation with the same degree as k1 and k3, respectively, indicating that

the optimal testing strategy is sensitive to the degree properties of the initial seed

infection. Once the disease spreads out, the testing strategies “forget” the initial

condition and converge to each other. Despite optimal testing, initial infecteds with

larger degrees, such as IC3, lead to the earlier spread of the epidemic. Results are

found by using a discount factor δ = 0.95, the optimal strategy given in Alg. 7, and

solving Eqs. (10.2.2)–(10.2.5). (c-d) The optimal vaccination strategy for IC2 and

the associated fraction infected for the BA network. As with testing, the vaccina-

tion strategies associated with IC1 (ki = 5) and IC3 (ki = 30) lead to differences in

infection magnitudes. However, the optimal vaccination strategies are insensitive

to different initial conditions, even at early times. Since the mechanism of vacci-

nation is always to protect high-degree susceptibles, the vaccination strategies are

not as dependent on the current infected population as the testing strategies are.

Panel (e) shows the optimal testing strategy for the SBM network, assuming IC2

(ki = 20). (f) The fraction infected exhibits slower dynamics for smaller-degree

initial conditions. (g) Optimal vaccination strategy for IC2 in the SBM network,

and (h), the associated infected fraction showing both delay and amplitude changes

with changes in the initial condition. . . . . . . . . . . . . . . . . . . . . . . . . 272
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A.1 Phase plot for P (τ > t, t) and I(τ > t, t). The regions delineate the different

forms of the solution (Eq. (A.4.6)). Here, we have included an incubation time τinc

before which no death occurs. The solution for P̄ (τ, t) or I(τ, t) in the τ < t region

must be self-consistently solved using the boundary condition Eq. (9.2.11). At any

fixed time, the integral of I(τ, t) over t < τ ≤ ∞ captures only the initial population,

excludes newly infected individuals, and is used to computeD1(t), R1(t), andM1
p(t).

To compute D0(t), R0(t), and M0
p(t), we integrate across all infected individuals

(including the integral over t > τ ≥ 0 shown in magenta). . . . . . . . . . . . . . 312

A.2 Density plots of I(τ, t) in the t− τ plane. Numerical solution of the equation

for I(τ, t) in Eqs. (9.2.10) under the assumption of a fixed susceptible size and

β0S0 = 4.64/day. (a) The density without quarantine monotonically grows with

time t in the region τ < t as an unlimited number of susceptibles continually

produces infections. (b) With quarantining after tq = 50 days, we set β0S0 = 0

for t > tq, which shuts off new infections. Both plots were generated using the

same initial density ρ(τ1) defined in Eq. (9.2.7). In both cases, the density I(τ > t)

is identical to P (τ > t) if the same ρ(τ1) is used and is independent of disease

transmission, susceptible dynamics, etc. (c-d) Probability-density functions (PDFs)

of the number of infected individuals I(τ, t) for t = 0, 60 days (b) without and

(c) with quarantine. The blue solid line corresponds to the initial distribution

ρ(τ ;n = 8, λ = 1.25) (see Eq. (9.2.7)). . . . . . . . . . . . . . . . . . . . . . . . 313
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A.3 Illustration of the neural network used to identify effective testing and vaccination

strategies. The inputs of the input layer are (s1(ti), . . . , sK(ti), i
u
1(ti), . . . , i

u
K(ti),

i∗1(ti), . . . , i
∗
K(ti)) ∈ R3K . For each hidden layer i (1 ≤ i ≤ NH), we normalize the

corresponding outputs xi,j for all samples in a minibatch such that the resulting

values x̂i,j have zero mean and unit variance. These values are used as inputs to a

rectified linear unit (ReLU) activation function in the next hidden layer. Neurons

labeled 1 are bias terms. The output V ∗(Si; Θ) is an estimate of the state-value

function under the optimal policy (see Eq. (A.5.14)), where Θ denotes the set of

hyperparameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

A.4 Reduction in fractions of infected individuals calculated as the difference between

the fractions infected obtained with testing and without testing for the BA network

is shown in (a) and for the SBM network is shown in (b). The optimal control

approach based on PMP reduces early infections the most. RL outperforms uniform

testing in reducing the number of early-stage infections. Additionally, the effect of

the optimal strategy is more striking in the BA network because it has a more

heterogeneous node degree distribution. . . . . . . . . . . . . . . . . . . . . . . 322

A.5 Reduction in fractions of infected individuals calculated as the difference between

the fractions infected obtained with vaccination and without vaccination for the

BA network is shown in (a) and the SBM network is shown in (b). The optimal

control approach using PMP can most effectively reduce infections for both networks

and successfully suppress the spreading of the disease in the BA network. On the

other hand, although not as good as the PMP-optimal strategies, the strategies

obtained by the RL algorithm Alg. 8 can obviously reduce infections compared to

the uniform vaccination rate strategy. As with testing, we observe that the effect of

optimal vaccination is more pronounced in the BA network than in the SBM network.323
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A.6 Loss functions associated with the deterministic ODE models Eqs. (10.2.2)–(10.2.5)

and (10.4.1)–(10.4.3), and the corresponding stochastic models. We apply PMP-

based (solid lines) and uniform (dashed lines) testing and vaccination protocols.

Panels (a) and (b) show the loss functions (10.3.3) and (10.4.6) associated with test-

ing and vaccination interventions in a BA network. Results from the ODE models

are shown in blue while the loss functions derived from the simulated stochastic

model are shown in red. Panels (c) and (d) show loss functions for the testing

and vaccination models in the SBM network. Note the different scales for the

ODE (blue, left) and the MC (red, right) results. The loss functions of the discrete

stochastic models are obtained by averaging over 100 trajectories with the standard

error of the mean (standard deviation of means divided by
√
N) indicated by the

error bars. For both networks, the deterministic ODE models yield larger losses

than those obtained from averaging MC trajectories. For both deterministic ODEs

and stochastic systems, the loss functions during optimal testing and vaccination

are much smaller than when testing and vaccination are uniformly applied. . . . . 325
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CHAPTER 1

Introduction

My dissertation covers three topics: i) modeling different structured populations (Chapters 2,

3, 4, and 9), ii) devising an efficient adaptive spectral method to solve spatiotemporal PDEs in

unbounded domains (Chapter 5, 6, 7, and 8), and iii) developing efficient control algorithms

to control disease spread in a structured human population (Chapter 10).

Chapter 2 first introduces modeling the structured cellular population whose division

and growth rates depend on cellular size and added size from the macroscopic aspect. Stuc-

tured population models have been of wide applications and research interests from both

mathematical and biological fields. Among all mathematical models, partial differential

equation(PDE) models have been very often applied, and many related mathematical prob-

lems in this field are to be explored. In this chapter, we will introduce a PDE model for

modeling cellular population proliferation on the macroscopic level, which also inspired later

research in modeling cellular population from the microscopic level and devising numerical

algorithms to solve those models.

In Chapter 3, following Chapter 2, we derive the full kinetic equations describing the

evolution of the probability density distribution for a structured population such as cells

distributed according to their ages and sizes. The kinetic equations for such a “sizer-timer”

model incorporates both demographic and individual cell growth rate stochasticities. Aver-

ages taken over the densities obeying the kinetic equations can be used to generate a second

order PDE that incorporates the growth rate stochasticity. On the other hand, marginal-

izing over the densities yields a modified birth-death process that shows how age and size

influence demographic stochasticity. Our kinetic framework in this chapter is thus a more
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complete model that subsumes both the deterministic PDE and birth-death master equation

representations for structured populations.

In Chapter 4, we will further introduce modeling the structured cellular population from

the microscopic aspect, which links individual cellular division with cellular population pro-

liferation across different generations. In this chapter, we formulate a kinetic theory for

describing the evolution of cellular population that tracks both an individual cell’s internal

states and cells in different generations (the number of times a cell has divided). Specifi-

cally, noise in the evolution of the cell’s internal state as well as randomness in cell’s division

time are incorporated in our model. Based on the kinetic theory, we shall derive equations

that describe the dynamics of macroscopic quantities of interest such as cellular population

density or the total .amount of a certain kind of protein or mRNA that could be applied

to study various biophysical processes such as how cells regulate their sizes over generations

and cell differentiation.

In Chapter 5, in order to solve the numerical difficulty of simulating the structured pop-

ulation in Chapter 2, we devise efficient scaling and moving techniques for spectral methods

so that spatiotemporal PDEs in unbounded domains could be efficiently and accurately

solved. When using Laguerre and Hermite spectral methods to numerically solve PDEs in

unbounded domains, the number of collocation points assigned inside the region of interest is

often insufficient, particularly when the region is expanded or translated to safely capture the

unknown solution. Simply increasing the number of collocation points cannot ensure a fast

convergence to spectral accuracy. We propose a scaling technique and a moving technique to

adaptively cluster enough collocation points in a region of interest in order to achieve a fast

spectral convergence. Our scaling algorithm employs an indicator in the frequency domain

that is used to determine when scaling is needed and informs the tuning of a scaling factor to

redistribute collocation points to adapt to the diffusive behavior of the solution. Our moving

technique adopts an exterior-error indicator and moves the collocation points to capture the

translation. Both frequency and exterior-error indicators are defined using only the numer-

ical solutions. We apply our methods to a number of different models, including diffusive
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and moving Fermi-Dirac distributions and nonlinear Dirac solitary waves, and demonstrate

recovery of spectral convergence for time-dependent simulations. Performance comparison in

solving a linear parabolic problem shows that our frequency scaling algorithm outperforms

the existing scaling approaches. Finally, we show our frequency scaling technique is able to

track the blowup of average cell sizes in a model for cell proliferation.

Chapter 6 further develops a p-adaptive technique that adaptively adjusts the expan-

sion order of spectral methods. When using spectral methods, a question arises as how to

determine the expansion order, especially for time-dependent problems in which emerging

oscillations may require adjusting the expansion order. Therefore, we propose a frequency-

dependent p-adaptive technique that adaptively adjusts the expansion order based on a

frequency indicator. Using this p-adaptive technique, combined with the scaling and moving

techniques in Chapter 5, we are able to devise an adaptive spectral method in unbounded

domains that can capture and handle diffusion, advection, and oscillations. As an applica-

tion, we use this adaptive spectral method to numerically solve the Schrödinger equation in

the whole domain and successfully capture the solution’s oscillatory behavior at infinity.

In Chapter 7, we perform the first numerical analysis of the adaptive spectral method

using generalized Hermite functions defined on the whole line. There have been few analyses

of numerical methods for unbounded domain problems. Specifically, there is no analysis of

adaptive spectral methods to provide insight into how to increase efficiency and accuracy

through dynamical adjustment of parameters. Therefore, we investigate how the implemen-

tation of the adaptive spectral methods affects numerical results, thereby providing guidelines

for the proper tuning of parameters. Also, we further improve performance by extending the

adaptive methods to allow bidirectional basis function translation.

Next, Chapter 8 combines physics-informed neural networks with adaptive spectral meth-

ods to develop a highly efficient machine-learning-based adaptive spectral method that could

solve both forward- and inverse-type problems for spatiotemporal PDEs in unbounded do-

mains. Solving analytically intractable partial differential equations (PDEs) that involve

at least one variable defined on an unbounded domain arises in numerous physical appli-
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cations. Accurately solving unbounded domain PDEs requires efficient numerical methods

that can resolve the dependence of the PDE on the unbounded variable over at least several

orders of magnitude. In this chapter, we propose a solution to such problems by combining

two classes of numerical methods: (i) adaptive spectral methods and (ii) physics-informed

neural networks (PINNs). The numerical approach that we develop takes advantage of

the ability of PINNs to easily implement high-order numerical schemes to efficiently solve

PDEs and extrapolate numerical solutions at any point in space and time. We then show

how recently introduced adaptive techniques for spectral methods can be integrated into

PINN-based PDE solvers to obtain numerical solutions of unbounded domain problems that

cannot be efficiently approximated by standard PINNs. Through a number of examples, we

demonstrate the advantages of the proposed spectrally adapted PINNs in solving PDEs and

estimating model parameters from noisy observations in unbounded domains.

In Chapter 9, we introduce modeling spread of disease from an infected-time-based struc-

tured PDE model for human populations. Different ways of calculating mortality during

epidemics have yielded very different results, particularly during the current COVID-19

pandemic. For example, the “CFR” has been interchangeably called the case fatality ratio,

case fatality rate, and case fatality risk, often without standard mathematical definitions.

The most commonly used CFR is the case fatality ratio, typically constructed using the

estimated number of deaths to date divided by the estimated total number of confirmed

infected cases to date. How does this CFR relate to an infected individual’s probability of

death? To explore such issues, we formulate both a survival probability model and an asso-

ciated infection duration-dependent SIR model to define individual- and population-based

estimates of dynamic mortality measures to show that neither of these are directly repre-

sented by the case fatality ratio. The key parameters that affect the dynamics of different

mortality estimates are the incubation period and the time individuals were infected before

confirmation of infection. Using data on the recent SARS-CoV-2 outbreaks, we estimate and

compare the different dynamic mortality estimates and highlight their differences. Informed

by our modeling, we propose more systematic methods to determine mortality during epi-

4



demic outbreaks and discuss sensitivity to confounding effects and uncertainties in the data

arising from, e.g., undertesting and heterogeneous populations.

Chapter 10 introduces number-of-contact-based ODEmodels for describing disease spread

within the human population that is derived from social networks. Additionally, control al-

gorithms that reduce the infections for this ODE model are developed. Efficient testing and

vaccination protocols are critical aspects of epidemic management. To study the optimal

allocation of limited testing and vaccination resources in a heterogeneous contact network

of interacting susceptible, infected, and recovered individuals, we present a degree-based

testing and vaccination model for which we derive optimal policies using control-theoretic

methods. Within our framework, we find that optimal intervention policies first target high-

degree nodes before shifting to lower-degree nodes in a time-dependent manner. Using such

optimal policies, it is possible to delay outbreaks and reduce incidence rates to a greater

extent than uniform and reinforcement-learning-based interventions, particularly on certain

scale-free networks.
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CHAPTER 2

PDE models of adder mechanisms in cellular

proliferation

Part of this chapter is modified from the paper that was originally published in SIAM Journal

on Applied Mathematics, 80, (2020), pp.1307-1335. It is reproduced here with permission

of the publisher. SIAM is not responsible for any errors or omissions in this version of the

manuscript or any version derived from it. The Version of Record is available online at

[10.1137/19M1246754]
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2.1 Constructing PDE models for structured population describ-

ing cell population proliferation

How cells regulate and maintain their size, as well as sizes of appendages is a longstanding

topic in cell biology. Besides the growth of an individual cell, the size distributions of

a population of cells are also a quantity of interest. When considering proliferating cell

populations, individual cell growth is interrupted by cell division events that generate smaller

daughter cells. The biological mechanisms that control when and how a cell divides is

a fundamental topic of research. While complex and involving many processes such as

metabolism, gene expression, protein production, DNA replication, chromosome separation

(for eukaryotic cells), and fission or cell wall formation [SM73, GJJ96, CSW17, CMG18,

DWH17]. These processes are regulated and may involve intricate biochemical signaling.

Despite the complexity of cell growth and the cell cycle, three hypotheses for cell division

control have arisen. Cell division is often assumed to be governed by cell age a, cell volume

x, or added volume since birth y [VKF93, TBS15, MVG17]. Volume growth of an individual

cell can be straightforwardly measured and can be modeled by an effective empirical law

such as ẋ = g(a, x, y, t). A commonly used approximation that is supported by observations

is the exponential growth law g(x) = λx [SMK58].

The division mechanism employed by a type of cell is probably most directly classified by

tracking the volumes x, added volumes y, and ages a of all division events. The distribution of

the event coordinates in (a, x, y)-space, accumulated over time, may provide data that favors

a mechanistic interpretation. For example, if the division events are concentrated within a

narrow range of volumes x, one might infer a sizer mechanism. However, comparison among

the variabilities of the volumes, added volumes, and ages across all division events is difficult.

Moreover, in addition to the intrinsic variability in the mechanism of division, the variability

in division sizes and times is sensitive to stochasticity arising in the growth and in the sizes

of the new daughter cells. Therefore, it can be difficult to precisely classify the mechanism

division.
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Much like a general growth law g(a, x, y, t) that can depend on age, size, added size, and

time, the three distinct mechanisms of cell division need not be mutually exclusive. The

birth rate or probability can be an explicit function of any combination of time since birth

(age), size, or volume added since birth. For example, cell division may occur through a cell

cycle that is started only after the cell exceeds a certain volume, rendering the division rate

a function of both size and age.

To model cell size control, stochastic maps that relate daughter cell sizes to mother cell

sizes have been developed [KB18, MVG17, LA17]. These models describe how cell sizes

evolve with generation and can interpolate between timer, sizer, and adder mechanisms.

Kessler and Burov [KB18] assumed stochastic growth which lead to a stochastic map with

multiplicative noise. They found that an adder mechanism can admit “blow-up” in which

the expected cell sizes can increase without bound with increasing generation. Modi et al.

[MVG17] assume additive noise and do not find blow-up in an adder model. Stochastic maps

of generational cell size do not describe population-level distributions in size or age.

To describe population-level distributions, PDE approaches have been developed. For

example, the timer model, in which the cell division rate depends only on age of the cell is

described by the well-known McKendrick equation for n(a, t) the expected density of cells

with age a at time t [Foe59, GC16, CG16]. The McKendrick “transport” equation for the

cell density takes the form ∂tn(a, t) + ∂an(a, t) = −(µ(a) + β(a))n(a, t) with the boundary

condition n(t, 0) = 2
∫ a

0
β(s)n(s, t)ds describing birth of zero-age cells with age-dependent

division rate β(s). Note that this timer model does not explicitly track cell sizes. PDE

models incorporating sizer mechanisms have also been developed [Per08, DPZ09, RHK14].

In these studies, it was shown that depending on the form of the size-dependent birth rate

β(x), cells can diverge in size x in the absence of death [DG10]. Existence and uniqueness

of weak solutions have been proved for certain boundary and initial conditions. These types

of models can be partially solved using the method of characteristics but the boundary

condition can only be reduced to a Volterra-type integral equation [Per08, CG16].

Apart from the sizer and the timer models, the adder mechanism has been recently shown
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to be consistent with E. coli division [SM73, TBS15, VKF93]. The adder model is motivated

by an initiator accumulation mechanism distinct from those used to justify sizers or timers

[TBS15, CSW17]. Therefore, we formulate a model that assumes a division rate that is a

function of both cell volume and added volume. Terms including cell death can be easily be

included afterwards.

2.1.1 Adder-sizer model

Here, we introduce adder-sizer PDE models and generalize them to describe recently observed

characteristics of population-level bacterial cell division. An adder-sizer model is one that

incorporates a cell division rate β(x, y, t) and a single-cell growth rate g(x, y, t) that, instead

of depending on a cell’s age a, are functions of cell size x and a cell’s volume added since birth

y. Such an adder-sizer PDE model can be developed by defining n(x, y, t)dxdy as the mean

number of cells with size in [x, x+ dx] and added volume in [y, y + dy]. As cells have finite

size and their added volume must be less than total size, n(x ≤ 0, y, t) = n(x, y ≥ x, t) = 0.

A derivation similar to that given in [MD86] for the sizer model yields a transport equation

of the form

∂n(x, y, t)

∂t
+
∂[g(x, y, t)n(x, y, t)]

∂x
+
∂[g(x, y, t)n(x, y, t)]

∂y
= −β(x, y, t)n(x, y, t) (2.1.1)

for the adder-sizer PDE. Here, we have neglected the effects of death, which can be simply

added to the right-hand-side of Eq. (2.1.1).

To explicitly outline our general derivation, consider the total population flux into and

out of the size and added size domain Ω shown in Fig. 2.1(a) and define β̃(x′, y′, z′, t)dz′

as the rate of fission of cells of size x′ and added size y′ to divide into two cells, one with

size in [z′, z′ + dz′] and the other with size within [x′ − z′, x′ − (z′ + dz′)]. For binary

fission, the conservation of daughter cell volumes requires β̃(x′, y′, z′, t) ≡ β̃(x′, y′, x′ − z′, t).
This differential division function allows mother cells to divide into two daughter cells of
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differing sizes (asymmetric division), a process that has been observed in numerous contexts

[HH92, GJJ96, BK04]. We also assume that daughter cells must have positive sizes so

β̃(x′, y′, z′ = 0, t) = β̃(x′, y′, z′ = x′, t) = 0.

Figure 2.1: The size and added-size state space for cell populations. The expected total
number of cells at time t with added size within [0, y] and volume (or “size”) within [0, x] is
defined as N(x, y, t). Over an increment in time dt, the domain Ω = [0, y]× [0, x] infinitesi-
mally distorts Ω→ Ω+ dΩ through the growth increment gdt. The total population within
this distorted domain changes only due to birth and death. Cells within Ω that divide always
give rise to two daughters within Ω, leading to a net change of +1 cell. (b) The z′ and x′

domains of the differential birth rate function β̃(x′, y′, z′, t). Cells outside of Ω can contribute
a net +1 or +2 cells in Ω depending on the division patterns defined in the depicted regions.

The change in the number of cells in Ω due to fission can arise in a number of ways. First,

if a cell in Ω divides, it can only produce two cells with size less than x. Thus, such fission

events lead to a net change of +1 in the number of cells with y = 0 and size in [0, x]. If a

cell with size within [0, x] but with added size > y divides, it creates two cells with added

size y = 0 and size within [0, x], leading to a net change of +2 cells.

For cells with any added size y′ > 0 but with size x′ > x, we have two subcases. If

the dividing cell has size x < x′ < 2x, it will produce one daughter cell in Ω if a daughter

cell has size 0 < z′ < x′ − x or x < z′ < x′ as shown in Fig. 2.1(b). If x′ − x < z′ < x,

both daughter cells have size < x. Finally, if the dividing cell has size x′ > 2x, at most one

daughter will have size x′ < x (see Fig. 2.1(b)). Upon simplifying the above birth terms by

using
∫ x′

0
dz′ =

∫ x

0
dz′+

∫ x′

x
dz′ for x′ > x and the symmetry β̃(x′, y′, z′, t) = β̃(x′, y′, x′−z′, t),

we combine terms to balance proliferation with transport and find
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∫ x

0

dx′
∫ y

0

dy′
∂n(x′, y′, t)

∂t
+

∫ x

0

dx′ g(x′, y, t)n(x′, y, t) +

∫ y

0

dy′ g(x, y′, t)n(x, y′, t)

=

∫ ∞
0

dy′
∫ x

0

dx′
∫ x′

0

dz′ β̃(x′, y′z′, t)n(x′, y′t)

+

∫ ∞
y

dy′
∫ x

0

dx′
∫ x′

0

dz′ β̃(x′, y, z′, t)n(x′, y′, t)

+ 2

∫ ∞
0

dy′
∫ ∞
x

dx′
∫ x

0

dz′ β̃(x′, y′, z′, t)n(x′, y′, t).

(2.1.2)

Upon taking the derivatives ∂2

∂x∂y
, we find the PDE given in Eq. (2.1.1) where the total

division rate is defined by β(x, y, t) :=
∫ x

0
β̃(x, y, z, t)dz. For the boundary condition at

y = 0, we take the derivative ∂/∂x and set y → 0+ to find

g(x, y = 0, t)n(x, y = 0, t) = 2

∫ ∞
x

dx′
∫ x′

0

dy′ β̃(x′, y′, z = x, t)n(x′, y′, t). (2.1.3)

The other boundary condition defined by construction is n(x, x, t) = 0.

In the special restricted case of symmetric cell division, β̃(x, y, z, t) = β(x, y, t)δ(z−x/2),
and boundary condition of the adder-sizer model reduces to

g(x, y = 0, t)n(x, y = 0, t) = 4

∫ 2x

0

β(2x, y′, t)n(2x, y′, t)dy′. (2.1.4)

The above derivation provides an explicit boundary condition representing newly born cells

that may be asymmetric in birth size. Quantities such as the total cell population N(t) and

the mean total biomass M(t) (the total volume over all cells) can be easily constructed from

the density n(x, y, t):

N(t) =

∫ ∞
0

dx

∫ x

0

dy n(x, y, t), M(t) =

∫ ∞
0

dx

∫ x

0

dy xn(x, y, t). (2.1.5)
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Higher moments of the total volume can also be analogously defined. By applying these op-

erations to Eq. (2.1.1) and using the boundary condition (Eq. (2.1.3)), we find the dynamics

of the total population and biomass

dN(t)

dt
=

∫ ∞
0

dx

∫ x

0

dy β(x, y, t)n(x, y, t),
dM(t)

dt
=

∫ ∞
0

dx

∫ x

0

dy g(x, y, t)n(x, y, t). (2.1.6)

Finally, we also define the distribution of division events over the size and added size

variables, accumulated over a time T :

ρd(x, y, T ) =

∫ T

0

β(x, y, t)n(x, y, t)dt∫ T

0

dt

∫ ∞
0

dx′
∫ x

0

dy′ β(x′, y′, t)n(x′, y′, t)

. (2.1.7)

2.1.2 Sizer-timer model

A PDE model of cell division that combines both size- and age-control division mechanisms

can be formulated by defining n(a, x, t)dadx as the expected number of cells at time t with

size in [x, x+dx] and age [a, a+da]. The PDE can be derived in the same way as introduced

in Subsection 2.1.1 which is

∂n

∂t
(a, x, t) +

∂n

∂a
(a, x, t) +

∂(gn)

∂x
(a, x, t) = −(βn)(a, x, t),

n(a, 0, t) = 0, n(0, x, t) = 2

∫ ∞
x

dz

∫ ∞
0

β̃(z, x, a, t)n(a, z, t).
(2.1.8)

where g is the growth rate, β is the division rate and β̃ is the differential splitting rate

describing the rate that cells of age a and size z giving birth to newborn cells of size x ≤ z.

On the other hand, a full kinetic theory can be constructed for the structured cell pop-

ulation model in which we track each individual cell and Eq. (2.1.8) can be derived by

studying the mean-field behavior of the cell population. The kinetic theory will also enable
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us to consider stochasticity in a cell’s growth rate which is often the case in experiments

when fluctuations in a cell’s growth rate are often observed. Furthermore, we can study the

interdependence of cells’ growth rates on each other.

2.1.3 Division probability and splitting rate

In general, the birth rate functions β̃(x, y, z, t) and β(x, y, t) associated with adder-sizer mod-

els can take many forms that make biological sense. However, some classes of β(x, y, t) may

allow the adder-sizer model to be transformed into the well-known “sizer-timer” structured

population model [SS67]. To illustrate the relationship, we consider a division rate function

β which depends explicitly only on age a and see how it could be converted to a function of

size and added size.

For a cell born at time t0, the probability that the cell splits within time [a, a + da] is

defined by γ(a; ā)da. In the absence of death, to ensure that any single cell will eventually

split,
∫∞
0
γ(a; ā)da = 1. Reasonable choices for γ(a; ā) are Gamma, lognormal, or normal

distributions. Without loss of generality, we propose a simple gamma distribution for γ(a; ā):

γ(a; ā) =
1

aΓ((ā/σa)2)
exp

[
−aā
σ2
a

+

(
ā

σa

)2

ln

(
aā

σ2
a

)]
, (2.1.9)

where ā is the mean division age and σ2
a is the variance. This type of distribution can be

derived from the sum of independent, exponentially distributed ages.

For deterministic exponential growth g = λx, age a and the parameter ā can be explicitly

expressed in terms of x, y and possibly other fixed parameters:

a(x, y) =
1

λ
ln

(
x

x− y

)
, ā(x, y) =

1

λ
ln

(
x− y +∆

x− y

)
, (2.1.10)

in which ∆ is the fixed added size parameter that represents the adder mechanism.

With a(x, y) and ā(x, y) defined in Eqs. (2.1.10), the division rate function β(x, y) can

be expressed in terms of x and y by using the splitting probability γ(a(x, y); ā(x, y)):
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β(x, y, t) =
γ(a(x, y); ā(x, y))

1−
∫ a(x,y)

0
da′γ(a′; ā(x, y))

. (2.1.11)

Assuming this “hazard function” form of a growth law, cells born at small initial size

x(0) = x0 = x − y take longer time to divide, while cells born with large size split sooner.

Using the gamma distribution, we find a division rate of the form

β(x, y) =
Γ
(

ā2(x,y)
σ2
a

)
γ(a(x, y); ā(x, y))

Γ
(

ā2(x,y)
σ2
a
, a(x,y)ā(x,y)

σ2
a

) , (2.1.12)

where Γ(·, ·) is the upper incomplete gamma function. We plot two examples of the time-

independent rate β(x, y) in Fig. 2.2.

Figure 2.2: The size and added-size dependent rate β(x, y) constructed using a gamma
distribution for the splitting probability γ (Eq. (2.1.9)) and Eq. (2.1.11). We show projections
at fixed values of x. In (a) the parameters are σa = 0.2, while in (b) σa = 1. Note the
difference in scale and that γ(a) with a higher standard deviation leads to a lower overall
cell division rate β. When x is large, ā defined in Eq. (2.1.10) is small, a nonzero division
rate β(x, y → 0) > 0 arises indicating that large newborn cells divide quickly to control
size across the population. This particular feature arises from our construction of β as a
hazard function. Modifying birth rate at small values of y so that β(x, y = 0) → 0 will not
qualitatively change the predicted densities as long as the birth rate peak persists at small
y.

With β(x, y, t) defined, we still need to construct the full fission rate β̃, which we will

assume is a product of the overall division rate β(x, y, t) and a differential division probability.
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The simplest model is to assume that the differential division probability h(r) is a function

of only the ratio r between the size of the daughter cell and that of the mother cell, and

independent of the cell size just before division. Thus,

β̃(x, y, z, t) = β(x, y, t)h(z/x)/x, (2.1.13)

where r ≡ z/x ∈ [0, 1]. The boundary condition (Eq. (2.1.3)) can thus be written in the

form

g(x, 0, t)n(x, 0, t) = 2

∫ ∞
x

dx′
∫ 1

0

ds β(x′, sx′, t)h(x/x′)n(x′, sx′, t). (2.1.14)

A reasonable model for h(r = x/x′) is a lognormal form that is symmetric about r = 1/2:

h(r) =
h0(r) + h0(1− r)

Z(σr, δ)
, h0(r) = e

− (−δ+ln r)2

2σ2
r e

− ln2(1−r)

2σ2
r , (2.1.15)

where the parameters δ and σr determine the bias and spread of the daughter cell size

distribution, and the normalization constant is Z(σr, δ) =
∫ 1

0
(h0(r) + h0(1− r))dr.

2.1.4 Numerical implementation and simulations

With the differential birth rate function β̃ defined, we can now consider the implementation

of numerical solutions to Eqs. (2.1.1) and (2.1.3) as well as event-based simulations of the

underlying corresponding stochastic process.

The numerical approximation to the weak solution will be based on an upwind finite

difference scheme in which both x and y are discretized with step size h. We define locally

averaged functions by

fi+ 1
2
,j+ 1

2
:=

1

h2

∫ (i+1)h

ih

dx

∫ (j+1)h

jh

dy f(x, y, t), (2.1.16)

where f(x, y, t) can represent n(x, y, t), g(x, y, t), or β(x, y, t). Similarly,
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β̃i+ 1
2
,j+ 1

2
((s+

1

2
)h, t) = h−3

∫ (i+1)h

ih

dx

∫ (j+1)h

jh

dy

∫ (k+1)h

kh

dz β̃(x, y, z, t) (2.1.17)

in the domain i, j ≥ 0 and j, k < i. The discretization of the transport equation can be

expressed as

n
i+1

2 ,j+1
2
(t+∆t)−n

i+1
2 ,j+1

2
(t)

∆t
+

g
i+1,j+1

2
ñ
i+1,j+1

2
−gi,j ñi,j+1

2

h
+

g
i+1

2 ,j+1
ñ
i+1

2 ,j+1
−g

i+1
2 ,j

ñ
i+1

2 ,j

h

= −βi+ 1
2
,j+ 1

2
ni+ 1

2
,j+ 1

2
(t),

(2.1.18)

for 1 ≤ i, j ≤ L, where Lh is the maximum size which we take sufficiently large such

that ni,j>K(t = 0) = 0, ni≤j = 0. We also set gi+ 1
2
,i = 0 to prevent density flux out of

the y < x domain. In Eq. (2.1.18), gi+1,j+ 1
2
(t) can be taken as g((i + 1)h, (j + 1

2
)h, t)

while ñi+1,j+ 1
2
(t) =

∫ (j+1)h

jh
dy n((i + 1

2
)h, y, t) is a finite-volume numerical approximation to∫ (j+1)h

jh
dy n((i+1)h, y, t). The discretized version of the boundary condition (Eq. (2.1.3)) can

be expressed as

gi+ 1
2
,0ni+ 1

2
,0(t) = 2h2

L∑
k=i+1

k−1∑
j=0

β̃k+ 1
2
,j+ 1

2
((i+

1

2
)h, t)nk+ 1

2
,j+ 1

2
(t). (2.1.19)

Direct Monte-Carlo simulations of the birth process are also performed and compared

with our numerically computed deterministic distributions. We construct a list of cells and

their associated sizes and their sizes at birth. This list is updated at every time step ∆t.

The cell sizes grow according to g(x, y, t). If a cell divides, the initial sizes of the daughter

cells are randomly chosen according to the distribution h(z/x). The daughter cells then

replace the mother cell in the list. Simulations of the underlying stochastic process results

in, at any given time, a collection of cells, each with a specific size and added size. This

collection of cells represents a realization of the population that should be approximated by

the distributions that are solutions to Eqs. (2.1.1) and (2.1.3).
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2.2 Results and discussion

In this section, we numerically investigate the adder-sizer model and plot various cell pop-

ulation densities and birth event distributions under different parameter regimes. We also

show the consistency of numerical solutions of the adder-sizer PDE with results from direct

Monte-Carlo simulations of the corresponding stochastic process, which demonstrates that

numerical solutions of the linear PDE model for cell the population is in agreement with

single-cell level stochastic models. After investigating birth rate parameters that can lead to

the blow-up of population-averaged cell sizes, we extend the basic adder model to include

mother-daughter growth rate correlations and processes that measure the added size from

different points in the cell cycle, i.e., an initation-adder model.

2.2.1 Cell and division event densities

We evaluated our adder-sizer PDE model by using the division rate given in Eq. (2.1.11)

and first assuming the simple and well-accepted growth function g(x, y, t) = λx. Fig. 2.3

shows the numerical results for the density n̄(x, y, t) = n(x, y, t)/N(t) at successive times

t = 1, 4, 12, respectively.

Stochastic simulations of the underlying process yield cell populations consistent with

the deterministic densities derived from the PDE model. In Fig. 2.4, we compare the cell

densities n̄(x, y, t) the division event densities ρd(x, y, T ) for two different differential division

functions h(r). As before, the more asymmetric the division the broader the cell and event

densities.

2.2.2 Cell volume explosion

At the single-cell level, a stochastic map model by Kessler and Burov assumed a multiplica-

tive noise and predicted that cell sizes can eventually grow without bound, in agreement

with what was experimentally observed for filamentous bacteria [KB18]. However, stochas-

tic maps of generational cell size do not capture population-level distributions in size or age.
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Figure 2.3: Numerically computed densities n̄(x, y, t) = n(x, y, t)/N(t) using g(x, y, t) = λx
and β̃(x, y, z, t) defined by Eqs. (2.1.11), (2.1.9), and (2.1.15). For all plots, we use σa = 0.1
in γ(a) (Eq. (2.1.9)) and rescale size in units of ∆. In (a-c), we use the sharp, single-
peaked differential division function h(r) shown in the inset (σr = 0.1, δ = 0) and plot
n̄(x, y, 1), n̄(x, y, 4), and n̄(x, y, 12), respectively. In (d-f), we plot the densities using a broad
(in fact, double-peaked) differential division function h(r) with parameters σr = 0.2, δ = 0.7.
In all calculations, we assumed an initial condition corresponding to a single newly born
(y = 0) cell with size x = 1. For more asymmetric cell division in (d-f), the density spreads
faster. In these cases, the densities closely approach a steady-state distribution by about
t = 12. Also shown in each plot are realizations of Monte-Carlo simulations of the discrete
process. Individual cells are represented by blue dots which accurately sample the normalized
continuous densities n̄(x, y, t).
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Figure 2.4: Comparison of cell densities n̄(x, y, t) and cell division event densities ρd(x, y, T )
(Eq. (2.1.7)). The standard deviation σa = 0.1 is used in all calculations. In (a) and (b)
we plot n̄(x, y, t = 12) and ρd(x, y, T ) using σr = 0.2, δ = 0 while in (c) and (d) we used a
broader differential division function in which σr = 0.3, δ = 0.7. Realizations from Monte-
Carlo simulations are overlayed. In (b) and (d), divisions are accumulated up to time T = 12.
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In this subsection, we will numerically explore how a possible ”blowup” in the population-

averaged cell volumes. Within PDE models that describe population distributions, timer

and sizer mechanisms have been shown to exhibit blow-up depending on the properties of

the birth rate β(a, x) [BDG19, DHK15, DG10]. Analysis of the conditions on full differential

division rate β̃(x, y, z, t) that would result in blowup in the “adder-sizer” PDE model is more

involved. Here, we provide only a heuristic argument for sufficient conditions for blowup.

First, we characterize the shape of the densities in the adder-sizer model. In the analogous

McKendrick equation [Ian95] one can investigate the age profile defined by dividing the

number density by the total population size. The long-term age profile may be stable even

when the total population size continuously increases. We take a similar approach here

by analyzing n̄(x, y, t) = n(x, y, t)/N(t) where N(t) is given by Eq. (2.1.5). Writing the

adder-sizer PDE in terms of n̄, we find

∂n̄

∂t
+
n̄

N

dN

dt
+
∂(gn̄)

∂x
+
∂(gn̄)

∂y
= −βn̄. (2.2.1)

Integrating this equation over x, y leads to Ṅ/N =
∫∞
0
dx
∫ x

0
dy βn̄, which can be substituted

into the first term in Eq. (2.2.1) to yield the nonlinear PDE

∂n̄

∂t
+
∂(gn̄)

∂x
+
∂(gn̄)

∂y
= −

(
β +

∫
Ω

βn̄

)
n̄. (2.2.2)

A number of standard approaches may be applied to analyze Eq. (2.2.2). For example,

in [Ian95], solutions are attempted by controlling the analogous non-linear integral term. In

the adder-sizer problem, we can define ⟨β(t)⟩ =
∫
Ω
βn̄ in the above expression to find a self-

consistent condition on ⟨β(t)⟩. One can also assess the steady-state n̄ss by setting ∂n̄ss

∂t
= 0

and establishing convergence.

One indication of blow-up is a diverging mean cell size ⟨x(t)⟩ = M(t)/N(t). By multi-

plying the Eq. (2.2.1) by x and integrating (using the boundary condition and symmetry of
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the β̃ distribution) we find

d⟨x(t)⟩
dt

+ ⟨β(t)⟩⟨x(t)⟩ = q(t), (2.2.3)

in which q(t) :=
∫
Ω
gn̄. If β, g, and n̄ = n̄ss are time-independent and a steady state

mean cell size exists, we expect it to obey ⟨x(∞)⟩ = q(∞)/⟨β(∞)⟩. For the special case of

deterministic exponential growth g(x) = λx, we can write the time evolution of the mean

size as

d⟨x(t)⟩
dt

= [λ− ⟨β(t)⟩] ⟨x(t)⟩, ⟨β(t)⟩ ≡
∫ ∞
0

dx

∫ x

0

dy β(x, y, t)n̄(x, y, t). (2.2.4)

If β(∞) is bounded above by λ, then we expect a blowup. For β(∞) that is not bounded,

as in our example (Eq. (2.1.11)), one cannot determine if a blowup occurs without a more

detailed and difficult analysis. Since the precise conditions on β leading to cell volume

explosion are difficult to find, we will explore these possible phenomena using numerical

experiments. We numerically examine the density n(x, y, t → ∞) and the mean cell size

⟨x(t)⟩ using the β, β̃ defined in Eqs. (2.1.11), (2.1.9), and (2.1.15).
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Figure 2.5: (a) Size distributions n̄(x, t) for σa = 0.2 at times t = 1, 2, 4, 10. (b) n̄(x, t =
1, 2, 4, 10) for σa = 1, σr = 0.1, and δ = 0. (c) The corresponding mean cell sizes ⟨x(t)⟩. The
curve associated with the σa = 0.2 saturates while the one corresponding to σa = 1 exhibits
blow-up. However, the blowup is suppressed if a death term (µ = ln 2) is included.
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In Figs. 2.5 (a) and (b) we plot the marginal distribution n̄(x, t) :=
∫∞
x dy n(x,y,t)∫∞

0 dx
∫∞
x dy n(x,y,t)

s for

different values of the division rate variability σa at different times. The associated division

rates correspond to those plotted in Figs. 2.2(a) and (b). In Fig. 2.5(c) we plot the mean cell

sizes ⟨x(t)⟩ = M(t)/N(t) corresponding to the distributions in (a) and (b). For sufficiently

broad division probabilities γ(a) (large σa), the division rates β are small, and ⟨x(t)⟩ fails to
saturate and diverges.

With the presence of the possible “blowup” phenomenon in which the average volume

⟨x(t)⟩ → ∞ as t goes to infinity, normal finite volume difference method will be less reliable

at long time. The reason is that we really need to investigate the numerical solution’s

behavior for x ∈ (0,∞). Therefore, the finite volume method can only stay valid for some

finite time, as it truncates the domain. Spectral methods, however, provide a possible way

to track the long-time blowup behavior, as the Laguerre function basis is defined in (0,∞)

and no domain truncation is needed. Yet proper scaling is required to maintain accuracy. In

Chapter 5, we develop an adaptive spectral method in unbounded domains that can perform

scaling and moving for the basis functions which can successfully capture the diffusive and

translative behavior of the solution.

2.2.3 Mother-daughter growth rate correlation

Recent experiments indicate that the growth rate of a mother cell is “remembered” by

its daughter cells. For growth rates of the form g(x, y, t) = λx, the exponential growth

parameter λ between successive generations i, i + 1 have been proposed to evolve [LA17,

DHK15]. In [LA17], fluctuations in λ have been discussed at the single-cell level to explore

their effects on the population-averaged growth rate while in [DHK15], changes in growth

rates across two consecutive generations are modeled as a Markov process in order to estimate

a division rate function β. In this subsection, we first introduce a generalized adder-sizer PDE

incorporating variability in λ and then explore the mother-daughter growth rate correlation

affects the population dynamics.
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A mother-daughter growth rate correlation between two consecutive generations can be

described by

λi+1 = (λi − λ̄)R + λ̄+ ξ, (2.2.5)

where ξ is a random variable, 0 ≤ R < 1 is the successive-generation growth rate correlation,

and λ̄ is the mean long-term, or preferred growth rate. Given a growth rate λi of a mother

cell, Eq. (2.2.5) describes the predicted growth rate λi+1 of its daughter cells. We assume

that the random variable has a mean zero and is distributed according to some probability

density P (ξ), which vanishes for ξ ≤ (1−R)λ̄ to ensure that the growth rates remain positive.

To incorporate the memory of growth rates between successive generations in the adder-

sizer PDE model, we extend the cell density in the growth rate variable λ. Thus, n(x, y, t, λ)

is the density of cells with volume x, added volume y, and growth rate λ. The growth function

g(x, y, t, λ) is now explicitly a function of the growth rate λ. We propose the extended PDE

model



∂n(x, y, t, λ)

∂t
+
∂(gn)

∂x
+
∂(gn)

∂y
= −β(x, y, t)n(x, y, t, λ),

g(x, 0, t, λ)n(x, 0, t, λ) =2

∫ ∞
0

dλ′
∫ ∞
x

dx′
∫ x′

0

dy (β̃(x′, y, x, t)n(x′, y, t, λ′)·

P (ξ = λ−Rλ′ − (1−R)λ̄),

β̃(x, y, x′, t) = β̃(x, y, x− x′, t)),

n(x, y, 0, λ) =n0(x, y, λ),

(2.2.6)

A possible symmetric mean zero distribution that vanishes at−(1−R)λ̄ takes on a log-normal

form:

P (ξ) ∝ exp

[
− ln2(ξ + (1−R)λ̄)

2σ2
ξ

− ln2((1−R)λ̄− ξ)
2σ2

ξ

]
. (2.2.7)
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If we start with one newly born daughter cell at size x0 and growth rate λ0, the initial

condition in our PDE model would be n0(x, y, λ) = δ(x− x0)δ(y)δ(λ− λ0).
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Figure 2.6: Population-level evolution of cellular growth rate. Parameters used are λ̄ =
ln 2, σa = 0.2, σr = 0.1, δ = 0. (a-b) The marginalized density n̄(λ, t) as a function of
growth rate λ for no correlation (R = 0) and initial growth rate λ = 0.55. The peak in the
distribution broadens as the mean evolves toward the preferred mean value λ̄ = ln 2. (c) The
evolution of the mean ⟨λ(t)⟩ for different values of correlation R. Note that the steady-state
values ⟨λ(∞)⟩ depend on the correlation R.

Numerical solutions of Eqs. (2.2.6) shown in Fig. 2.6 indicate that although λ̄ is the same

for two different cases, R = 0 and R = 0.4, their corresponding mean growth rates ⟨λ(t)⟩
converge to different values. For larger correlation R, the daughter cells’ growth rates do

not deviate much from those of their mothers’ growth rates. This means that the offspring

of faster-growing cells tend to grow faster and the offspring of slower-growing cells tend to

grow slower. Because it takes a shorter time for faster cells to divide, they will produce more

generations of faster-growing cells, leading to a larger average growth rate defined as

⟨λ(t)⟩ =
∫∞
0

dx
∫ x

0
dy
∫∞
0
dλ λn(t, x, y, λ)∫∞

0
dx
∫ x

0
dy
∫∞
0

dλn(t, x, y, λ)
. (2.2.8)

On the other hand, for a fixed mother growth rate λi, smaller correlations R lead to mean

daughter cell growth rates ⟨λi+1⟩ that are closer to λ̄. Since cells with growth rates less than

λ̄ will live longer before division, these cells persist in the population longer than those

with larger λ, pushing the average growth rate ⟨λ(t)⟩ to values smaller than λ̄. Fig. 2.6(c)
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explicitly shows that when R = 0, the mean growth rate approaches a value smaller than

λ̄ = ln 2.

2.2.4 Initiation-adder model

Recent experiments suggest a new type of adder mechanism for bacterial cell size control

[SLS19]. Rather than a fixed volume added between birth and division as the primary control

parameter, new experimental evidence suggests that the control parameter in E. coli is the

added volume between successive initiations of DNA replication. Initiation occurs when the

ori sites in a cell’s genome are separated, leading to DNA replication and segregation. The

number of ori sites depend on cell type and species, typically one in prokaryotic cells and

more than one in eukaryotic cells. The initiation-adder model assumes that a cell’s volume

per initiation site (the ori site in the genome) tends to add a fixed volume between two

consecutive initiations.

If the number of ori sites in a cell is q, initiation increases the number to 2q. Immediately

after division and DNA separation, the number of oris decreases back to q in each daughter

cell.

In this subsection, we generalize the adder PDE model to describe this new initiation-

adder mechanism. We classify all cells into two subpopulations: cells that have not yet

undergone initiation and cells that have initiated DNA replication but that have not yet di-

vided. We define n1(x, y, t)dxdy as the expected number of pre-initiation cells in with volume

in [x, x+dx] and with added volume y < x in [y, y+dy]. Mean post-initiation cell numbers

with volume in [x, x+ dx] and added volume in [y, y + dy] are described by n2(x, y, t)dxdy.

In the general initiation-adder process, when a pre-initiation cell commences DNA replica-

tion (initiates) can depend on the volume or added volume. Thus, we describe transitions

from a pre-initiation cell transitions into a post-initiation cell by the rate ki(x, y, t). After

initiation, the number of ori sites doubles and the added volume is reset to zero in the newly

formed post-initiation cell. In analogy with the differential division rate in Eq. (2.1.1), we
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Figure 2.7: Schematic for the initiation adder process. DNA replication is initiated (indicated
by the red dot) before copied DNA is segregated and cell division. In this example, q = 1
and y2 is the added volume per origination site for two origination sites. The density of
cells with q = 1 copy of DNA (before DNA replication initiation) is denoted n1(x, y, t) while
the density of cells post-initiation is denoted n2(x, y, t), where y denotes the volume added
after initiation. The factor that controls y1 + y2 in the initiation-adder model is the volume
∆ added between successive initiation events, rather than between successive cell divisions.
Thus, the controlled variable (added volume in this case) spans the pre-initiation and post-
initiation states.

define β(x, y, t) as the rate of division of post-initiation cells. Under a general asymmetric

division event, we assume that the added volume is divided proportionally to the volume of

the daughter cells, i.e., if the mother cell’s volume is x with added volume y since initiation,

and if one daughter cell’s volume is z < x and the other daughter cell’s volume is x− z, the
added volume since the division for the first daughter will be set to yz/x while the added

volume for the second daughter will be y(x− z)/x. The resulting PDE model now involves

two coupled densities n1 and n2:

∂n1(x, y, t)

∂t
+
∂[g1n1]

∂x
+
∂[g1n1]

∂y
= −ki(x, y, t)n1 + 2

∫ ∞
x

z

x
n2(z, yz/x, t)β̃(z, x, yz/x, t)dz,

∂n2(x, y, t)

∂t
+
∂[g2n2]

∂x
+
∂[g2n2]

∂y
= −β(x, y, t)n2,

n1(x, 0, t) = 0, g2n2(x, 0, t) =

∫ x

0

ki(x, y, t)n1(x, y, t)dy, (2.2.9)

β(x, y, t) =

∫ x

0

β̃(x, z, y, t)dz, (2.2.10)

26



in which we have allowed for different growth rates in the different cell phases. Both n1 and

n2 are defined in the domain {R+2∩{y < x}}×R+. These coupled PDEs are different from

the PDE associated with the standard “division-adder” described in Eqs. (2.1.1) and (2.1.3).

Here, the added volume is reset to zero not after division, but after initiation.

In [WFL16], a strong size control acting on initiation initiation was proposed where

all cells will have initiated DNA replication before reaching some fixed volume xi. This

hypothesis can be implemented in our initiation-adder model by setting ki(x→ xi, y, t)→∞.

The probability that a cell born at time t0 has not yet initiated, e
−

∫ t
t0

ki(x(s),y(s),s)ds
, always

vanishes for all (t0, xt0 , yt0) before some finite time t and x(t) < xi. Thus, n2(x, 0, t) is nonzero

only in [0, xi] for all t. If there exists a constant τ0 such that lim
τ→τ0

e−
∫ t0+τ
t0

ki(x(s),y(s),s)ds = 0

for all t0, then the largest volume that any cell can attain will be eλτ0xi, leading to strict size

control and no blowup.

Fig. 2.8 shows numerical solutions to Eq. (2.2.10) using the same birth rate function as

that used in Fig. 2.3(d-f). Note that due to cell size control affecting the pre-initiation stage,

initial daughter cell sizes stay small at initiation and n1(x, y, t) is more peaked near y ≈ x.

If one takes ki sufficiently large, both daughter cells will nearly instantly initiate DNA

replication after division. We have checked numerically that for constant ki = 103, that

the densities n1(x, y, t) are negligible while n2(x, y, t) approaches the density of the division

adder shown in Fig. 2.3 (for the same differential division functions β̃). Thus, the initiation

adder model converges to the standard division adder model when ki →∞. This can be seen

from the first of Eqs. (2.2.10) where n1 can be neglected and is dominated by the two terms

on the right-hand side. Substituting ki(x, y, t)n1 ≈ 2
∫∞
x

dz
x
n2(z, yz/x, t) into the integral

terms in the second equation, we find Eq. (2.1.1) for n2(x, y, t).

2.3 Summary and conclusions

In this chapter, we proposed a PDE model that incorporates an adder mechanism in cell

division. In the absence of death, we motivated models for the differential birth rate function
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Figure 2.8: Normalized densities of pre-initiation cell populations n̄1 and post-initiation
cell populations n̄2 for at various fixed times t = 1, 2, 12. Here, we used ki(x) =
p(x)/

[
1−

∫ x

0
p(x′)dx′

]
with p(x) ∼ N (1, 0.1) and the same β̃(x, y, z, t) as that used in

Fig. 2.3(d-f). (a-c) shows the normalized densities n̄1(x, y, t) ≡ n1(x, y, t)/N(t) where
N(t) =

∫
dy
∫
dx(n1 + n2). (d-f) shows the normalized post-initiation density n̄2(x, y, t).

For the ki used in this example, the pre-initiation densities span larger volumes and added
volumes. The densities are indistinguishable from those at steady state after about t = 2.

28



β̃(x, y, z, t) that are consistent with normalized division probabilities when cell death is

neglected. In Appendix A.1.1 we showed existence and uniqueness of a weak solution to the

PDE model within a time interval [0, T ] during which the solution’s support can be bounded.

One can prove similar results when both time and space are unbounded as this problem is

related to other first-order PDE models that have been studied in more detail.

With a weak solution justified, we explored the sizer-adder PDE via numerical experi-

ments and Monte-Carlo simulations of the underlying stochastic process. Our results show

that event-based Monte-Carlo simulations of discrete cells generate realizations of cell config-

urations that provide accurate samples of the cell densities computed from our PDE model.

When broader differential division rates are used (when cell division is more asymmetric),

we find, under the same initial conditions, a broader cell density n(x, y, t) and a broader event

density ρD(x, y, T ). We also demonstrate numerically, the divergence of the mean cell size

⟨x(t)⟩ = M(t)/N(t). We showed those division probabilities that are broader in the age or

added size (and smaller in magnitude) more likely lead to mean cell sizes that explode with

time. While we could not analytically find the specific conditions that lead to blow-up, we

found, in the simple case of exponential cell growth, a simple sufficient bound for the division

rate below which cell size explosion occurs.

Finally, we translated a stochastic model of the cell growth rate correlation between cells

of successive generations [KB18] in to our sizer-adder PDE model. By extending the dimen-

sion of the density function to include growth rates and allowing for variability in growth

rate, as new cells are born, we developed a PDE model that incorporated the stochastic

nature of growth rate inheritance and that describes the evolution of the growth rate distri-

bution of cells. We found that the steady-state value of the mean growth rate depends on the

correlation of growth rates between mother and daughter cells. This dependence arises from

a subtle interaction between the shape of the growth rate distribution and the distribution

of variations in the growth rate from one generation to the next.

PDE-type models can be used to model cell densities that evolve according to timer, sizer,

or adder mechanisms, as well as combinations of mechanisms such as the sizer-timer model
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and the sizer-adder model studied here. Under a deterministic cell growth assumption, one

might propose a growth rate function g(a, x, y) and birth rate β(a, x, y) that depend on all

three variables, age a, size x, and added size y. Thus, one might propose a full sizer-timer-

adder model of the form (∂t+∂a)n+∂x(gn)+∂y(gn) = −β(a, x, y, t)n(a, x, y, t) with purported

boundary condition g(0, x, 0, t)n(0, x, 0, t) = 2
∫∞
0
da′
∫∞
x
dx′
∫ x′

0
dy′ β̃(a′, x′, y′, x, t)n(a′, x′, y′, t).

However, the three variables , a, x, y are not all independent. For example, if the determin-

istic added size y(t) is monotonic in time t, the age after birth a and the added size y are

functions of each other. More generally, if we can determine the evolution of all three vari-

ables (a, x, y) given two of them, we cannot construct a meaningful 3+1-dimensional PDE

model. One can understand the loss of independence by noticing that when a cell divides,

both its daughter cells’ ages and their added volumes reset to a = y = 0. For deterministic

growth, the age and added size are bijective and are thus not independent. Subsequent

deterministic growth of the daughter cells is described by their sizes and either their age a

or added size y.

Thus, the age and added size variables are not independent, and given timer, sizer, and

adder mechanisms, there are only two structurally different PDE models, the sizer-timer

PDE, and the sizer-adder PDE studied in detail here. The sizer-timer model can be reduced

to just a sizer model or a timer model (McKendrick equation). Thus, assuming deterministic

cell growth, one can consider only the timer, sizer, adder, sizer-timer, or sizer-adder PDE

models. An adder-only model can be defined only when both the division growth rates

depend only on added size y and not on size x. However, if the growth is itself stochastic,

one might propose higher-order models that can include all types of cell division mechanisms.
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CHAPTER 3

Kinetic theory for stochastic sizer-timer models cell

size control
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3.1 Introduction

Across many diverse applications, mathematical models have been formulated to describe

the evolution of populations according to a number of individual attributes such as age,

size, and/or added size since birth. For example, deterministic age-structured models that

incorporate age-dependent birth and death were developed by McKendrick and have been

applied to human populations [Foe59]. More recently, there has been renewed interest in

cell size control [TBS15, KB18], cellular division mechanisms [RHK14], and structured cell

population models [Per08, MD86].

When considering proliferating cell populations, individual cell growth is interrupted by

cell division events that generate smaller daughter cells. Cell division is a process that in-

volves many biochemical steps and complex biophysical mechanisms including metabolism,

gene expression, protein production, DNA replication, chromosome separation (for eukary-

otic cells), and fission or cell wall formation [SM73, HD81, CSW17, DWH17, Wes94]. To

simplify the understanding of which factors trigger cell division, three basic models that

subsume these complex processes have been proposed. Cells can divide based on their age

since birth, volume (size), or added volume since birth y [TBS15, MVG17]. PDE approaches

for the timer, sizer, and adder models, as well as combinations of these models, have been

well-studied [XGC20, MD86, BDG19]. These PDE approaches implicitly describe the mean

density of cells in age, size, and/or added size, and are considered deterministic models.

However, there has been much less development of structured population models that

incorporate stochastic effects. In the presence of stochasticity, how would the PDEs be

modified? In the sizer-timer type of structured population models, stochasticity can arise

in the growth dynamics of each cell as well as in random times of cell division and death

(demographic stochasticity).

Stochasticity arising from random times of birth and death (demographic stochastic-

ity) has been considered in timer-like models for age-structured populations [GC16, CG16].

This approach generalized the classic deterministic McKendrick equation to a higher di-
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mension (dynamically varying) associated with the number of individuals in the system.

This higher-dimensional stochastic “kinetic theory” allows one to systematically connect an

age-independent birth-death master equation description to the deterministic age-structured

McKendrick model. A comprehensive and general treatment of the age-structured stochas-

tic process using a Doi-Peliti operator formalism has also been developed for the calculation

of correlation functions [Gre17]. The full kinetic theory has only been developed for age-

structured populations and only includes demographic stochasticity (since chronological age

is a deterministic quantity proportional to time). Other approaches using stochastic hy-

brid systems [VSS16] have been used to incorporate the influence of random birth times of

population-level variations in cell size. Intrinsic stochasticity in the growth rate of an indi-

vidual cell has been treated in terms of Langevin equations for cell size [HLA18], effective

potentials [KB18] and stochastic maps [MVG17, KB17]. Recently, Chapman-Kolmogorov

equations have also been applied to study the effect of different sources of noise in cellu-

lar proliferation [NVP21]. However, stochasticity in the intrinsic growth rate has not been

considered within a demographically stochastic kinetic theory.

In this chapter, we derive the kinetic equations for the sizer-timer model of cell prolif-

eration that incorporates both demographic stochasticity and intrinsic stochasticity in the

growth of individual cells. In the next section, we derive the Fokker-Planck equation for the

size of an individual cell and define the probabilistic quantities needed to construct the full

kinetic theory. This equation is then marginalized in Section 3.3 to explicitly isolate and

show the feature limits of intrinsic stochasticity and demographic stochasticity. Including

both sources of stochasticity renders the calculations of marginalized densities rather techni-

cal, but by defining specific moments, we derive a hierarchy of models describing correlations

that arise from growth rate stochasticity. These higher-order (and higher dimensional) mod-

els cannot be derived from approaches that impose mean-field assumptions and are evident

only when a kinetic approach such as ours is employed. The first-order model describing

the single-particle density is self-contained and simply reduces the mean-field “sizer-timer”

model [RHK14, XGC20]. Higher-order models are connected to each other and the first-
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order mean-field model. Marginalization of higher moments of particle numbers can also

be constructed from our kinetic theory. These hierarchical models describe demographic

stochasticity and are not closed. Our results generalize a large body of work on sizer-timer

PDE models to include stochastic processes, both at the individual and population levels.

3.2 Derivation of kinetic theory

Here, we outline the derivation of the kinetic equation for a the population of dividing cells

of different ages a and sizes (volumes) x. We start from the SDE for the size 1 of a single

cell at time t:

dXt = g(Xt, At, t)dt+ σ(Xt, At, t)dWt, Xt, At ∈ Λ, (3.2.1)

where Λ := [0,∞), At is the cell’s age (time that has elapsed after its birth), g(Xt, At, t) > 0

is the size- and age-dependent growth rate, and Wt is a standard Wiener process with

independent, normally distributed increments Wt −Ws, zero mean, and variance t− s. The
parameter σ(Xt, At, t) represents the strength of stochasticity in a cell’s growth rate. Here,

we assume both g and σ are Lipschitz continuous to ensure the existence and uniqueness

of Xt given any initial conditions X0 > 0, A0 ≥ 0. We also assume σ ∈ C1, σ(0, t, a) =

∂xσ(0, t, a) = 0 so that the noise vanishes at x = 0 and Xt remains positive.

Next, we investigate a system of m + 2n cells, where m is the number of individual

cells (singlets) and n is the number of twins (doublets). A twin means two daughter cells

generated from the division of a common mother cell, and therefore they have the identical

age. In this section, we use the notation

X
(m)
t = (X1

t , X
2
t , ..., X

m
t ), Y

(2n)
t = (Y 1

t , ..., Y
2n
t ),

A
(m)
t = (A1

t , A
2
t , ..., A

m
t ), B

(n)
t = (B1

t , ..., B
n
t ),

(3.2.2)

1Alternatively, Xt might also represent the log of the cell size
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where A
(m)
t and B

(n)
t are ordered ages such that Ai

t ≥ Aj
t ≥ 0, Bi

t ≥ Bj
t ≥ 0,∀i > j and X

(m)
t

and Y
(2n)
t are the vectors of the volumes of the m singlets and 2n doublets that are of ages

A
(m)
t and B

(n)
t , respectively, at time t. We first use ordered ages to facilitate our derivations

and to better understand the boundary conditions representing newly born cells. Note that

two cells in a doublet have the same age but can have different sizes; thus, the age vector

B
(n)
t of the 2n twins stores n ages, while the size vector Y

(2n)
t stores 2n sizes.

Formally solving Eq. (3.2.1), each X i
t and Y

j
t satisfies

X i
t= X i

t′ +

∫ t

t′
g(X i

s, A
i
s, s)ds+

∫ t

t′
σ(Xs, As, s)dW

i
s ,

Y j
t = Y j

t′ +

∫ t

t′
g(Y j

s , B
[ j+1

2
]

s , s)ds+

∫ t

t′
σ(Y j

s , B
[ j+1

2
]

s , s)dWm+j
s ,

(3.2.3)

where dW i
s , dW

m+j
s are intrinsic, independent fluctuations in growth rates. We assume that

cell division rates are regulated by a “timer” mechanism and do not depend on cell size,

i.e., the probability that a cell in a population of m singlets and n doublets divides during

(t, t+∆t] is βm,n(At, t)dt+ o(dt), a function of its age At, time t and population sizes m,n.

The mathematical analysis that follow requires that the birth rate is independent of a cell’s

size Xt. Finally, we take the continuous-time limit and assume that in a finite number of

cells, the possibility of two cells dividing in (t, t+ dt] is o(dt) as dt→ 0.

3.2.1 The forward equation

We evaluate the increment in time by Ito’s formula applied to a function

fm,n(X
(m)
t , Y

(2n)
t , t|A(m)

t′ , B
(n)
t′ ) (3.2.4)

of m individual and n twin sizes given initial sizes and ages A
(m)
t′ , B

(n)
t′ at t′ < t, where the

ages are defined to be in the descending order A1 ≥ A2... ≥ Am ≥ 0, B1 ≥ B2... ≥ Bn ≥ 0.

Ordering the ages will eventually allow us to easily incorporate cell division as a boundary

condition in which newborn cells are represented by Bn = 0. We start by constructing the
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difference

fm,n(X
(m)
t+dt,Y

(2n)
t+dt, t+ dt|A(m)

t′ , B
(n)
t′ )− fm,n(X

(m)
t , Y

(2n)
t , t|A(m)

t′ , B
(n)
t′ ) =∫ t+dt

t

[
∂fm,n

∂s
+

m∑
i=1

g(X i
s, A

i
s, s)

∂fm,n

∂X i
s

+
2n∑
j=1

g(Y j
s , B

[(j+1)/2]
s , s)

∂fm,n

∂Y j
s

+
1

2

m∑
i=1

σ2(X i
s, A

i
s, s)

∂2fm,n

(∂X i
s)

2
+

1

2

2n∑
j=1

σ2(Y j
s , B

[(j+1)/2]
s , s)

∂2fm,n

(∂Y j
s )2

]
ds

+
m∑
i=1

∫ t+dt

t

σ(X i
s, A

i
s, s)

∂fm,n

∂X i
s

dW i
s +

2n∑
j=1

∫ t+dt

t

σ(Y j
s , B

[(j+1)/2]
s , s)

∂fm,n

∂Y j
s

dW̃ j
s .

(3.2.5)

After taking the expectation of Eq. (3.2.5) we find

E[fm,n(X
(m)
t+dt,Y

(2n)
t+dt, t+ dt|A(m)

t′ , B
(n)
t′ )]− E[fm,n(X

(m)
t , Y

(2n)
t , t|A(m)

t′ , B
(n)
t′ )] =

E

[∫ t+dt

t

ds

(
∂fm,n

∂s
+

m∑
i=1

g(X i
s, A

i
s, s)

∂fm,n

∂X i
s

+
2n∑
j=1

g(Y j
s , B

[(j+1)/2]
s , s)

∂fm,n

∂Y j
s

+
1

2

m∑
i=1

∂2fm,n

(∂X i
s)

2
σ2(X i

s, A
i
s, s) +

1

2

2n∑
j=1

∂2fm,n

(∂Y j
s )2

σ2(Y j
s , B

[(j+1)/2]
s , s)

)]
.

(3.2.6)

Specifically, we can take fm,n in Eq. (3.2.6) as a distribution of the form

fm,n(X
(m)
t , Y

(2n)
t , t|A(m)

t′ , B
(n)
t′ ) =

m∏
i=1

δ(X i −X i
t)

2n∏
j=1

δ(Y j − Y j
t )

× S1,m(t|t′,A(m)
t′ )S2,n(t|t′,B(m)

t′ ),

(3.2.7)

where S1,m and S2,n are joint survival possibilities

S1,m(t|t′,A(m)) =
m∏
i=1

e−
∫ t
t′ βm,n(Ai−t′+s,s)ds,

S2,n(t|t′,B(n)) =
n∏

j=1

(e−
∫ t
t′ βm,n(Bj−t′+s,s)ds)2,

(3.2.8)
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and the birth rate β ≡ βm,n can implicitly depend on the populations m,n.

Next, we define p̂(X
(m)
t , Y

(2n)
t , t|X(m)

t′ , Y
(2n)
t′ , A

(m)
t′ , B

(n)
t′ ) as the probability density ofm singlets

of volumes X
(m)
t and n doublets of volumes Y

(2n)
t at time t, conditioned on there being m

singlets of volumes X
(m)
t′ and ages A

(m)
t′ and n doublets with volumes Y

(2n)
t′ and ages B

(2n)
t′ at

time t′, and that no cell division occurs during [t′, t]. The quantity p̂(X
(m)
t , Y

(2n)
t , t|X(m)

t′ , Y
(2n)
t′ ,

A
(m)
t′ , B

(n)
t′ )S1,m(t|t′,A(m)

t′ )S2,n(t|t′,B(m)
t′ ) is thus the probability measure that the cell popu-

lation at time t contains m singlets of size X
(m)
t and n doublets of size Y

(n)
t with no cell

division occurring within [t′, t], conditioned on it containing m singlets with volumes X
(m)
t′

and ages A
(m)
t′ and n doublets with volumes Y

(2n)
t′ and ages B

(n)
t′ at t′.

After substitution of the fm,n defined in Eq. (3.2.7) into Eq. (3.2.6), dividing by dt, and

taking the dt→ 0 limit, we obtain

∂

∂t

(
p̂(X(m), Y(2n), t|X(m)

t′ , Y
(2n)
t′ , A

(m)
t′ , B

(n)
t′ )S1,m(t|t′,A(m)

t )S2,n(t|t′,B(n)
t )
)
=∫

Λm

dX
(m)
t

∫
Λ2n

dY
(2n)
t p̂(X

(m)
t , Y

(2n)
t , t|X(m)

t′ , Y
(2n)
t′ , A

(m)
t′ , B

(n)
t′ )

[
∂f

∂t

+
m∑
i=1

g(X i
t , A

i
t, t)

∂f

∂X i
t

+
2n∑
j=1

g(Y j
t , B

[(j+1)/2]
t , t)

∂f

∂Y j
t

+
1

2

m∑
i=1

∂2f

∂(X i
t)

2
σ2(X i

t , A
i
t, t) +

1

2

2n∑
j=1

∂2f

∂(Y j
t )

2
σ2(Y j

t , B
[(j+1)/2]
t , t)

]

=S1,mS2,n

[
−
( m∑

i=1

βm,n(A
i
t, t) + 2

n∑
j=1

βm,n(B
j
t , t)

)
p̂m,n

−
m∑
i=1

∂(g(X i
t , A

i
t, t)p̂)

∂X i
t

−
2n∑
j=1

∂(g(Y j
t , B

[(j+1)/2]
t , t)p̂)

∂Y j
t

+
1

2

m∑
i=1

∂2(σ2(X i
t , A

i
t, t)p̂)

(∂X i
t)

2
+

1

2

2n∑
j=1

∂2(σ2(Y j
t , B

j
t , t)p̂)

(∂Y j
t )

2

]

(3.2.9)

where the last equality arises from integration by parts.

37



Finally, we derive the PDE satisfied by the unconditioned probability density

pm,n(X
(m)
t , Y

(2n)
t , A

(m)
t , B

(n)
t , t) (3.2.10)

given pm,n(X
(m), Y(2n), A(m), B(n), t′). First, we note that if no division has occurred in [t′, t]

and t − t′ < min{A(m)
t , B

(n)
t }, a system at t with m singlets of volumes X

(m)
t and ages

A
(m)
t and n doublets with volumes Y

(2n)
t and ages B

(n)
t can result only from a system

at t′ with m singlets with ages A
(m)
t′ = A

(m)
t − (t − t′) and n doublets with ages B

(n)
t′ =

B
(n)
t − (t− t′). Thus, we use the Chapman-Kolmogorov relation between the two quantities

p̂(X
(m)
t ,Y

(2n)
t , t|X(m)

t′ , Y
(2n)
t′ , A

(m)
t′ , B

(n)
t′ )S1,m(t|t′,A(m)

t′ )S2,n(t|t′,B(m)
t′ ) and pm,n to construct

pm,n(X
(m)
t , Y

(2n)
t , A

(m)
t′ + t− t′, B(n)

t′ + t− t′, t) =
∫
Λ(m+2n)

p̂(X
(m)
t , Y

(2n)
t , t|X(m)

t′ , Y
(2n)
t′ , A

(m)
t′ ,B

(n)
t′ )

× S1,m(t|t′,A(m)
t′ )S2,n(t|t′,B(m)

t′ )pm,n(X
(m)
t′ , Y

(2n)
t′ , A

(m)
t′ , B

(n)
t′ , t

′)dX
(m)
t′ dY

(2n)
t′ .

(3.2.11)

Assuming that pm,n is continuous and differentiable, and the integration is interchange-

able with differentiation in Eq. (3.2.11), we take derivatives with respect to all variables

t,X i, Y j, Ai, Bj to obtain

∂pm,n

∂t
+

m∑
i=1

∂pm,n

∂Ai
t

+
n∑

j=1

∂pm,n

∂Bj
t

+
m∑
i=1

∂(g(X i
t , A

i
t, t)pm,n)

∂X i
t

+
2n∑
j=1

∂(g(Y j
t , B

j
t , t)pm,n)

∂Y j
t

= −
( m∑

i=1

βm,n(A
i
t, t) + 2

n∑
j=1

βm,n(B
j
t , t)

)
pm,n

+
1

2

m∑
i=1

∂2(σ2(X i
t , A

i
t, t)pm,n)

(∂X i
t)

2
+

1

2

2n∑
j=1

∂(σ2(Y j
t , B

j
t , t)pm,n)

(∂Y j
t )

2
,

(3.2.12)

where pm,n ≡ pm,n(X
(m)
t , Y

(2n)
t , A

(m)
t , B

(n)
t , t). Hereafter, we will omit the subscript t for nota-

tional simplicity. To facilitate further analysis, we define a symmetrized density ρm,n that is

symmetric to the interchange of variables:
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ρm,n(X
m, Y2n, Am, Bn, t) =

1

2nm!n!

∑
π2n

pm,n(X
(m), π2n(Y(2n)),A(m), B(n), t) (3.2.13)

where A(m) = (Aξa(1), . . . , Aξa(m)), B(n) = (Bξb(1), . . . , Bξb(m)) are ordered ages, X(m) =

(Xξa(1), . . . , Xξa(m)), Y (2n) = (Y 2ξb(1)−1, . . . , Y 2ξb(n)) are the corresponding sizes, and π2n

is some permutation Λ2n → Λ2n such that π2n(Y 2i), π2n(Y 2i−1) ∈ {Y 2i−1, Y 2i}, π2n(Y 2i) ̸=
π2n(Y 2i−1), i = 1, ..., n, i.e., π2n can interchange the sizes of two cells in a doublet. Therefore,

there are 2n total permutations π2n. ξa(1), ..., ξa(m) is a rearrangement such that Aξa(1) ≥
Aξa(2) ≥ ... ≥ Aξa(m) and ξb(1), ..., ξb(n) is a rearrangement such that Bξb(1) ≥ Bξb(2) ≥
... ≥ Bξb(n). Defining such a ρm,n allows us to remove the restriction that the ages must

be presented in a descending order. Moreover, changing the order of two cells within in a

doublet will not affect the value of ρm,n. Definite integrals over ρm,n are then related to those

over pm,n via

∫
dXmdY2ndAmdBnρm,n(X

m,Y2n,Am,Bn, t) =

∫
Λ(m+2n)

dX(m)dY(2n)

∫
Λ

dAξa(1)...

...

∫ Aξa(m−1)

0

dAξa(m)

∫
Λ

dBξb(1)...

∫ Bξb(n−1)

0

dBξb(n) pm,n(X
(m), Y(2n), A(m), B(n), t),

(3.2.14)

so ρm,n is also a probability density distribution if pm,n is. Furthermore, the differential

equation satisfied by ρm,n for Am, Bn > 0 is the same as the differential equation satisfied by

pm,n
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∂ρm,n

∂t
+

m∑
i=1

∂ρm,n

∂Ai
+

n∑
j=1

∂ρm,n

∂Bj
+

m∑
i=1

∂(g(X i, Ai, t)ρm,n)

∂X i
+

2n∑
j=1

∂(g(Y j, B[ j+1
2

], t)ρm,n)

∂Y j

= −
( m∑

i=1

βm,n(A
i, t) + 2

n∑
j=1

βm,n(B
j, t)

)
ρm,n

+
1

2

m∑
i=1

∂2(σ2(X i, Ai, t)ρm,n)

(∂X i)2
+

1

2

2n∑
j=1

∂2(σ2(Y j, B[ j+1
2

], t)ρm,n)

(∂Y j)2
.

(3.2.15)

3.2.2 Boundary conditions

We now specify appropriate boundary conditions for ρm,n that represent the birth of new

cells with age zero. By using ordered ages, it is easy to derive the corresponding boundary

conditions for pm,n defined in Eq. (3.2.11), which we omitted here, but which are nonzero if

Bn = 0 and zero if any entry in X(m),Y(2n),A(m),B(k<n) is zero. The boundary conditions

for ρm,n are then derived from the boundary conditions for pm,n. Homogeneous boundary

conditions also arise at any X i = 0,∞ or Y j = 0,∞ indicating that no cell can have 0

or infinite size. If one cell divides at time t in a system of m singlets and n doublets,

the system could either convert to m − 1 singlets and n + 1 doublets when this dividing

cell is a singlet, or m + 1 singlets and n doublets when the dividing cell is one cell in a

doublet. A simpler but similar discussion of boundary conditions for the “timer” model

which has no size dependence has been discussed [GC16, CG16]. Hereafter, we use the

notation Xm
−i = (X1, X2, ..., X i−1, X i+1, ..., Xm), Am

−i = (A1, A2, ..., Ai−1, Ai+1, ..., Am) to

describe vectors of one lower dimension in which element i is removed. The boundary

conditions are given by

ρm,n = 0


if any element in {Xm,Y2n} = 0,∞,
or any element in Am = 0,

or more than one element in Bn = 0,

(3.2.16)
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and

ρm,n(X
m, Y2n[Y 2j−1= y1, Y

2j= y2],A
m, Bn[Bj = 0], t) =

m+ 1

n

∫ ∞
0

ds β̃m+1,n−1(y1 + y2, y1, s, t)ρm+1,n−1(X
m+1[Xm+1 = y1 + y2],

Yn−1,Am+1[Am+1 = s],Bn−1, t)

+
2

m

m∑
i=1

β̃m−1,n(y1 + y2, y1, A
i, t)ρm−1,n(X

m
−i,A

m
−i,B

n[Bn = Ai],

Y2n[Y 2n−1 = X i, Y 2n = y1 + y2], t),

(3.2.17)

Equation (3.2.16) enforces that no cell can have a zero or infinitely large size and no more

than one cell can divide at the same instant (continuous time assumption). In Eq. (3.2.17),

the notation Xm+1[X i = x] indicates that the ith component in Xm+1 is x, with similar def-

initions for Y2n[Y j = y],Am[Ai = a],Bn[Bj = b]. The first term on the RHS of Eq. (3.2.17)

results from the division of a singlet while the second term results from the division of one

cell in a doublet, leaving a singlet and giving rise to a new doublet. Division is described

by β̃m,n(x, z, a, t)dz, the rate that in a population of m singlets and n doublets, a cell of

volume x and age a divides into one cell with volume ∈ [z, z + dz]. By allowing β̃m,n to

explicitly depend on both the mother cell’s size x and the daughter cell’s size z, we can

readily allow for asymmetric division and daughter cells of different sizes. Moreover, from

volume conservation, we impose β̃m,n(x, z, a, t) = β̃m,n(x, x−z, a, t). Finally, if we assume the

simple form β̃m,n(x, z, a, t) = h(z/x)βm,n(a, t)/x [XGC20],
∫ x

0
β̃m,n(x, z, a, t)dz = βm,n(a, t) is

independent of size x as we have assumed. In the Appendix, we explicitly demonstrate that

probability conservation is preserved under these boundary conditions.

3.3 Hierarchies and moment equations

In this section, we will assume that β̃ and β are independent of the population sizes m,n.

Under this assumption, we are able to derive lower-dimensional (e.g., marginalized) pro-

jections of our kinetic theory (Eq. (3.2.15)) by integrating over a specific number of cell
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sizes:

ρ(h,k,ℓ)m,n (Xh, Y2k+2ℓ
e , Ah, Bk+ℓ, t) =

∫
Λ

dXh+1:mdYo
2k+2ℓ+1:2ndAh+1:mdBk+ℓ+1:n ρm,n, (3.3.1)

where ρm,n ≡ ρm,n(X
m, Y2n, Am, Bn, t), Λ ≡ Λ(m−h)+(2n−k−2ℓ)+(m−h)+(n−k), and we define

the notation Xh+1:m := (Xh+1, ..., Xm),Y2k+2ℓ+1:2n
o := (Y 1, Y 3, ..., Y 2k−1, Y 2k+2ℓ+1, ..., Y 2n),

Ah+1:m := (Ah+1, ..., Am), Bk+ℓ+1:n := (Bk+ℓ+1, ..., Bn) and Y2k+2ℓ
e := (Y 2, Y 4, ..., Y 2k,

Y 2k+1, Y 2k+2, ..., Y 2k+2ℓ). The marginalized densities require three indices to describe be-

cause although the size Xm and age Am have a one-to-one correspondence for singlets, the

twins, while carrying the same age, almost surely have different sizes due to asymmetric

division and independent growth fluctuations immediately after birth. Thus, the number

of ways to exit and enter each state depends on which types of cells are “integrated over”.

By marginalizing over Eq. (3.2.15), we find the kinetic equation satisfied by ρ
(h,k,ℓ)
m,n (in the

remaining space Xh,Y2k+2ℓ
e ,Ah, Bk > 0) becomes
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∂ρ
(h,k,ℓ)
m,n (Xh, Y2k+2l

e , Ah, Bk+ℓ, t)

∂t
+

h∑
i=1

∂ρ
(h,k,ℓ)
m,n

∂Ai
+

k+ℓ∑
j=1

∂ρ
(h,k,ℓ)
m,n

∂Bj
+

h∑
i=1

∂(g(X i, Ai, t)ρ
(h,k,ℓ)
m,n )

∂X i

+
k∑

j=1

∂(g(Y 2j, Aj, t)ρ
(h,k,ℓ)
m,n )

∂Y 2j
+

2ℓ∑
j=1

∂(g(Y 2k+j, Aj, t)ρ
(h,k,ℓ)
m,n )

∂Y 2k+j

− 1

2

h∑
i=1

∂2(σ2(X i, Ai, t)ρ
(h,k,ℓ)
m,n )

(∂X i)2
− 1

2

k∑
j=1

∂2(σ2(Y 2j, B[ j+1
2

], t)ρ
(h,k,ℓ)
m,n )

(∂Y 2j)2

− 1

2

2ℓ∑
j=1

∂2(σ2(Y 2k+j, Bk+[ j+1
2

], t)ρ
(h,k,ℓ)
m,n )

(∂Y 2k+j)2

= −
h∑

i=1

β(Ai, t)ρ(h,k,ℓ)m,n (Xh, Y2k+2ℓ
e , Ah, Bk+ℓ, t)

−
k+ℓ∑
j=1

2β(Bj, t)ρ(h,k,ℓ)m,n (Xh, Y2k+2ℓ
e , Ah, Bk+ℓ, t)

− (m− h)
∫
Λ2

dXh+1dAh+1 β(Ah+1, t)ρ(h+1,k,ℓ)
m,n (Xh+1, Y2k+2ℓ

e , Ah+1, Bk+ℓ, t)

− 2(n− k − ℓ)
∫
Λ2

dY 2k+2dBk+1 β(Bk+1, t)ρ(h,k+1,ℓ)
m,n (Xh, Y2k+2ℓ+2

e , Ah, Bk+ℓ+1, t)

+
(n− k − ℓ)(m+ 1)

n

∫
Λ2

dXh+1dAh+1β(Ah+1, t)ρ
(h+1,k,ℓ)
m+1,n−1(X

h+1, Y2k+2ℓ
e , Ah+1, Bk+ℓ, t)

+
2(n− k − ℓ)(m− h)

m

∫
Λ2

dY 2k+2dBk+1 β(Bk+1, t)ρ
(h,k+1,ℓ)
m−1,n (Xh, Y2k+2ℓ+2

e , Ah, Bk+ℓ+1, t)

+
2(n− k − ℓ)

m

h∑
i=1

β(Ai, t)

× ρ(h−1,k+1,ℓ)
m−1,n (Xh

−i,Y
2k+2+2ℓ
e [Y 2k+2 = X i],Ah

−i, B
k+ℓ+1[Bk+1 = Ai], t),

(3.3.2)

and the associated boundary conditions become
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ρ(h,k,ℓ)m,n (Xh, Y2k+2ℓ
e [Y 2k= y],Ah, Bk+ℓ[Bk= 0], t) =

m+ 1

n

∫
Λ2

dAh+1ds β̃(y + s, y, Ah+1, t)ρ
(h+1,k−1,ℓ)
m+1,n−1 (Xh+1[Xh+1= y + s],

Y2k+2ℓ−2
e , Ah+1, Bk+ℓ−1, t)

+
2(m− h)

m

∫
Λ2

dBkds β̃(y + s, y, Bk, t)ρ
(h,k,ℓ)
m−1,n(X

h, Y2k+2ℓ
e [Y 2k= y + s],Ah, Bk+ℓ, t)

+
2

m

h∑
i=1

∫
Λ

ds β̃(y + s, y, Ai, t)ρ
(h−1,k−1,ℓ+1)
m−1,n (Xh

−i,

Y2k+2ℓ
e [Y 2k+2ℓ−1= y + s, Y 2k+2ℓ= X i],Ah

−i,B
k+ℓ[Bk= Ai], t),

(3.3.3)

ρ(h,k,ℓ)m,n (Xh, Y2k+2ℓ
e [Y 2k+2ℓ−1= y1, Y

2k+2ℓ= y2],A
h, Bk+ℓ[Bk+ℓ= 0], t) =

m+ 1

n

∫
Λ

dAh+1 β̃(y1 + y2, y1, A
h+1, t)ρ

(h+1,k,ℓ−1)
m+1,n−1 (Xh+1[Xh+1= y1 + y2],

Y2k+2ℓ−2
e , Ah+1, Bk+ℓ−1, t)

+
2(m− h)

m

∫
Λ

dBk+1 β̃(y1 + y2, y1, B
k+1, t)ρ

(h,k+1,ℓ−1)
m−1,n (Xh,Y2k+2ℓ

e [Y 2k+2= y1 + y2],

Ah, Bk+ℓ, t)

+
2

m

h∑
i=1

β̃(y1 + y2, y1, A
i, t)ρ

(h−1,k,ℓ)
m−1,n (Xh

−i,Y
2k+2ℓ
e [Y 2k+2ℓ−1= y1 + y2, Y

2k+2ℓ= X i],

Ah
−i,B

k+ℓ[Bk+ℓ= Ai], t),

(3.3.4)

and
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ρ(h,k,ℓ)m,n (Xh[X i = 0],Y2k+2ℓ
e , Ah, Bk+ℓ, t) = ρ(h,k,ℓ)m,n (Xh[X i =∞],Y2k+2ℓ

e , Ah, Bk+ℓ, t) = 0,

i = 1, 2, ..., h,

ρ(h,k,ℓ)m,n (Xh, Y2k+2ℓ
e [Y j= 0],Ah, Bk+ℓ, t) = ρ(h,k)m,n (Xh, Y2k+2ℓ

e [Y j=∞],Ah, Bk+ℓ, t) = 0,

j = 2, 4, ..., 2k, 2k + 1, ..., 2k + 2ℓ,

ρ(h,k,ℓ)m,n (Xh, Y2k+2ℓ
e , Ah[Ai = 0],Bk, t) = 0,

i = 1, 2, ..., h,

ρ(h,k,ℓ)m,n (Xh, Y2k+2ℓ
e , Ah, Bk+ℓ, t) = 0,

if two or more entries in Bk+ℓ are 0.

(3.3.5)

The first two terms on the RHS of Eq. (3.3.2) represent the division of a singlet/doublet in

the current system whose age is specified; the third and fourth terms on the RHS describe

the division of a singlet and one cell of a doublet, respectively, whose age is not specified; the

fifth term results from the division of a singlet, whose age and volume are unspecified, that

induces the state transition (m+ 1, n− 1)→ (m,n). The sixth term arises from division of

one cell of a doublet that converts the system from (m−1, n) to (m,n). Finally, the last term
represents the division of one cell in a doublet whose age is Ai, 1 ≤ i ≤ h and its undividing

twin has size X i. In Eqs. (3.3.3) and (3.3.4), the first term on their RHSs represents the

division of a singlet and the second term on their RHSs describes the division of one cell in

a doublet, giving rise to a newborn doublet and leaving a singlet whose volume and age are

integrated over. The last term in the boundary conditions in Eqs. (3.3.3) and (3.3.4) results

from the division of a cell in a doublet, giving rise to a newborn doublet and leaving a singlet

whose volume and age are X i ∈ Xh and Ai ∈ Ah, respectively.
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The differential equations satisfied by the fully marginalized density ρ
(0,0,0)
m,n are

∂ρ
(0,0,0)
m,n (t)

∂t
=

∫
Λ2

dX1dA1 β(A1, t)
[
(m+ 1)ρ

(1,0,0)
m+1,n−1(X

1, A1, t)−mρ(1,0,0)m,n (X1, A1, t)
]

+ 2n

∫
Λ2

dY 2dB1 β(B1, t)
[
ρ
(0,1,0)
m−1,n(Y

2
e,B

1, t)− ρ(0,1,0)m,n (Y2
e,B

1, t)
]
.

(3.3.6)

which, for an age-independent division rate, explicitly reduces to the simple birth-death

master equation

1

β(t)

∂ρ
(0,0,0)
m,n (t)

∂t
= (m+ 1)ρ

(0,0,0)
m+1,n−1(t)−mρ(0,0,0)m,n (t) + 2nρ

(0,0,0)
m−1,n(t)− 2nρ(0,0,0)m,n (t). (3.3.7)

In Eqs. (3.3.6) and (3.3.7), the division rates β(A1, t) and β(t) can be replaced by their full

(m,n)-dependent forms.

3.3.1 Number-weighted density functions

We now define a class of number-weighted density functions from the marginalized densities

ρ
(h,k,ℓ)
m,n that incorporates higher moments and that has useful closure properties:

u(k,ℓ)(xk,y2ℓ, ak,bℓ, t) :=
∞∑

m,n=0

k∑
r=0

∑
ξ(0,r)∈Sk

2k+ℓ−r(m)r(n)k+ℓ−r ρ
(r,k−r,ℓ)
m,n (Xr[X i = xξ

(0,r)(i)],

Y2(k−r)+2ℓ
e [Y 2j = xξ

(r,k−r)(j), Y 2(k−r)+p = yp],Ar[Ai = aξ
(0,r)(i)],

Bk−r+ℓ[Bj = aξ
(r,k−r)(j), Bk−r+[ p+1

2
] = b[

p+1
2

]], t),

1 ≤ i ≤ r, 1 ≤ j ≤ k − r, 1 ≤ p ≤ 2ℓ

(3.3.8)

where xk := (x1, ..., xk),y2ℓ := (y1, ..., y2ℓ), ak := (a1, ..., ak),bℓ := (b1, ..., bℓ), and (m)r =

m!/(m− r)! is the falling factorial, Sk = {1, 2, ..., k}. The sum
∑

ξ(0,r)∈Sk

includes all elements

in the set ξ(0,r) ∈ Ωr containing all possible choices of r elements in Sk and ξ(r,k−r) := (ξ(r +

1), ξ(r+2), ...ξ(k)) = Sk\ξ(0,r). We require ξ(0,r)(i) < ξ(0,r)(j), ξ(r,k−r)(i) < ξ(r,k−r)(j), ∀i < j,

and r ≤ m, and k − r ≤ n in Eq. (3.3.8). Note that u(0,0) ≡ 1 from normalization. The
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lowest order number-weighted density functions u(k,ℓ) are explicitly given in Appendix B.

Since our kinetic equations (Eqs. (3.2.15), (3.2.16), and (3.2.17)) subsume all hierarchical

equations for ρ
(h,k,ℓ)
m,n (Eqs. (3.3.2), (3.3.3), (3.3.4), and (3.3.5)), equations for u(k,ℓ) can be

derived. For example, if β is independent of m,n, the PDE satisfied by u(k,ℓ)(xk,y2ℓ, ak,bℓ, t)

is

∂u(k,ℓ)

∂t
+

k∑
i=1

∂u(k,ℓ)

∂ai
+

ℓ∑
j=1

∂u(k,ℓ)

∂bj
+

k∑
i=1

∂(g(xi, ai, t)u(k,ℓ))

∂xi
+

2ℓ∑
j=1

∂(g(yj, b[
j+1
2

], t)u(k,ℓ))

∂yj

= −
( k∑

i=1

β(ai, t) +
ℓ∑

j=1

2β(bj, t)

)
u(k,ℓ)

+
1

2

k∑
i=1

∂2(σ2(xi, ai, t)u(k,ℓ))

(∂xi)2
+

1

2

2ℓ∑
j=1

∂2(σ2(yj, b[
j+1
2

], t)u(k,ℓ))

(∂yj)2
,

(3.3.9)

with the boundary conditions

u(k,ℓ)(xk[xv = x],y2ℓ, ak[av = 0],bℓ, t) =
∞∑

m,n=0

k−1∑
r=0

∑
ξ(0,r)∈S−v

k

2ℓ+k−r(m)r(n)k+ℓ−r

× ρ(r,k−r,ℓ)m,n (Xr[X i = xξ
(0,r)(i)],Y2k−2r+2ℓ

e [Y 2j = xξ
(r,k−r)(j), Y 2k+p = yp],

Ar[Ai = aξ
(0,r)(i)],Bℓ+k−r[Bj = aξ

(r,k−r)(j), Bk−r+[ p+1
2

] = b[
p+1
2

]], t)

= 2

∫
Λ2

ds da β̃(x+ s, x, a, t)u(k,ℓ)(xk[xk = x+ s],y2ℓ, ak[ak = a],bℓ, t)

+ 2
k∑

w=1, ̸=v

∫
Λ

ds β̃(x+ s, x, aw, t)u(k−2,ℓ+1)(xk
−v,−w, a

k
−v,−w,

y2ℓ+2[y2ℓ+1 = xv, y2ℓ+2 = x+ s],bℓ+1[bℓ+1 = aw], t)

(3.3.10)
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u(k,ℓ)(xk,y2ℓ[y2v−1 = y1, y
2v = y2], a

k,bℓ[bv = 0], t)

=
∞∑

m,n=0

k∑
r=0

∑
ξ(0,r)∈Sk

2ℓ+k−r(m)r(n)k+ℓ−rρ
(r,k−r,ℓ)
m,n (Xr[X i = xξ

(0,r)(i)],

Y2ℓ+k−r
e [Y 2j = xξ

(r,k−r)(j), Y 2k+q = yq],Ar[Ai = aξ
(0,r)(i)],

Bℓ+k−r[Bj = aξ
(r,k−r)(j), Bk−r+[ q+1

2
] = b[

q+1
2

]], t)

= 2

∫
Λ

da β̃(y1 + y2, y1, a, t)

× u(k+1,ℓ−1)(xk+1[xk+1 = y1 + y2],y
2ℓ
−(2v−1),−2v, a

k+1[ak+1 = a],bℓ
−v, t)

+ 2
k∑

w=1

β̃(y1 + y2, y1, a
w, t)

× u(k−1,ℓ)(xk
−w, a

k
−w,y

2ℓ[y2v−1 = y1 + y2, y
2v = xw],bℓ[bv = aw], t),

(3.3.11)

where xk
−v := (x1, ..., xv−1, xv+1, ..., xk), ak

−v := (a1, ..., av−1, ..., av+1, ...ak),

xk
−v,−w := (x1, ..., xv−1, xv+1, ..., xw−1, xw+1, ..., xk), ak

−v,−w := (a1, ..., av−1, av+1, ..., aw−1, aw+1, ..., ak),

y2ℓ
−(2v−1),−2v := (y1, ..., y2v−2, y2v+1, ..., y2ℓ), bℓ

−v := (b1, ..., bv−1, bv+1, ..., bℓ) and S−vk := {1, 2, ..., v−
1, v + 1, .., k}. The additional conditions,

u(k,ℓ)(xk,y2ℓ, ak,bℓ, t) = 0

 if any xi, yj = 0,∞
if two or more ai or bj=0

(3.3.12)

are found by using Eq. (3.3.5) in Eq. (3.3.8). Note that the PDE (Eq. (3.3.9)) for each

u(k,ℓ) is “closed” and does not involve other density functions u(k
′,ℓ′). However, the boundary

conditions (Eqs. (3.3.10) and (3.3.11)) couple u(k,ℓ), k + ℓ > 1 with u(k+1,ℓ−1), u(k−1,ℓ), or

u(k−2,ℓ+1), preventing direct closure at the level of each set of indices k, ℓ. Nonetheless,

although the full models for u(k,ℓ), k+ℓ > 1 are not closed, the boundary conditions will only

involve u(k
′,ℓ′) such that k′ + 2ℓ′ ≤ k + 2ℓ, and therefore all u(k,ℓ), k + ℓ > 1 can be solved

sequentially after we have found u(1,0), which can be completely determined by solving the

PDE

∂u(1,0)

∂t
+
∂u(1,0)

∂a
+
∂(gu(1,0))

∂x
= −β(a, t)u(1,0)(x, a, t) + 1

2

∂2(σ2u(1,0))

(∂x)2
(3.3.13)
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with associated boundary conditions specified at a = 0, x = 0, x =∞

u(1,0)(x, 0, t) = 2n
∞∑

m=0

∞∑
n=1

ρ(0,1,0)m,n (Y2
e[Y

2 = x],B1[B1 = 0], t)

= 2

∫ ∞
x

dz

∫
Λ

da β̃(z, x, a, t)u(1,0)(z, a, t),

u(1,0)(0, a, t) = u(1,0)(∞, a, t) = 0.

(3.3.14)

The model for u(1,0) is essentially the standard mean-field sizer-timer model [RHK14, XGC20]

but with an additional diffusion term ∂2(σ2u(1,0))
(∂x)2

representing the random growth rate of each

independent cell. To explicitly illustrate how growth rate stochasticity affects the evolution of

the structured population, we numerically solve Eqs. (3.3.13) and (3.3.14). We set g(x, a, t) =

x/2 and a constant rate β(x, a, t) = (2ln2)−1 describing an exponentially distributed division

time with mean 2ln2. We also assume β̃ = β(x, a, t)δ(z/x)/x where δ is a Dirac measure

enforcing symmetric division. The initial condition is u(1,0)(x, a, 0) = xe−2a−x/5. We use

the adaptive spectral method proposed in [XSC21b] to numerically compute u(1,0)(x, a, t) for

different growth noise σ = 0,
√
x,
√
2x. We construct the mean cell size

⟨x(t)⟩ =
∫
Λ2 xu(1,0)(x, a, t)dxda∫
Λ2 u(1,0)(x, a, t)dxda

(3.3.15)

and plot their evolution in Fig. 3.1.
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Figure 3.1: Mean cell sizes ⟨x(t)⟩ under symmetric division for different growth rate noise
functions σ = 0,

√
x,
√
2x. After an initial transient, we see that a larger σ leads to larger

average sizes. Even when the mean division times are kept fixed, larger noise in growth rates
leads to broader distributions of cell sizes which increases the mean.

Given the solution to u(1,0)(x, a, t), we can calculate u(0,1) and then u(2,0), u(1,1), and so

on. How the different u(k,ℓ) are connected through the boundary conditions are illustrated in

Fig. 3.2, demonstrating the sequence to follow to fully solve the single-density problem. The

differential equation satisfied by the lowest order moment E[N(t)] requires u(1,0), as indicated

by the shaded blue arrow in Fig. 3.2(a). The two sequences traced by the boundary conditions

(3.3.10) and (3.3.11) are shown in Figs. 3.2(a) and (b), respectively. In Fig. 3.2(c) we show the

combined sequence of boundary condition calculations to find u(1,2): the equations satisfied

by u(1,0) are fully closed so u(1,0) can be first calculated. In the second step, we use u(1,0)

to construct the boundary condition and solve for u(0,1). The third step is to use u(0,1) to

construct the boundary condition and solve for u(2,0). The boundary condition dependences

of u(1,0), u(2,0) are indicated by blue arrows. The fourth and fifth steps are to solve for u(1,1)

and u(3,0), whose boundary condition dependences are indicated by the green arrows. Next,

we calculate u(2,1), u(0,2), and finally u(1,2), whose boundary condition dependences are shown

by the red arrows. These higher dimensional results capture the stochasticity arising only

from the noisy growth of each cell (through the diffusive terms in Eqs. (3.3.9) and (3.3.13)).

When the coefficients satisfy certain conditions, it is also possible to further reduce the full
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kinetic models for u(k,ℓ) in Eqs. (3.3.9) and (3.3.12) to simpler models, which are derived in

previous literature like [Per08, CG16] by integrating over the size variable x or age variable

a. This is explicitly shown in Appendix A.2.3.

1 2 3
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3

0

0

(a)

  

1 2 3

1

2
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0

(b)

  

1 2 3

1

2

3

0

0

(c)

=1 =1=1

Figure 3.2: A map of boundary condition interdependences for single-density kinetic the-
ory. In (a) we indicate the dependence of the boundary condition for the quantity
u(k,ℓ)(xk, ak,y2ℓ,bℓ, t) if any ai = 0. The boundary condition for u(k,ℓ) depends on itself
and u(k−2,ℓ+1); for example, u(0,1) is required for the boundary condition for u(2,0), so the
red arrow points from u(0,1) to u(2,0). In (b) we indicate the dependence of the boundary
condition for u(k,ℓ)(xk, ak,y2ℓ,bℓ, t) if any bj = 0. Here, the boundary condition for u(k,ℓ)

depends on u(k+1,ℓ−1) and u(k−1,ℓ). (c) An example of an explicit sequence of calculations to
find u(1,2) starting from u(1,0).
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3.3.2 Moments of the total population

In addition to the number-weighted densities defined in Eq. (3.3.8), one can also investigate

moments of the total cell number N = m + 2n. The expected moments of the total cell

population

E[Nk(t)] =
∞∑

m=0

∞∑
n=0

(m+ 2n)kρ(0,0,0)m,n , (3.3.16)

can be used to find, for k = 1

dE[N(t)]

dt
=

∞∑
m,n=0

[
m

∫
Λ2

dX1dA1 β(A1, t)ρ(1,0,0)m,n (X1, A1, t)

+2n

∫
Λ2

dY 2dB1 β(B1, t)ρ(0,1,0)m,n (Y2
e,B

1, t)

]
=

∫
Λ2

dx da β(a, t)u(1,0)(x, a, t).

(3.3.17)

The differential equation for E[N(t)] does not involve any boundary condition, but depends

on u(1,0). Nonetheless, using the solutions to Eqs. (3.3.13) and (3.3.14) one can explicitly

solve Eq. (3.3.17) to find E[N(t)].

The demographic stochasticity arising from random birth (and possibly death) times

affects the total population and is most directly summarized by higher total-population

correlations. For example, the differential equation satisfied by E[N2(t)] is found to be

dE[N2(t)]

dt
=

∞∑
m,n=0

[
(2m2 + 4mn+m)

∫
dX1dA1 β(A1, t)ρ(1,0,0)m,n (X1, A1, t)

+ (8n2 + 4mn+ 2n)

∫
dY 2dB1 β(B1, t)ρ(0,1,0)m,n (Y2

e, B
1, t)

]
.

(3.3.18)

which cannot be solved even knowing all u(k,ℓ). However, the expectations decouple if β(t)

is independent of age and take on the simple form
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dE[Nk(t)]

dt
= β(t)

k−1∑
j=0

(
k

j

)
E[N j+1(t)], (3.3.19)

which can then be solved by starting with the solution of E[N(t)]. For general age-dependent

division rates β(a, t), E[Nk>1(t)] cannot be directly computed/approximated without also

closing Eq. (3.3.2). Such equations, as well as those for higher-number moments such as∑
m,nm

kρ
(h,k,ℓ)
m,n are not closed and form complex hierarchies that need additional assumptions

to close.

3.4 Generalizations and extensions

3.4.1 Incorporation of death

Here, we show how our kinetic theory is modified when an age and size-dependent death,

occurring with rate µ(a, t), is incorporated. By defining

γ(a, t) = β(a, t) + µ(a, t) (3.4.1)

the joint survival probabilities S1,m and S2,n in Eq. (3.2.7) are modified by

S̃1,m(t|t′,Am
t′ ) =

m∏
i=1

e−
∫ t
t′ γ(A

i
t′−t

′+s,s)ds, S̃2,n(t|t′,Bn
t′) =

n∏
j=1

[
e−

∫ t
t′ γ(B

j

t′−t
′+s,s)ds

]2
. (3.4.2)

Following the previous derivations, we find

∂ρm,n

∂t
+

m∑
i=1

∂ρm,n

∂Ai
+

n∑
j=1

∂ρm,n

∂Bj
+

m∑
i=1

∂(g(X i, Ai, t)ρm,n)

∂X i
+

2n∑
j=1

∂(g(Y j, Bj, t)ρm,n)

∂Y j

= −
( m∑

i=1

γ(Ai, t) + 2
n∑

j=1

γ(Bj, t)

)
ρm,n
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+
1

2

m∑
i=1

∂2(σ2(X i, Ai, t)ρm,n)

(∂X i)2
+

1

2

2n∑
j=1

∂(σ2(Y j, Bj, t)ρm,n)

(∂Y j)2
(3.4.3)

+ (m+ 1)

∫
Λ2

dAm+1dXm+1 µ(Am+1, t)ρm+1,n(X
m+1, Y2n, Am+1, Bn, t)

+
2(n+ 1)

m

m∑
i=1

∫
Λ

dxµ(Ai, t)ρm−1,n+1(X
m
−i,Y

2n+2[Y 2n+1= x, Y 2n+2 = X i],

Am
−i,B

n+1[Bn+1= Ai], t),

where the argument of ρm,n in the first two lines is (Xm,Y2n,Am,Bn, t).

The boundary conditions for ρm,n are the same as Eq. (3.2.16) and Eq. (3.2.17) since only

cell division contributes to the boundary term. Similarly, we can define the marginal distri-

bution ρ
(h,k,ℓ)
m,n (Xh,Y2k+2ℓ

e ,Ah,Bk, t) and the higher-dimensional number-weighted densities

functions u(k,ℓ)(xk,y2ℓ, ak,bℓ, t) in the same way as in Eqs. (3.3.2) and (3.3.8), respectively.

The k = 1, ℓ = 0 density obeys

∂u(1,0)

∂t
+
∂(gu(1,0))

∂x
+
∂u(1,0)

∂a
= −(β(a, t) + µ(a, t))u(1,0)(x, a, t) +

1

2

∂2(σ2u(1,0))

(∂x)2
, (3.4.4)

and boundary conditions specified in Eqs. (3.3.14).

3.4.2 Correlated noise in growth rate

In this subsection, we consider a model in which the noise in growth rates is correlated

across cells. By defining Zm,2n = (Xm,Y2n) and Cm,2n = (Am, B1, B1, ..., Bn, Bn) to be the

volumes and ages of m singlets and n doublets at time t, we can describe the growth rate as

dZm,2n
t = Gm,2n(Zm,2n

t ,Cm,2n
t , t)dt+ Σm,2n(Zm,2n

t ,Cm,2n
t , t)dWp

t , (3.4.5)

where Gm,2n ∈ Rm+2n, Σm,2n(Zm,2n
t ,Cm,2n

t , t) = (σ)ij ∈ R(m+2n)×p and Wp
t is a p-dimensional

i.i.d standard Wiener process [Dur19]. For simplicity, we assume that the ith compo-
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nent of Gm,2n is gi(Z
i
t , C

i
t , t) = g(Zi, Ci, t), indicating that the deterministic part of the

growth rate is identical for all cells. Following our derivation in Section 3.2, we find that

ρm,n(X
m,Y2n,Am,Bn, t) satisfies

∂ρm,n

∂t
+

m∑
i=1

∂ρm,n

∂Ai
+

n∑
j=1

∂ρm,n

∂Bi
+

m∑
i=1

∂(g(t,X i, Ai)ρm,n)

∂X i
+

2n∑
j=1

∂(g(t, Y j, B[(j+1)/2])ρm,n)

∂Y j

= −
( m∑

i=1

β(Ai, t) +
n∑

j=1

2β(Bj, t)

)
ρm,n(X

m, Y2n, Am, Bn, t) +
1

2

m+2n∑
s1,s2=1

∂2(Ds1,s2ρm,n)

∂Zs1∂Zs2
,

(3.4.6)

where Ds1,s2 =
∑p

ℓ=1 σs1,ℓσs2,ℓ. The boundary conditions for ρm,n are the same as that

described by Eq. (3.2.16) and Eq. (3.2.17). Similarly, we can define the marginal distribu-

tion density function ρ
(h,k,ℓ)
m,n in the same way as in Section 3.3, and it can be verified that

the differential equations as well as the boundary conditions satisfied by ρ
(1,0,0)
m,n (X1[X1 =

x],A1[A1 = a], t), ρ
(0,1,0)
m,n (X1[X1 = x],A1[A1 = a], t) are the same as those satisfied by

ρ
(1,0,0)
m,n (X1[X1 = x],A1[A1 = a], t) and ρ

(0,1,0)
m,n (Y1[Y 1 = x],B1[B1 = a], t) in Eq. (3.3.2)

and Eq. (3.3.4), although the differential equations satisfied by ρm,n in Eq. (3.4.6) and in

Eq. (3.2.13) are different. If we further assume that the variance in growth rates for all cells

is identical:
∑p

ℓ=1 σ
2
i,ℓ = σ2, ∀i, then the equation and boundary conditions for the “1-point”

density function u(1,0)(x, a, t) are identical to those in Eq. (3.3.13) and Eqs. (3.3.14) since

correlations in growth rate noise are not captured by a mean-field description of only one

coordinate (x, a). The differences between correlated and uncorrelated growth noise among

cells may arise in the differential equations for u(k,ℓ)(xk,yℓ, ak,bℓ, t), k + ℓ ≥ 2.

3.5 Summary and conclusions

In this chapter, we rigorously constructed a kinetic theory for structured populations, in

particular for age- and size-structured cell proliferation models. We considered stochasticity

in both an individual cell’s growth rate (“intrinsic” stochasticity) and the cell number fluctu-

55



ations from random birth and death event times (“demographic” stochasticity). Derivations

of the kinetic theory require the separation of ’singlet’ and ’doublet’ populations, as was

proposed in [CG16]. However, taking into account both the size and age dependence as

well as randomness in growth rates leads to the much more complex computation which we

performed here.

One of our main results is the kinetic equations and boundary conditions described by

Eqs. (3.2.15), (3.2.16), and (3.2.17). Marginalized densities are also found to obey more

complex equations that form a hierarchy (Eqs. (3.3.2), (3.3.4), and (3.3.5)). By taking single-

density averages over these equations, we find closed PDEs that govern multi-point density

functions (Eq. (3.3.9)). However, the associated boundary conditions, Eq. (3.3.10), couple

density functions of different dimensions. Nonetheless, the density function of all dimensions

can be successively solved starting from the “1-point” density u(1,0)(x, a, t) which obeys

Eqs. (3.3.13) and (3.3.14), a 2+1-dimensional second order PDE and associated boundary

conditions that is analogous to the classic McKendrick equation but that includes a diffusive

size term arising from stochasticity in growth rates. The explicit equations for the first and

second moments of the total population are given by Eqs. (3.3.17) and (3.3.18), respectively.

Generalizations and extensions to our basic kinetic theory are also investigated. For

example, we derived the kinetic equations when a Markovian age-dependent death process is

included (Eqs. (3.3.14), (3.4.3), and (3.4.4)). We also considered noise in growth rates that

are correlated across cells and showed these effects arising in “cross-diffusion” terms in the

associated kinetic (and higher moment) equations.

Our unifying kinetic theory enables one to systematically analyze cell populations at

both individual and population levels. A full kinetic theory may be useful for studying

other processes such as failure in multicomponent systems that age and evolve [PS18]. Fur-

ther feasible extensions of our kinetic equations are to include spatial distribution [AMR08]

or correlations in growth rates across generations [XGC20]. It is also possible to consider

stochasticity for different cell division strategies [NVP21]. Finally, efficient numerical meth-

ods to solve our kinetic equations can be developed, for instance in [XSC21b], equations
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similar to Eqs. (3.3.13) and (3.3.14) describing the dynamics of u(1,0) are solved accurately

and efficiently.

57



CHAPTER 4

Kinetic theories of generation-dependent cellular

proliferation models
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4.1 Introduction

Mathematical models have been formulated to describe the evolution of populations accord-

ing to a number of individual attributes such as age, size, and/or added size since birth.

Such structured population models have various applications across diverse fields. For ex-

ample, deterministic age-structured models that incorporate age-dependent birth and death

were developed by McKendrick and have been applied to human populations [Foe59]. In

addition, structured population models have also been applied to investigate cell size con-

trol [TBS15, KB18], cellular division mechanisms [RHK14], and structured cell population

models [Per08, MD86].

When considering proliferating cell populations, individual cell growth is interrupted by

cell division events that generate daughter cells. Therefore, there has been renewed re-

search interest recently in developing kinetic theories for cellular population models that

links individual cellular growth and division to the population-level cellular proliferation

[GC16, CG16, XC21]. Such kinetic modeling not only established a rigorous mathemati-

cal theory that investigates how individual cellular growth and division affects the cellular

population’s macroscopic quantities such as average cell size or total cell density, but also

modeled stochastic effects that arise in both random cellular division times and fluctuating

cellular growth rate [HLA18].

Previous kinetic models such as the timer-sizer model in [XC21] can track the evolution

of individual cell’s internal states like cellular size, mRNA level, or protein level by using

stochastic differential equations. Furthermore, marginalizations of those kinetic models can

link individual cell states with some key macroscopic quantities of the overall population.

However, those kinetic models cannot explicitly track how cellular internal states evolve as

cells divide across different generations (the number of times a cell has divided). Further-

more, previous models have not incorporated a death rate or division rate that depends on

cells’ fluctuating internal states when the evolution of those internal states is described by

stochastic differential equations. With the increasing research interest in cellular differentia-
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tion and cellular fate described by the Waddington’s epigenetic landscape [BZA11, WZX11],

and with modern computational and statistical techniques that can efficiently and accu-

rately infer the rate of a cell to produce mRNA [LSZ18] or protein [QZM22, GSP20] given

experimental data, developing a mathematical model to investigate how cells’ biochemical

features evolve over generations is of research importance in understanding how cells differ-

entiate. In our paper, we rigorously propose the first kinetic model that can track cellular

internal states (e.g., cellular size, mRNA level, protein level, etc.) which manifest themselves

as continuous variables, and the generation of a cell which is denoted by an integer-valued

variable. Especially, noise in both growth rates and division times is considered. Our kinetic

model can take advantage of inferred rates of producing mRNA or protein to predict how the

cellular population evolves as cells divide and how cells differentiate or dedifferentiate across

different generations. Through marginalization, the equations that describe the evolution of

certain macroscopic of interest can also be derived from our kinetic theory.

In the next section, we propose the kinetic model that describes the evolution of each

cell’s evolution and division events in a cell population using stochastic differential equations.

In Section 4.3, we marginalize the kinetic theories to derive the equations that describe some

key mean-filed quantities of biological interest. In Section 4.4, concluding remarks are made

and potential future directions are proposed. Here, we shall also provide the list of the

common notations we shall use throughout this article.

4.2 Kinetic equation formulation

In this section, we shall formally derive the kinetic theory that describes the evolution of a

cell population and tracks each cell’s internal state (such as the size, the amount of a certain

kind of protein, or the amount of an mRNA). For simplicity, we assume the cell’s internal

state could be characterized by a one-dimensional quantity X ∈ R and the generation of each

cell is denoted by a discrete variable i ∈ N+. We shall also briefly discuss generalizations

that incorporate tracking different quantities at the same time.
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Symbol Definition & explanation

n⃗ n⃗ := (n1, ..., nk): the number of cells in the ith generation is ni, I = 1, ...,K

X⃗n⃗
X⃗n⃗ := (X⃗1, ..., X⃗k), X⃗i := (Xi,1, ..., Xi,ni ) is the states of cells in the ith, I = 1, ...,K0

generation

n⃗0 n⃗ := (n0
1, ..., n

0
k): the initial number of cells

X⃗n⃗0 X⃗n⃗0 := (X⃗1, ..., X⃗k0 ), X⃗i := (Xi,1, ..., Xi,n0
i
) is the iniital states of cells

gi,j(Xi,j , t) the deterministic growth rate of the jth cell in the ith generation

σi,j(Xi,j , t) the strength of noise in the growth of the jth cell in the ith generation

βi,j(Xi,j , t) the division rate of the jth cell in the ith generation

µi,j(Xi,j , t) the death rate of the jth cell in the ith generation

β̃i,j(Xi,j , X1, X2, t)
the differential division rate of the jth cell in the ith generation dividing into two cells in the
(i+ 1)th generation with states X1, X2

X⃗n⃗b,−i,−j

the states of the cell population X⃗n⃗ right after the jth cell in the ith generation divides:
X⃗n⃗b,−i,−j

differs from X⃗n⃗0 in that the state variables for the cells in the (i−1)th generation

is (Xi−1,1, ..., Xi−1,j−1, Xi−1,j+1, ...Xi−1,ni ) and the state variables for the cells in the ith

generation are (Xi,1, ..., Xi,ni , X1, X2)

X⃗n⃗d,−i,−j

the states of the cell population X⃗n⃗ right after the jth cell in the ith generation die:
X⃗n⃗d,−i,−j

differs from X⃗n⃗ in that the state variables for the cells in the (i − 1)th gener-

ation is (Xi−1,1, ..., Xi−1,j−1, Xi−1,j+1, ...Xi−1,ni )

X⃗n⃗b,i−1,j

the pre-division cellular population: it differs from X⃗n⃗ in that the state variables for the
cells in the (i−1)th generation is (Xi−1,1, ..., Xi−1,j−1, Y,Xi−1,j , ...) and the state variables
for the cells in the ith generation are (Xi,1, ..., Xi,ni−2) (an additional cell with Y in the
(i− 1)th generation divides and gives birth to two new daughter cells Xi,ni−1, Xi,ni in the
ith generation)

X⃗n⃗d,i,j

the pre-death cellular population: it differs from X⃗n⃗ in that the state variables for the cells
in the ith generation is (Xi,1, ..., Xi,j−1, Y,Xi,j , ...) (an additional cell in the ith generation
with Y dies)

Table 4.1: Overview of variables. A list of the main variables and parameters used in this
chapter.

As discussed in [Gar09, CHS20], we can assume that the evolution of Xi,j (the internal

state of the jth cell in the ith generation) obeys the following law

dXi,j(t) = gi,j(Xi,j, t)dt+ σi,j(Xi,j, t)d(Bi,j)t (4.2.1)

Here d(Bi,j)t are increments of independent Wiener processes for each i, j.We assume that

both gi and σi are Lipschitz continuous so the solution Xi,j(t) of Eq. (4.2.1) exists and is

unique almost surely given any initial condition Xi,j(0). The evolution of Xi,j is interrupted

by the cell division, and we denote the cell division rate by βi(Xi,j) for a cell in the ith

generation with its internal state being Xi,j. After division, a cell gives birth to two new

daughter cells and we denote the birth rate of having two daughters with internal states
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X1, X2 to be β̃i,j(Xi,j, X1, X2) with the constraint

∫
β̃i,j(Xi,j, X1, X2)dX1dX2 = βi,j(Xi,j). (4.2.2)

which implies that the rate of giving birth to new cells (the LHS) is equal to the division

rate (the RHS).

We denote pn⃗(X⃗n⃗, t|X⃗n⃗0 , 0) to be the probability density function that the population has

n⃗ cells with the internal states X⃗n⃗0given the initial condition that the system has n⃗0 cells

with internal states X⃗n⃗0 at t = 0. Actually, pn⃗(X⃗n⃗, t|X⃗n⃗0 , n⃗0, 0) could be written as

pn⃗(X⃗n⃗, t|X⃗n⃗0 , 0) =

E
[
δ(X⃗n⃗(t)− X⃗n⃗) exp

(
−
∫ t

0

k0∑
i=1

n0
i∑

j=1

(
β(Xi,j(s)) + µ(Xi,j(s))

)
ds
)∣∣∣X⃗n⃗0 , n⃗(s) = n0, s ∈ [0, t], 0

]

+ E
[ ∫ t

0

exp
(
−
∫ s

0

k0∑
i=1

n0
i∑

j=1

(
βi,j(Xi,j(r)) + µi,j(Xi,j(r))

)
dr
)

×
[ k0∑

i=1

n0
i∑

j=1

(
β̃i,j(Xi,j(s), X1, X2)pn⃗(X⃗n⃗, t− s|X⃗n⃗0

b,−i,−j
(s), 0)

+ µi,j(Xi,j(t− s))pn⃗(X⃗n⃗, t− s|X⃗n⃗0
d,−i,−j

(s), 0)
)]
ds
∣∣∣X⃗n⃗0 , 0

]
, if n⃗ = n⃗0,

pn⃗(X⃗n⃗, t|X⃗n⃗0 , 0) = E
[ ∫ t

0

exp
(∫ s

0

−
k0∑
i=1

n0
i∑

j=1

(
βi,j(Xi,j(r)) + µi,j(Xi,j(r))

)
dr
)

×
[ k0∑

i=1

n0
i∑

j=1

(
β̃i,j(Xi,j(s), X1, X2)pn⃗(X⃗n⃗, t− s|X⃗n⃗0

b,−i,−j
(s), 0)

+ µi,j(Xi,j(t− s))pn⃗(X⃗n⃗, t− s|X⃗n⃗0
d,−i,−j

(s), 0)
)]
ds
∣∣∣X⃗n⃗0 , 0

]
, if n⃗ ̸= n⃗0

(4.2.3)

where the meanings of notations X⃗n⃗0
b,−i,−j

(s) and X⃗n⃗0
d,−i,−j

are in Table 4.1.

The first term on the RHS of Eq. (4.2.3) is the probability that no division or death

happens in the system during time [0, t] and the final internal states of the cell population

are X⃗n⃗ and the second term on the RHS of Eq. (4.2.3) denotes the probability that at least
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one division or death happens within [0, t] and the final internal states of the cell population

are X⃗n⃗.We shall show that under certain conditions the differential equation satisfied by

pn⃗(X⃗n⃗, t|X⃗n⃗0 , 0) is

∂pn⃗
∂t

+
k∑

i=1

ni∑
j=1

∂(gi,jpn⃗)

∂Xi,j

− 1

2

k∑
i=1

ni∑
j=1

∂2(σi,jpn⃗)

(∂Xi,j)2
+

k∑
i=1

ni∑
j=1

(
βi,j(Xi,j) + µi,j(Xi,j)

)
pn⃗

=
k∑

i=2

ni−1+1∑
j=1

∫
β̃(Y,Xi,ni−1, Xi,ni

)pn⃗b,i−1,j
(X⃗n⃗b,i−1,j

, t|X⃗n⃗0(0), 0)dY

+
∞∑
i=1

ni+1∑
j=1

∫
µ(Y )pn⃗d,i,j

(X⃗n⃗d,i,j
, t|X⃗n⃗0(0), 0)dY

(4.2.4)

In Eq. (4.2.4), the notations X⃗n⃗b,i−1,j
, the pre-division cell population, and X⃗n⃗d,i,j

, the pre-

death cell population, are defined in Table 4.1. Next, we need the following two propositions

to show that pn⃗(X⃗n⃗, t|X⃗n⃗0 , 0) satisfies Eq. (4.2.4).

Proposition 1. (Forward-type Feynman-Kac formula) If the coefficients gi,j, σi,j, βi,j, µi,j are

smooth, uniform Lipschitz continuous, and uniform bounded, then under certain assumptions

the solution to the following PDE

∂p̂n⃗
∂t

(X⃗n⃗, t|X⃗n⃗0(0), 0) +
k∑

i=1

i∑
j=1

∂(gi,j(Xi,j, s)p̂n⃗)

∂Xi,j

− 1

2

k∑
i=1

ni∑
j=1

∂2(σ2
i,j(Xi,j, s)p̂n⃗)

(∂Xi,j)2

= −
k∑

i=1

ni∑
j=1

(
βi,j(Xi,j) + µi,j(Xi,j)

)
p̂n⃗,

p̂n⃗(X⃗n⃗, 0|X⃗n⃗0(0), 0) = δ(X⃗n⃗0(0)− X⃗n⃗) if n⃗ = n⃗0 and p̂n⃗(X⃗n⃗, 0) = 0 if n⃗ ̸= n⃗0

(4.2.5)

is

p̂n⃗(X⃗n⃗, t|X⃗n⃗0(0), 0) := E
[
δ(X⃗n⃗(t)− X⃗n⃗)

× exp
(
−
∫ t

0

k∑
i=1

ni∑
j=1

(
βi,j(Xi,j) + µi,j(Xi,j)

)
ds
)∣∣∣n⃗(s) = n⃗0, s ∈ [0, t], X⃗n⃗0(0), 0

]
(4.2.6)

where n⃗(s) is the vector consisting of numbers of cells in each generation at time s, and each
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component in X⃗n⃗(t) satisfies the following SDE

Xi,j(t) = Xi,j(0) +

∫ t

0

gi,j(Xi,j(s), s)ds+

∫ t

0

σi,j(Xi,j(s), s)dWi,j,s. (4.2.7)

Proposition 1 reveals the partial differential equation satisfied by the probability density

of all cells with states X⃗n⃗k
if not division or death occurs. We shall delay the proof of and

the specific mathematical assumptions needed for Prop. 1 in Appendix A.3.1.

When cell division or death happens, the number of total cells in the cell population

change. Cell divisions and deaths could be described by a Markov jump process. We need

the following proposition to derive the differential equation satisfied by the conditional prob-

ability density function pn⃗(X⃗n⃗, t|X⃗n⃗0(0), n⃗0, 0) defined in Eq. (4.2.3).

Proposition 2. (Markov jump process) Given the initial condition n⃗0 with internal states

X⃗n⃗0(0) at t = 0 and a target state at time t with n⃗ cells and their internal states X⃗n⃗, we let

p0n⃗(X⃗n⃗, t|X⃗n⃗0(0), 0) = 0,

p1n⃗(X⃗n⃗, t|X⃗n⃗0(0), 0) = p̂n⃗(X⃗n⃗, t|X⃗n⃗0 , 0),
(4.2.8)

and we recursively define

pm+1
n⃗ (X⃗n⃗, t|X⃗n⃗0(0), 0) = p̂n⃗(X⃗n⃗, t|X⃗n⃗0(0), 0)

+ E
[ ∫ t

0

exp

(
−
∫ s

0

k0∑
i=1

n0
i∑

j=1

(
(βi,j(Xi,j(r)) + µi,j(Xi,j(r))

)
dr

)

×
[ k0∑

i=1

n0
i∑

j=1

(
β̃i,j(Xi,j(s), X1, X2)p

m
n⃗ (X⃗n⃗, t− s|X⃗n⃗0

b,−i,−j
(s), 0)

+ µi,j(Xi,j(s))p
m
n⃗ (X⃗n⃗, t− s|X⃗n⃗0

d,−i,−j
(s), 0)

)]
ds
∣∣∣X⃗n⃗0(0), 0

]
.

(4.2.9)

Then, pm+1
n⃗ satisfies the following differential equation
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∂pm+1
n⃗

∂t
+

k∑
i=1

ni∑
j=1

∂(gi,jp
m+1
n⃗ )

∂Xi,j

− 1

2

k∑
i=1

ni∑
j=1

∂2(σ2
i,jp

m+1
n⃗ )

(∂Xi,j)2
+

k∑
i=1

ni∑
j=1

(
βi,j(Xi,j) + µi,j(Xi,j)

)
pm+1
n⃗

=
k−1∑
i=1

nb
i−1∑
j=1

∫
β̃(Y,Xi+1,ni+1−1, Xi+1,ni+1

)pmn⃗b,i,j
(X⃗n⃗b,i,j

, t|X⃗n⃗0(0), 0)dY

+
∞∑
i=1

nd
i∑

j=1

∫
µ(Y )pmn⃗d,i,j

(X⃗n⃗d,i,j
, t|X⃗n⃗0(0), 0)dY.

(4.2.10)

Furthermore, pmn⃗ is increasing in m.

We shall delay the proof of Proposition 2 in Appendix A.3.2. From the increasing property

of pmn⃗ in m, there exists a p∗ such that pm → p∗ a.s. for all X⃗n⃗0(0) and X⃗n⃗. Furthermore,

by induction on m, after integrating over X⃗n⃗ and summing over all n⃗ on both sides of the

recursive definition Eq. (4.2.9), we can further show that if for m ∈ N+

∑
n⃗

∫
pm−1n⃗ (X⃗n⃗, t|X⃗n⃗0(0), 0)dX⃗n⃗ ≤ 1 (4.2.11)

for any X⃗n⃗0(0), then we have

∑
n⃗

∫
pmn⃗ (X⃗n⃗, t|X⃗n⃗0(0), 0)dX⃗n⃗ ≤

∫
p̂n⃗0(Y⃗n⃗0 , t|X⃗n⃗0(0), 0)dY⃗n⃗0

+ E
[ ∫ t

0

exp
(
−
∫ s

0

k0∑
i=1

n0
i∑

j=1

(
(β(Xi,j(r)) + µ(Xi,j(r))dr

)

×
[ k0∑

i=1

n0
i∑

j=1

(
β(Xi,j(s)) + µ(Xi,j(s)

)]
ds
∣∣X⃗n⃗0(0), 0

]
:= Fm(t; X⃗n⃗0(0), 0)

(4.2.12)

for any X⃗n⃗0(0), and

dFm(t; X⃗n⃗0(0), 0)

dt
= 0, Fm(0; X⃗n⃗0(0), 0) = 1. (4.2.13)
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Therefore, we have ∑
n⃗

∫
pmn⃗ (X⃗n⃗, t|X⃗n⃗0(0), 0)dX⃗n⃗ ≤ 1 (4.2.14)

for all m ∈ N. Finally, it is easy to show that pmn⃗ (X⃗n⃗, t|X⃗n⃗0(0), 0) ≥ 0, so 0 ≤ p∗ <∞ exists

a.e.. We assume that the convergence pm → p∗ is uniform and we also assume that taking

the limit w.r.t. m is interchangeable with taking the partial derivatives in Eq. (4.2.10),

therefore, p∗ is the solution to

∂p∗n⃗
∂t

+
k∑

i=1

ni∑
j=1

∂(gi,jp
∗
n⃗)

∂Xi,j

− 1

2

k∑
i=1

ni∑
j=1

∂2(σi,jp
∗
n⃗)

(∂Xi,j)2
+

k∑
i=1

ni∑
j=1

(
β(Xi,j) + µ(Xi,j)

)
p∗n⃗ =

k−1∑
i=1

ni+1∑
j=1

∫
β̃i,j(Y,Xi+1,ni+1−1, Xi+1,ni+1

)p∗n⃗b,i,j
(X⃗n⃗b,i,j

, t|X⃗n⃗0(0), 0)dY

+
∞∑
i=1

ni+1∑
j=1

∫
µi,j(Y )p∗n⃗d,i,j

(X⃗n⃗d,i,j
, t|X⃗n⃗0(0), 0)dY

(4.2.15)

Since p∗ can also be written as

p∗n⃗(X⃗n⃗, t|X⃗n⃗0(0), 0) = p̂n⃗(X⃗n⃗, t|X⃗n⃗0(0), 0)

+ E

[∫ t

0

exp
(
−
∫ s

0

k∑
i=1

n0
i∑

j=1

(
(βi,j(Xi,j) + µi,j(Xi,j)

)
dr
)

×
[ k0∑

i=1

n0
i∑

j=1

( ∫
β̃i,j(Xi,j(s), X1, X2)p

∗
n⃗(X⃗n⃗, t− s|X⃗n⃗0

b,−i,−j
(s), 0)dX1dX2

+ µi,j(Xi,j(s))p
∗
n⃗(X⃗n⃗, t− s|X⃗n⃗0

d,−i,−j
(s), 0)

)]
ds
∣∣∣X⃗n⃗0(0), 0

]
(4.2.16)

we have shown Eq. (4.2.16) solves the differential equation Eq. (4.2.4). Finally, we assume

the normalization condition

∑
n⃗

∫
p∗n⃗(X⃗n⃗, t|X⃗n⃗0(0), 0)dX⃗n⃗ = 1 (4.2.17)

holds for every X⃗n⃗0(0). By averaging over the initial distribution of X⃗n⃗0(0) denoted by
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p0n⃗0(X⃗n⃗0(0), 0), we have

p∗n⃗(X⃗n⃗, t) :=
∑
n⃗0

∫
X⃗n⃗0

pn⃗(X⃗n⃗, t|X⃗n⃗0(0), 0)p0n⃗0(X⃗n⃗0 , 0)dX⃗n⃗0 (4.2.18)

is an unconditional probability density distribution that solves Eq. (4.2.4).

Next, we define the symmetric probability density distribution

ρn⃗(X⃗n⃗, t) := Πk
i=1

1

ni!

∑
π

p∗n⃗(π(X⃗n⃗), t) (4.2.19)

where p∗n⃗ is defined in Eq. (4.2.18) and π(X⃗n⃗) is a rearrangement that changes the sequence

of the state variables Xi,j of cells within the same generation and thus the summation is

taken over all such rearrangements (Πk
i=1ni! rearrangements in total). If

gi,j = gi, σi,j = σi, βi,j = βi, µi,j = µi, β̃i,j = β̃i, (4.2.20)

i.e., all coefficients only depend on the generation ith, then partial differential equation

satisfied by ρn⃗(X⃗n⃗, t) in Eq. (4.2.19) is

∂ρn⃗
∂t

+
k∑

i=1

ni∑
j=1

∂(giρn⃗)

∂Xi,j

− 1

2

k∑
i=1

ni∑
j=1

∂2(σi,jρn⃗)

(∂Xi,j)2
= −

k∑
i=1

ni∑
j=1

(
βi,j(Xi,j) + µi,j(Xi,j)

)
ρn⃗

+
k−1∑
i=1

ni + 1

ni+1(ni+1 − 1)

∑
1≤j1 ̸=j2≤ni+1

∫
β̃i(Y,Xi+1,j1 , Xi+1,j2)ρn⃗b,i

(X⃗n⃗b,i,j1,j2
, t)dY

+
∞∑
i=1

ni+1∑
j=1

∫
µi(Y )ρn⃗d,i

(X⃗n⃗d,i,j
, t)dY,

(4.2.21)

where X⃗n⃗b,i,j1,j2
differs from X⃗n⃗ in that the state variables for the cells in the ith generation

are (Y,Xi,1, ...Xi,ni
) and the state variables for cells in the (i+1)th generation misses Xi+1,j1

and Xi+1,j2 .

Finally, in many biological models, the state variable could be a multi-dimensional vector

instead of a scalar, i.e., Xi,j := (Xi,j,1, ..., Xi,j,d) ∈ Rh for the jth cell in the ith generation in
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a cell population and we assume that the evolution of Xi,j to obey the following SDE

dXi,j = γi(Xi,j, t)dt+Σi(Xi,j, t)d(Wi,j)t (4.2.22)

where (Wi,j)t are independent h0-dimensional Wiener process and the coefficients γi(Xi,j, t) :=

(gi,1(Xi,j, t), ..., gi,h(Xi,j, t)) : Rh × R+ → Rh,Σi := (σi(Xi,j, t))mn : Rh × R+ → Rh×h0 ,m =

1, ..., h, n = 1, ..., h0 are all smooth, uniform Lipschitz continuous, and uniform bounded. We

can also define the symmetric probability density distribution ρn⃗(X⃗n⃗, t) as in Eqs. (4.2.19)

and after applying the multi-dimensional forward Feynman-Kac equation case in [LOR15]

we can show that the differential equation satisfied by such ρn⃗ is

∂ρn⃗
∂t

+
k∑

i=1

ni∑
j=1

h∑
s=1

∂(gi,sρn⃗)

∂Xi,j,s

− 1

2

k∑
i=1

ni∑
j=1

∑
1≤s1,s2≤h

∂2(
∑h

ℓ=1(Σi)s1,ℓ(Σi)s2,ℓρn⃗)

(∂Xi,j,s1∂Xi,j,s2)

= −
k∑

i=1

ni∑
j=1

(
βi(Xi,j) + µi(Xi,j)

)
ρn⃗

+
k−1∑
i=1

ni + 1

ni+1(ni+1 − 1)

∑
1≤j1 ̸=j2≤ni+1

∫
β̃(Y ,Xi+1,j1 ,Xi+1,j2)ρn⃗b,i

(X⃗n⃗b,i,j
, t)dY

+
∞∑
i=1

ni+1∑
j=1

∫
µi(Y )ρn⃗d,i

(X⃗n⃗d,i,j
, t)dY

(4.2.23)

if the coefficients βi,j = βi, µi,j = µi, β̃i,j = β̃i are homogeneous for cells in the same genera-

tion.

4.3 Mass-action differential equations

Through marginalization of the kinetic equation Eq. (4.2.21) that describes the evolution of

population dynamics, we could derive the differential equations that describe the evolution of

certain macro quantities such as the total protein and mRNA amount which are of biological

and experimental interest. In this section, we shall investigate the governing equations for

some macroscopic quantities by marginalizing Eq. (4.2.21) both analytically and numerically.

68



4.3.1 Evolution of population density

First, we track the cell densities in any given generation and any cellular internal state of

interest by defining the marginalized cell density

vn⃗(X⃗n⃗, t) =
∑
m⃗≥n⃗

Π∞ℓ=1(mℓ)nℓ

∫
X⃗m⃗\n⃗

ρm⃗(X⃗m⃗, t)dX⃗m⃗\n⃗, (4.3.1)

where m⃗ ≥ n⃗ means that for each component in m⃗ := (m1, ...,mℓ),mℓ ≥ nℓ. (mℓ)nℓ
:=

mℓ(mℓ−1)...(mℓ−nℓ+1) is the falling factorial. The integration is taken over the remaining

variables of X⃗m⃗ excluding X⃗n⃗.

We can derive the differential equation satisfied by vn⃗(X⃗n⃗, t)

∂vn⃗
∂t

+
k∑

i=1

ni∑
j=1

∂(gi,jvn⃗)

∂Xi,j

− 1

2

k∑
i=1

ni∑
j=1

∂2(σi,jvn⃗)

(∂Xi,j)2
= −

k∑
i=1

ni∑
j=1

(
β(Xi,j) + µ(Xi,j)

)
vn⃗

+
k−1∑
i=1

∑
j1 ̸=j2

∫
β̃i,j(Y,Xi+1,j1 , Xi+1,j2)vn⃗b,i

(X⃗n⃗b,i,j1,j2
, t)dY

+
k−1∑
i=1

ni+1∑
j=1

∫ (
β̃i,j(Y,Xi+1,j, Z) + β̃i,j(Y, Z,Xi+1,j)

)
vn⃗b,i

(X⃗n⃗b,i,j
, t)dY dZ

(4.3.2)

where X⃗n⃗b,i−1,j1,j2
differs from X⃗n⃗ in that its ith generation is (Xi−1,1, ..., Xi−1,ni

, Y ) and its

(i + 1)th generation does not have the jth1 and jth2 components; X⃗n⃗b,i,j
differs from X⃗n⃗ in

that its ith generation is (Xi,1, ..., Xi,ni
, Y ) and its (i+ 1)th generation does not have the jth

component.

As a special example, un⃗i
(X, t), n⃗i := (0, .., 0, 1) ∈ Ri tracks the cellular density in the

ith generation with respect to the structured variable x over time, and thus {un⃗i
(X, t)}∞i=1

could show how the cellular population density evolves over generation through division

and differentiation. For instance, we consider the following example in [CHS22] where the

coefficients in Eq. (4.3.2)

gi,j(x, t) = −x, σ2
i,j(x, t) = exp(−x2). (4.3.3)
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In this case, if the cells do not divide or die (i.e., stay at the 1textst generation), then the

structured population will converge to the equilibrium

v1(x, t)→ P (x) = N exp(2x2 − 1

2
exp(2x2)), t→∞ (4.3.4)

where N is a normalization constant. Here, we set the division rates

βi =
1

2
, µi =

i− 1

2i
, β̃i(x, y, t) =

1√
2π

exp(−(y − x)2
2

). (4.3.5)

We set the initial condition to be ui(x, t) = 1i,1
1

100
1−2.5≤x≤2.5 and plot the scaled cellular

density
vi(x, t)/P (x)∫∞
−∞ vi(x, t)dx

(4.3.6)

in the first 10 generations at t = 2.

Figure 4.1: (a) The cellular density plot across different generations. It can be observed that the
differentiation process prevents the population from reaching the equilibrium (i ≥ 2) even when the
death rate and division rate are irrelevant to x. However, as time increases when no incoming cells
are entering a certain generation (such as i = 1), the structured population gradually returns to
equilibrium. (b) The equilibrium cellular density without division. (c) The differential birth rate
β̃(y, x, t).

Specifically, if the coefficients g, σ, β, β̃ only depend on the cellular internal state X and

time t, we can ignore the generation number by defining

ρ̂n(X⃗n, t) :=
∑

∑
ni=n

1

n!

∑
π

p∗n⃗(π(X⃗n⃗), t). (4.3.7)

70



where the summation over π is over all possible rearrangements of (X1, ..., Xn) to be the

symmetrized probability density function that has a system of n cells with each cell’s state

being X1, ..., Xn. p
∗
n⃗ is defined in Eq. (4.2.18). It can be shown that the differential equation

satisfied by ρ̂n is

∂ρ̂n
∂t

+
n∑

j=1

∂(gρ̂n)

∂Xj

− 1

2

n∑
j=1

∂2(σ2ρ̂n)

(∂Xj)2
= −

n∑
j=1

(
β(Xj) + µ(Xj)

)
ρ̂n

+
1

n

∑
j1 ̸=j2

∫
β̃(Y,Xj1 , Xj2)ρ̂n−1(X⃗nb,j1,j2

, t)dY + (n+ 1)

∫
µ(Y )ρ̂n+1(X⃗nd

, t)dY.

(4.3.8)

Here, X⃗nb,j1,j2
is different from X⃗n in that it does not have Xj1 , Xj2 but has an extra Y ; X⃗nd

is dffierent from X⃗ in that it has an extra Y component. In this case, we could define the

generation-irrelevant marginalized cell density

vn(X1, ..., Xn) =
∑
m≥n

(m)n

∫
ρ̂m(X⃗m, t)dX⃗m\X⃗n. (4.3.9)

The differential equation satisfied by such vn(X1, X2, ..., Xn) is

∂vn
∂t

+
n∑

j=1

∂(gvn)

∂Xj

− 1

2

n∑
j=1

∂2(σ2vn)

(∂Xj)2
= −

n∑
j=1

(
β(Xj) + µ(Xj)

)
vn

+
∑
j1 ̸=j2

∫
β̃(Y,Xj1 , Xj2)vn−1b,j1,j2 (X⃗nb,j1,j2

, t)dY

+
n∑

j=1

∫ (
β̃(Y,Xj, Z) + β̃(Y, Z,Xj)

)
vnb,j

(X⃗n−1b,j , t)dY dZ.

(4.3.10)

Here, X⃗nb,j
is different from X⃗n in that it does not have Xj but has an extra Y . If we take

n = 1, we can obtain a closed-form PDE for describing the cell density w.r.t. the scalar state

variable X
∂v1
∂t

+
∂(gv1)

∂X
− 1

2

∂2(σ2
j v1)

(∂X)2
= −

(
β(X) + µ(X)

)
v1

+

∫ (
β̃(Y,X,Z) + β̃(Y, Z,X)

)
v1(X, t)dY dZ.

(4.3.11)

Note that if we integrate over the age variable for the population density of the kinetic
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adder-sizer model in [XC21], we will get v1 in Eq. (4.3.11).

Finally, if we assume that all coefficients are constant, we can marginalize over the state

variables. More specifically, if we define the generation vector i⃗ := (i1, ..., ik), 0 < i1 <

... < ik and the associated orders of moments ℓ⃗ := (ℓ1, ..., ℓk), ℓs > 0, then we can track the

expectation of the product of different orders of the number of cells in different generations

E[Πk
s=1n

ℓs
is
] :=

∑
n⃗

Πk
s=1n

ℓs
is

∫
ρn⃗(X⃗n⃗, t)dX⃗n⃗. (4.3.12)

The differential equation satisfied by E[Πk
i=1n

ℓi
i ] can be shown to be

dE[Πk
s=1n

ℓs
is
]

dt
=

k∑
r=1

βir−1

(
E[Πk

s=1(nis − δir−1,is + 2δir,is)
ℓs · nir−1]− E[Πk

s=1n
ℓs
is
· nir−1]

)

+
k∑

r=1

βir

(
E[Πk

s=1(nis − δir,is + 2δir+1,is)
ℓs · nir ]− E[Πk

s=1n
ℓi
is
· nir ]

)

−
k−1∑
r=1

βir

(
I{ir+1−ir=1} ·

(
E[Πk

s=1(nis − δir,is + 2δir+1,is)
ℓs · nir ]− E[Πk

s=1n
ℓs
is
· nir ]

))
−
∞∑
r=1

µir

(
E[Πk

s=1n
ℓs
is
· nir ]− E[Πk

s=1(nis − δis,ir)ℓs · nir ]
)
.

(4.3.13)

where δi,r = 1 if i = r and δi,r = 0 otherwise.

Remark: Note that if i⃗ = (i) is one-dimensional, and ℓ⃗ = (1), then Eq. (4.3.13) reduces

to the evolution of the average cell number in the ith generation

dE[ni]

dt
= 2βi−1E[ni−1]− βiE[ni]− µiE[ni]. (4.3.14)

4.3.2 Evolution of total biomass

One macro quantity of specific interest is the total biomass (or total protein or mRNA

amount). For example, one may also be interested in tracking the expectation of the total
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cell’s volume ⟨∑ni

j=1Xi,j in the ith⟩ generation, which is denoted by

Xi(t) := ⟨
ni∑
j=1

Xi,j(t)⟩ =
∑
n⃗

∫
(

ni∑
j=1

Xi,j) · ρn⃗(X⃗n⃗, t)dX⃗n⃗ (4.3.15)

where ρn⃗(X⃗n⃗, t) is defined in Eq. (4.2.21). The differential equation satisfied by Xi(t) is

usually not closed, but given some constraints on the coefficients, the dynamics for Xi(t)

can close by itself. For example, if βi(X) := βi, µi(X) := µi are constants and gi(X) := giX

takes the linear form, and X is a conserved quantity at division, then

dXi(t)

dt
= giXi(t)− µiXi(t)− βiXi(t) + βi−1Xi−1(t). (4.3.16)

Furthermore, if the growth rate and division rate are independent of the generation

number i, we can define the expected total biomass (or protein or mRNA amount)

X(t) =
∑
n⃗

∫
(

k∑
i=1

ni∑
j=1

Xi,j) · ρn⃗(X⃗n⃗, t)dX⃗n⃗ (4.3.17)

and any higher-order moment

Xq(t) =
∑
n⃗

∫
(

k∑
i=1

ni∑
j=1

Xi,j)
q · ρn⃗(X⃗n⃗, t)dX⃗n⃗, q > 1. (4.3.18)

Specifically, if µ is a constant and g(X) = λX, the differential equations satisfied by the

first and second order moments X(t) and X2(t) are

dX(t)

dt
=

∫
g(X)u1(X)dx− µX(t),

dX2(t)

dt
= λ2X2(t) + σ2X1(t)− 2µX2(t) + µ

∫
x2u1(x, t)dx.

(4.3.19)

General cases for of the equations satisfied by Xq(t) for arbitrary q ∈ N+ are discussed in

Appendix A.3.3.
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In experiments, we usually cannot directly distinguish live or dead cells during experi-

ments when we measure the total biomass or mRNA level as all cells are killed at the end of

the experiment to collect data. Therefore, we may also take into account the contribution of

dead cells during experiments. We can treat those dead cells to be in the 0th generation which

will not grow or divide, i.e., having g0 = β0 = 0. We also wish to calculate the biomass of all

dead cells. We can define p̃n⃗(X⃗n⃗, t|X⃗n⃗0(0), 0) to be the conditional probability that having a

system of n⃗ := (n0, ..., nk) (note here we start from n0) cells in each generation with states

X⃗n⃗ := (X0,1, ..., Xk,nk
) given a system of n⃗0 cells with states X⃗n⃗0(0) at time t = 0. Using

similar proofs as in Proposition 2 we can show that under certain conditions p̃n⃗ satisfies the

differential equation

∂p̃n⃗
∂t

+
k∑

i=1

ni∑
j=1

∂(gi,j p̃n⃗)

∂Xi,j

− 1

2

k∑
i=1

ni∑
j=1

∂2(σ2
i,j p̃n⃗)

(∂Xi,j)2
+

k∑
i=1

ni∑
j=1

(βi,j + µi,j)p̃n⃗ =

k−1∑
i=1

ni−1+1∑
j=1

∫
β̃i,j(Y,Xi+1,ni+1−1, Xi+1,ni+1

, t)p̃n⃗b,i
(X⃗n⃗b,i,j

, t|X⃗n⃗0(0), 0)dY

+
∞∑
i=1

ni+1∑
j=1

µ(X0,n0)p̃n⃗d̃,i
(X⃗n⃗d̃,i,j

, t|X⃗n⃗0(0), 0)

(4.3.20)

where n⃗d̃,i differs from in that its 0th component is n0 − 1 but its ith component is ni + 1,

and X⃗n⃗d̃,i,j
differs from X⃗n⃗ in that the internal states of the 0th generation (dead cells) are

(X0,1, ..., X0,n0−1) and the internal states of the cells in the ith generation are (Xi,1, ..., Xi,j−1,

X0,n0 , Xi,j, ..., Xi,ni
). Similarly, we can define the unconditional probability density function

p̃∗n⃗(X⃗n⃗, t) as defined in Eq. (4.2.18) as well as the symmetrized probability density function

ρ̃n⃗(X⃗n⃗, t) := Πk
i=0

1

ni!

∑
π

p̃∗n⃗(π(X⃗n⃗), t). (4.3.21)
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The PDE satisfied by this ρ̃n⃗ is

∂ρ̃n⃗
∂t

+
k∑

i=1

ni∑
j=1

∂(gi,j ρ̃n⃗)

∂Xi,j

− 1

2

k∑
i=1

ni∑
j=1

∂2(σ2
i,j ρ̃n⃗)

(∂Xi,j)2
= −

k∑
i=1

ni∑
j=1

(βi,j + µi,j)ρ̃n⃗

+
k−1∑
i=1

ni + 1

ni+1(ni+1 − 1)

∑
j1 ̸=j2

∫
β̃i,j(Y,Xi+1,j1 , Xi+1,j2)ρ̃n⃗b,i

(X⃗n⃗b,i,j1,j2
, t)dY

+
1

n0

∞∑
i=1

(ni + 1)

n0∑
j=1

µi,j(X0,j)ρn⃗d̃,i
(X⃗n⃗d̃,i,j

, t).

(4.3.22)

The total expected dead cells’ biomass is

Y (t) =
∑
n⃗

∫
(

n0∑
j=1

X0,j) · ρ̃n⃗(X⃗n⃗, t)dX⃗n⃗. (4.3.23)

If the death rate for the ith generation is a constant µi for each i, then Y (t) satisfies the

following differential equation
dY (t)

dt
=
∞∑
i=1

µiXi(t). (4.3.24)

whereXi(t) is the total expected biomass of all cells in the ith generation defined in Eq. (4.3.15).

We can also derive the differential equation satisfied by the second order moment of total

dead cells’ biomass

Y 2(t) =
∑
n⃗

∫
(

n0∑
j=1

X0,j)
2 · ρ̃n⃗(X⃗n⃗, t)dX⃗n⃗. (4.3.25)

as well as the correlation

X(t)Y (t) =
∑
n⃗

∫
(

k∑
i=1

ni∑
j=1

Xi,j) · (
n0∑
j=1

X0,j) · ρ̃n⃗(X⃗n⃗, t)dX⃗n⃗. (4.3.26)

If we assume that the death rate is a constant µ for all cells and the state variable is conserved
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at division, we can derive the differential equation satisfied by Y 2(t)

dY 2(t)

dt
= 2µX(t)Y (t) + µ

∑
n⃗

∫ ni∑
j=1

X2
i,j · ρ̃n⃗(X⃗n⃗, t)dX⃗n⃗

= 2µX(t)Y (t) + µ

∫
x2u1(x, t)dx

(4.3.27)

and the differential equation satisfied by X(t)Y (t) is

d(X(t)Y (t))

dt
= λX(t)Y (t)− µX(t)Y (t) + µX2(t)− µ

∫
x2u1(x)dx (4.3.28)

Higher order moments of X, Y can also be evaluated, which we do not include here for

brevity.

4.4 Summary and conclusions

In this work, we used the forward-type Feymann-Kac formula and Markov jump process

to formulate a kinetic theory for describing the cellular population density of a generation-

characterized cellular population with fluctuating rates of changing internal states as well as

random division times. Such a kinetic theory not only tracks each cell’s states such as its

volume, protein amount, or mRNA amount but also tracks the generation (i.e., how many

times a cell has divided) of each cell, which helps simulate cellular proliferation and differ-

entiation or dedifferentiation over generations. After marginalizing the differential equation

that describes the cellular population’s evolution, we can study different macroscopic quan-

tities of interest, such as cell population in each generation and total biomass or protein

amount.

As for future directions, it would be promising to incorporate inferred cellular growth

rates or rates of producing protein from experiments to apply our kinetic theory to predict ex-

perimental outcomes. Furthermore, including a spatial dependence in our model to track the

movement of cellular population [AMR08]. Also, it is prospective to incorporate intercellular
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interactions where cellular growth rates and dividing rates could have a dependence on other

cells [NDF16]. Including such intercellular interactions could give different kinetic equations

and PDEs satisfied by macroscopic quantities such as cellular density. Finally, developing

efficient unbounded-domain-based algorithms such as [XSC21a, XSC21b, CSX23, XBC23]

that can track globally the change of internal states of each cell in unbounded domains to

solve the differential equations for describing the generation-characterized cellular population

is prospective.
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CHAPTER 5

Efficient Scaling and Moving Techniques for Spectral

Methods in Unbounded Domains

This is the Accepted Manuscript version of an article accepted for publication in SIAM

Journal on Scientific Computing, 40, pp. A3444–A3268, (2021). It is reproduced here with

permission of the publisher. SIAM is not responsible for any errors or omissions in this

version of the manuscript or any version derived from it. The Version of Record is available

online at [10.1137/20M1347711].
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5.1 Introduction

Many scientific models described by PDEs with blowup solutions are set in unbounded

domains. For example, in many models of cellular proliferation, a “blowup” in which the

average size of a population of cells becomes uncontrolled and diverges over many generations

of growth is possible [KB18]. The conditions under which blowup occurs are difficult to

determine analytically [BDG19] but have been explored numerically [XGC20]. However,

numerically tracking “blowup” behavior over long time is extremely difficult, as it requires

solving the problem in a truly unbounded domain to capture the diverging mean size. There

are many other cases in which it is desirable to find numerical solutions in an unbounded

domain. Scenarios include the analysis of the stability of solitary waves arising from the

nonlinear Dirac equation [SQM14, CKS16], diffusion in a parabolic system [MST05], and

fractional PDEs that admit solutions with algebraic decay at infinity [TYZ18b, TYZ18a].

Considerable progress has recently been made in using spectral methods for solving PDEs

in unbounded domains [SW09]. Among the existing spectral methods, the direct approach

that is typically used is based on orthogonal basis functions defined on infinite intervals, such

as Hermite and Laguerre functions [CFK90, GWW06, TYZ18a], as well as other rational ba-

sis functions of recent interest such as the modified mapped Gegenbauer functions (MMGFs)

[TWY20]. It has been demonstrated that the performance of these spectral methods can be

greatly improved when proper coordinate scaling is used [Tan93, SW09]. However, it is not

clear how to systematically perform the scaling, especially when transient behavior arises.

A Hermite spectral method with time-dependent scaling has been proposed for parabolic

problems by introducing a time-dependent scaling factor β(t) to meet the coercive condition

[MST05]. Nonetheless, the form of β(t) and related parameters are chosen based on specified

knowledge of parabolic models and thus cannot be easily generalized to other problems.

Motivated by the success of adaptive methods in bounded domains [RW00, TT03, LTZ01],

we propose two indicators to adaptively allocate a sufficient number of collocation points to

represent the unknown solution in the region of interest. The first indicator, designed for
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matching the diffusion of unknown solutions, extracts the frequency-space information of

intermediate numerical solutions and isolates its high-frequency components. This frequency

indicator not only provides a lower bound for the interpolation error but also measures

the decay of the derivatives of the reference solution as |x| → +∞. By tuning a scaling

factor in our proposed scaling technique, the frequency indicator can be maintained at a

low level. However, the translation of unknown solutions may also amplify the frequency

indicator and thus may result in larger errors for excessive scaling. To accommodate this

scenario, a second, exterior-error indicator is used to calculate an upper bound for the error

in the exterior domain, allowing one to capture translation via moving collocation points.

Accordingly, for problems that may involve both translation and diffusion in unbounded

domains, the above two indicators are combined in a “first moving then scaling” approach.

Numerical experiments demonstrate their ability to recover a faster spectral convergence for

time-dependent solutions.

In the following, Section 5.2 introduces the frequency indicator, connects it to the ap-

proximation error, and proposes the frequency-dependent scaling technique for diffusion.

Section 5.3 proposes the exterior-error-dependent moving technique for translating prob-

lems. These two approaches are combined in Section 5.4 to solve time-dependent problems

involving both diffusion and translation. Section 5.5 compares the frequency-dependent scal-

ing with a time-dependent scaling proposed in [MST05] for solving parabolic systems. In

Section 5.6, we generalize the scaling technique to MMGFs which exhibit algebraic decay

at infinity. In Section 5.7, we analyze the efficiency of both the scaling and moving tech-

niques and discuss their dependence on parameters. In Section 5.8, we apply the frequency-

dependent scaling method to a PDE model describing structured cell populations to track

blowup behavior. Finally, we summarize our approaches and make concluding remarks in

Section 5.9.
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5.2 Frequency-dependent scaling

We formulate our scaling technique by extracting the frequency domain information on the

evolution of numerical solutions, the pseudo-code of which is presented in Alg. 1. Our

derivation utilizes the generalized Laguerre functions of degree ℓ

L̂(α,β)
ℓ (x) = L(α)

ℓ (βx)e−
β
2
x, β > 0, (5.2.1)

which, when using the weight function ω̂α(x) = xα(α > −1), are mutually orthogonal on the

half-line Λ := (0,+∞). Here L(α)
ℓ (x) denote the usual Laguerre polynomials [GWW06] to

which L̂(α,β)
ℓ (x) reduce when β = 1. In this work, we regard β to be the scaling factor, and

seek a time-dependent spectral approximation of u(x, t) on Λ. Henceforth, for notational

simplicity, the t-dependence will usually be omitted.

For any u ∈ L2
ω̂α
(Λ), the spectral approximation using the interpolation operator IN,α,β

is

u(x) ≈ U
(α,β)
N (x) = IN,α,βu =

N∑
ℓ=0

u
(α,β)
ℓ L̂(α,β)

ℓ (x), (5.2.2)

where the coefficients u
(α,β)
ℓ can be computed by using e.g., the Laguerre-Gauss collocation

points x
(α,β)
j ,

u
(α,β)
ℓ =

1

γ
(α,β)
ℓ

N∑
j=0

L̂(α,β)
ℓ (x

(α,β)
j )u(x

(α,β)
j )ŵ

(α,β)
j , ℓ = 0, 1, . . . , N, (5.2.3)

where N is the expansion order (i.e., N + 1 collocation points or N + 1 basis functions),

γ
(α,β)
ℓ = (L̂(α,β)

ℓ , L̂(α,β)
ℓ )ω̂α is the L2

ω̂α
inner product, ŵ

(α,β)
j denotes the corresponding weight

for collocation point x
(α,β)
j , and

u(x
(α,β)
j ) = U

(α,β)
N (x

(α,β)
j ) = IN,α,βu(x

(α,β)
j ), j = 0, 1, . . . , N. (5.2.4)

When the scaling factor is updated from β to β̃, the collocation points, weights, and L2
ω̂α
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norms are updated according to

x
(α,β̃)
j =

β

β̃
x
(α,β)
j , ŵ

(α,β̃)
j =

βα+1

β̃α+1
ŵ

(α,β)
j , γ

(α,β̃)
ℓ =

βα+1

β̃α+1
γ
(α,β)
ℓ . (5.2.5)

The expansion coefficients u
(α,β̃)
ℓ can then be estimated through Eq. (5.2.3) where we may

use the approximation (5.2.2): u(x
(α,β̃)
j ) ≈ U

(α,β)
N (x

(α,β̃)
j ). This procedure constitutes the

scale subroutine in Lines 9 and 17 of Alg. 1.

To implement the scaling technique, one needs to determine when to apply it and how

to choose a new scaling factor β̃ such that spectral accuracy can be kept for a prescribed

expansion of order N . To this end, we propose a frequency indicator acting on the numerical

solution U
(α,β)
N :

F(U (α,β)
N ) =


N∑

ℓ=N−M+1

γ
(α,β)
ℓ · (u(α,β)ℓ )2

N∑
ℓ=0

γ
(α,β)
ℓ · (u(α,β)ℓ )2


1
2

, (5.2.6)

which measures the contribution of theM highest-frequency components to the L2
ω̂α
-norm of

U
(α,β)
N . The subroutine frequency indicator in Lines 3, 6, 10, and 18 of Alg. 1 calculates

this contribution in which we chooseM = [N
3
] in view of the often-used 2

3
-rule [HL07, Ors71].

If the frequency indicator F(U (α,β)
N ) increases over time, the contribution of high frequency

components to the numerical solution increases, indicating that the numerical solution is

decaying more slowly in x and that we need to adjust the scaling factor to enlarge the

computational domain [x
(α,β)
0 , x

(α,β)
N ] demarcated by the smallest and largest collocation point

positions. In Line 7 of Alg. 1, νf0 is the threshold at some time t. If the value of the frequency

indicator of the current numerical solution f > νf0, then we consider scaling. The parameter

ν is usually chosen to be slightly larger than 1 to prevent the frequency indicator becoming

too large without invoking scaling.

However, the if condition is only a necessary condition. Only after we enter the while

loop in Line 11 will we perform scaling, which aims to ensure that the frequency indica-

tor F(U (α,β)
N ) will not increase after scaling. Actually, this while loop tries to minimize
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Algorithm 1 Pseudo-code of spectral methods with frequency-dependent scaling.

1: Initialize N , ν > 1, q < 1, ∆t, T , α, β, U
(α,β)
N (0), β

2: t← 0
3: f0 ← frequency indicator(U

(α,β)
N (t))

4: while t < T do
5: U

(α,β)
N (t+∆t)← evolve(U

(α,β)
N (t),∆t)

6: f ← frequency indicator(U
(α,β)
N (t+∆t))

7: if f > νf0 then
8: β̃ ← qβ

9: U
(α,β̃)
N ← scale(U

(α,β)
N (t+∆t), β̃)

10: f̃ ← frequency indicator(U
(α,β̃)
N )

11: while f̃ ≤ f and β̃ ≥ β do

12: β ← β̃

13: U
(α,β)
N (t+∆t)← U

(α,β̃)
N

14: f0 ← f̃
15: f ← f̃
16: β̃ ← qβ

17: U
(α,β̃)
N ← scale(U

(α,β)
N (t+∆t), β̃)

18: f̃ ← frequency indicator(U
(α,β̃)
N )

19: end while
20: end if
21: t← t+∆t
22: end while

F(U (α,β)
N ) by geometrically shrinking the scaling factor β (q in Line 16 is the common ratio)

to ensure sufficient scaling since F(U (α,β)
N ) is a lower bound for the numerical error, as shown

in Eq. (5.7.2). A more continuous adjustment is preferred by setting q to be slightly less

than 1, which may also prevent over-shrinking of the scaling factor within one single time

step. Henceforth, we will choose q = 0.95 and ν = 1/q. Moreover, at the initial time t = 0,

we also ensure the frequency indicator is small enough by choosing a suitable initial scaling

factor.

In this work, the generalized Laguerre functions with α = 0 are used and the relative

L2
ω̂α
-error

Error =
∥U (α,β)

N − u∥ω̂α

∥u∥ω̂α

(5.2.7)
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is used to measure the quality of the spectral approximation U
(α,β)
N (x) to the reference solu-

tion u(x). We always use the most updated scaling factor to calculate the above error.

Figure 5.1: Numerical approximation to the diffusive Fermi-Dirac distribution u(x, t) given by
Eq. (5.2.8). The scaling algorithm Alg. 1 produces much more accurate solutions and recovers a
faster spectral convergence with respect to the expansion order N . As we expected, the frequency
indicator defined in Eq. (5.2.6) shows a similar behavior to the error defined in Eq. (5.2.7) against
either time or N . The data in last two plots are measured at t = 10.

Example 1. We use the spreading Fermi-Dirac distribution

u(x, t) =
1

1 + e
x−5
2+t

(5.2.8)

to test the performance of the scaling algorithm Alg. 1. It can be readily verified that the

reference solution u(x, t) expands over time as shown in Fig. 5.1(a). The proposed frequency-

dependent scaling with N = 40 effectively maintains the relative error under 10−10 up until

time t = 10 whereas the error for the corresponding unscaled solution rapidly grows to

over 10−4 (see Fig. 5.1(b)). We also plot, as u(x, t) evolves, the history of the scaling

factor β and frequency indicator F(U (α,β)
N ) in Figs. 5.1(c) and 5.1(d), respectively. It is

clear that the frequency indicator increases for the unscaled solution as time evolves and
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that time-dependent scaling is required to preserve the accuracy. The proposed frequency-

dependent scaling technique detects the error and shrinks the scaling factor in order to

enlarge the computational domain in accordance with the expansion of the reference solution.

The spectral convergence as a function of the expansion order N can be also recovered by

Alg. 1. The errors at the final time, for the scaled and unscaled approach, are displayed

in Fig. 5.1(e). The final scaling factors at t = 10 are 0.3213, 0.3560, 0.3747, 0.3945, 0.3945

for N = 25, 30, 35, 40, 45, respectively, having all decreased from the common initial scaling

factor of 2.5. Figs. 5.1(e, f) show very similar and expected behavior of the frequency

indicator and error as a function of N . Since the error and the frequency indicators behave

similarly across time (see Figs. 5.1(b, d)), we also expect them to behave similarly with

N . These similarities suggest a possible connection between the error and the frequency

indicator.

5.3 Exterior-error-dependent moving

Dynamics in unbounded domains can be much richer than the simple diffusive behavior

successfully captured by our frequency-dependent scaling. Other physical mechanisms may

induce, for example, translations (Examples 2 and 3) and emerging oscillations (Example 4).

A purely scaling approach fails in these cases.

In this section, we develop an exterior-error-dependent moving method that will be able

to resolve a solution’s decay in an undetermined exterior domain Λe := (xL,+∞). Alg. 2

presents the pseudo-code of our exterior-error-dependent moving technique. In the algorithm,

we first need to determine the time-dependent left-end point xL. Next, we move the spectral

basis accordingly so that the spectral approximation for an unknown function u(x) in Λe

(denoted by U
(α,β)
N,xL

(x)) maintains accuracy. To implement this procedure, we adopt an

exterior-error indicator:

E(U (α,β)
N,xL

, xR) =
∥∂xU (α,β)

N,xL
· I(xR,+∞)∥ω̂α

∥∂xU (α,β)
N,xL

· I(xL,+∞)∥ω̂α

, (5.3.1)
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which measures the proportion of the norm ∥∂xU (α,β)
N,xL

· I(xR,+∞)∥ω̂α inside a prescribed un-

bounded domain (xL,+∞).

The subroutine exterior error indicator in Lines 5, 8, and 13 of Alg. 2 calculates

E(U (α,β)
N,xL

, xR). Here, following the often-used 2
3
-rule [HL07, Ors71], we choose xR = x

(α,β)

[N+2
3

]

from the collocation points x
(α,β)
j (j = 0, 1, . . . , N) in the exterior domain Λe.

Intuitively, if u(x) moves rightward in time, such as the moving Fermi-Dirac distribution

in Example 2, the spectral approximation at large distances may deteriorate and the exterior-

error indicator E(U (α,β)
N,xL

) will increase. Consequently, the moving mechanism is triggered in

Line 9 of Alg. 2, and completed by updating the left end point xL = xL + d0 in Line 11.

Thus, the starting point of the spectral approximation also moves rightward with time to

capture the translation.

The displacement d0 = min{nδ, dmax} is determined by the move subroutine in Line 10,

where n is the smallest integer satisfying E(U (α,β)
N,xL

, xR+nδ) < µe0, δ is the minimum displace-

ment, dmax is the maximum displacement, and µ represents the threshold of the increase in

the exterior-error indicator that we can tolerate. In practice, dmax should be based on a prior

knowledge of the maximum translation speed of the function u(x). We usually choose µ ≳ 1

to prevent the exterior-error indicator from becoming too large without invoking moving.

The move subroutine also generates U
(α,β)
N,xL+d0

from U
(α,β)
N,xL

.

Example 2. In this example, we consider the moving Fermi-Dirac distribution

u(x, t) =
1

1 + e
x−5t

2

(5.3.2)

which travels to the right at a speed of 5 without changing shape (see Fig. 5.2(a)). The scaling

algorithm Alg. 1, equipped with the same parameters that worked well for the diffusive

Fermi-Dirac distribution in Example 1, fails to capture the translation. In fact, the errors

of the scaled solutions are larger than those of unscaled ones as shown in Fig. 5.2(b). It

appears that the decrease of the scaling factor (black curve with asterisks in Fig. 5.2(c))

cannot compensate for the increase in the frequency indicator (black curve with asterisks in
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Algorithm 2 Pseudo-code of spectral methods with exterior-error-dependent moving.

1: Initialize N , ∆t, T , α, β, U
(α,β)
N,0 (0), µ > 1, dmax > δ > 0

2: t← 0
3: xL ← 0
4: xR ← x

(α,β)

[N+2
3

]

5: e0 ← exterior error indicator(U
(α,β)
N,xL

(0), xR)
6: while t < T do
7: U

(α,β)
N,xL

(t+∆t)← evolve(U
(α,β)
N,xL

(t),∆t)

8: e← exterior error indicator(U
(α,β)
N,xL

(t+∆t), xR)
9: if e > µe0 then
10: (d0, U

(α,β)
N,xL+d0

)← move(U
(α,β)
N,xL

(t+∆t), δ, dmax, µe0)
11: xL ← xL + d0
12: xR ← xR + d0
13: e0 ← exterior error indicator(U

(α,β)
N,xL

(t+∆t), xR)
14: end if
15: t← t+∆t
16: end while

Fig. 5.2(d)). In other words, the scaling algorithm 1 mistakes translation for diffusion and

performs excessive scaling. In contrast, the exterior-error-dependent moving algorithm 2

with δ = 0.004, dmax = 0.04 and µ = 1.005 succeeds in producing a much more accurate

approximation to the moving Fermi-Dirac distribution given by Eq. (5.3.2) in the exterior

domain Λe, with errors kept under 10−11 up to time t = 10 (red curve with left-pointing

triangles in Fig. 5.2(b)). The moving technique recovers a faster spectral convergence with

respect to the expansion order N as shown in Fig. 5.2(e).

During the moving process, the exterior-error indicator E(U (α,β)
N,xL

, xR) is well controlled

(red curve with left-pointing triangles in Fig. 5.2(f)) and the left-end point of the exterior

domain closely tracks the uniform linear motion (red curve with left-pointing triangles in

Fig. 5.2(c)). The exterior-error indicator monotonically increases for the unscaled and un-

moved solutions (blue curve with squares in Fig. 5.2(f)) and oscillates rapidly for the scaled

and unmoved solutions (black curve with asterisks in Fig. 5.2(f)). Moreover, the similarity

between the relative error and frequency indicator as a function of time is again confirmed

by comparing Fig. 5.2(d) to Fig. 5.2(b), thus providing strong evidence for the effectiveness
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of using the frequency indicator (5.2.6). Spectral convergence in N is clearly observed for the

moving spectral method in Fig. 5.2(e) while the error decays slowly with N for the unmoved

spectral method.

Figure 5.2: Numerical approximation to the moving Fermi-Dirac distribution u(x, t) given by
Eq. (5.3.2). The moving algorithm 2 produces much more accurate solutions and recovers a faster
spectral convergence with respect to the expansion order N in the exterior domain Λe = (xL,+∞),
whereas pure scaling fails to capture this translation. The data in the last plot are measured at
t = 10.

Example 3. Another class of dynamical systems is described by solitons or solitary waves

in which nonlinearities and dispersion counteract. While solitons have been well-studied,

there has been recent interest in nonlinear Dirac solitary waves as they emerge naturally

in many physical systems [CKS16]. Stability of the nonlinear Dirac solitary waves on the

whole line and its connection to the multi-hump structure is a challenging topic of research

[SQM14, XST15, BC19]. In this example, we approximate a right-moving two-hump solitary

wave, the explicit form of which is given in [ST05] with v = 0.25, λ = 0.5, m = 1, x0 = −1.5
and Λ = 0.1. The reference solutions are plotted in Fig. 5.3(a).

Numerical results are displayed in Fig. 5.3 where we set δ = 0.004, dmax = 0.012, µ =

1.005. It can be readily observed there that the exterior-error-dependent moving algorithm 2
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produces much more accurate solutions with errors kept under 10−11 until the final time

t = 15 (red curve with left-pointing triangles in Fig. 5.3(b)). The moving algorithm also

recovers a faster spectral convergence with respect to the expansion order N (see Fig. 5.3(c)).

The scaling-only algorithm 1 fails to maintain the accuracy (black curve with asterisks in

Fig. 5.3(b)). The similarity between the relative error and frequency indicator is again

confirmed by comparing Fig. 5.3(d) to Fig. 5.3(b).

Figure 5.3: Approximating a two-hump nonlinear Dirac solitary wave. The moving algorithm
Alg. 2 produces much more accurate solutions and recovers a faster spectral convergence with
respect to the expansion order N in the exterior domain Λe = (xL,+∞), whereas a pure scaling
approach fails to capture this translation. The data in the last plot are measured at t = 15.

In Examples 2 and 3, the exterior-error indicator (5.3.1) efficiently guides us in finding

an xL such that the moved spectral approximation retains accuracy in the resulting exterior

domain. This accuracy arises because the exterior-error indicator is related to the upper

bound of the error for asymptotically large x. If we assume a large indicator E(U (α,β)
N,xL

, xR) > µ

with µ ∈ (0, 1),

E(U (α,β)
N,xL

, xR) > µ⇒ ∥∂xU (α,β)
N,xL

· I[xR,+∞)∥ω̂α > µ∥∂xU (α,β)
N,xL

· I[xL,+∞)∥ω̂α ,
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⇒ ∥∂xU (α,β)
N,xL

· I[xR,+∞)∥ω̂α+1 > µ∥∂xU (α,β)
N,xL

· I[xL,+∞)∥ω̂α+1 .

Since ∥∂xU (α,β)
N,xL

· I(xL,+∞)∥ω̂α+1 is related to the upper bound of the interpolation error

∥(IN,α,βu− u)I(xL,+∞)∥ω̂α [STW11], a larger exterior-error indicator signals a worsening ap-

proximation in the exterior domain (xR,∞). The solution in the interior domain Λi := (0, xL]

is not approximated by the basis functions used to approximate the solution in the exterior

domain. Obstacles to designing moving mesh methods in unbounded domains include the

construction of an interior numerical solution and its consistent coupling with the exterior

spectral approximation. More on these issues will be illustrated in Example 4.

Figure 5.4: Oscillations emanate from the left but the moving algorithm 2 generates accurate
solutions in the exterior domain Λe, with relative errors under 10−7 up to t = 10 with N = 30
(red curve with left-pointing triangles in (c)). By further coupling with a spectral approximation
using 80 Chebyshev polynomials in the interior domain Λi, we generate the whole solution with
total relative error, up until t = 10, under 2× 10−5, as shown by the red curves with left-pointing
triangles in (a) and (d). The data in (b) are measured at t = 10.
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Example 4. Let us approximate the following function in Λ:

u(x, t) =

cos(x− 10t), x ≤ 10t,

e−(x−10t)
2

, x > 10t,
(5.3.3)

which represents a wave with period 2π traveling to the right with speed 10 and exponen-

tially decaying at infinity. The reference solution u(x, 10) is plotted by the green curve with

circles in Fig. 5.4(a), which coincides with the red curve with left-pointing triangles that

approximates u separately in Λi and Λe using different basis functions. As shown by the blue

curve with squares in Fig. 5.4(a), applying a Laguerre spectral approximation with N = 30

and β = 5 in Λ fails to accurately approximate u(x, t). This failure arises because more

oscillations emerge from x = 0 and translate to +∞ as time evolves. Specifically, at t = 10,

the reference solution u(x, t) possesses 32 extrema while any Laguerre spectral approxima-

tion (5.2.2) with N = 30 can have at most 30 extrema, implying that the approximation is

doomed to fail since all oscillations cannot be captured. Simply increasing the number of

basis functions does little to help, even with different scaling factors as shown in Fig. 5.4(b).

The ineffectiveness of increasing N is mainly due to the presence of oscillatory components

with significantly different frequencies in each of the two different domains. As shown by

the black curves with asterisks in Figs. 5.4(a, c, d), the scaling technique is also doomed

to fail because it totally neglects this scale difference and only adjusts the scaling factor to

redistribute collocation points.

We propose a divide-and-conquer strategy to address Example 4 that can be implemented

by applying two subroutines, within each time step. The first step is to use the exterior-

error-dependent moving algorithm 2 to determine the exterior spectral approximation for

the exponential decay component of the reference solution. The second step is to introduce

a new spectral approximation in the remaining bounded interior domain Λi for the left-side

oscillating component. The full numerical solution in the half-line Λ is constructed from

concatenating the solution in the exterior domain Λe to the one in the interior domain Λi.

Fig. 5.4(c) plots the error in the exterior domain against time and shows that the errors
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of of the moved solution with N = 30, δ = 0.008, dmax = 0.08 and µ = 1.001 are kept under

10−7 up to time t = 10 (red curve with left-pointing triangles), confirming that the Laguerre

spectral approximation is accurate in the exterior domain. In fact, the numerical values of

xL obtained by the moving algorithm 2 are consistent with the expected value of 10t as

shown in Eq. (5.3.3). Coupling the exterior solution with a spectral approximation using 80

Chebyshev polynomials in the interior domain, we find a combined numerical solution with

total relative error under 2 × 10−5 up to t = 10 (red curves with left-pointing triangles in

Figs. 5.4(a, d)) using 111 = 31 + 80 total basis functions. By contrast, Fig. 5.4(b) shows

that the errors for direct refinement using N = 180 are larger than 0.2.

It must be pointed out that when solving PDEs in unbounded domains, we may need

information about the solution in the exterior domain to construct the interior numerical

solution. Further discussion on this point can be found in Example 6.

5.4 Spectral methods incorporating both scaling and moving

For problems that involve both translation and diffusion in unbounded domains, we need to

incorporate both the moving and scaling procedures. Since the scaling algorithm Alg. 1 may

mistake translation for diffusion and trigger an inappropriate scaling as shown in Examples

2 and 3, we propose a “first moving then scaling” algorithm. The associated pseudo-code

is described in Alg. 3. A direct application of Alg. 3 to Example 1 recovers exactly the

same results as Alg. 1 since the moving procedure is not invoked. When Alg. 3 is applied

to Examples 2 and 3, it gives the same results as Alg. 2 since the scaling mechanism is not

triggered. That is, the combined moving-scaling algorithm 3 can deal with both translation-

only and diffusion-only problems since it can distinguish translation from diffusion.

Alg. 3 can be extended to unbounded domains in multiple dimensions in a dimension-

by-dimension manner by using the tensor product of one-dimensional basis functions. For
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example, consider the two-dimensional spectral approximation

U
(α⃗,β⃗)
N,xL,yL

(x, y) :=
Nx∑
ℓ=0

Ny∑
m=0

u
(α⃗,β⃗)
ℓ,m L̂αx,βx

ℓ (x)L̂αy ,βy
m (y) (5.4.1)

in Λx
e × Λy

e := (xL,+∞) × (yL,+∞) where α⃗ = (αx, αy) and β⃗ = (βx, βy). We choose the

exterior-error indicator in x-dimension to be

Ex(U (α⃗,β⃗)
N,xL,yL

(x, y), xR) := E(Ũ (αx,βx)
N,xL

(x), xR), (5.4.2)

Ũ
(αx,βx)
N,xL

(x) :=

∫
Λy
e

U
(α⃗,β⃗)
N,xL,yL

(x, y)dy. (5.4.3)

Similarly, Ey(U (α⃗,β⃗)
N,xL,yL

(x, y), yR) gives the exterior-error indicator in y-dimension. Accord-

ingly, we use Ex(U (α⃗,β⃗)
N,xL,yL

, xR) to judge the if statement in Line 10 of Alg. 3. If satisfied,

then the move subroutine in Line 11 of Alg. 3 will move the solution in x-direction via

xL → xL + dx0 . Simultaneously, we use Ey(U (α⃗,β⃗)
N,xL,yL

(x, y), yR) to determine the shift in the

y-direction.

To allow scaling in x-direction, the corresponding frequency indicator can be defined as

Fx(U
(α⃗,β⃗)
N,xL,yL

) :=


Nx∑

ℓ=Nx−Mx+1

Ny∑
m=0

γ
(αx,βx)
ℓ · γ(αy ,βy)

m · (u(α⃗,β⃗)ℓ,m )2

Nx∑
ℓ=0

Ny∑
m=0

γ
(αx,βx)
ℓ · γ(αy ,βy)

m · (u(α⃗,β⃗)ℓ,m )2


1
2

, (5.4.4)

where Mx = [Nx

3
] and Nx, Ny are the expansion orders in the x-, y-directions, respectively.

Similarly, we define Fy to be the frequency indicator in y-direction. We first keep βy fixed

and use Fx to evaluate the if statement in Line 16 of Alg. 1 for scaling. If scaling in x-

direction is needed, then the while loop in Line 20 of Alg. 1 will update the scaling factor

to β̃x. Simultaneously, we fix βx and use Fy to update the scaling factor in the y-direction

to β̃y. After that, the scaling factors for time t+∆t are set to β̃x and β̃y.

Example 5. We will investigate the performance of Alg. 3 in a two-dimensional unbounded
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Algorithm 3 Pseudo-code of spectral methods with both scaling and moving.

1: Initialize N , ν > 1, q < 1, ∆t, T , α, β, U
(α,β)
N (0), β, µ > 1, dmax > δ > 0, xR(0) = x

(α,β)

[N+2
3

]

2: xL, t← 0
3: xR ← x

(α,β)

[N+2
3

]

4: f0 ← frequency indicator(U
(α,β)
N,xL

(x, t))

5: e0 ← exterior error indicator(U
(α,β)
N,xL

(0), xR)
6: while t < T do
7: xR ← x

(α,β)

[N+2
3

]

8: U
(α,β)
N,xL

(x, t+∆t)← evolve(U
(α,β)
N,xL

(x, t)),∆t)

9: e← exterior error indicator(U
(α,β)
N,xL

(x, t+∆t), xR)
10: if e > µe0 then
11: (d0, U

(α,β)
N,xL+d0

)← move(U
(α,β)
N,xL

(x, t+∆t), δ, dmax, µe0)
12: xL ← xL + d0
13: e0 ← exterior error indicator(U

(α,β)
N,xL

(x, t+∆t), xR)
14: end if
15: f ← frequency indicator(U

(α,β)
N,xL

(x, t+∆t))
16: if f > νf0 then
17: β̃ ← qβ

18: U
(α,β̃)
N,xL

← scale(U
(α,β)
N,xL

(x, t+∆t), β̃)

19: f̃ ← frequency indicator(U
(α,β̃)
N,xL

)

20: while f̃ ≤ f and β̃ ≥ β do

21: β ← β̃

22: U
(α,β)
N,xL

(x, t+∆t)← U
(α,β̃)
N,xL

23: f0 ← f̃
24: f ← f̃
25: β̃ ← qβ

26: U
(α,β̃)
N,xL

← scale(U
(α,β)
N,xL

(x, t+∆t), β̃)

27: f̃ ← frequency indicator(U
(α,β̃)
N,xL

)
28: end while
29: end if
30: t← t+∆t
31: end while
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Figure 5.5: A two-dimensional oscillatory function with both translation and diffusion given by
Eq. (5.4.5). Only the combined moving-scaling algorithm 3 produces accurate solutions in the
exterior domain with errors kept under 10−11 up to t = 4. The need for combining moving and
scaling is evident. For simplicity, we only used Fx (the frequency indicator in the x-direction),
Ey (the exterior-error indicator in the y-direction), and yL (the left end of Λy

e) as an example.
The corresponding curves for Fy, Ex, and xL are very similar and not shown. Here, we used
Nx = Ny = 40, and the initial scaling factors: βx = βy = 2.5.

domain by considering the function

u(x, y, t) = cos(
xy

400
) · 1

1 + e
x−6t−2−t cos(t)

2+0.3t

· 1

1 + e
y−4t−2−t sin(t)

2+0.4t

, x, y, t > 0, (5.4.5)

which displays both advective and diffusive behavior. This function exhibits oscillations

in space from the factor cos( xy
400

), an exponential decay, and a translation to infinity with

time-varying velocity v⃗ = (vx, vy) = (6 + cos(t), 4 + sin(t)). The numerical results shown

in Fig. 5.5 are generated using a time step ∆t = 0.01, the same parameters in the x-, y-

directions, and Nx = 40, µx = 1.003, δx = 0.005, dxmax = 0.1.
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As expected, only the combined scaling-moving algorithm 3 keeps the errors in the ex-

terior domain under 10−11 (up to the final time t = 4), as shown by the error curves in

Fig. 5.5(a). This accuracy is achieved because the corresponding frequency indicator and

exterior-error indicator are controlled by our “first moving then scaling” techniques, see e.g.,

Fx in Fig. 5.5(b) and Ey in Fig. 5.5(c).

Although the moving algorithm 2 may accurately capture the function near the left end

of the exterior domain, the resulting exterior-error indicator does not stay low enough to

preserve accuracy in the exterior domain Λx
e×Λy

e , as shown by the green curves with asterisks

in Figs. 5.5(a, c, d). The moving algorithm neglects the diffusion and thus uses an improper

(smaller) xR and yR. The right choice for these two variables depends on proper scaling for

the diffusion, revealing why we need to update xR in Line 7 of Alg. 3 after scaling. That is,

the moving determines xL while the scaling determines xR, making it necessary to combine

moving with scaling.

As we have mentioned in Example 4, numerically solving PDEs in unbounded domains

requires both the interior solution U interior
xL(t)

(x, t) in Λi(t) = (0, xL(t)] and the exterior solution

U
(α,β)
N,xL(t)

(x, t) in Λe(t) = (xL(t),+∞) after applying the divide-and-conquer strategy. When

using the moving-scaling algorithm 3 to march the solution from t to t +∆t, if the moving

mechanism is not triggered (i.e., xL is unchanged), then the interior and exterior solutions

can be updated individually in the normal way. If it is triggered, extra steps are needed to

approximate the solution in the enlarged interior domain Λi(t+∆t) = Λi(t)∪ (Λe(t) \Λe(t+

∆t)) since xL(t+∆t) = xL(t) + d0 after running Line 12 of Alg. 3.

In the next example, we will test the ability of Alg. 3 to solve a one-dimensional PDE

where we will use the intermediate (unmoved) exterior solution U
(α,β)
N,xL(t)

(x, t+∆t) (obtained

immediately after running Line 8) to interpolate the required function values in Λi(t+∆t) \
Λi(t).
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Example 6. We solve the first-order PDE

∂tu(x, t) +

(
2 +

x− 2t

2 + t

)
∂xu(x, t) = 0 (5.4.6)

with initial data u(x, 0) = (1 + e
x
2 )−1 and Dirichlet boundary condition u(0, t) = (1 + e

−2t
2+t )−1.

The analytical solution is a moving and spreading Fermi-Dirac distribution: u(x, t) =

(1 + e
x−2t
2+t )−1, which travels rightward to infinity at speed 2. A simple numerical scheme

for evolving Eq. (5.4.6) is employed here for testing the performance of Alg. 3 within the

divide-and-conquer strategy.

Specifically, we adopt the Laguerre spectral approximation (5.2.2) in the exterior domain,

the first-order backward finite difference method in the interior domain, and the second-order

improved Euler scheme in time. We use a nonuniform mesh, e.g., 10 Gauss-Lobatto points,

to avoid possible poor resolution in the tiny interior domain 0 < xL < dmax at short times.

For xL ≥ dmax, a uniform mesh with spacing ∆x = δ = 0.02 is used so new grid points in

Λi(t+∆t) \Λi(t) can be easily added. The other parameters were set to N = 40, µ = 1.004,

dmax = 0.2, and ∆t = 0.001.

The results summarized in Fig. 5.6 clearly show that, up to the final time t = 5, the

proposed divide-and-conquer strategy maintains the errors in the whole domain Λ = Λi ∪Λe

under 2 × 10−4 (red curve with left-pointing triangles in Fig. 5.6(a)). Alg. 3 succeeds in

capturing the translation, as shown by the red curve with left-pointing triangles in Fig. 5.6(b),

thus determining the exterior domain Λe. Without this strategy, a straightforward use of

the Laguerre spectral approximation in Λ leads to huge errors as indicated by the blue curve

with right-pointing triangles in Fig. 5.6(a).

Fig. 5.6(c) shows that the frequency indicator is always kept under 3 × 10−10 as shown

by the black curve with asterisks, a sufficiently small lower error bound for scaling, by

continually shrinking the scaling factor shown as the black curve with asterisks in Fig. 5.6(b).

The exterior-error indicator is always maintained around 0.2 as shown by the red curve

with left-pointing triangles in Fig. 5.6(c), which implies the error in (xR,+∞) divided by
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Figure 5.6: Numerical results obtained by the moving-scaling algorithm 3 for the one-dimensional
problem in Eq. (5.4.6). The proposed divide-and-conquer strategy maintains the errors in the whole
domain Λ = Λi ∪ Λe under 2 × 10−4 until the final time t = 5 where the exterior domain Λe is
determined by the “first moving then scaling” technique built in to Alg. 3. We adopt the Laguerre
spectral approximation (5.2.2) with N = 40 in the exterior domain Λe = (xL,+∞), the first order
backward finite difference method with spacing ∆x = 0.02 in the interior domain Λi = (0, xL], and
the second order improved Euler time marching scheme with ∆t = 0.001. The last plot displays the
absolute difference between the numerical solution U(x, t) and the analytical one u(x, t) at different
times.

the error in Λe is almost unchanged, ensuring small errors at infinity. Fig. 5.6(d) plots

|U(x, t)− u(x, t)| at different times (U(x, t) and u(x, t) denote the numerical and analytical

solution, respectively). There is a clear divide near xL arising from the different numerical

treatments between the interior and exterior domains.
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5.5 Performance comparison in solving parabolic PDEs

We now apply the frequency-dependent scaling algorithm 1 to solve

∂tu(x, t)− ∂xxu(x, t) = f(x, t) (5.5.1)

in R × Λ, and compare our results with those obtained with the time-dependent scaling

method developed in [MST05]. First, we need to generalize our scaling approach from Λ to

R by using the scaled Hermite functions Ĥ(β)
ℓ (x) = Hℓ(βx)e

−(βx)2/2 where Hℓ are Hermite

polynomials [STW11]. Similarly, we use β to denote the scaling factor and the frequency

indicator defined in Eq. (5.2.6).

A standard Galerkin Hermite spectral method is used to find a solution

U
(β)
N =

N∑
ℓ=0

u
(β)
ℓ Ĥ

(β)
ℓ (x) (5.5.2)

in V
(β)
N = span{Ĥ(β)

0 (x), ..., Ĥ(β)
N (x)} satisfying the initial condition and

(∂tU
(β)
N , v) + (∂xU

(β)
N , ∂xv) = (f, v), ∀ v ∈ V (β)

N , (5.5.3)

where (·, ·) is the conventional inner product in L2(R) space. The Galerkin discretiza-

tion (5.5.3) is stable in the sense that

(∂xU
(β)
N , ∂xU

(β)
N ) =

N+1∑
ℓ=0

ℓ+ 1

2
(u

(β)
ℓ )2 −

N−2∑
ℓ=0

√
(ℓ+ 1)(ℓ+ 2)u

(β)
ℓ u

(β)
ℓ+2 (5.5.4)

is strictly positive and can be controlled by (N + 1)∥U (β)
N ∥22 = (N + 1)

∑N
ℓ=0(u

(β)
ℓ )2. By

contrast, a time-dependent scaling factor:

β(t) =
1

2
√
δ0(δt+ 1)

(5.5.5)
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was taken in [MST05] to fix the instability of the Petrov–Galerkin discretization by tuning

the parameters δ0 and δ.

Example 7. We apply the frequency-dependent scaling algorithm 1 to Example 6.1 in

[MST05]. In order to facilitate comparison, we also adopt the same second order-accurate

Crank-Nicholson scheme to march Eq. (5.5.3), and the same errors EN and EN,∞ to measure

the accuracy. Table 5.1 presents the numerical errors with different time steps and expansion

orders where the second-order accuracy in time and the spectral convergence in space are

clearly demonstrated. Table 5.2 compares the errors EN without scaling to those obtained

using the scaling algorithm 1 and the time-dependent scaling method in [MST05] on the

same mesh. Both scaling methods produce much more accurate numerical results but the

proposed frequency-dependent scaling keeps the errors around or below 10−7, outperforming

the time-dependent scaling of [MST05].

The scaling factor adjusted adaptively by the frequency indicator (5.2.6) takes on the

value β = 0.5357 at t = 1 for all choices of time steps shown in Table 5.2 whereas the

time-dependent scaling factor in [MST05] decreases to β = 0.3536 at t = 1 (Eq. 5.5.5). The

smaller scaling factor arises from the stability requirement β′(t)+2β3(t) ≤ 0, an initial value

of 0.5, and using δ0 = δ = 1 in Eq. 5.5.5 [MST05], and prevents the error from decreasing

when the time step is refined from 1/4000 to 1/16000 (see the third column of Table 5.2).

There is no accuracy improvement without scaling when the timestep is decreased as shown

in the second column of Table 5.2 where a scaling factor is fixed to β = 0.85. Regardless of

what time step is used in the unscaled method, the error EN experiences a sudden increase

across t ∈ [0.3, 0.7], rising from below 10−6 to about 10−4, as it fails to capture the diffusion.

A similar observation was shown in Table 6.1 of [MST05].

5.6 Application to rational basis functions

Apart from the Laguerre and Hermite functions that decay exponentially at infinity, ra-

tional basis functions that decay algebraically have been increasingly used [TWY20]. In
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Time step N EN(1) Order EN,∞(1) Order
10−1

25

2.500e-04 2.182e-04
10−2 2.499e-07 -2.000 2.227e-06 1.991
10−3 2.500e-09 -2.000 2.227e-08 -2.000
10−4 2.555e-10 -1.991 2.350e-10 -1.977

1/40000

10 2.203e-04 1.619e-04
15 2.189e-07 N−16.85 4.335e-08 N−20.29

20 1.353e-09 N−17.68 8.880e-09 N−13.52

25 4.840e-11 N−14.93 6.183e-11 N−11.94

Table 5.1: Numerical results for the parabolic problem in Eq. (5.5.1): Errors associated with the
frequency-dependent scaling algorithm 1 at t = 1 with different time steps and expansion orders
N .

Time
step

No scal-
ing

Time-
dependent
scaling in
[MST05]

Frequency-
dependent scaling
in Alg. 1

1/250 3.969e-04 2.598e-06 3.998e-07
1/1000 3.910e-04 1.189e-06 2.503e-08
1/4000 3.390e-04 1.117e-06 2.085e-09
1/16000 3.390e-04 1.117e-06 1.381e-09

Table 5.2: Numerical results for the parabolic problem in Eq. (5.5.1): Comparison of the errors at
t = 1 with N = 20.
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this section we generalize our scaling technique to solve a fractional heat equation, the

solution of which displays algebraic decay at infinity. We shall use MMGFs [TWY20]:

Rλ,β
n (x) = (1 + (βx)2)−(λ+1)/2Cλ

n(βx/
√
1 + (βx)2) with Cλ

n the Gegenbauer polynomial of

order n. In the |x| → +∞ limit, Rλ,β
n ∼ (sign(x))n (2λ)n

n!
(1 + (βx)2)−(1+λ)/2. We still use

β as the scaling factor and define the frequency indicator for the spectral decomposition

Uβ
N =

∑N
i=0 u

β
i R

λ,β
i (x) in the same way as in Eq. (5.2.6).

Example 8. We numerically solve on R the fractional heat equation [ZZ17, Yua21]

ut + (−∆)su = f(x, t), s ∈ (0, 1), (5.6.1)

which admits an analytic solution u(x, t) = (( x
t+0.5

)2 + 1)−1/2 for an appropriate source func-

tion f(x, t). Therefore, we choose MMGFs with λ = 0 to match the decaying behavior

(1+ (βx)2)−1/2 of the analytic solution. Clearly, the solution is diffusive over time, requiring

a decreasing scaling factor β. Fig. 5.7 shows the numerical results for s = 0.1, 0.2 and 0.8,

where we have adopted the improved Euler scheme in evolve of Alg. 3 and set ∆t = 0.005,

N = 20, q = ν−1 = 0.95, and β0 = 2. In Figs. 5.7(c, f, i), it is observed that the scaling

factor β matches the intrinsic scaling of the analytic solution and decreases from 2 to about

0.6 over time, during which the errors are well maintained under 10−6 for all three fractional

orders (red curves in Figs. 5.7(a, d, g)). Failure to adjust β leads to a rapidly increasing

frequency indicator (blue curves in Figs. 5.7(b, e, h)) as well as a much larger error (blue

curves in Figs. 5.7(a, d, g)).

Comparing the red curves in Figs. 5.7(a, d, g) with those in Figs. 5.7(b, e, h), we confirm

the strong correlation between the error and the frequency indicator under these rational

MMGF basis functions. We conclude that regardless of s in Eq. (5.6.1), the frequency-

dependent scaling is still effective in MMGFs as long as they are able to capture the decaying

behavior of the unknown solution at infinity. For functions that display different algebraic

decay behavior at infinity, frequency-dependent scaling should also perform well provided

an appropriate λ is chosen for the MMGFs to match the algebraic decaying. In short,
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Figure 5.7: Errors, frequency indicators, and scaling factors obtained with MMGFs in solving
Eq. (5.6.1) for s = 0.1 (first row), 0.5 (second row) and 0.8 (third row). Both the error and the
frequency indicator are well maintained under appropriate adjustment of the scaling factor.
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the proposed frequency-dependent scaling technique can be successfully generalized to the

rational basis functions.

5.7 Analysis of the scaling and moving techniques

In this section, we first illustrate the effectiveness of the frequency-dependent scaling in

maintaining small errors. Second, we analyze how the moving technique controls the errors

in the exterior domain. Finally, we use two examples to show how both techniques are

sensitive to the parameters.

5.7.1 Numerical analysis

The success of the scaling algorithm Alg. 1 is rooted in the connection between the frequency

indicator (5.2.6) and the evolution of the information embedded in the numerical solutions.

Let Âr
α,β(Λ) be the anisotropically weighted Sobolev space. For any integer r ≥ 0, the

seminorm and norm of the solution u are |u|Âr
α,β

= ∥∂̂rxu∥ω̂α+r and ∥u∥Âr
α,β

=
√∑r

k=0 |u|2Âk
α,β

,

respectively, where ∂̂xu ≡ ∂xu+
β
2
u.

For any u ∈ Âr
α−1,β(Λ)∩ Âr

α,β(Λ) with integer r ≥ 1, a direct corollary of Theorem 3.5 in

[GWW06] for estimating the interpolation error using the Laguerre functions is

∥IN,α,βu− u∥ω̂α ≤ c(βN)
1−r
2 (β−1|u|Âr

α−1,β
+ (1 + β−

1
2 )(lnN)

1
2 |u|Âr

α,β
), (5.7.1)

where c denotes a generic positive constant that does not depend on α, β, N , or any function.

This error estimate plays a crucial role in the formal development and successful implementa-

tion of our scaling and moving techniques. For simplicity, we only consider diffusive behavior

without translation, set xL = 0, and drop the subscript xL.

There are two reasons to use the frequency indicator given in Eq. (5.2.6). Starting with
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M = [n
3
] and a sufficiently large expansion order N , we have

1

2
F(U (α,β)

N ) ≈ 1

2

∥IN,α,βu− IN−M,α,βu∥ω̂α

∥IN,α,βu∥ω̂α

≤ 1

2

∥u− IN,α,βu∥ω̂α + ∥u− IN−M,α,βu∥ω̂α

∥IN,α,βu∥ω̂α

≤ ∥u− IN−M,α,βu∥ω̂α

∥IN,α,βu∥ω̂α

, (5.7.2)

which provides an estimate to the lower bound of
∥u−IN−M,α,βu∥ω̂α

∥IN,α,βu∥ω̂α
. Minimizing F(U (α,β)

N ) in

Alg. 1 may reduce this lower bound for the relative error. Moreover, a straightforward appli-

cation of the interpolation error estimator (5.7.1) to the two interpolations in the numerator

of the first term of Eq. (5.7.2) yields

(
N∑

ℓ=N−M+1

γ
(α,β)
ℓ (u

(α,β)
ℓ )2

)1/2

≤ cF (βN)
1−r
2

(
β−1|u|Âr

α−1,β
+ (1 + β−

1
2 )(lnN)

1
2 |u|Âr

α,β

)
,

(5.7.3)

where the constant cF ≡ (1 + 2
r−1
2 )c. Thus, we find

F(U (α,β)
N ) ≤ cF (βN)

1−r
2

(
β−1

|u|Âr
α−1,β

∥U(α,β)
N ∥ω̂α

+ (1 + β−
1
2 )(lnN)

1
2
|u|Âr

α,β

∥U(α,β)
N ∥ω̂α

)
, (5.7.4)

implying that ∀ ε ∈ (0, 1), we may choose a sufficiently large N such that F(U (α,β)
N ) < ε.

This shows one rationale for using the frequency indicator (5.2.6).

The second reason the frequency indicator F(U (α,β)
N ) can be used to measure the decay of

the reference solution’s derivatives as x→∞ tends to infinity is argued as follows. According

to the inequality (5.7.4), if |u|Âr
α−1,β

/∥U (α,β)
N ∥ω̂α is fixed, a larger F(U (α,β)

N ) implies a larger

|u|Âr
α,β
/∥U (α,β)

N ∥ω̂α . Given any s ∈ Λ (e.g., s =

√
2x

(α,β)
N ), and if

F(U (α,β)
N ) > cF (βN)

1−r
2

|u|Âr
α−1,β

∥U(α,β)
N ∥ω̂α

(β−1 + s(1 + β−
1
2 )(lnN)

1
2 ), (5.7.5)

then ∫ s2

2

0

(∂̂rxu(x))
2xα+rdx <

∫ +∞

s2

2

(∂̂rxu(x))
2xα+rdx. (5.7.6)
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The inequality (5.7.6) can be verified by contradiction. First, combine Eqs. (5.7.4) and

(5.7.5) to find

s|u|Âr
α−1,β

< |u|Âr
α,β
. (5.7.7)

If (5.7.6) does not hold, we would find

|u|2
Âr

α,β
=

∫ +∞

0

(∂̂rxu(x))
2xα+rdx ≤ 2

∫ s2

2

0

(∂̂rxu(x))
2xα+rdx

≤ 2 · s
2

2

∫ s2

2

0

(∂̂rxu(x))
2xα+r−1dx ≤ s2

∫ +∞

0

(∂̂rxu(x))
2xα+r−1dx = s2|u|2

Âr
α−1,β

,

which would contradict the inequality (5.7.7). Intuitively, basis functions of higher degree

decay more slowly than those of lower degree, so an increase in the frequency indicator

implies slower decay at infinity. This slower spatial decay as time increases requires the use

of a larger computational domain which is achieved by decreasing β. In other words, as the

frequency indicator increases, the norm of ∂̂rxu(x) · I(s2/2,+∞)(x) becomes larger than that of

∂̂rxu(x) · I(0,s2/2)(x), implying scaling is indeed needed to enlarge the computational domain

because ∥∂̂rxu · I(x>s2/2)∥ω̂α is the dominant component of ∥∂̂rxu∥ω̂α .

Next, we show that increasing xL in the moving technique can control the errors in the

exterior domain when generalized Laguerre functions are adopted. After increasing xL to

xL + d, U
(α,β)
N,xL

(x)eβx/2 and U
(α,β)
N,xL+d(x)e

βx/2 are two identical polynomials of order N since

they pass through the same N+1 different points: (x
(α,β)
i +d, U

(α,β)
N,xL

(x
(α,β)
i +d)eβ(x

(α,β)
i +d)/2),

i = 0, ..., N , i.e., U
(α,β)
N,xL+d(x) = U

(α,β)
N,xL

(x) for any x ∈ (xL + d,∞). Thus,

∥U (α,β)
N,xL+d(x, t)I(x>xL+d)∥2ω̂α

= ∥U (α,β)
N,xL

(x, t)I(x>xL+d)∥2ω̂α
< ∥U (α,β)

N,xL
(x, t)I(x>xL)∥2ω̂α

, (5.7.8)

∥(u(x, t)− U (α,β)
N,xL

(x, t))I(x>xL+d)∥ω̂α ≤ ∥(u(x, t)− U (α,β)
N,xL

(x, t))I(x>xL)∥ω̂α . (5.7.9)

That is, both the norm of U
(α,β)
N,xL

and the error ∥(u(x)−U (α,β)
N,xL

)I(x>xL)∥ω̂α will not increase as
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xL increases. Furthermore, we consider solving a time-dependent PDE

ut(x, t) = Dx(t)u(x, t), x, t ∈ Λ (5.7.10)

where Dx(t) represents a differential operator that only involves spatial derivatives. Let

U
(α,β)
N,xL

(x, tn) denote the numerical solution at tn. We show below that there exists d ≥ 0 such

that

∥U (α,β)
N,xL+d(x, tn+1)I(x>xL+d)∥ω̂α ≤ ∥U (α,β)

N,xL
(x, tn)I(x>xL)∥ω̂α . (5.7.11)

Denote uN,xL
= (U

(α,β)
N,xL

(x
(α,β)
0 ), ..., U

(α,β)
N,xL

(x
(α,β)
N ))T and define the translation operator

matrix T
(α,β)
N (s) such that T

(α,β)
N (s)uN,xL

= (U
(α,β)
N,xL

(x
(α,β)
0 + s), ..., U

(α,β)
N,xL

(x
(α,β)
N + s))T . It is

easy to see that T
(α,β)
N (0) is the identity matrix and that T

(α,β)
N (s+ t) = T

(α,β)
N (s)T

(α,β)
N (t) for

s, t ∈ Λ. Thus, T
(α,β)
N (s ∈ Λ) forms a semigroup, has generator L̂(α,β)

N,p := lim
s→∞

T
(α,β)
N (s)−T (α,β)

N (0)

s
,

and is expressed as T
(α,β)
N (s) = esL̂

(α,β)
N,p . Since the Laguerre functions tend to 0 at +∞,

lim
s→+∞

T
(α,β)
N (s) = 0, indicating that ∥eL̂

(α,β)
N,p ∥ŵα,β < 1 where the matrix norm ∥ · ∥ŵα,β is

induced from the vector norm ∥uN,xL
∥2
ŵα,β :=

∑N
ℓ=0 U

2
N,xL

(x
(α,β)
ℓ )ŵ

(α,β)
ℓ

After discretizingDx(t) in Eq. (5.7.10) with some numerical scheme, we have uN,xL
(tn+1) =

D
(α,β)
N (tn)uN,xL

(tn), D
(α,β)
N (tn) ∈ R(N+1)×(N+1). We choose

d = −max{0, ln ∥D(α,β)
N (tn)∥ŵα,β}

ln ∥eL̂
(α,β)
N,p ∥ŵα,β

, (5.7.12)

let uN,xL+d(tn+1) := T
(α,β)
N (d)uN,xL

(tn+1), and verify that

∥uN,xL+d(tn+1)∥ŵα,β ≤ ∥uN,xL
(tn+1)∥ŵα,β , (5.7.13)

which directly gives Eq. (5.7.11) using ∥uN,xL
(t)∥ŵα,β = ∥U (α,β)

N,xL
(x, t)I(x>xL)∥ω̂α .
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5.7.2 Sensitivity analysis

The scaling in Alg. 1 relies on two parameters q and ν, while the moving in Alg. 2 re-

quires δ and µ. Below use two examples to explore how these parameters affect algorithmic

performance and to develop intuition for how to set them.

Example 9. First, we investigate the scaling technique’s dependence on q and ν by solving
∂u

∂t
+
x− 5

2 + t
· ∂u
∂x

= 0,

u(x, 0) =
1

1 + e
x−5
2

.
(5.7.14)

Here, the analytic solution is known: u(x, t) = (1 + e
x−5
2+t )−1. Since it exhibits diffusion

numerically approximating it using scaling requires a decreasing β. Table 5.3 lists scaling

factors β (bottom-left) and error (upper-right) at t = 10 for various ν and q. We have

set ∆t = 0.004, β0 = 3 and N = 24, and called the improved Euler scheme in evolve

of Alg. 1. Given the same q, the numerical solution tends to be less accurate for larger ν

because if we lift the scaling threshold, the time to invoke scaling will be delayed and errors

will accumulate. On the other hand, if we compare errors in each row of Table 5.3, we

see that with fixed ν, larger q will yield better results since adjusting the scaling factor in a

more “continuous” manner prevents abrupt, possibly delayed, over-adjustment of the scaling

factor and allowing the evolution of β to be well-matched to the diffusive evolution of the

solution. Thus, we argue that setting q ≲ 1 and ν ≳ 1 in the frequency-dependent scaling

technique will yield good results.

Example 10. In this example, we will solve


∂tu+ 2∂xu = 0,

u(x, 0) =
1

1 + e
x
2

,
(5.7.15)

to test how different choices of µ and δ affect Alg. 2’s ability to numerically capture the

translation of the known analytic solution u(x, t) = (1 + e
x−2t

2 )−1, which moves right with
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ν
q

0.6 0.8 0.9 0.95

1.05
0.3888

5.7526e-07
0.3221

5.8297e-07
0.2659

5.2818e-07
0.3663

5.2500e-07

q−1
0.2333

6.9708e-07
0.3221

5.8293e-07
0.2954

5.3177e-07
0.3663

5.2488e-07

√
2

0.3888
6.4207e-07

0.2557
5.8117e-07

0.2954
5.2836e-07

0.3855
5.2640e-07

√
3

0.3888
7.1155e-07

0.3221
6.1260e-07

0.3283
5.4353e-07

0.3855
5.2370e-07

2
0.3888

7.5526e-07
0.3221

6.5640e-07
0.3647

5.5429e-07
0.4058

5.2492e-07

Table 5.3: Errors (upper-right) and scaling factors (bottom-left) at t = 10 for different ν and q in

solving Eq. (5.7.14) with Alg. 1. A smaller ν facilitates scaling and results in more timely scaling

and a smaller error, while a larger q can scale the basis functions in a more “continuous” manner,

allowing the scaling factor to match the diffusion of the solution. That is, setting q ≲ 1 and ν ≳ 1

will be a good choice for the scaling technique.

µ
δ

0.0005 0.001 0.002 0.005

1.0001
9.9985

2.0687e-07
9.9990

2.0687e-07
10.000

2.0687e-07
25.000

8.3063e-07

1.0002
3.0320

5.2547e+12
9.9990

2.0687e-07
10.000

2.0687e-07
25.000

8.3063e-07

1.0005
0.3635

8.9856e+16
1.0420

9.3629e+15
9.9980

2.0688e-07
24.995

8.3062e-07

1.001
0.1745

1.1390e+17
0.3650

6.2077e+16
1.0880

5.3087e+15
24.990

8.3061e+8

Table 5.4: Errors in Λe (upper-right) and xL (bottom-left) at t = 5 for solving Eq. (5.7.15) using

different µ and δ and a fixed dmax = 0.05 in Alg. 2. Increasing µ renders the moving less sensitive

to translation and results in a smaller xL given the same δ. On the other hand, too large δ increases

xL excessively, leading to unnecessary additional computational cost. Thus, our guideline is to set

µ ≳ 1 and δ ≪ 1 for the exterior-error-dependent moving algorithm.

speed 2. Table 5.4 lists xL (bottom-left) and errors in Λe (upper-right) for various µ and δ at

t = 5. We have set N = 40, ∆t = 0.001, and β0 = 3 and invoked the improved Euler scheme

in evolve of Alg. 2. For the purpose of testing, we have fixed dmax = 0.05, which is much

larger than the actual translation of 0.002 associated with a single time step. According to

the numerical results reflected in Table 5.4, we see that when fixing δ, increasing µ makes

the moving less sensitive so that it eventually fails to capture the translation and leads to

large errors.

On the other hand, by fixing µ and comparing xL in each row for different δ, we discovered

that increasing δ allows xL to increase more in a single timestep, leading to larger values of

xL. Yet when µ is too small or when δ is too large, the moving mechanism may generate an
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xL which is larger than the actual translation of the solution. This results in an unnecessarily

large interior domain (0, xL) requiring more nodes in Λi in order to find an accurate numerical

solution. Hence, to achieve a more accurate reflection of translation, we propose setting µ ≳ 1

and δ ≪ 1 in Alg. 2.

5.8 Applications to structured cell population models

One example of an application requiring the solution of PDEs in an unbounded domain is

the structured population models that track populations of cells endowed with attributes

such as their size. The standard sizer-timer model for the density of cells with age near

a and size near x is formulated in [MD86], and generalizations to include stochasticity in

growth rate is studied in [STH11, Cas05]. Here we address a continuum model describing a

stochastic model for cell populations [XC21]:

∂n

∂t
+
∂n

∂a
+
∂(ng)

∂x
− 1

2

∂2(σ2n)

∂x2
= −D(x, a, t)n(x, a, t), (x, a) ∈ Λ× Λ, (5.8.1)

where n(a, x, t) describes the density of cells with respect to age a and size x at time t,

g(a, x, t) is the mean growth rate of an individual cell and σ2(a, x, t) is the variance of

stochasticity in the growth rate, i.e., dx = gdt + σdBt, for an individual cell. The fluc-

tuating growth rate manifests itself as a diffusive term. The right-hand-side of Eq. (5.8.1)

represents cell division occurring with division rate D(x, a, t). Dirichlet boundary conditions

are imposed at x = 0, n(0, a, t) = n0(a, t), and at x = +∞, n(+∞, a, t) = 0 if we assume

that there are no cells of infinite size. More importantly, the boundary condition at a = 0

should account for two daughter cells (one of size x and one of size y − x) from the binary

fission of a mother cell of size y > x:

n(x, 0, t) = 2

∫ +∞

0

da

∫ +∞

x

dy D̃(y, x, a, t)n(y, a, t), (5.8.2)
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where D̃(y, x, a, t) is the differential division rate representing the rate that a cell of age a

and size y gives birth to a daughter cell of size x < y. Integrating over the daughter cell’s

size x, D and D̃ satisfy D(y, a, t) =
∫ y

0
D̃(y, x, a, t)dx, reflecting cell number conservation.

Finally, to maintain biomass conservation during division, D̃(y, x, a, t) = D̃(y, y − x, a, t).

The prefactor 2 in Eq. (5.8.2) indicates that a cell of size y gives birth to one daughter cell

of size y − x and another of size x.

The nonlocal boundary condition Eq. (5.8.2) for cell proliferation plays an essential role

in depicting how cell division affects the cell population size and age structure, and presents

a major obstacle in numerical computation as the integration is taken in the unbounded

domain (x,+∞) × (0,+∞). Another numerical challenge arises from a possible “blowup”

behavior in which

lim
t→+∞

⟨x(t)⟩ =
∫ +∞
0

∫ +∞
0

xn(a, x, t)dadx∫ +∞
0

∫ +∞
0

n(a, x, t)dadx
= +∞. (5.8.3)

Whether blowups can occur is of biological interest [KB18, XGC20] and has been predicted

within certain cell proliferation models Eq. (5.8.1) under specific conditions [KB18].

Existing numerical methods such as the finite volume method in [XGC20] typically trun-

cate the unbounded domain into a bounded domain and therefore cannot accurately capture

long time blowup behavior of ⟨x(t)⟩. The need for numerical solutions in the unbounded

domain Λ × Λ for Eqs. (5.8.1) and (5.8.2) is thus evident. We apply the scaling technique

built in to Alg. 1 only in x-dimension for tracking the increasing ⟨x(t)⟩, considering the age

distribution is often presumed to be stable since no cell could live too long without division.

A standard two-dimensional pseudo-spectral method with the generalized Laguerre functions

are used in (a, x)-space, coupled with a third-order TVD Runge-Kutta time discretization

in t.

Example 11. We solve Eqs. (5.8.1) and (5.8.2) with g(x, a, t) = t+7, σ2(x, a, t) = 2(t+6)x,

D(x, a, t) = x/(t+ 5), D̃(y, x, a, t) = 1/(t+ 5). These parameters leads to the analytic

solution n(x, a, t) = ete−2a exp(−x/(5 + t)), which produces the mean size ⟨x(t)⟩ = 5 + t.
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This result shows that the average size is unbounded as it grows linearly in time and thus,

for general cases, requires proper scaling in x-dimension. Here we adopt the same expansion

order N in both size x- and age a-dimensions. For the nonlocal boundary condition given

in Eq. (5.8.2), we also use N + 1 Laguerre-Lobatto collocation points in each dimension to

perform the numerical integration.

Fig. 5.8 presents the numerical results with the initial scaling factors (βx, βa) = (0.9, 1)

and a timestep of 0.002. We observe that the frequency-dependent scaling algorithm 1 in

x-dimension shows a faster spectral convergence with N than that of the unscaled algorithm

(see Fig. 5.8(a)). That is, both the sizer-timer model (5.8.1) in the unbounded domain and

the nonlocal boundary condition Eq. (5.8.2) are well resolved by the Laguerre spectral ap-

proximation with frequency-dependent scaling. When fixing N = 20, the unscaled numerical

solution experiences an error growth to 1.143e-02 till t = 10 for using inappropriate scaling

factors, whereas the error of the scaled solution is less than 8.662e-06 (see Fig. 5.8(b)). The

frequency indicator in the x-dimension is kept around 10−6 (red curve with left-pointing

triangles in Fig. 5.8(c)) by continuously shrinking the scaling factor βx from 0.9 to 0.2766

for tracking the blowup (black curve with asterisks in Fig. 5.8(d)). The average size of

the scaled solution behaves almost exactly like ⟨x(t)⟩ = 5 + t and the value at t = 10 is

15.001 (see red curve with left-pointing triangles in Fig. 5.8(d)). Note that the scaling in

a-dimension will really not be triggered even when we apply the scaling algorithm for both

x- and a-dimensions.

5.9 Summary and conclusions

The key to making spectral approximations in unbounded domains more efficient is to allo-

cate collocation points in an economical manner such that crucial regimes of unknown solu-

tions can be resolved accurately. This is essentially an adaptive numerical method for PDEs

in unbounded domains, for which there are very few studies compared with its bounded-

domain counterpart. Using the standard language of adaptive methods, we proposed a
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scaling technique based on the frequency indicator, which can be regarded as r-adaptivity,

since collocation points are redistributed through the evolution of a scaling factor.

We also proposed a moving technique based on the exterior-error indicator which is

similar to h-adaptive methods since collocation points are added to the interior subdomain.

Both indicators utilize only the numerical solution and do not require prior knowledge of

unknown solutions.

It will be promising in future work to generalize the scaling and moving techniques to

the hyperbolic cross space [SW10a] which may greatly reduce the cost of higher dimensional

simulations. Promising future directions involve performing a more rigorous numerical anal-

ysis of the proposed techniques as well as providing a more detailed discussion on how to

choose key parameters when numerically solving different problems. Finally, apart from the

proposed scaling and moving techniques, a p-adaptive technique [XSC21b] which can be

applied to time-dependent problems with oscillatory behavior will be further explored.
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Figure 5.8: Numerical results obtained by the scaling algorithm Alg. 1 for the structured cell
population proliferation model Eq. (5.8.1) with the nonlocal boundary Eq. (5.8.2): The scaled
method gives better results than the unscaled one till t = 10. The latter experiences a growth
in error because inappropriate scaling factors are used, whereas the former gains a faster spectral
convergence in the expansion order N . We adopt the same N in both size x- and age a-dimensions
and set N = 20 for the last three plots. The frequency-dependent scaling is applied only in x-
dimension for tracking the blowup behavior in Eq. (5.8.3). The frequency indicator in x-dimension
is kept around 10−6 through constantly shrinking the scaling factor βx to capture the blowup. The
average size of the scaled solution is in good agreement with that of the analytical solution, i.e.,
⟨x(t)⟩ = 5 + t.
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CHAPTER 6

A frequency-dependent p-adaptive technique for

spectral methods

This is the Accepted Manuscript version of an article accepted for publication in Journal of

Computational Physics, 446, pp. 110627, (2021). It is an open-access paper. The Version

of Record is available online at [10.1016/j.jcp.2021.110627].
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6.1 Introduction

Unbounded domain problems arise in many scientific applications [Tsy98, XGC20] and

adaptive numerical methods are needed on many occasions, for instance, in solving the

Schrödinger equation in unbounded domains when the solution’s behavior varies over time

and we wish to capture the solution’s behavior in the whole domain. As an important class of

numerical algorithms, adaptive methods have witnessed numerous advances in their efficiency

and accuracy [TT03, BFH12, RW00, LLM02]. However, despite considerable progress that

has been made for spectral methods in unbounded domains [SW09], there are few adaptive

methods that apply in unbounded domains.

In [XSC21b], adaptive scaling and moving techniques were proposed for spectral meth-

ods in unbounded domains and it was noted that adjusting the expansion order is necessary

when the function displays oscillatory behavior that varies over time. In this chapter, we first

develop a frequency-dependent technique for spectral methods which adjusts the expansion

order N (N + 1 basis functions are used to approximate the solution). This technique takes

advantage of the frequency indicator defined in [XSC21b] and corresponds to p-adaptivity

[SLC11, DKT07, KX01, CNS17, ACV19]. By adjusting the expansion order efficiently, our

p-adaptive technique can be used to accurately solve problems with varying oscillatory be-

havior.

Although the work reported in [XSC21b] motivated us to develop the p-adaptive tech-

nique using the same frequency indicator for the numerical solutions, the work reported here

complements, but is fundamentally different from that in [XSC21b]. The biggest difference

is that the expansion order in [XSC21b] is fixed, while in this work it is adaptively adjusted

according to the dynamic behavior of unknown functions. For instance, as demonstrated in

Examples 17 and 18 and in the subsequent discussions, solutions to Schrödinger equations

that become increasingly oscillatory over time cannot be well approximated by the previously

proposed scaling and moving techniques in [XSC21b]. On the other hand, the p-adaptive

technique, which adjusts the expansion order alone, cannot successfully deal with diffusing
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and advecting solutions, which are captured by the moving and scaling techniques described

in [XSC21b], as shown in Examples 15, 16, and 19. Thus, an efficient and more complete

adaptive spectral method should integrate moving, scaling, and p-adaptive techniques as

charted in Fig. 6.5.

By combining this p-adaptive technique with scaling and moving methods, we develop

an adaptive spectral method that can capture diffusion, advection, and oscillations in un-

bounded domains. Since scaling and adjusting the expansion order both depend on the

frequency indicator, we also investigate the interdependence of these two techniques. We

demonstrate that appropriately adjusting the expansion order can facilitate scaling to more

efficiently distribute allocation points. In turn, proper scaling can help avoid unnecessary

increases in the expansion order when it does not increase accuracy, thereby avoiding un-

necessary computational burden.

The significance of this adaptive spectral method is that it can capture the solution’s

behavior in the whole domain. We demonstrate the utility of our method by solving

Schrödinger’s equation in R. Here, the unboundedness and the oscillatory nature of the so-

lution pose two major numerical challenges [YZ14]. Specifically, in the semiclassical regime,

when the wavelength of the solution is small, the function becomes extremely oscillatory.

Moreover, in certain situations, one has to work with a very large computational domain

that is difficult to automatically determine.

Previous numerical methods which solve Schrödinger’s equation in unbounded domains

usually truncate the domain into a finite subdomain and impose artificial boundary con-

ditions, which may be nonlocal and complicated [HJW05, YZ14, LZZ18, AAB08]. Our

adaptive spectral method tackles the oscillatory problem directly in the original unbounded

domain without the need to truncate it or to devise an artificial boundary condition.

This chapter is organized as follows. In the next section, we first present a p-adaptive

technique for spectral methods and use examples to illustrate its efficiency. In Section 6.3,

we incorporate and study this technique within existing scaling and moving techniques and

devise an adaptive spectral method in unbounded domains. Application of our adaptive
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spectral methods to numerically solving Schrödinger’s equation is given in Section 6.4. We

summarize our results in Section 6.5 and propose directions for future work.

6.2 Frequency-dependent p-adaptivity

We present a frequency-dependent p-adaptive spectral method based on information ex-

tracted from only the numerical solution of time-dependent problems. In [XSC21b], we

showed that a frequency indicator defined for spectral methods is particularly useful in

measuring the contribution of high-frequency modes in the numerical solution. Because

high-frequency modes decay more slowly, this indicator could be used to determine scaling

in spectral methods applied to unbounded domains.

In this work, we will show that the frequency indicator can also be used to determine

whether more or fewer basis functions are needed to refine or coarsen the numerical solution.

Proper refining allows one to maintain accuracy when the solution becomes more oscillatory,

while appropriate coarsening can reduce computational costs without sacrificing accuracy.

Given a set of orthogonal basis functions {Bi(x)}∞i=0 under a specific weight function

ω(x) > 0 in a domain Λ, the frequency indicator associated with the interpolation of a

function

INu(x) = UN(x) =
N∑
i=0

uiBi(x) (6.2.1)

is defined as in [XSC21b]

F(UN) :=


N∑

i=N−M+1

γiu
2
i

N∑
i=0

γiu2i


1
2

, (6.2.2)

where γi =
∫
Λ
B2

i (x)ω(x)dx is the square of L2
ω-weighted norm of the basis function Bi(x).

This frequency indicator measures the contribution of the M highest-frequency components

to the L2
ω-weighted norm of UN . Here M is often chosen to be [N

3
] following the 2

3
-rule

[HL07, Ors71]. This indicator provides a lower bound for the error divided by the norm of
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the numerical solution ∥u−IN−Mu∥ω
∥INu∥ω which is illustrated in [XSC21b]. Thus, the quality of the

numerical interpolation UN can be measured by F(UN).

For a time-dependent problem, the expansion order N may need adjusting dynamically,

which can be reflected by the frequency indicator. If the frequency indicator increases, the

lower bound for ∥u−IN−Mu∥ω
∥INu∥ω will also increase. On the other hand, as N increases, the

error ∥u− INu∥ω as well as F(UN) are expected to decrease. By sufficiently increasing the

expansion order N , the frequency indicator as well as the error can be kept small. If the

frequency indicator decreases, we can also consider decreasing N to relieve computational

costs without compromising accuracy, as was done in [SLC11]. The pseudo-code of the

proposed p-adaptive technique is given in Alg. 4.

The p-adaptive spectral method in Alg. 4 for time-dependent problems consists of two

ingredients: refinement (increasing N) and coarsening (decreasing N). The method main-

tains accuracy when there are emerging oscillations by increasing the expansion order N .

It also decreases N when the expansion order is larger than needed to avoid unnecessary

computation. In Alg. 4, the frequency indicator subroutine evaluates the frequency

indicator defined in Eq. (6.2.2) for the numerical solution UN while the evolve subroutine

is to obtain the numerical solution UN(t+∆t) at the next timestep from UN(t).

In Line 11 of Alg. 4, the refine subroutine uses UN to generate a new numerical solution

with a larger expansion order UN+1 (refine), and in Line 20 of Alg. 4 the coarsen subroutine

uses UN to generate a new numerical solution with a smaller expansion order UN−1 (coarsen).

The refinement or coarsening is achieved by reconstructing the function values of UN+1 or

UN−1 at the new set of collocation points {xi}:

UN±1(xi, t) = UN(xi, t), i = 0, ..., N ± 1, (6.2.3)

where UN+1 uses N + 2 basis functions for refinement and UN−1 uses N basis functions for

coarsening.

In Alg. 4, ηf0 is the refinement threshold such that if the current frequency indicator
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Algorithm 4 Pseudo-code of the p-adaptive technique which may increase (refine) or decrease
(coarsen) the expansion order N .

1: Initialize N,N0, γ ≥ 1, η0 = η > 1, ∆t, T , α, β, UN(0), Nmax, Nmin

2: t← 0
3: f0 ← frequency indicator(UN(t))
4: while t < T do
5: UN(t+∆t)← evolve(UN(t),∆t)
6: f ← frequency indicator(UN(t+∆t))
7: l← 0
8: if f > ηf0 then # refinement is needed
9: while f > ηf0 and l ≤ Nmax do
10: l← l + 1
11: UN+1 ← refine(UN(t+∆t))
12: N ← N + 1
13: f ← frequency indicator(UN)
14: end while
15: f0 ← f
16: η ← γη # renew η
17: else if f < f0/η0 then # coarsening could be considered
18: r ← False
19: while f < f0/η0 and N > Nmin and not r1 do
20: ŨN−1(t+∆t)← coarsen(UN(t+∆t))
21: f ← frequency indicator(ŨN−1(t+∆t))
22: if f < f0 then
23: f1 ← f
24: r ← True
25: UN−1(t+∆t)← ŨN−1(t+∆t)
26: N ← N − 1
27: end if
28: end while
29: if r then
30: f0 ← f1
31: end if
32: end if
33: t← t+∆t
34: end while
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f > ηf0, we increase the expansion order N . The while loop starting in Line 9 ensures we

either refine enough such that the frequency indicator, after increasing N , is smaller than

the threshold ηf0, or the maximal allowable expansion order increment within a single step

Nmax is reached.

After increasing N , f0 is set to the current frequency indicator and η is multiplied by

a factor γ ≥ 1, enabling us to dynamically adjust the refinement threshold for the next

refinement in order to prevent increasing N too fast without substantially increasing accu-

racy. On the other hand, when an extremely large N is needed to match the increasingly

oscillatory behavior of the numerical solution, we can set γ ⪰ 1 or even γ = 1, as we will

do in Examples 17 and 20. We have observed numerically, as expected, that the larger η0, γ

are, the more difficult it is to increase the expansion order.

We also consider reducing N when a large expansion order is not really needed and

f0/η0 is the threshold for decreasing the expansion order. If the condition in Line 17 in

Alg. 4 is satisfied and N > Nmin, the minimal allowable expansion order, and we have not

increased N in the current step, then we consider decreasing the expansion order below

Line 17 in Alg. 4. As long as the frequency indicator of the new numerical solution with

the decreased expansion order F(UN−1) is smaller than f0, the frequency indicator recorded

after previously adjusting the expansion order, reducing the expansion order is accepted;

else reducing the expansion order is declined. Therefore, f0 after coarsening will not surpass

f0 before coarsening. This procedure is described by the If condition in Line 22 in Alg. 4.

If N is decreased, f0 will become the latest frequency indicator. In addition, if the current

frequency indicator f ∈ [ f0
η0
, ηf0], neither the refinement nor the coarsening subroutine is

activated.

Alg. 4 can be generalized to higher dimensions in a dimension-by-dimension manner.

The expansion order for each dimension can change simultaneously within each timestep by

using the tensor product of one-dimensional basis functions, in much the same way moving

and scaling algorithms were generalized to higher dimensions [XSC21b]. For example, for a

two-dimensional problem, given
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Computational domain Bounded interval (0,∞) (−∞,∞)
Basis functions Jacobi polynomials Laguerre polynomials/functions Hermite polynomials/functions

Table 6.1: Typical choices of basis functions {Bi}∞i=0 and computational domain Λ.

UN⃗(x, y) :=
Nx∑
i=0

Ny∑
j=0

ui,jBi(x)Bj(y) (6.2.4)

where N⃗ = (Nx, Ny), the frequency indicator in the x-direction is defined as

Fx(UN⃗) :=


Nx∑

i=Nx−Mx+1

Ny∑
j=0

γiγju
2
i,j

Nx∑
i=0

Ny∑
j=0

γiγju2i,j


1
2

, (6.2.5)

while the frequency indicator in y-direction is similarly defined. At each timestep, we keep

Ny fixed and use Fx to judge whether or not to renew Nx → Ñx; simultaneously, we fix Nx

and use Fy to renew Ny → Ñy if adjusting the expansion order in y dimension is needed.

Finally Nx, Ny are updated to Ñx, Ñy.

In this work, the relative L2
ω-error

Error =
∥UN − u∥ω
∥u∥ω

, (6.2.6)

is used to measure the quality of the spectral approximation UN(x) compared to the reference

solution u(x). Table 6.1 lists some typical choices of orthogonal basis functions for different

domains Λ that we use in this chapter.

We provide two examples of using this p-adaptive technique in Alg. 4 below, where

the generalized Jacobi polynomials [STW11] are used. Theorem 3.41 in [STW11] gives an

estimation for the interpolation error of a function u in the Jacobi-weighted Sobolev space
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for α, β > −1 as follows

∥∂lx(IN,α,βu− u)∥ωα+l,β+l
≤

c

√
(N −m+ 1)!

N !
N l−(m+1)/2∥∂mx u∥ωα+m,β+m

, 0 ≤ l ≤ m ≤ N + 1,

(6.2.7)

where c is a positive constant independent of m,N and u. When m > 0 and l = 0, the left-

hand side becomes the interpolation error ∥(IN,α,βu − u)∥ωα,β
which may decrease with N .

Therefore, by increasing the expansion order for the Jacobi polynomials it is generally true

that the interpolation will be more accurate. Theorem 7.16 and Theorem 7.17 in [STW11]

give similar error estimates for Laguerre and Hermite interpolations, which reveals that under

some smoothness assumptions, the interpolation error decreases when the expansion order

N increases.

Since unbounded domain problems may involve diffusive and advective behavior, we

discuss and develop adaptive spectral methods in unbounded domains in the next section.

Example 12. We numerically solve the PDE

∂tu =

(
x+ 2

t+ 1

)
∂xu, x ∈ [−1, 1], (6.2.8)

with a Dirichlet boundary condition specified at x = 1 given as u(1, t) = cos 3(t + 1). This

PDE admits an analytical solution

u(x, t) = cos((t+ 1)(x+ 2)). (6.2.9)

We solve it numerically by using Chebyshev polynomials with Chebyshev-Gauss-Lobatto

quadrature nodes and weights. The Chebyshev polynomials are orthogonal under the weight

function ω(x) = (1 − x2)− 1
2 , i.e., they correspond to Jacobi polynomials with α = β = −1

2
.

Since u(x, t) becomes increasingly oscillatory over time, an increasing expansion order is

required to capture these oscillations. We start with N = 10 at t = 0, the parameters

η = 1.5, γ = 1.1, Nmax = 3, Nmin = 0, and a timestep ∆t = 0.001. We use a third-order
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Figure 6.1: Numerically solving Eq. (6.2.8) with Chebyshev polynomials using Alg. 4. For solutions
that become increasingly oscillatory, the p-adaptive technique can increase the expansion order
effectively to capture the oscillations and maintain a small error by keeping the frequency indicator
low. A fixed N = 10 fails to maintain the frequency indicator and results in a larger error, whereas
using a fixed N = 29, the largest expansion order appearing during the p-adaptive procedure,
will not result in higher accuracy at t = 6 than the p-adaptive technique but requires a higher
computational cost. The p-adaptive technique dynamically selects an expansion order N that saves
computational costs while maintaining accuracy.

explicit Runge-Kutta scheme to advance time.

The reference solution u(x, t) is plotted in Fig. 6.1(a). The increasing oscillations lead to a

fast rise in the frequency indicator as the contribution from high-frequency modes increases.

Keeping the same number of basis functions over time will fail as it will be eventually

incapable of capturing the shorter wavelength oscillations.

However, a much more accurate approximation can be obtained (see Fig. 6.1(b)) with our

p-adaptive method which maintains the frequency indicator (see Fig. 6.1(c)) by increasing

the number of basis functions (shown in Fig. 6.1(d)). Furthermore, the coarsening subroutine
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for decreasing the expansion order described in thewhile loop in Line 17 will not be triggered

(shown in Fig. 6.1(d)). The largest expansion order N = 29 appearing during the p-adaptive

procedure occurs at t = 6. For comparison, we also plot the error and the frequency indicator

for fixed N = 29 (black curves in Figs. 6.1(b, c)). Using a fixed N = 29 does not lead to a

more accurate result at t = 6 than the p-adaptive technique starting from N = 10 because a

larger expansion order is not needed when t is small. On our laptop, the solution in t ∈ [0, 6],

using fixed N = 29, took 339.0469 seconds to evaluate while p-adaptive method required only

294.9531 seconds. Therefore, the p-adaptive method maintained accuracy while requiring

a lower computational cost. In this and subsequent examples, we record the runtime as

a measure of computational costs. All computations were performed using MATLAB with

double precision running on a laptop with a 4-core i7-8550U Intel CPU running at 1.80 GHz.

When directly approximating the reference solution in Eq. (6.2.9), we can achieve 10−8

accuracy with only 20 basis functions. However, when numerically solving Eq. (6.2.8), the

error will accumulate due to the increasing oscillatory behavior which will require even more

basis functions to achieve the same accuracy as the direct approximation to Eq. (6.2.9).

Thus, the oscillatory behavior of the solution poses additional difficulties and requires even

more refinement when numerically solving a PDE.

Next, we present an example in which we apply the proposed p-adaptive technique to

approximate a function that is oscillatory over time and contains a singularity.

Example 13. We approximate the function

u(x, t) =


(1− x)−0.01 sin ((2t+ 1)(x+ 1)) , t ∈ [0, 1),

(1− x)−0.01 sin ((5− 2t)(x+ 1)) , t ∈ [1, 2),

(1− x)−0.01 sin ((2(t− 2) + 1)(x+ 1)) , t ≥ 2,

(6.2.10)

where x ∈ [−1, 1] and t ∈ [0, 6], by Chebyshev polynomials with Chebyshev-Gauss quadra-

ture nodes and weights. The function carries a singularity at x = 1 as lim
x→1
|u(x, t)| = +∞

except when t satisfies u(1, t) = 0. Away from the singularity, the function becomes more
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Figure 6.2: The p-adaptive technique applied to evaluating the singular function in Eq. (6.2.10).
The function u(x, t) becomes more oscillatory when t ∈ [0, 1] ∪ [2, 6] and less oscillatory when
t ∈ [1, 2] and has a singularity at x = 1. The error of the approximation decreases very slowly with
increasing expansion orders due to this singularity. Applying the p-adaptive technique straight-
forwardly in the whole domain [−1, 1] cannot substantially increase accuracy due to failure to
approximate the singularity.
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oscillatory in t ∈ [0, 1]∪ [2, 6] and less oscillatory when t ∈ [1, 2] as shown in Fig. 6.2(a). The

expansion order should be increased or decreased appropriately when the function becomes

more or less oscillatory to maintain accuracy or to relieve the computational burden.

As clearly shown in [GW01], the error when using spectral methods to approximate

u(x, t) in Eq. (6.2.10) with the Jacobi basis functions is about 10−4, as shown in Figs. 6.2(b,

c), where we approximate Eq. (6.2.10) with and without the p-adaptive technique by setting

the initial expansion order N = 25, η = 1.1 and γ = 1.1. It can be seen that directly

approximating u in Eq. (6.2.10) leads to a large error even with the p-adaptive technique

(red curve in Fig. 6.2(b)). Large errors are accompanied by large frequency indicators as

shown in Fig. 6.2(c). This error cannot be significantly reduced by simply increasing the

expansion order (up to N = 110 shown in Fig. 6.2(d)) because of the singularity at x = 1.

Both the error and frequency indicator decay very slowly with increasing N due to the failure

in approximating the singularity.

In order to accurately approximate u(x, t), we divide the interval x ∈ [−1, 1] into Iℓ =
[−1, 0.99) and Ir = [0.99, 1] to isolate a small neighborhood around the singularity and

approximate the function separately in the two subdomains. Fig. 6.3(a) plots the distribution

of errors associated with approximating u(x, 6) in the whole domain [−1, 1] by using a fixed

expansion order N = 38 and by using a fixed expansion order N = 26 in the subdomain

Iℓ and N = 11 in Ir. By separating the domain, the resulting errors are smaller in both

subdomains. Next, we apply the p-adaptive technique in both subdomains. In Iℓ, the

function is nonsingular and its varying oscillatory behavior resulting from the factor sin((2t+

1)(x + 1)), t ∈ [0, 1), sin ((5− 2t)(x+ 1)) , t ∈ [1, 2) or sin((2(t − 2) + 1)(x + 1)), t ≥ 2

in Eq. (6.2.10) requires proper adjustment of the expansion order. In Ir, the function is

dominated by the singular term (1− x)−0.01. In this two-subdomain approximation, we set

η = 1.05, γ = 1.1, an initial expansion order N = 10, Nmax = 15, Nmin = 0 for the numerical

solution Uℓ in subdomain Iℓ, and η = 1.2, γ = 1.1, an initial expansion order N = 5,

Nmax = 9, Nmin = 0 for the numerical solution Ur in subdomain Ir.

Fig. 6.3 displays the numerical results of first dividing the domain into two subdomains
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Figure 6.3: Dividing the function in Eq. (6.2.10) into the domains [−1, 1] = [−1, 0.99)∪[0.99, 1] and
using the p-adaptive technique to separately approximate u(x, t) in each subdomain. Dividing the
domain and separating the neighborhood of the singularity leads to improved accuracy compared
to approximating u(x, t) in the whole function [−1, 1]. In the subdomain Iℓ, oscillatory behavior
dominates, and properly adjusting the expansion order Nℓ by the p-adaptive technique is necessary
(red curve in (d)). In the subdomain Ir, adjusting the expansion order Nr is not essential (blue
curve in (d)).

Iℓ ∪ Ir and then approximating the function separately in each of them. As shown in

Fig. 6.3(b), the errors for the p-adaptive methods in the subdomains Iℓ and Ir are smaller

presumably because the frequency indicators in both subdomains can be better controlled,

as shown in Fig. 6.3(c). To approximate the varying oscillatory behavior in Iℓ we need to

adjust Nℓ (the expansion order for Uℓ) while to approximate u(x, t) in the neighborhood of

the singularity in Ir does not rely on adjusting the expansion order (Fig. 6.3(d)). Thus,

by using this domain separation strategy to isolate the neighborhood of the singularity, the

p-adaptive technique can be used to capture varying oscillatory behavior, leading to higher

accuracy if the singular behavior is appropriately captured.
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Finally, we present an example of a two-dimensional problem in [−1, 1]2.
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Figure 6.4: Using the p-adaptive technique to approximate the two-dimensional function in
Eq. (6.2.11) with Legendre polynomials. Refinement is applied in each direction simultaneously
to capture increasing oscillations in both directions. Coarsening is applied when large expansion
orders are not needed. Anisotropic oscillatory behavior requires adjusting the expansion order in
each direction differently. The frequency indicators in both dimensions are kept low, leading to a
small error.

Example 14. We approximate the function

u(x, y, t) = cos
(
xy(5− 2|t− 5

2
|)
)
+ y10−4|t−5/2| sin

(
4x(5− 2|t− 5

2
|)
)
, (x, y) ∈ [−1, 1]2

(6.2.11)

by Legendre polynomials (corresponding to Jacobi polynomials with α = β = 0) with

Legendre-Gauss-Lobatto quadrature nodes and weights in both dimensions. Within t ∈
[0, 5

2
], the function becomes more oscillatory over time in both dimensions, requiring increas-

ing expansion orders. For t ∈ [5
2
, 7
2
], the error for approximation with fixed expansion orders

in both dimensions decreases because the function becomes less oscillatory, and therefore a
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reduction in expansion orders in both directions can be used to reduce computational effort

without compromising accuracy. Since the function is not symmetric in x and y, the ad-

justment of expansion order is anisotropic. We show that Alg. 4 can appropriately increase

Nx, Ny when t < 5
2
and reduce Nx, Ny when t ≥ 5

2
. We take Nx = Ny = 36 at t = 0 with

a timestep ∆t = 0.01, and γx = γy = 1.1, ηx = ηy = 1.1, Nmax,x = Nmax,y = 3, Nmin,x =

Nmin,y = 0. The maximum expansion orders during t ∈ [0, 5] are Nx = 64 and Ny = 51 for

the p-adaptive method, which we also use as fixed expansion orders for comparison.

It is evident from Fig. 6.4(a) that fixing the number of basis functions to Nx = Ny = 37

in each dimension leads to an approximation that deteriorates while the proposed p-adaptive

spectral method can keep the error small. The p-adaptive technique can maintain the same

accuracy as usingNx = 64 andNy = 51, as shown in Fig. 6.4(a), but requires only 2.3681×103

seconds of run-time compared to 2.5365× 103 seconds when using fixed Nx = 64, Ny = 51.

This example confirms that the p-adaptive technique can reduce computational burden by

appropriate adjustment of the expansion order. Furthermore, when t ∈ [5
2
, 5] we see that with

fixed expansion orders Nx = 64 and Ny = 51 the approximation error decreases, indicating

that coarsening can be tolerated to relieve computational burden while maintaining accuracy.

Alg. 4 first tracks increasing oscillations by increasing expansion orders in both x and y

directions. When t ≥ 5
2
, Alg. 4 senses a decrease in the frequency indicator and decreases

both Nx and Ny adaptively (Fig. 6.4(b)) without compromising accuracy (blue and black

curves in Fig. 6.4(a)). Overall, Alg. 4 preserves accuracy at all times while avoiding excessive

values of Nx and Ny when they are not needed.

Since sin(4x(5− 2|t− 5
2
|)) is the most oscillatory term in u(x, y, t), the function is more

oscillatory in x than in y for t ∈ [0, 5
2
]. Therefore, the expansion orders should be adjusted

anisotropically and we expect Nx needs to be increased more than Ny in order to keep Fx

small, which is indeed observed (Fig. 6.4(b)). That is, the proposed p-adaptive technique can

successfully sense the function’s heterogeneity and adjust the expansion orders differently in

each dimension. Over time, both Fx and Fy in the p-adaptive approximation are maintained

as well as when Nx = 64 and Ny = 51 are fixed (Figs. 6.4(c, d)), leading to satisfactory error
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control.

6.3 Adaptive spectral methods in unbounded domains

Unbounded domain problems are often more difficult to solve numerically than bounded

domain problems. Diffusion and advection in unbounded domains necessitates knowledge of

the solution’s behavior at infinity. To distinguish and handle diffusive and advective behavior

in unbounded domains, techniques for scaling and moving basis functions are proposed in

[XSC21b]. When combining scaling, moving, refinement, and coarsening, we can devise

a comprehensive adaptive spectral approach for unbounded domains. A flow chart of our

overall approach is given in Fig. 6.5. The scaling, refinement, and coarsening techniques all

rely on a common frequency indicator.

As is stated in [XSC21b], advection may cause a false increase in the frequency indicator.

Thus, we must first compensate for advection by the moving technique before we consider

either scaling or adjusting the expansion order. Next, as the cost of changing the scaling

factor is lower than increasing the expansion order, we implement scaling before adjusting

the expansion order. Only if scaling cannot maintain the frequency indicator below the

refinement threshold do we consider increasing the expansion order. Coarsening is also

considered after scaling if the frequency indicator decreases below the threshold.

As was done in [XSC21b], we also decrease the scaling factor β by multiplying it by a

common ratio q < 1 if the current frequency indicator is larger than the scaling threshold f >

νf1. The scaling we perform here contains an additional step: when the current frequency

indicator decreases and is below f1, we consider increasing the scaling factor β by dividing it

by the common ratio q as long as the frequency indicator decreases after increasing β. When

f ∈ [f1, νf1], β is neither increased nor decreased. Thus, at each step, the scaling factor

β may be either increased or decreased as long as the frequency indicator decreases after

adjusting the scaling factor. A decrease in the scaling factor indicates that the allocation

points are more efficiently distributed. These changes avoid the unnecessary computational
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burden that may arise if N is excessively increased. We briefly describe our modified scaling

subroutine for one timestep in Alg. 5.

Algorithm 5 Pseudo-code of the frequency-dependent scaling technique which may increase or
decrease the scaling factor β.

1: f ← frequency indicator(U
(α,β)
N (t+∆t))

2: if f > νf1 then # try decreasing β
3: β̃ ← qβ

4: U
(α,β̃)
N ← scale(U

(α,β)
N (t+∆t), β̃)

5: f̃ ← frequency indicator(U
(α,β̃)
N )

6: while f̃ ≤ f and β̃ ≥ β do

7: β ← β̃

8: U
(α,β)
N (t+∆t)← U

(α,β̃)
N

9: f1 ← f̃
10: f ← f̃
11: β̃ ← qβ

12: U
(α,β̃)
N ← scale(U

(α,β)
N (t+∆t), β̃)

13: f̃ ← frequency indicator(U
(α,β̃)
N )

14: end while
15: else if f < f1 then # try increasing β
16: β̃ ← β/q

17: U
(α,β̃)
N ← scale(U

(α,β)
N (t+∆t), β̃)

18: f̃ ← frequency indicator(U
(α,β̃)
N )

19: while f̃ ≤ f and β̃ ≤ β do
20: β ← β̃

21: U
(α,β)
N (t+∆t)← U

(α,β̃)
N

22: f1 ← f̃
23: f ← f̃
24: β̃ ← β/q

25: U
(α,β̃)
N ← scale(U

(α,β)
N (t+∆t), β̃)

26: f̃ ← frequency indicator(U
(α,β̃)
N )

27: end while
28: end if

For simplicity, we assume that the function is moving rightward so we need to move

the basis functions rightward. Therefore, (xR,∞) is the “exterior domain” of the spectral

approximation on which we wish to control the error as illustrated in [XSC21b]. For Laguerre

polynomials/functions the parameter xL in the algorithm in Fig. 6.5 denotes the starting
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point for the approximation, while for Hermite polynomials/functions xL represents the

translation of Hermite polynomials/functions, i.e., we use {Hi(x−xL)} or {Ĥi(x−xL)}. Let
U

(β)
N,xL

be the spectral approximation with the scaling factor β. The exterior-error indicator

for the semi-unbounded domain is defined in [XSC21b] and we can generalize it to R when

using Hermite polynomials/functions

E(U (β)
N,xL

, xR) =
∥∂xU (β)

N,xL
· I(xR,+∞)∥ωβ

∥∂xU (β)
N,xL
· I(−∞,+∞)∥ωβ

, (6.3.1)

where ωβ is the weight function and xR is taken to be x
(β)

[ 2N+2
3

]
for Hermite functions/polynomials

and x
(α,β)

[N+2
3

]
for Laguerre functions/polynomials [XSC21b] in view of the often-used 2

3
-rule. The

difference between the choices of xR for Hermite and Laguerre basis functions arises because

the allocation points for Hermite functions are symmetrically distributed around their cen-

ter while those for Laguerre functions are one-sided, to the right of the starting point xL in

the axis. If the solution u(x) moves rightward in time, the spectral approximation at large

distances may deteriorate and the exterior-error indicator E(U (β)
N,xL

, xR) will increase. This

means that the moving mechanism will be triggered and the starting point of the spectral

approximation will need to be updated by xL → xL + d0 with the displacement determined

by d0 = min{nδ, dmax}. Here n is the smallest integer satisfying E(U (β)
N,xL

, xR + nδ) < µe0,

δ is the minimum displacement, dmax is the maximum displacement, and µ represents the

threshold of the increase in the exterior-error indicator (the current value of which is given

by e0) that we can tolerate.

For the scaling subroutine, we need the following parameters: the common ratio q < 1

that we use to geometrically shrink/increase the scaling factor, the parameter describing the

threshold for considering shrinking the scaling factor ν; a predetermined lower bound for the

scaling factor β and an upper bound β. For the moving subroutine, the required parameters

include the minimal displacement for the moving technique δ, the maximal displacement

within a single timestep dmax, and the parameter of the threshold for activating the moving

technique µ. At the beginning t = 0, we need to ensure the frequency indicator and the
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Initialize N , ∆t, T , β, U
(β)
N (0), xL, xR = x

(β)

[N+2
3 ]

f0, f1 ← frequency indicator(U
(β)
N,xL

(x, t))

e0 ← exterior error indicator(U
(β)
N,xL

(x, 0), xR)

t < TEnd

MOVE?

Renew e0, xL, xR

SCALE?

Renew β, f1, xR

REFINE or COARSEN?

t = t+∆t

REFINE?

Renew η

Renew e0, f0, f1, xR, N

Yes

No

No

Yes

Yes

No

NoYes

No

Yes

Figure 6.5: Flow chart of an adaptive spectral method in unbounded domains that includes moving,
scaling, refinement, and coarsening techniques.
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γ
η

1.2 1.5 2 4

1.05
1.305e-05

1.434, 67
2.346-05

1.434, 64
7.687e-05

1.362, 58
6.030e-05

2.053, 55

1.1
2.500e-05

1.510, 62
5.396e-05

1.434, 69
5.513e-05

1.673, 66
6.030e-05

2.053, 55

1.2
4.451e-05

1.853, 56
5.512e-05

1.673, 56
8.927e-05

1.673, 53
8.706e-05

1.853, 53

1.5
1.369e-04

1.589, 52
8.927e-05

1.673, 53
1.099e-04

1.761, 52
8.702e-05

1.951, 53

Table 6.2: Error, β, and N at t = 5 for different η and γ with both p-adaptive and scaling
techniques.

exterior-error indicator are relatively small by choosing a suitable initial scaling factor β and

an appropriate initial translation of basis functions xL, respectively. The scale and move in

Fig. 6.5 are the scaling and moving subroutines and exterior error indicator calculates

the exterior-error indicator for the moving subroutine. Detailed discussions on the scaling

and moving techniques are given in [XSC21b]. Note that after the expansion order N has

changed, we need to renew the threshold for scaling, the threshold for subsequent adjustment

of the expansion order, as well as the threshold for moving, as indicated in Fig. 6.5. After

first applying the moving technique, adjusting the expansion order and scaling both depend

on the frequency indicator and aim to keep the frequency indicator low to control the error.

The relationship and interdependence between them is key to understanding and justifying

the first-scaling-then-adjusting expansion-order procedure in Fig. 6.5. Thus, we need to

investigate how the proposed scaling technique will affect our p-adaptive technique and

how these two techniques interact with each other. We use two examples containing both

diffusive and oscillatory behavior to investigate how the two techniques will be activated

and influence each other. In Example 15, both refinement and reducing β are needed for

matching increasing oscillatory and diffusive behavior of the solution; in Example 16, a less

oscillatory and diffusive solution over time implies that coarsening and increasing β may be

considered.
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γ
η

1.2 1.5 2 4

1.05
1.316e-05

79
3.720e-05

71
9.724e-05

65
2.364e-04

59

1.1
4.372e-05

70
6.544e-05

67
9.823e-05

64
2.607e-04

58

1.2
9.724e-05

65
1.534e-04

62
1.597e-04

61
2.607e-04

58

1.5
2.364e-03

59
2.364e-04

59
2.607e-04

58
3.508e-04

56

Table 6.3: Error and N at t = 5 for different η and γ with the p-adaptive technique but without
the scaling technique, β = 4.

Example 15. We approximate the function

u(x, t) = exp

[
− x

(bt+ a)

]
cosx, t ∈ R+ (6.3.2)

with the generalized Laguerre function basis {L̂(α,β)
i (x)}∞i=0 discussed in [XSC21b] with the

parameter α = 0. The magnitude of oscillations for this function, exp(− x
(bt+a)

), increases

over time, requiring proper scaling. Under a variable transformation y = x
bt+a

, u(x, t) can

be rewritten as u(y, t) = cos ((bt+ a)y) exp(−y), indicating that the solution is increasingly

oscillatory in y as time increases. Thus, if we reduce the scaling factor β to match the

diffusive behavior of the solution, proper refinement is also required. In other words, diffusive

and oscillatory behavior is coupled in this example. We carry out numerical experiments

using the algorithm described in Fig. 6.5 with different (η, γ) to investigate how scaling and

refinement influence each other. We deactivate the moving technique by setting dmax = 0

since the solution exhibits no intrinsic advection. Even if we had allowed moving, it was

hardly activated. We set ∆t = 10−3, N = 50 at t = 0 and a = 2, b = 0.7. q = v−1 =

0.95, β = 0.3, β = 10, Nmin = 0, Nmax = 3 and choose the initial scaling factor β = 4.

In Tables 6.2 and 6.3 the error in R+ is recorded in the lower-left part of each entry

while the scaling factor β and expansion order N at t = 5 is recorded in the upper-right.

By comparing entries in each column/row for smaller η, γ, both tables show the expansion

order N is likely to be increased more when the threshold for refinement ηf0 is lower.
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We see from Table 6.2 that with more refinement β tends to be smaller. This interaction

between p-adaptivity and scaling arises because more refinement leads to a larger expansion

order N and a smaller scaling threshold νf1. Since scaling will only be performed if the

frequency indicator after scaling decreases, proper refinement is not likely to lead to over-

scaling. Moreover, by comparing N at t = 5 between Tables 6.2 and 6.3, we see that N

tends to be smaller with the scaling technique for the same γ, η. This implies that without

scaling, the refinement procedure is more often activated, leading to a largerN to compensate

for the incapability of scaling alone to maintain a low-frequency indicator. This results in

a larger computational burden without an improvement in accuracy. This behavior has

been expected from the design of Alg. 6.5 since we put scaling before refinement so that

redistribution of collocation points is tried first to avoid unnecessary refinement when the

increase in frequency indicator results from diffusion instead of oscillation.

Example 16. We approximate the function

u(x, t) = exp [−(bt+ a)x] cosx, x, t ∈ R+ (6.3.3)

with the generalized Laguerre function basis with the parameter α = 0. The magnitude of

oscillations for this function, exp(−(bt+ a)x), decreases over time and increasing the scaling

factor β to more densely redistribute the allocation points is needed. Furthermore, under the

variable transformation y = (bt+a)x, u(x, t) can be rewritten as u(y, t) = cos( y
bt+a

) exp(−y).
Since the oscillations decrease with y, one can reduce the expansion order. We consider coars-

ening with or without scaling to investigate whether increasing β can facilitate coarsening

(and save computational effort) or result in higher accuracy. We carry out numerical ex-

periments using the algorithm described in Fig. 6.5 and different (η, γ) and also deactivate

the moving technique by setting dmax = 0 since the solution exhibits no intrinsic advec-

tion. We set ∆t = 10−3, N = 50 at the beginning and set the parameters a = 1
2
, b = 0.5,

q = v−1 = 0.95, β = 0.3, β = 10, Nmin = 0, Nmax = 3 and initial scaling factor β = 4. We use

a different threshold η0 for coarsening and we have checked numerically that the parameter
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η 1.2 1.5 2 4

Scaled
6.514e-10

5.728, 11
8.885e-12

7.032, 13
1.260e-11

6.347, 13
1.255e-14

6.681, 17

Unscaled
2.707e-12

4, 20
8.127e-11

4, 28
9.417e-15

4, 31
9.672e-15

4, 30

Table 6.4: Error, β and N at t = 5 for different η0 and γ with/without scaling for the p-adaptive
technique.

γ in the refinement subroutine will not affect the coarsening subroutine in this example.

In Table 6.4 the error in R+ is recorded in the lower-left part of each entry while the

scaling factor β and expansion order N at t = 5 is recorded in the upper-right. By comparing

entries in each row we see that a smaller η0 will lead to easier coarsening and a smaller N at

t = 5. Since the approximation with larger N is always better, whether we can achieve the

same level of accuracy with a smaller expansion order N , if proper scaling is implemented,

is of interest. The initial approximation error is 1.960 × 10−9 and the approximation will

not worsen after coarsening regardless of η0 because in the p-adaptive subroutine coarsening

is allowed only when the post-coarsening frequency indicator remains below the previous

threshold f0. Moreover, by comparing the two rows in Table 6.4 we see that if the solution

concentrates and becomes less diffusive, increasing β and more efficiently redistributing the

allocation points allows the scaling technique to achieve high accuracy with fewer expansion

orders than without the scaling technique.

The time-dependent errors and expansion orders are plotted in Fig. 6.6 where the p-

adaptive method is compared with the non-p-adaptive method when scaling is applied. From

Figs. 6.6(a, c) we can observe that both scaled and unscaled methods maintain the error

below the initial approximation error. Yet, upon comparing Fig. 6.6(b) to Fig. 6.6(d) it

is readily seen that the scaled method leads to appropriate coarsening while succeeding

in maintaining low error, but the unscaled method will increase N when increasing the

expansion order is not actually needed, resulting in an additional unnecessary computational

burden. In Fig. 6.6(e) the scaled and p-adaptive spectral method with η0 = 4 is compared

with the scaling-only spectral method. We see that the errors for both methods are almost

the same but the p-adaptive method can reduce unnecessary computation by decreasing N
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Figure 6.6: Approximation to Eq. (6.3.3) with scaling and p-adaptive spectral methods. Increas-
ing β by scaling can save computational burden while maintaining accuracy by more efficiently
redistributing allocation points. The approximation error is controlled below the initial approx-
imation error for both scaled and unscaled p-adaptive methods, but the expansion order of the
scaled method is smaller. On the other hand, adjusting the scaling factor without decreasing N
will not achieve higher accuracy even with a much larger expansion order.
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adaptively while still maintaining a low error, and the approximation error for the p-adaptive

method fluctuates due to a decreasing N .

Fig. 6.6(f) shows that the scaling factor β is increased more in the p-adaptive method,

implying that the reason why the p-adaptive method can achieve the same accuracy as

the non-p-adaptive method with a smaller expansion order is that it can redistribute the

allocation points more efficiently.

Finally, we conclude that all three methods: scaling, p-adaptive+scaling, and p-adaptive

methods can maintain the error well below the initial approximation error, but the com-

bined p-adaptive+scaling method can achieve this with the smallest expansion order and is

therefore the most efficient method among them.

6.4 Applications in solving the Schrödinger equation

In this section, we apply our adaptive spectral methods described in Fig. 6.5 to solve the

Schrödinger equation in unbounded domains

i∂tψ(x, t) = −∂2xψ(x, t) + V (x)ψ(x, t) + Vex(x, t)ψ(x, t), x ∈ R, (6.4.1)

which is equivalent to the PDE discussed in [LZZ18]

i∂tu(x, t) =
[
−(∂x + iA(x, t))2 + V (x, t)

]
u(x, t) (6.4.2)

under the transformation u(x, t) = ei
∫ t
0 Vex(x,s)dsψ(x, t). Here, we shall use spectral methods

with the Hermite function basis. The solution is complex, so in the spectral decomposition,

the coefficients of the basis functions are complex. The major difference here is that in

[LZZ18] the Schrödinger equation is solved in a bounded domain (x−, x+) with absorbing

boundary conditions. Using spectral methods, we are able to solve the Schrödinger equation

without truncating the domain.
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We solve the weak form of Eq. (6.4.1)

(∂tψ, v) = −i(∂xψ, ∂xv)− i((V (x) + Vex(x, t))ψ, v), v ∈ L2(−∞,∞), (6.4.3)

which is to find Ψβ
N,xL

(t, x) :=
∑N

i=0 ψ
β
i,xL

(t)Ĥβ
i (x − xL) in V β

N,xL
= span{Ĥβ

i (x − xL)}Ni=0

satisfying the initial condition and

(∂tΨ
β
N,xL

, v) + i(∂xΨ
β
N,xL

, ∂xv) = −i((V (x) + Vex(x, t))ΨN,xL
, v), ∀v ∈ V β

N,xL
. (6.4.4)

We denote ψβ
N,xL

(t) := (ψβ
0,xL

(t), ..., ψβ
N,xL

(t)), which can be analytically solved to advance

time

ψβ
N,xL

(tn+1) = exp

[
−i
∫ tn+1

tn

(Dβ
N + V β

N,xL
(t))dt

]
ψβ

N,xL
(tn) (6.4.5)

where Dβ
N ∈ R(N+1)×(N+1) is a symmetric matrix with entries

(Dβ
N)ℓj =



− β2
√
ℓ(ℓ+ 1) j = ℓ+ 2,

− β2
√

(ℓ− 2)(ℓ− 1) j = ℓ− 2,

β2 ℓ

2
j = ℓ,

0 otherwise,

(6.4.6)

and the matrix V β
N,xL

(t) ∈ R(N+1)×(N+1) has entries

(V β
N,xL

(t))ℓj =

∫ ∞
−∞

(V (x) + Vex(x, t))Ĥβ
ℓ−1(x− xL)Ĥβ

j−1(x− xL)dx. (6.4.7)

The evaluation of exp(−i
∫ tn+1

tn
(Dβ

N + V β
N,xL

(t))dt)ψβ
N,xL

(tn) is performed as follows. First,

we denote Ṽ β
N,xL

≈
∫ tn+1

tn
V β
N,xL

(t)dt where the integration is evaluated by Gauss-Legendre

formula. Therefore, when calculating the matrix-vector product Ṽ β
N,xL

XN for a vector XN :=

(X1, ..., XN) ∈ RN+1, its ℓth component is
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(ṼN,xL
XN)ℓ =

N∑
j=0

N∑
s=0

Ĥβ
ℓ−1(x

β
s )Ĥ

β
j (x

β
s )

[
V (xβs + xL) +

5
18
Vex(x

β
s + xL, tn +

1
2
(1−

√
3
5
)dt)

+ 4
9
Vex(x

β
s + xL, tn +

dt
2
) + 5

18
Vex(x

β
s + xL, tn +

1
2
(1 +

√
3
5
)dt)

]
Xj∆t

(6.4.8)

where ∆t = tn+1 − tn. We can first calculate

N∑
j=0

Ĥβ
j (x

β
s )

[
V (xβs + xL) +

5
18
Vex(x

β
s + xL, tn +

1
2
(1−

√
3
5
)dt)

+ 4
9
Vex(x

β
s + xL, tn +

d
2
) + 5

18
Vex(x

β
s + xL, tn +

1
2
(1 +

√
3
5
)dt)

]
Xj∆t (6.4.9)

for each subindex s; then, evaluating (Ṽ β
N,xL

XN)ℓ for each subindex ℓ will only require an

O(N) operation. In this way, given any arbitrary potentials V (x), Vex(x, t) we can calculate

Ṽ β
N,xL

XN in O(N2) operations without explicitly calculating entries in Ṽ β
N,xL

. We approxi-

mate the matrix-vector product exp
[
−i(Dβ

N∆t+ ṼN,xL
)
]
ψβ

N,xL
(tn) in the following way: we

rewrite exp
[
−i(DN∆t+ ṼN,xL

)
]
ψβ

N,xL
(tn) = exp

[
− 1

m
i(DN∆t+ ṼN,xL

)
]m
ψβ

N,xL
(tn), which

is introduced as the “scaling and squaring” method in [MV78], and approximate the matrix-

vector product exp
[
− 1

m
i(DN∆t+ ṼN,xL

)
]
XN by truncating the infinite Taylor expansion

series
∑∞

j=0
1

mjj!

[
−i(DN∆t+ ṼN,xL

)
]j

XN . Here, we take m = 3.

As mentioned in Section 6.1, two main numerical difficulties when solving the Schrödinger

equation are the unboundedness and the oscillatory behavior of the solutions. In fact, the

solution may be increasingly oscillatory behavior at infinity over time, making it very hard

to solve in the unbounded domain. However, with our adaptive spectral methods, we can

efficiently solve the Schrödinger equation in unbounded domains accurately and capture

these oscillations.

We now revisit the examples of linear Schrödinger equations discussed in [LZZ18], non-

linear Schrödinger equations discussed in [TA84], and their semiclassical limits studied in
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[IKS19]. In the following examples, curves labeled “adaptive” indicate that scaling, mov-

ing, and p-adaptive techniques are all applied as described in Fig. 6.5, while curves labeled

“non-adaptive” indicate none of the three adaptive techniques is applied. Results obtained

by applying some of the three techniques are marked by curves named by the corresponding

techniques that are applied.

Example 17. We numerically solve the Schrödinger equation which is solved in Example 1

of [LZZ18] and take V = Vex = 0 in Eq. (6.4.1), admitting the analytic solution

Ψ(x, t) =
1√
ζ + it

exp

[
ik(x− kt)− (x− 2kt)2

4(ζ + it)

]
, (6.4.10)

where k is related to the propagation speed of the beam and ζ determines the width of the

beam. The absolute values of the real part of Ψ(x, t = 0, 0.5, 1) are plotted in Fig. 6.7(a),

illustrating the increasingly oscillatory and diffusive behavior in the rightward propagating

solution. Treatment of this solution will thus require scaling, moving, and p-adaptive tech-

niques. The imaginary parts of the reference solution (not plotted) over time are also increas-

ingly oscillatory. We shall apply the algorithm described in Fig. 6.5. We set ζ = 0.3, k = 1,

and initialize N = 50 at t = 0. Other parameters are set to q = ν−1 = 0.95, µ = 1.0002, d0 =

0.005, β = 0.3, β = 2, dmax = 0.1, Nmax = 6, Nmin = 0, η = 1.1, γ = 1.05, and ∆t = 0.005.

Note that with zero potential, Eq. (6.4.5) reduces to

ψβ
N(tn+1) = exp(−iDβ

Ndt)ψ
β
N(tn). (6.4.11)

When all four techniques are applied, the error is the smallest (shown in Fig. 6.7(b)) since

we can keep the exterior error indicator in (xR,∞) small (shown in Fig. 6.7(c)) by matching

the solution’s intrinsic advection. We can simultaneously prevent the frequency indicator

from growing too fast (shown in Fig. 6.7(d)), thus ensuring a small error bound.

From the reference solution, one observes that increasing the expansion order over time

is an intrinsic requirement and failure to do so prevents the capture of the increasing oscil-

lations, leading to a huge error. As the function becomes increasingly oscillatory as x→∞,
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Figure 6.7: Numerically solving the Schrödinger equation with vanishing potentials. Applying
scaling, moving, and p-adaptive techniques can successfully capture diffusive advective, and oscilla-
tory behavior of the solution and yields an accurate numerical solution that prevents the frequency
indicator from growing too fast. The exterior-error indicator is also kept small by moving the basis
functions rightward to avoid a deteriorating approximation at∞. Failure to incorporate any of the
moving, scaling, or p-adaptive techniques results in a much larger error.
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moving the basis rightward requires correspondingly more refinement (shown in Fig. 6.7(e)).

However, the p-adaptive method alone cannot compensate for the inability to capture dif-

fusion and advection, resulting in an inaccurate approximation. We have also checked that

apart from what is shown in Fig. 6.7, applying any single scaling, moving or p-adaptive tech-

nique, or combining any two of them will all result in a much larger error than employing

all three techniques indicated in Fig. 6.5. The adaptive spectral method produced an error

of 3.4572× 10−8 and required 162.6 seconds of laptop run-time. If we use a fixed N = 116,

which is the largest expansion order during t ∈ [0, 1], while activating the scaling and moving

techniques 199.2 seconds of run-time is required for an error of 2.0661× 10−8. This example

verifies that the p-adaptive technique can provide computational savings through adaptive

adjustment of the expansion order while maintaining an equivalent accuracy as by using the

largest expansion order.

Example 18. We solve the following 2-D Schrödinger equation in R2 × R+:

i∂tψ(x, y, t) = −∆ψ(x, y, t), (6.4.12)

that admits the analytic solution

Ψ(x, y, t) =
1√

ζx + it
exp

[
− x2

4(ζx + it)

]
· 1√

ζy + it
exp

[
y2

4(ζy + it)

]
, (6.4.13)

which is diffusive and becomes increasingly oscillatory over time in both dimensions. Also,

the function is heterogeneous and requires different scaling and adjustment of the expansion

orders in each dimension. We shall still solve the weak form by similar schemes described

in Eqs. (6.4.4) and (6.4.5) to forward time. Since the function is not advecting over time,

we deactivate the moving technique by setting the maximal displacement to 0. We set

ζx = 0.5, ζy = 0.3 in Eq. (6.4.13) with which the function is more oscillatory and diffusive in

x, the initial scaling factors: βx = 1, βy = 1.2, the initial expansion orders: Nx = Ny = 50,

qx = qy = ν−1x = ν−1y = 0.95 for scaling, and ηx = ηy = 1.02, γx = γy = 1 for p-adaptivity.

Because of the application of the frequency indicators in both directions, the spectral
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Figure 6.8: Numerically solving the 2-D Schrödinger equation Eq. (6.4.12). Applying scaling and
p-adaptive techniques can capture diffusive and oscillatory behavior of the solution. The solution is
heterogeneous in each dimension and requires adjusting the scaling factors and frequency indicators
differently in x- and y-directions.

method with the p-adaptive and scaling techniques leads to the smallest error (Fig. 6.8(a)). In

Fig. 6.8(b) we plot frequency indicators in the x-direction and show that the spectral method

with both scaling and p-adaptive techniques gives rise to the smallest values. Furthermore,

since the function is more diffusive and oscillatory in x, βx, the scaling factor in x is decreased

more than βy when only scaling is used, as shown in Fig. 6.8(c). Expansion orders Nx in both

scaling and scaling + p-adaptive methods increases faster than Ny, as shown in Fig. 6.8(d).

Fig. 6.8(d) also shows that proper scaling can avoid unnecessary increases in the expansion

order, in this case, Ny. As shown in Fig. 6.8(a), increasing the expansion order without

scaling leads to an even larger error at t = 1 than that obtained under pure scaling.

For comparison, we also use the spectral method without the p-adaptive technique and

fix the expansion orders Nx = 124, Ny = 80, the largest values reached under the p-adaptive
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and scaling techniques. The error 3.1852 × 10−5 is comparable to the error 3.0366 × 10−5

of the adaptive method, but the run-time 7.1705 × 104 seconds (when using fixed Nx =

124, Ny = 80) is significantly larger than the 4.9508× 104 seconds necessary for the adaptive

method. Therefore, using the p-adaptive technique to adjust the expansion order efficiently

can significantly reduce computational costs without sacrificing accuracy.

Example 19. We numerically solve the following nonlinear Schrödinger equation in R

[TA84]:

i∂tψ = ∂2xψ + 2|ψ|2ψ, ψ(x, 0) = 2e−2ixsech(2x), (6.4.14)

which admits an analytic solution

ψ(x, 0) = 2e−2ixsech(2x− 8t). (6.4.15)

Clearly, the function translates rightward, requiring a corresponding translation of the basis

functions. In Example 16 we have demonstrated that successfully capturing the diffusive

behavior of the numerical solution by the scaling technique can prevent the unnecessary

increase in the expansion order. Here, we show that successfully capturing the advective

behavior of the solution can also help avoid the unnecessary increase of the expansion order,

reducing computational costs. Since the solution does not exhibit diffusive behavior, we use

the algorithm described in Fig. 6.5 but deactivate the scaling technique.

For the p-adaptive technique, we set η = 1.3, γ = 1, Nmax = 20, and Nmin = 0 while

for the moving technique we set µ = 1.00005, δ = 0.0005, dmax = 0.01, the initial expansion

order N = 120, the scaling factor β = 1.3, and set the timestep ∆t = 0.0005. An explicit

third-order Runge Kutta scheme is used to forward time.

Spectral methods including the moving technique can achieve the highest accuracy and

maintain the smallest frequency indicator as shown by the green and red curves in Figs. 6.9(a,

b), respectively. Since the oscillatory behavior of the solution does not vary over time
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Figure 6.9: Numerically solving the nonlinear Schrödinger equation in Eq. (6.4.14). The solution
translates rightward which may cause a false increase in the frequency indicator leading to a large
error if the moving technique is not applied. If moving is not applied, the expansion order will
need to be increased to give an accurate solution. However, by properly moving the basis functions
rightward using the moving technique, accuracy can be maintained without increasing the expansion
order. Therefore, the moving technique is required in addition to the p-adaptive method.

and the function translates to the right with speed 4s−1, the p-adaptive technique will not

be activated as long as we properly move the basis functions rightward. Translation can

be accurately captured by the moving technique (Figs. 6.9(c, d)). However, as shown in

Fig. 6.9(d), without the moving technique, the p-adaptive method increases the expansion

order to maintain accuracy, resulting in a higher computational cost. As mentioned in

[XSC21b], translation will induce a false increase in the frequency indicator. Successfully

resolving the translation can be used to prevent unnecessary increases in the expansion order.

In this example, the moving and p-adaptive technique requires 2.1569× 103 seconds of run-

time while the p-adaptive technique without moving required 3.8235× 103 seconds. Thus, it

is important to first properly move the basis functions before adjusting the expansion order.
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Next, we numerically solve the Schrödinger equation with non-vanishing potentials.

Example 20. We numerically solve the following standard Schrödinger equation Eq. (6.4.1)

equivalent to Example 2 in [LZZ18] with the potentials

Vex(x, t) =
50√
π
sin(10t)

∫ x

−∞
exp(−z2)dz, V (x) = −10

[
e−10(x−1)

2

+ e−10(x+1)2
]
. (6.4.16)

Given an even function as the initial condition for Example 2 in [LZZ18], the solution is

also an even function and the solution of Eq. (6.4.1) obeys |ψ(−x, t)| = |ψ(x, t)|. No bias

towards −∞ or +∞ is preferred. Therefore, we use the Hermite function basis and apply

the algorithm described in Fig. 6.5 but deactivate the moving technique by setting dmax = 0.

We use the same initial condition as in Example 17 and set η = 1.025, γ = 1, q = 0.95, ν =

q−1, Nmin = 0, N = 200, β = 0.3, β = 2, and β0 = 1.3 at t = 0 with the maximum expansion

order increment in each step Nmax = 20.

The reason why we set γ = 1 is that the expansion order N needs to be increased quickly

to catch up with the rapidly increasing oscillatory behavior of the numerical solution. We

set a uniform timestep ∆t = 0.01 and use only the scaling technique with fixed N = 2500 to

find the reference solution. For the p-adaptive method, we added an additional restriction

that the expansion order cannot exceed N = 2500 of the reference solution.

We can easily see that the spectral method with both scaling and p-adaptive techniques

outperforms the non-adaptive spectral method or with only one of these two techniques em-

ployed (shown in Fig. 6.10(a)). The frequency indicator of using both scaling and p-adaptive

techniques is also the smallest (Fig. 6.10(b)), and the similarity between the frequency in-

dicator and error is again confirmed as stated in [XSC21b]. Moreover, the unscaled method

will result in a larger expansion order (Fig. 6.10(a)), leading to excessive refinement with

no improvement in accuracy (Fig. 6.10(a)). In this example, the coarsening procedure will

not lead to a large increase of frequency indicator and does not significantly compromise the

accuracy (Figs. 6.10(b, c)). Finally, the scaling factors of the p-adaptive spectral method

and the non-p-adaptive spectral method trend similarly over time; they both decrease after
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Figure 6.10: Numerically solving the Schrödinger equation with non-vanishing potentials. Rapidly
increasing oscillations of the solution over time require much refinement and proper scaling to main-
tain accuracy. It is again verified that proper scaling can avoid unnecessary refinement and avoid
unnecessary computational burden by adaptively adjusting the scaling factor. Without scaling, the
expansion order soon reaches the upper bound for N (the expansion order of the reference solution)
and the approximation soon deteriorates due to an inability to further increase N or adjust β and
maintain a low frequency indicator. Failure to accommodate the p-adaptive technique will also
result in a larger error because of an inability to capture the oscillatory behavior.

experiencing an initial, transient increase (Fig. 6.10(d)).

Example 21. Finally, we consider solving a Schrödinger equation,

i∂tψ(x, t) = −ε∂2xψ(x, t) +
1

ε
V (x, t), (6.4.17)

in the semiclassical regime in which the solution can become more oscillatory over time,

especially when ε → 0+ as illustrated in [IKS19]. A p-adaptive technique to increase the

expansion order is thus needed. We investigate whether our p-adaptive technique can suc-
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cessfully solve Eq. (6.4.17) as ε→ 0+ and how the evolution of expansion order N depends

on ε.

We assume a time-dependent potential

V (x, t) = sin(
t

8
) exp(−10x2) (6.4.18)

which is even in R and use the same even initial condition as in Example 17. Since the

solution remains even, no translation of the basis functions is needed. Therefore, as in

Example 20, we deactivate the moving technique by setting dmax = 0. We set η = 1.02, γ =

1, q = 0.95, ν = q−1, Nmin = 0, N = 100, β = 0.3, β = 2, and β0 = 1.3 at t = 0 and

impose a maximum expansion order increment Nmax = 24 at each timestep ∆t = 0.01. As a

reference solution, we solve Eq. (6.4.17) using a fixed N = 2500 with the scaling technique

and investigate the cases ε = 0.1, 0.01, and 0.001.

Since the solution increases its oscillations faster as ε becomes smaller, the expansion

order needs to be increased accordingly. As shown in Fig. 6.11, under the p-adaptive tech-

nique, the smaller the ε, the faster the rate of increase of the expansion order N . In this

example, no intrinsic diffusion of the solution is detected and scaling is not activated in the

p-adaptive technique as long as the expansion order is properly increased. Figs. 6.11(b, c,

d) show the errors for ε = 0.1, 0.01, and 0.001, respectively. Without adaptive methods,

the errors increase significantly as ε decreases, but by employing p-adaptivity, the expansion

order is adjusted to control the errors, dramatically reducing their increase across time, as

shown in Figs. 6.11(b, c).

When ε becomes even smaller (cf ε = 0.001 in Fig. 6.11(d)), the solution becomes ex-

tremely oscillatory and the expansion order needs to be increased too fast even for the cur-

rent implementation of the p-adaptive method to accommodate. Very small ε in Eq. (6.4.17)

poses an intrinsic numerical difficulty that requires an extremely large expansion order N .

In the extremely small ε regime, methods like Magnus-Zassenhaus splittings [IKS19], which

becomes more accurate as ε→ 0+, could be used. Thus, our p-adaptive technique is most ap-
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Figure 6.11: Numerically solving the Schrödinger equation in Eq. (6.4.17) with a time-dependent
potential in Eq. (6.4.18) as ε→ 0+. Rapidly increasing oscillations of the solution require significant
refinement by the p-adaptive technique in order to maintain accuracy. The expansion order increases
faster over time as ε becomes smaller. In general, the p-adaptive technique is appropriate for solving
Eq. (6.4.17) in the mesoscopic regime for ε that is not too small.

plicable to the mesoscopic regime of Schrödinger equations of the form Eq. (6.4.17) in which

ε is not too small. Nonetheless, our p-adaptive technique can efficiently capture oscillations

and complements existing methods designed for very small ε.

6.5 Summary and conclusions

In this chapter, we proposed a frequency-dependent p-adaptive technique that adjusts the

expansion order for spectral methods. We demonstrated its applicability to time-dependent

problems with varying oscillatory behavior. In order to develop efficient numerical methods

for problems requiring solutions in unbounded domains, we also combined the p-adaptive
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technique with scaling (r-adaptivity) and moving (h-adaptivity) methods to devise a com-

plete adaptive spectral method that can successfully deal with diffusion, advection, and

oscillation. Through a number of numerical examples, we explored the relationship among

the three building blocks: the scaling, moving, and p-adaptive techniques. In particular,

the proposed p-adaptive technique enables us to adjust the expansion order dynamically,

boosting the efficiency of the spectral method. We also investigated the relationship be-

tween scaling and p-adaptive techniques for spectral methods in unbounded domains, both

of which depend on the same frequency indicator.

Our adaptive spectral method was also used to numerically solve examples of different

forms and limits of the Schrödinger equation. The solutions to these examples can contain

rapid oscillations across the whole domain that evolve in time, posing numerical difficulties

for existing numerical methods that truncate the domain. However, this type of problem can

be efficiently resolved by our p-adaptive spectral methods. We find the proposed approaches

are most effective in the mesoscopic, semiclassical regime of the Schrödinger equation where

ε is not too small.

Further analysis of the proposed methods can be performed. The relationship among the

adaptive techniques for spectral methods, scaling, moving, refinement, and coarsening, can

be further studied and rigorous numerical analysis for these techniques should be investi-

gated. Furthermore, fast algorithms with mapped Chebyshev polynomials for solving PDEs

in unbounded domains have been developed using the fast Fourier transform [STW20]. Thus,

generalizing these adaptive methods for mapped Jacobi polynomials may be a compelling

future research direction.
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CHAPTER 7

Adaptive Hermite spectral methods in unbounded

domains

This is the Accepted Manuscript version of an article accepted for publication in Applied

Numerical Mathematics, 183, (2023), pp.201-220. It is an open-access paper. The Version

of Record is available online at [10.1016/j.apnum.2022.09.003].
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7.1 Introduction

Unbounded domain problems require efficient numerical methods for computation. For ex-

ample, resolving the decay of the solution of Schrödinger’s equations at infinity requires

efficient unbounded domain algorithms [LZZ18]. In population dynamics, tracking cell vol-

ume blowup in structured population PDE models demands high-accuracy numerical meth-

ods in unbounded domains [XC21, XGC20]. Furthermore, in solid-state physics, numerical

methods for unbounded domains are required for studying long-range particle interactions

[HDO12, MHR11]. Despite these numerous applications, there has been little research on

developing efficient and accurate algorithms for solving models in unbounded domains.

Adaptive methods, such as re-defining grids for finite difference methods [RW00] and

re-generating meshes for finite element methods [ACV19, BFH12, LLM02, TT03], which

are applied to PDEs defined on finite domains, can dramatically improve not only accuracy

but computational efficiency. Recently, novel adaptive techniques for spectral methods have

been developed and incorporated into efficient algorithms for numerically solving PDEs in

unbounded domains that posed substantial numerical difficulties when using previous nu-

merical methods [XSC21b, XSC21a]. These adaptive spectral techniques require tuning of

three key parameters: the scaling factor β, the displacement of the basis function x0, and

the spectral expansion order N . For example, if we use the generalized Hermite functions

[STW11] as basis functions on R, the variables β, x0, and N appear in a spectral expansion

according to

Uβ
N,x0

:=
N∑
i=0

uβi,x0
Ĥi(β(x− x0)), (7.1.1)

where uβi,x0
is the coefficient of the ith-order Hermite function Ĥi. The adaptive techniques

for spectral methods consist of three separate but interdependent procedures: the scaling

technique which adjusts the shape of the basis functions, the moving technique which adjusts

the displacement of the basis function, and the p-adaptive technique which adjusts the

expansion order of the numerical solution. For example, for PDEs involving a spatial variable

x ∈ R and a temporal variable t ∈ [0, T ], we typically impose a spectral expansion using
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Figure 7.1: Flow chart of an adaptive Hermite spectral method equipped with scaling, moving,
and p-adaptive techniques. x0 and x̃0 are the displacements before and after the moving technique
is used. β and β̃ are the scaling factors before and after scaling when the scaling technique is
used. N and Ñ are the expansion orders before and after adjusting the expansion order when the
p-adaptive technique is used.

generalized Hermite functions of x and forward time t starting from an initial condition at

t = 0. Adaptive spectral techniques are implemented as shown in Fig. 7.1.

The major advantage of the proposed adaptive spectral method Alg. 7.1 is that it depends

only on the numerical solution Uβ
N,x0

and thus does not require any prior knowledge of how

the solution will evolve. The adaptive spectral method can automatically interrogate the

behavior of the solution through a frequency indicator that measures a numerical solution’s

spread and oscillation and an exterior-error indicator that measures the solution’s error

outside a given domain. Both of these indicators are defined in [XSC21a]. Despite the

numerical success of adaptive spectral methods when applied on unbounded domains, there

exists no theoretical analysis of how the parameters β, x0, and N affect the algorithm’s

performance and therefore there is thus far no general rule on how to best adjust these
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parameters to minimize errors. Since the improper adjustment of β, x0, and N can lead to

large errors [Tan93, XG22], properly choosing them is crucial for the effective implementation

of adaptive spectral methods.

In this chapter, we carry out a numerical analysis of the adaptive spectral method to

specify how algorithm parameters affect the accuracy of numerical results. We restrict our-

selves to generalized Hermite functions as basis functions for a parabolic model problem and

explore how parameters in the adaptive spectral algorithm control the tuning of the three

key quantities β, x0, and N and thereby its numerical performance.

Depending on the inverse inequality for generalized Hermite functions [STW11], such

analyses for numerically solving unbounded-domain PDEs provide a posterior error estimate.

This error estimate only relies on the numerical solution and the adjustment of β, x0, and

N . Our main result is

Theorem 3. The L2-error at time T when solving a parabolic PDE in (x, t) ∈ R × [0, T ]

with the generalized Hermite functions and using adaptive techniques is bounded by

e(T ) := ∥u(x, T )− Uβ
N,x0

(x, T )∥2 ≤ e0 + eS + eM + eC, (7.1.2)

where Uβ
N,x0

is the numerical solution; e0 is the error of numerically solving the PDE without

adjusting β, x0, N . eS is the error bound arising from changing the scaling factor from β to

β̃; eM is the error bound for changing the displacement from x0 to x̃0; eC is the error bound

for coarsening, i.e., reducing the expansion order from N to Ñ . More specifically, eS, eM,

and eC take the following forms

eS :=
∑
scale

|β̃ − β|
√

1 + β̃
β√

2β̃
∥x∂xUβ

N,x0
(x, t)∥2,

eM :=
∑
move

|x0 − x̃0|∥∂xUβ
N,x0

(x, t)∥2,

eC :=
∑

coarsen

∥(I − πβ

Ñ,x0
)Uβ

N,x0
(x, t)∥2,

(7.1.3)
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symbol definition

Ĥβ
i,x0

generalized ith-order Hermite function with a scaling factor β and dis-
placement x0, defined in R as Ĥβ

i,x0
:= Ĥi(β(x− x0))

P β
N,x0

function space P x0,β
N := {Ĥβ

i,x0
}Ni=0

I the identity operator

πβ
N,x0

the projection operator πβ
N,x0

: L2(R) → P x0,β
N such that

(πx0,β
N u(x), u(x)− πx0,β

N u(x)) = 0

IβN,x0

the interpolation operator IβN,x0
: L2(R) → P x0,β

N such that

Ix0,β
N u(xi) = u(xi) where {xN

i }Ni=0 are collocation points of {Ĥβ
i,x0
}Ni=0

Uβ
N,x0

spectral expansion Uβ
N,x0

=
∑N

i=0 u
β
i,x0
Ĥi(β(x− x0))

N expansion order of the spectral expansion

β scaling factor of the generalized Hermite functions

x0 displacement of the generalized Hermite functions

ER(Uβ
N,x0

), EL(Uβ
N,x0

)

ER: the right exterior-error indicator of the spectral expansion Uβ
N,x0

;

EL: the left exterior-error indicator of the spectral expansion Uβ
N,x0

F(Uβ
N,x0

) frequency indicator for the spectral expansion Uβ
N,x0

q
scaling factor update (β to β̃) ratio (β̃ ← qnβ or q−nβ, n ∈ N+) in the
scaling technique

ν threshold for activating the scaling technique

δ
minimal displacement of updating the displacement x0 to x̃0 (x̃0 ← x0 +
nx0 or x0 − nx0, n ∈ N+) in the moving technique

µ threshold for activating the moving technique

η threshold for increasing the number of basis functions

η0 threshold for decreasing the number of basis functions

γ post-refinement adjustment factor for refinement threshold η̃ ← γη

L2(a, b;V )
space of functions {f : [a, b] → V (V is a Banach space) such that f is

measurable for dt and
∫ b

a
f(t)2dt <∞}

X(t1, t2)
function space {f : f(x, s) ∈ L2((t1, t2), t;H

1(R)), ∂sf(x, s) ∈ L2((t1, t2),
t;H1(R))}

e(t) L2-norm of the error ∥u(·, t)− Uβ
N,x0

(·, t)∥L2 at time t

Table 7.1: Overview of variables and notations. List of the main variables and notations
associated with the overall adaptive spectral method. Three key variables for adaptive spectral
methods with generalized Hermite functions are the scaling factor β that determines the shape of
the basis functions, the displacement of the basis functions x0, and the expansion order N of the
spectral decomposition.
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where the sum
∑
scale

is taken over all scaling steps, the sum
∑
move

is taken over all translation

steps, and
∑

coarsen

is taken over all coarsening steps. The operators I and πβ

Ñ,x0
are defined in

Table 7.1.

This result allows us to provide general guidelines for selecting the parameters in the

adaptive spectral algorithm that lead to the proper tuning of β, x0, and N . Note that the

last three terms in Eq. (7.1.2) depend only on the numerical solution since the adaptive

techniques depend only on the numerical solution and do not need any prior knowledge of

the solution itself. From this theorem, we can conclude that the smaller the adjustment in

the scaling factor or in the displacement of the basis functions, the smaller the error bounds

eS, eM for carrying out the adaptive techniques. However, given that improper β or x0 leads

to very large e0, proper dynamic adjustment of β and x0 are still needed to keep e0 small,

possibly at the expense of accumulating more error in eS, eM. Overall, it is desirable to adjust

β, x0 optimally to maintain a small e0 while also avoiding large eS, eM.

Furthermore, by increasing the threshold of coarsening to prevent using too small an ex-

pansion order, the error resulting from reducing the expansion order eC is smaller. However,

there is a trade-off: increasing the threshold of coarsening to make it harder to decrease the

expansion order would result in a larger N and thus higher computational cost. Although

the effect of increasing the expansion order N (refinement) does not explicitly affect the error

bound Eq. (7.1.2), lowering the refinement error to use a larger N usually leads to smaller

errors as a result of more accurately solving PDEs (a smaller e0).

In the next section, we formulate the model problem using generalized Hermite functions

and perform numerical analysis. In Section 7.3, numerical analysis for applying the adaptive

techniques is carried out and Theorem 3 is proved. In Section 7.4, numerical experiments

are carried out, and an improvement of the adaptive spectral method is proposed. For

completeness, we list the common variables and notations in Table 7.1 that we use throughout

this chapter
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7.2 Errors in solving a model problem with generalized Hermite

functions

In this section, we first formulate a parabolic equation in the weak form [MST05]:

(
∂tu(x, t), v(x)) + a

(
u(x, t), v(x)

)
=
(
f(x, t), v(x)

)
, x ∈ R, t ∈ [0, T ], ∀v(x) ∈ H1(R),

(7.2.1)(
u(x, 0), ṽ(x)

)
=
(
u0(x), ṽ(x)

)
, ∀v(x) ∈ H1(R), (7.2.2)

where u0(x) ∈ L2(R) is the initial condition, f(x, t) is the inhomogeneous source term (e.g.

heat source in the heat equation), and a(u, v) is a coercive symmetric bilinear form such that

there exist constants 0 < c0 < C0 satisfying

|a(u, v)| ≤ C0∥u∥H1 ∥v∥H1 and c0∥u∥2H1 ≤ a(u, u), ∀u(x), v(x) ∈ H1(R). (7.2.3)

In Eqs. (7.2.1), (7.2.2), and (7.2.3) and hereafter, the inner product is taken over the spatial

variable x, and the norm ∥ · ∥ denotes the L2-norm taken over x unless otherwise specified.

The solution to the model problem, Eqs. (7.2.1) and (7.2.2), exists and is unique [DL92],

and the solution u is in the so-called Bochner-Sobolev space.

W
(
0, t;H1(R), H−1(R)

)
:=
{
u : u(x, s) ∈ L2

(
0, t;H1(R)

)
, ∂su(x, s) ∈ L2

(
0, t;H−1(R)

) }
(7.2.4)

where H−1(R) is the dual space of H1(R).

For simplicity, we assume that f(x, t) ∈ C(R × [0, t]), ∂su(·, s) ∈ L2(0, t;H1(R)) and
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therefore u ∈ X(0, t), and its norm is given by

∥u∥2X(0,t) =

∫ t

0

(
∥u(·, s)∥2H1(R) + ∥∂su(·, s)∥2H1(R)

)
ds+ ∥u(x, 0)∥2. (7.2.5)

Analysis of finite element methods for solving Eqs. (7.2.1) and (7.2.2) for bounded x

has already been performed [US19]. Here, we wish to numerically solve Eqs. (7.2.1) and

(7.2.2) using spectral methods with generalized Hermite functions. We first fix the scaling

factor β, the displacement x0 of the basis functions Ĥβ
i,x0

, and the expansion order N of the

trial and test functions. Integrating Eq. (7.2.1) w.r.t time, we wish to find a Uβ
N,x0

(x, t) ∈
L2(0, t;P β

N,x0
(R)) such that for any test function vβN,x0

(x, t) ∈ L2(0, t;P β
N,x0

(R)) and ṽβN,x0
∈

P β
N,x0

(R),

∫ t

0

[(
∂sU

β
N,x0

(x, s), vβN,x0
(x, t)

)
+ a
(
Uβ
N,x0

(x, t), vβN,x0
(x)
)]

ds+
(
Uβ
N,x0

(x, 0), ṽβN,x0
(x)
)

=

∫ t

0

(
f(x, s), vβN,x0

(x, s)
)
ds+

(
u(x, 0), ṽβN,x0

(x)
)
,

∀(vβN,x0
, ṽβN,x0

) ∈ L2(0, t;P β
N,x0

(R))× P β
N,x0

(R).
(7.2.6)

For notational simplicity, we denote

vβ
N,x0

:= (vβN,x0
, ṽβN,x0

), Y β
N,x0

:= L2(0, t;P β
N,x0

(R))× P β
N,x0

(R), (7.2.7)

and equip vβ
N,x0
∈ Y β

N,x0
with the norm

∥vβ
N,x0
∥2
Y β
N,x0

= ∥
(
vβN,x0

(x, t), ṽβN,x0
(x)
)
∥2
Y β
N,x0

:=

∫ t

0

∥vβN,x0
(·, s)∥2H1(R)ds+ ∥ṽβN,x0

(x)∥2. (7.2.8)

The solution Uβ
N,x0

:=
∑N

i=0 u
β
i,x0

(t)Ĥβ
i,x0

(x) of Eq. (7.2.6) can be explicitly evaluated through

the matrix equation

uβ
N,x0

(t) = e−A
β
N tuβ

N,x0
(0) + e−A

β
N t

∫ t

0

eA
β
NsFN,x0(s)ds, (7.2.9)

161



where

uβ
N,x0

(s) :=
(
uβ0,x0

(s), ..., uβN,x0
(s)
)T
,

F β
N,x0

(s) :=
(
fβ
0,x0

(s), ..., fβ
N,x0

(s)
)T
, fβ

i,x0
=
(
f(x, s), Ĥβ

i,x0
(x)
) (7.2.10)

are the vectors consisting of coefficients in the spectral expansion Uβ
N,x0

and the coefficients

of the spectral expansion of the RHS term f in Eq. (7.2.6). The matrix Aβ
N is defined by

(Aβ
N)ij = a(Ĥβ

i,x0
, Ĥβ

j,x0
) (7.2.11)

where a is the bilinear operator in Eq. (7.2.1). The initial values uβi,x0
:=
(
u(x, 0), Ĥβ

i,x0
(x)
)
.

Our goal is to analyze the error e(t) = ∥Uβ
N,x0

(x, t)−u(x, t)∥, where u gives the solution to

the model problem (Eqs. (7.2.1) and (7.2.2)) and Uβ
N,x0

is the numerical solution of Eq. (7.2.6).

Theorem 4. Suppose u solves Eqs. (7.2.1) and (7.2.2) and Uβ
N,x0

solves Eq. (7.2.6), then the

error e(t) = ∥Uβ
N,x0

(x, t)− u(x, t)∥ can be bounded by

e(t) ≤
√

2(t+ 1)
bN,β +B0

bN,β

inf
zβN,x0

∈Y β
N,x0

∥u− zβN,x0
∥X(0,t), (7.2.12)

where B0 is a constant that depends on the bilinear operator a(·, ·) and bN,β is a constant

that depends on a(·, ·), the scaling factor β, and the dimension of the space P β
N,x0

.

Proof. For simplicity, we define the operator (denoting the LHS of Eq. (7.2.6))

B(u,vβ
N,x0

) :=

∫ t

0

[
(∂su, v

β
N,x0

) + a(u, vβN,x0
)
]
ds+ (u0, ṽ

β
N,x0

), u ∈ X(0, t),vβ
N,x0
∈ Y β

N,x0
.

(7.2.13)

It can be proved that B(u,vβ
N,x0

) is a continuous operator, i.e., there exists a constant B0

such that

B(u,vβ
N,x0

) ≤ B0∥u∥X(0,t)∥vβ
N,x0
∥Y β

N,x0

. (7.2.14)
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Furthermore, there exists a positive constant that depends on the dimension of the basis

function space P β
N,x0

as well as the scaling factor β denoted by bN,β such that

inf
0≤Uβ

N,x0
∈Xβ

N,x0

sup
0≤vβ

N,x0
∈Xβ

N,x0

B(Uβ
N,x0

,vβ
N,x0

)

∥Uβ
N,x0
∥X(0,t)∥vβ

N,x0
∥Y β

N,x0

≥ bN,β. (7.2.15)

Actually, we can take

vβ
N,x0

= (Uβ
N,x0

(x, s) +
c0

(2Nβ2 + 1)(C0 + 1)2
∂sU

β
N,x0

(x, s), Uβ
N,x0

(x, 0)) (7.2.16)

where c0, C0 are the constants in Eq. (7.2.3). Therefore, by substituting v as defined in

Eq. (7.2.16) into Eq. (7.2.13), we find

B(Uβ
N,x0

,vβ
N,x0

) ≥1

2

(
∥Uβ

N,x0
(x, 0)∥2 + ∥Uβ

N,x0
(x, t)∥2

)
+ c0

∫ t

0

(
∥Uβ

N,x0
∥2H1 +

1

(2Nβ2 + 1)(C0 + 1)2
∥∂sUβ

N,x0
∥2
)
ds

− c0
2

∫ t

0

(
∥Uβ

N,x0
∥2H1 +

C2
0

(2Nβ2 + 1)2(C0 + 1)4
∥∂sUβ

N,x0
∥2H1

)
ds

≥1

2

(
∥Uβ

N,x0
(x, 0)∥2 + ∥Uβ

N,x0
(x, t)∥2

)
+ c0

∫ t

0

∥Uβ
N,x0
∥2H1ds

− c0
2

∫ t

0

∥Uβ
N,x0
∥2H1ds+

c0
(2Nβ2 + 1)2(C0 + 1)2

∫ t

0

∥∂sUβ
N,x0
∥2H1ds

− c0
2(2Nβ2 + 1)2(C0 + 1)2

∫ t

0

∥∂sUβ
N,x0
∥2H1ds

≥min
{1
2
,
c0
2
,

c0
2(2Nβ2 + 1)2(C0 + 1)2

}
∥Uβ

N,x0
∥2X(0,t)

≥min
{1
4
,
c

4
,

c0
2(2Nβ2 + 1)2(C0 + 1)2

}
∥Uβ

N,x0
∥X(0,t) ∥vβ

N,x0
∥Y β

N,x0

,

(7.2.17)

where in the second inequality we have used the inverse inequality of generalized Hermite

functions [STW11] that states

∥∂sUβ
N,x0
∥2H1 ≤ (2Nβ2 + 1)∥∂sUβ

N,x0
∥2. (7.2.18)
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Here, bN,β := min{1
4
, c0

4
, c0
2(2Nβ2+1)2(C0+1)2

} is the constant that satisfies Eq. (7.2.15).

For any vβ
N,x0
∈ Y β

N,x0
, if Uβ

N,x0
solves Eq. (7.2.6) and u solves Eqs. (7.2.1) and (7.2.2),

B(Uβ
N,x0

,vβ
N,x0

) = B(u,vβ
N,x0

) =

∫ t

0

(
f(x, s), vβN,x0

(x, s)
)
ds+ (u0(x), ṽ

β
N,x0

(x)). (7.2.19)

By combining Eqs. (7.2.15) and (7.2.19), we find

∥Uβ
N,x0
∥X(0,t) ≤

1

bN,β

sup
vβ
N,x0

B(Uβ
N,x0

,vβ
N,x0

)

∥vβ
N,x0
∥Y β

N,x0

= sup
vβ
N,x0

1

bN,β

B(u,vβ
N,x0

)

∥vβ
N,x0
∥Y β

N,x0

≤ B0

bN,β

∥u∥X(0,t). (7.2.20)

Finally, by the triangular inequality, we can conclude that the approximation error is bounded:

∥u− Uβ
N,x0
∥X(0,t) ≤ inf

zβN,x0
∈Y β

N,x0

(∥u− zβN,x0
∥X(0,t) + ∥Uβ

N,x0
− zβN,x0

∥X(0,t))

≤ bN,β +B0

bN,β

inf
zβN,x0

∈Y β
N,x0

∥u− zβN,x0
∥X(0,t).

(7.2.21)

Notice that the L2-error e(t) = ∥u(x, t) − Uβ
N,x0

(x, t)∥ at time t can be bounded by 2(t +

1)∥u− Uβ
N,x0
∥X(0,t) using the triangular inequality and the Hölder inequality

∥u(x, t)− Uβ
N,x0

(x, t)∥2 ≤ ∥u(x, 0)− Uβ
N,x0

(x, 0) +

∫ t

0

∂s
(
u(x, s)− Uβ

N,x0
(x, s)

)
ds∥2

≤ 2(t+ 1)

∫ t

0

∥∂s
(
u(x, s)− Uβ

N,x0
(x, s)

)
∥2ds

+ 2∥u(x, 0)− Uβ
N,x0

(x, 0)∥2

≤ 2(t+ 1)∥u(x, t)− Uβ
N,x0
∥2X(0,t).

(7.2.22)

Therefore, Eq. (7.2.12) holds.

164



We can also use generalized Hermite functions to numerically solve the D-dimensional

model problem Eq. (7.2.6),

∫ t

0

[(
∂sU

β
N ,x0

(x, s), vβN ,x0
(x, s)

)
+ a
(
Uβ
N ,x0

(x, s), vβN ,x0
(x, s)

)]
ds

+
(
Uβ
N ,x0

(x, 0), ṽβN ,x0
(x)
)
=

∫ t

0

(
f(x, s), vβN ,x0

(x, s)
)
ds+

(
u(x, 0), ṽβN ,x0

(x)
)
,

(7.2.23)

where

β := (β1, . . . , βD), x0 := (x10, . . . , x
D
0 ), N := (N1, . . . , ND) (7.2.24)

are the D-dimensional scaling factors, displacements, and expansion orders and

Uβ
N ,x0

(x, s), vβN ,x0
(x, s) ∈ L2

(
0, t;

D⊗
h=1

P βh

Nh,xh
0
(R)
)
, ṽβN ,x0

∈
D⊗

h=1

P βh

Nh,xh
0
(R). (7.2.25)

A multiple dimension version of the error bound Eq. (7.2.12) can be similarly derived

∥u(x, t)− Uβ
N ,x0

(x, t)∥ ≤
√
2(t+ 1)

bN ,β +B0

bN ,β

inf
zβN,x0

∈Y β
N,x0

∥u− zβN ,x0
∥X(0,t), (7.2.26)

where bN ,β := min{1
4
, c0

4
, c0
2(
∑D

h=1 2Niβ2
i +1)(C0+1)2

}. The function spaces are

X(0, t) :=
{
u : u(x, s) ∈ L2

(
0, t;H1(RD)

)
, ∂su(x, s) ∈ L2

(
0, t;H1(RD)

)}
.

Y β
N ,x0

:= L2
(
0, t;

D⊗
h=1

P βh

Nh,xh
0
(R)
)
×

D⊗
h=1

P βh

Nh,xh
0
(R).

(7.2.27)

7.3 Errors of adaptive techniques

In this section, we analyze the errors directly associated with the moving, scaling, and p-

adaptive techniques that automatically change the shape, the translation, and the order of

the numerical solution through adjustment of β, x0, and N , respectively [XSC21b, XSC21a].

We derive the error bound when solving Eq. (7.2.6) and prove Theorem 3 presented in

Introduction. Doing so explicitly shows how changing β, x0, and N affects the error, thus
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providing insight into how to choose parameters in the adaptive algorithm that leads to the

proper tuning of β, x0, and N .

Instead of using collocation methods to carry out the scaling, moving, or p-adaptive meth-

ods as was done in previous work [XSC21b, XSC21a] (i.e., enforcing the updated numerical

solution to be the same as the original numerical solution on the new collocation points),

we now use the Galerkin method (i.e., projecting the numerical solution onto the space of

adjusted basis functions). For example, given the numerical solution Uβ
N,x0

(x, t) at time t,

if we change its scaling factor from β to β̃, previous implementation in [XSC21b, XSC21a]

replaces Uβ
N,x0

(x, t) with I β̃N,x0
Uβ
N,x0
∈ P β̃

N,x0
as the new numerical solution. This new nu-

merical solution I β̃N,x0
Uβ
N,x0

takes on the same values as Uβ
N,x0

at the collocation points for

the new basis functions {Ĥβ̃
i,x0
}Ni=0. Therefore, the error after changing β to β̃ and replacing

Uβ
N,x0

(x, t) with I β̃N,x0
Uβ
N,x0

can be bounded by

∥u− I β̃N,x0
Uβ
N,x0
∥ ≤ ∥u− Uβ

N,x0
∥+ ∥(I − I β̃N,x0

)Uβ
N,x0
∥. (7.3.1)

In this chapter, we project the numerical solution onto P β̃
N,x0

:= {Ĥβ̃
i,x0
}Ni=0, i.e., using

πβ̃
N,x0

Uβ
N,x0

as the new numerical solution. Therefore, the error bound after changing the

scaling factor is

∥u− πβ̃
N,x0

Uβ
N,x0
∥ ≤ ∥u− Uβ

N,x0
∥+ ∥(I − πβ̃

N,x0
)Uβ

N,x0
∥. (7.3.2)

The second term on the RHSs of Eqs. (7.3.1) and (7.3.2) can be viewed as an additional

error bound resulting from changing the scaling factor. Furthermore, we can show

∥(I − I β̃N,x0
)Uβ

N,x0
∥ ≥ ∥(I − πβ̃

N,x0
)Uβ

N,x0
∥. (7.3.3)

The proof is straightforward. Assuming the spectral expansion of Uβ
N,x0

under the new basis
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functions {Ĥβ
i,x0
} is

Uβ
N,x0

=
∞∑
i=0

uβi,x0
Ĥβ

i,x0
. (7.3.4)

By definition,

πβ̃
N,x0

Uβ
N,x0

=
N∑
i=0

uβi,x0
Ĥβ

i,x0
, I β̃N,x0

Uβ
N,x0

=
N∑
i=0

ũβi,x0
Ĥβ

i,x0
. (7.3.5)

Therefore,

∥(I − I β̃N,x0
)Uβ

N,x0
∥ =

[
N∑
i=0

(ũβi,x0
− uβi,x0

)2∥Ĥβ
i,x0
∥2 +

∞∑
i=N+1

(uβi,x0
)2∥Ĥβ

i,x0
∥2
]1

2

≥
[
∞∑

i=N+1

(uβi,x0
)2∥Ĥβ

i,x0
∥2
]1

2

= ∥(I − πβ̃
N,x0

)Uβ
N,x0
∥.

(7.3.6)

With Eq. (7.3.3), using the projected πβ̃
N,x0

Uβ
N,x0

as the new numerical solution instead of

the interpolated I β̃N,x0
Uβ
N,x0

might lead to a smaller error bound.

7.3.1 Posterior error estimate

We derive the posterior error estimates that depend on the numerical solution Uβ
N,x0

∈
P β
N,x0

and on how β, x0, and N are changed. Combining the error estimate of the adaptive

techniques with Theorem 4, the error estimate for numerically solving Eqs. (7.2.1) and (7.2.2),

our ultimate goal is to prove Theorem 3, the error estimate for adaptive spectral methods.

First, we derive the error bound after changing the scaling factor β. Suppose at time t,

we change β to β̃ and replace the numerical solution Uβ
N,x0

with πβ̃
N,x0

Uβ
N,x0
∈ P β̃

N,x0
, the error

is

∥u− πβ̃
N,x0

Uβ
N,x0
∥ ≤ ∥u− Uβ

N,x0
∥+ ∥(I − πβ̃

N,x0
)Uβ

N,x0
∥ (7.3.7)

where the first term on the RHS is the error before scaling and the second term on the RHS
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is the additional error bound from changing the scaling factor (“scaling error”). Denoting

β′ = β̃/β, we can further bound the scaling error by

∥(I − πβ̃
N,x0

)Uβ
N,x0
∥ ≤ ∥Uβ

N,x0
(x, t)− Uβ

N,x0
(β′x, t)∥

=

[∫
R

(∫ x

β′x

∂yU
β
N,x0

(y, t)dy

)2

dx

] 1
2

≤
[∫

R
|1− β′|x

(∫ x

β′x

(
∂yU

β
N,x0

(y, t)
)2
dy

)
dx

] 1
2

=
|1− β′|√1 + β′√

2β′
∥x∂xUβ

N,x0
(x)∥.

(7.3.8)

Therefore, the error after changing the scaling factor from β to β̃ is bounded by

∥u− πβ̃
N,x0

Uβ
N,x0
∥ ≤ ∥u− Uβ

N,x0
∥+ |1− β

′|√1 + β′√
2β′

∥x∂xUβ
N,x0

(x)∥. (7.3.9)

From Eq. (7.3.9), the second term in the last equality is the additional error bound resulting

from scaling. The factor |1−β
′|
√
1+β′

√
2β′ is directly related to how much the scaling factor is

changed while ∥x∂xUβ
N,x0

(x)∥ depends on the spatial derivative of the pre-scaled solution.

Next, we derive the error bound associated with changing the displacement x0. Given

the numerical solution Uβ
N,x0

, if we change the displacement of the basis functions from x0

to x̃0 and set πβ
N,x̃0

Uβ
N,x̃0
∈ P β

N,x̃0
as the new numerical solution, the error is

∥u− πβ
N,x̃0

Uβ
N,x̃0
∥ ≤ ∥u− Uβ

N,x0
∥+ ∥(I − πβ

N,x̃0
)Uβ

N,x0
∥, (7.3.10)

where the second term on the RHS is the additional error bound from changing x0 (“moving

error”). Furthermore, it is bounded by
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∥(πβ
N,x̃0
− I)Uβ

N,x0
(x, t)∥ ≤ ∥Uβ

N,x0
(x, t)− Uβ

N,x0
(x− x̃0 + x0, t)∥

≤
[∫

R
|x0 − x̃0|

(∫ x

x−x̃0+x0

(
∂yU

β
N,x0

(y, t)
)2
dy

)
dx

]1
2

= d∥∂xUβ
N,x0

(x)∥,

(7.3.11)

where d := |x0 − x̃0|. Therefore, the error after changing the displacement from x0 to x̃0 is

bounded by

∥u− πβ
N,x0

Uβ
N,x̃0
∥ ≤ ∥u− Uβ

N,x0
∥+ d∥∂xUβ

N,x0
(x)∥. (7.3.12)

We see that the additional error bound associated with moving depends on the change in

the displacement x0 and the spatial derivative ∂xU
β
N,x0

(x) of the pre-translated numerical

solution.

Finally, we analyze the error associated with the p-adaptive technique. When projecting

the numerical solution Uβ
N,x0

onto the new space P β

Ñ,x0
, no extra error will be introduced

when Ñ > N (refinement) because the basis functions {Ĥβ
i,x0
}Ñi=0 form an orthogonal set of

basis functions and πβ

Ñ,x0
Uβ
N,x0

= Uβ
N,x0

, i.e.,

∥u− πβ

Ñ,x0
Uβ
N,x0
∥ = ∥u− Uβ

N,x0
∥, Ñ > N. (7.3.13)

When we reduce the number of basis functions from N to Ñ < N (coarsening), we use

πβ

Ñ,x0
Uβ
N,x0

= Uβ

Ñ,x0
as the new numerical solution. πβ

Ñ,x0
Uβ
N,x0

leaves out the last N−Ñ terms

in the spectral expansion of Uβ
N,x0

. Therefore, the error after coarsening can be bounded by

∥u− πβ

Ñ,x0
Uβ
N,x0
∥ ≤ ∥u− Uβ

N,x0
∥+ ∥(I − πβ

Ñ,x0
)Uβ

N,x0
∥, Ñ < N. (7.3.14)

In Eq. (7.3.14), the second term in the last inequality is the additional error bound that

results from truncating the spectral expansion and leaving out the last N − Ñ terms.
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Next, we generalize Theorem 4 to forward time from t0 to t1 given Uβ
N,x0

(x, t0). We

assume that no adaptive technique is activated within t ∈ (t0, t1) and denote e(x, t) =

u(x, t)−Uβ
N,x0

(x, t), t ∈ [t0, t1], where u is the solution to Eqs. (7.2.1) and (7.2.2). The error

at t1, e(x, t1) = u(x, t1) − Uβ
N,x0

(x, t1), can be decomposed as e(x, t1) = e1(x, t1) + e2(x, t1)

where e1(x, t1) is the error u(x, t1) − Ũβ
N,x0

(x, t1) with Ũ
β
N,x0

solving Eq. (7.2.6) with initial

condition u(x, t0). The second error term e2(x, t1) ∈ L2(t0, t1;P
β
N,x0

) satisfies

∫ t1

t0

(∂se2(x, s), v(x, s)) + a (e2(x, s), v(x, s)) ds+ (e2(x, t0), ṽ(x, t0))

= (e(x, t0), ṽ(x, t0)) , ∀v ∈ L2(t0, t1;P
β
N,x0

), ṽ ∈ P β
N,x0

.

(7.3.15)

From Theorem 4,

∥e1(x, t1)∥ ≤
bN,β +B0

bN,β

√
2(1 + (t1 − t0)) ∥(I − πβ

N,x0
)u∥X(t0,t1). (7.3.16)

Additionally, since the bilinear form a(·, ·) is positive definite, substituting v(x, t) = e2(x, t)

and ṽ = e(x, t0) into Eq. (7.3.15), we conclude that ∥e2(x, t1)∥ ≤ ∥e(x, t0)∥ = e(t0). There-

fore,

e(t1) ≤ e(t0) +
bN,β +B0

bN,β

√
2(1 + (ti+1 − ti)) ∥(I − πβ

N,x0
)u∥X(ti,ti+1). (7.3.17)

Specifically, this error bound does not depend on the step size ∆t = ti+1 − ti if we use

uβ
N,x0

(t+∆t) = e−A
β
N∆tuβ

N,x0
(t) + e−A

β
N∆t

∫ t+∆t

t

eA
β
N (s−t)FN,x0(s)ds, (7.3.18)

with uβ
N,x0

, F β
N,x0

defined by Eq. (7.2.10) and Aβ
N defined by Eq. (7.2.11). Now, we are ready

to prove Theorem 3, the overall error bound using the adaptive spectral methods. We define

the times of the ℓth scaling, the ℓth translation, and the ℓth changing the expansion order to be

tsℓ, t
m
ℓ , and t

c
ℓ, respectively. We denote the scaling factors right before the ℓth scaling, moving,

and changing the expansion order to be βs
ℓ , β

m
ℓ , and βc

ℓ , the displacements right before the ℓth

scaling, moving, and changing the expansion order to be x0
s
ℓ, x0

m
ℓ , and x0

c
ℓ, and the expansion
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orders right before the ℓth scaling, moving, and changing the expansion order to be N s
ℓ , N

m
ℓ ,

and N c
ℓ , respectively. After the ℓth scaling, we denote the new scaling factor to be β̃s

ℓ and

the ratio β′sℓ := β̃s
ℓ/β

s
ℓ ; after the ℓ

th moving, we denote the new displacement to be x̃0
m
ℓ and

dmℓ := |x̃0mℓ −x0mℓ |; after the ℓth change of the expansion order, we denote the new expansion

order as Ñ c
ℓ .

The times at which the scaling factor or the displacement of the basis functions is changed,

or the expansion order is reduced, are indicated by ti in chronological order 0 = t0 ≤ t1... ≤
ti ≤ tKs+Km+Kc+1 = T , whereKs, Km, andKc are the total number of scalings, translations,

and changing the expansion order within t ∈ [0, T ]. Specifically, if ti = ti+1, then more

than one adaptation is triggered simultaneously. The corresponding constant that satisfies

the inequality Eq. (7.2.12) during [ti, ti+1] is denoted as (bNi,βi
+ B0)/bNi,βi

. From the error

estimates of the scaling, moving, and p-adaptive techniques in Eqs. (7.3.9), (7.3.11), (7.3.14),

and Eq. (7.3.17), we conclude
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e(T ) ≤
Ks+Km+Kc∑

i=0

bNi,βi
+B0

bNi,βi

√
2(1 + (ti+1 − ti)) ∥(I − πβi

Ni,x0i
)u∥X(ti,ti+1)

+
Ks∑
ℓ=1

|1− β′sℓ|
√

1 + β′sℓ√
2β′sℓ

∥x∂xUβs
ℓ

Ns
ℓ ,x0

s
ℓ
(x, tsℓ)∥

+
Km∑
ℓ=1

dmℓ ∥∂xU
βm
ℓ

Nm
ℓ ,x0

m
ℓ
(x, tmℓ )∥

+
Kc∑
r=1

∥(I − πβc
ℓ

Ñc
ℓ ,x0

c
ℓ

)U
βc
ℓ

Nc
ℓ ,x0

c
ℓ
∥

≤
Ks+Km+Kc∑

i=0

bNi,βi
+B0

bNi,βi

√
2(1 + (ti+1 − ti)) ∥(I − πβi

Ni,x0i
)u∥X(ti,ti+1)

+
Ks∑
ℓ=1

|1− β′sℓ|
√

1 + β′sℓ√
2β′sℓ

(2N s
ℓ + 1) ∥Uβs

ℓ
Ns

ℓ ,x0
s
ℓ
(x, tsℓ)∥

+
Km∑
ℓ=1

√
(2Nm

ℓ + 1)βm
ℓ d

m
ℓ ∥U

βm
ℓ

Nm
ℓ ,x0

m
ℓ
(x, tmℓ )∥

+
Kc∑
ℓ=1

∥(I − πβc
ℓ

Ñc
ℓ ,x0

c
ℓ

)U
βc
ℓ

Nc
ℓ ,x0

c
ℓ
∥

(7.3.19)

where we have used the three-term recurrence relation for generalized Hermite functions and

the inverse inequality Eq. (7.2.18) to bound ∥x∂xUβs
ℓ

Ns
ℓ ,x0

s
ℓ
(x, tsℓ)∥ and ∥∂xU

βm
ℓ

Nm
ℓ ,x0

m
ℓ
(x, tmℓ )∥ in

the second inequality. Note that in the first term of Eq. (7.3.19), if ti = ti+1 then we define

∥(I − πβi

Ni,x0i
)u∥X(ti,ti+1) := 0. The first term on the RHS of the last inequality corresponds

to e0 in Theorem 3, and the second, third, and last terms on the RHS of last inequality

correspond to eS, eM, and eC, respectively.

From Eq. (7.3.19), the errors caused by scaling and moving (the second and third terms

of the equation) suggest that the smaller the adjustment in β or x0, the smaller the factors

|1 − β′sℓ| and dmℓ in the scaling or moving errors. Therefore, we should set the triggering

parameters q ≲ 1 (≲ means smaller but close to) and 0 ≲ δ in Table 7.1 so that the scaling

factor β and the displacement x0 can be tuned more accurately without over-adjustment

that may lead to larger errors.
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When coarsening, decreasing the expansion order N too much will increase the coarsening

error through the last term in Eq. (7.3.19). Increasing the coarsening threshold η0 to make it

harder to decrease N can preserve accuracy but possibly at the expense of keeping a higher

computational burden. Note that although the effect of refinement does not explicitly reveal

itself in the error bound Eq. (7.3.19), both a smaller initial refinement threshold η and a

smaller γ (the ratio of increasing the refinement threshold) could lead to larger N and thus

smaller errors (the first term of the second equation in Eq. (7.3.19)).

However, if N increases, so will the computational cost. Using the numerical example

presented in the next section, we will discuss how to set γ and η so that high accuracy can be

achieved without significant degradation of computational efficiency. Since the adaptive tech-

niques do not require prior information on the solution, the last three terms in Eq. (7.3.19),

i.e., errors from adaptive techniques, depend only on the latest numerical solution itself.

Note that the numerical error in solving Eqs. (7.2.1) and (7.2.2) is no less than the

projection error

e(T ) = ∥u(x, t)− Uβ
N,x0

(x, t)∥ ≥ ∥(I − πβ
N,x0

)u(x, t)∥, (7.3.20)

and it has also been shown that improper scaling of generalized Hermite functions can lead to

large projection errors [Tan93]. Furthermore, in Examples 2, 3, 5 in [XSC21b] and Example

2 in [XSC21a], improper displacement x0 or a too-small expansion order N will also lead to

projection errors, implying a large e(T ). Therefore, timely and accurate implementation of

the adaptive techniques is important for controlling the lower error bound (the projection

error) Eq. (7.3.20). Consequently, to adjust them properly, we need to set 1 ≲ ν and 1 ≲ µ

in the scaling and moving technique algorithms, respectively.

A D-dimensional generalization of Eq. (7.3.19) for spatial variables x = (x1, ..., xD) ∈ RD

can be similarly derived for the numerical solution

Uβ
N ,x0

(x, t) :=
N1∑
i1=0

...
ND∑
iD=0

uβ
i1,...,iD,x0

(t)ΠD
h=1Ĥβh

ih,xh
0
(x) (7.3.21)
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as

e(T ) =∥u(x, t)− Uβ
N ,x0

(x, t)∥

≤
Ks+Km+Kc∑

i=0

bNi,βi
+B0

bNi,βi

√
2(1 + (ti+1 − ti))∥(I − πβi

Ni,x0i
)u∥X(ti,ti+1)

+
D∑

h=1

Kh,s∑
ℓ=1

|1− β′h,sℓ |
√
1 + β′h,sℓ√

2β′h,sℓ

(2Nh,s
ℓ + 1)∥Uβh,s

ℓ

Nh,s
ℓ ,x0

h,s
ℓ

(x, th,sℓ )∥

+
D∑

h=1

Kh,m∑
ℓ=1

√
2Nh,m

ℓ + 1βh,m
ℓ dh,mℓ ∥U

βh,m
ℓ

Nh,m
ℓ ,x0

h,m
ℓ

(x, th,mℓ )∥

+
D∑

h=1

Kh,c∑
r=1

∥(I − πβh,c
r

Ñh,c
r ,x0

h,c
ℓ

)Uβh,c
r

Nr
h,c,x0

h,c
ℓ

(x, th,cℓ )∥

(7.3.22)

where β,x0, and N are the corresponding D-dimensional scaling factor, displacement,

and expansion order defined in Eq. (7.2.24). Ks =
∑D

h=1K
h,s,Km =

∑D
h=1K

h,m,Kc =∑D
h=1K

h,c are the total number of times of performing scaling, moving, and changing

the expansion orders, across all dimensions (Kh,s, Kh,m, Kh,c are the numbers of using the

scaling, moving, or p-adaptive technique in the hth dimension, respectively), the constant

(bNi,βi
+ B0)/bNi,βi

is the RHS constant in the inequality (7.2.26) during [ti, ti+1], and

th,sℓ , th,mℓ , th,cℓ are the times of the ℓth scaling, moving, or changing the expansion order in

the hth dimension, respectively. The second, third and last terms in Eq. (7.3.22) describe

scaling error bounds in all dimensions, moving error bounds in all dimensions, and coarsening

error bounds in all dimensions.

In Eq. (7.3.22), βh,s
ℓ := (β1,s

ℓ , ..., βD,s
ℓ ),βh,m

ℓ , and βh,c
ℓ are theD-dimensional scaling factors

right before the ℓth scaling, moving, or changing the expansion order in the hth dimension.

Similarly, x0
h,s
ℓ := (x0

1,s
ℓ , ..., x0

D,s
ℓ ),x0

h,m
ℓ , and x0

h,c
ℓ are the D-dimensional displacements

right before the ℓth scaling, moving, or change of expansion order in the hth dimension,

and Nh,s
ℓ := (N1,s

ℓ , ..., ND,s
ℓ ),Nh,m

ℓ , and Nh,c
ℓ are the D-dimensional expansion orders right

before the ℓth scaling, moving, or change of expansion order in the hth dimension. β′h,sℓ is

the ratio β̃h,s
ℓ /βh,s

ℓ where β̃h,s
ℓ is the scaling factor after the ℓth scaling in the hth dimension,
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dh,mℓ := |x̃0h,mℓ − x0h,mℓ | (x̃0h,mℓ is the new displacement) is the absolute value of the change

in displacement in the ℓth moving step in the hth dimension, and Ñh,c
ℓ is the expansion order

after the ℓth changing the expansion order in the hth dimension. ti is the time for carrying

out the ith scaling, moving, or p-adaptive technique in any dimension and if within the same

time step more than one of those techniques in any dimension is used, those ti may be the

same but are listed in the order of carrying out those techniques.

Equation (7.3.22) can be proved in a dimension-by-dimension manner to evaluate the

error caused by scaling Eq. (7.3.9), moving Eq. (7.3.11), and coarsening Eq. (7.3.14). As

with Eq. (7.3.19), we also conclude that in multi-dimension cases the optimal strategy for

choosing parameters is to set qh ≲ 1 and 0 ≲ δh in each dimension so that the change in

the scaling factor or the displacement results in numerical accuracy but does not result in

over-scaling or over-shifting. From the error lower bound in Eq. (7.3.20), 1 ≲ νh and 1 ≲ µh

are required so that βh and xh0 are adjusted in each dimension h without incurring too large

a projection error.

As for coarsening across higher dimensions, a larger ηh0 could lead to a larger minimal

expansion order in each dimension and improve accuracy, but larger expansion orders lead

to higher computational cost, especially for high-dimensional problems (as the total number

of coefficients are ΠD
h=1N

h). Similarly, decreasing the initial refinement threshold ηh or

γh, or the adjustment ratio ηh in the hth direction, will lead to smaller errors and higher

computational costs.

7.3.2 Prior error estimate

In addition to the posterior upper error bound of Eq. (7.3.19), we can also derive a prior

error upper bound of using the adaptive spectral method to solve Eq. (7.2.6) in which the

error estimate only depends on the solution itself. First, for the scaling technique, when we

change the scaling factor from β to β̃ and use πβ̃
N,x0

Uβ
N,x0

as the new numerical solution, the

error ∥u− πβ̃
N,x0

Uβ
N,x0
∥ can be bounded by
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∥u− πβ̃
N,x0

Uβ
N,x0
∥ ≤ ∥(I − πβ̃

N,x0
)u∥+ ∥πβ̃

N,x0
(u− Uβ

N,x0
)∥,

≤ ∥(I − πβ̃
N,x0

)u∥+ ∥u− Uβ
N,x0
∥.

(7.3.23)

In Eq. (7.3.23), the term ∥(i − πβ̃
N,x0

)u∥ in the last equation is the increment in the error

bound resulting from scaling (scaling error). Similarly, if we carry out the moving technique

and change the displacement of the basis function from x0 to x̃0 and use πβ
N,x̃0

Uβ
N,x0

as the

new numerical solution, the error ∥u− πβ
N,x̃0

Uβ
N,x0
∥ can be bounded by

∥u− πβ
N,x̃0

Uβ
N,x0
∥ ≤ ∥(I − πβ

N,x̃0
)u∥+ ∥πβ

N,x̃0
(u− Uβ

N,x0
)∥

≤ ∥(I − πβ
N,x̃0

)u∥+ ∥u− Uβ
N,x0
∥.

(7.3.24)

As for the p-adaptive technique, refinement will not bring any additional error since

πβ

Ñ,x0
Uβ
N,x0

= Uβ
N,x0

, Ñ > N . However, the error after coarsening and using

πβ

Ñ,x0
Uβ
N,x0

, Ñ < N to replace the original numerical solution Uβ
N,x0

can be bounded by

∥u− πβ

Ñ,x0
Uβ
N,x0
∥ ≤ ∥u− Ûβ

N,x0
∥+ ∥(πβ

N,x0
− πβ

Ñ,x0
)u∥

≤ ∥u− Uβ
N,x0
∥+ ∥(πβ

N,x0
− πβ

Ñ,x0
)u∥

(7.3.25)

where

Ûβ
N,x0

= πβ

Ñ,x0
Uβ
N,x0

+
N∑

i=Ñ+1

ûβi,x0
Ĥβ

i,x0
(x), ûβi,x0

= (u(x, t), Ĥβ
i,x0

(x)). (7.3.26)

Finally, as with the derivation of Eq. (7.3.19), we can obtain an error bound that only
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depends on the solution u

e(T ) ≤
Ks+Km+Kc∑

i=0

bNi,βi
+B0

bNi,βi

√
2(1 + (ti+1 − ti))∥(I − πβi

Ni,x0i
)u∥X(ti,ti+1)

+
Ks∑
ℓ=1

∥(I − πβ̃s
ℓ

Ns
ℓ ,xLs

ℓ

)u(x, tsℓ)∥

+
Km∑
ℓ=1

∥(I − πβm
ℓ

Nm
q ,x̃0

m
ℓ
)u(x, tmℓ )∥

+
Kc∑
ℓ=1

∥(πβ
N,x0
− πβc

ℓ

Ñc
ℓ ,x0

c
ℓ

)u(x, tcℓ)∥.

(7.3.27)

Therefore, the posterior error estimate Eq. (7.3.19) gives us more information on how we

should choose the parameters in the adaptive techniques to determine β, x0, N . Posterior

error bounds for adaptive spectral methods for (D+1)-dimensional model problems (x ∈ RD)

can be straightforwardly derived but is excluded for brevity.

7.4 Numerical results

In our numerical examples, we numerically solve Eq. (7.2.6) by discretizing time according to

tj = j∆t and using the scheme Eq. (7.3.18) to forward time from tj to tj+1. Adaptive tech-

niques will be used to adjust the basis functions at different timesteps tj. The matrix-vector

product e−A
β
N (tj+1−tj)uβ

N,x0
(tj) in Eq. (7.3.18) is calculated using a “scaling and squaring”

method in [MV78], i.e., we rewrite

e−A
β
N (tj+1−tj)uβ

N,x0
(tj) =

(
e−

Aβ
N (tj+1−tj)

3
)3
uβ

N,x0
(tj) (7.4.1)

and evaluate e−
Aβ

N (tj+1−tj)
3 uβ

N,x0
(tj) by Taylor expansion. The integral∫ tj+1

tj
e−A

β
N (tj+1−tj)F β

N,x0
(t)dt on the RHS of Eq. (7.3.18) is evaluated by the Gauss-Legendre

formula described in [XSC21b].

177



In all examples, the error denotes the relative L2-error

∥u(·, t)− Uβ
N,x0

(·, t)∥
∥u(·, t)∥ . (7.4.2)

First, we numerically investigate how the parameters of the scaling and moving techniques

affect the performance of the adaptive spectral method and the conclusions drawn from

Eq. (7.3.19), namely, to set q ≲ 1, 1 ≲ ν for scaling, and 0 ≲ δ, 1 ≲ µ for moving in

order to accurately adjust the scaling factor and translation of the basis functions. We also

wish to explore how to appropriately set the parameters in the p-adaptive technique, the

refinement threshold η, the coarsening threshold η0, and the η adjustment ratio to achieve

higher accuracy while reducing the computational cost. In this chapter, all computations

were performed using Matlab R2017a on a laptop with a 4-core Intel(R) Core(TM) i7-8550U

CPU @ 1.80 GHz.

Example 22. We consider solving the following parabolic equation in the weak form

(ut(x, t), v) +
(
ux(x, t), vx(x, t)

)
=
(
f(x, t), v(x, t)

)
,∀v(x) ∈ H1(R),

u(x, 0) = exp(ix) · exp(−x2

4
),

f(x, t) =
(x− 2t) + (t+ 1)3 + 2i(x− t)(1 + t)

(t+ 1)
3
2

exp

[
i(t+ 1)x− (x− 2t)2

4(t+ 1)

] (7.4.3)

which admits an analytic solution

u(x, t) =
1√
t+ 1

exp

[
i(t+ 1)x− (x− 2t)2

4(t+ 1)

]
. (7.4.4)

Not only is the center of the solution translating rightward at speed 2t, its magnitude

|u(x, t)| = 1√
t+1

exp
(
− (x−2t)2

4(1+t)

)
decays more slowly for larger |x|. The solution also incurs

higher frequency spatial variations as time increases due to the exp (i(t+ 1)x) factor.

Therefore, all three adaptive techniques are expected to be required. Upon setting ∆t =

2 × 10−4 and solving Eq. (7.4.3) up to t = 2, we investigate how the parameters in the
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Figure 7.2: Plots of the error at t = 2 and the scaling factor β or the displacement x0 when tuning
the scaling factor adjustment ratio q and the scaling threshold ν or the minimum displacement
δ and the moving threshold µ. (a) The error tends to be smaller as q decreases to 1, indicating
that q ≲ 1 is crucial for proper adjustment of the scaling factor. (b) As ν is increased, the scaling
technique could be impeded, but the error is not very sensitive to ν if q is small. (c) The error
is strongly correlated with x0 and a large δ can lead to over-adjustment of the displacement x0,
resulting in a larger error. (d) A large µ will make it harder to activate the moving technique,
leading to a smaller x0 and a larger error.
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three adaptive techniques affect performance. The initial scaling factor, displacement, and

expansion order are set to β = 1, x0 = 0, andN = 40. First, we test how the scaling threshold

ν, the scaling factor adjustment ratio q, the moving µ, and the minimum displacement step

δ affect the performance of the scaling and moving techniques. We keep the expansion order

fixed since it has been illustrated that the effects of improper scaling or moving can be offset

by increasing the expansion order N but at the expense of increased computational cost

[XSC21a]. Initially, we set the parameters q = 0.99, ν = 1.02, δ = 10−4, and µ = 1.00005,

and then change each of them one at a time. Imposing the maximal allowable displacement

within each timestep dmax = 0.01, the upper scaling factor limit β = 0.2, and lower scaling

factor limit β = 5, we plot the relative L2-error e(t = 2) along with the scaling factor when

we change q and ν, and we plot e(t = 2) along with x0 when we change δ and µ.

Fig. 7.2(a) shows that q ≲ 1 is required for the scaling technique to properly adjust the

scaling factor. When q ≲ 1 and we vary ν from 1 to 2, the error, as well as the scaling factor

β, do not change much, indicating that the scaling technique is more sensitive to q than to

ν. Therefore, keeping q ≲ 1 is more important than keeping 1 ≲ ν. Fig. 7.2(c) shows that

the error is highly correlated with x0, suggesting that it is critical to properly move the basis

functions to capture the displacement of the solution. Having 0 ≲ δ is important so that

the displacement x0 is not over-adjusted. Finally, as shown in Fig. 7.2(d), increasing µ will

make the moving technique less sensitive to the translation of the basis functions and lead

to a larger error. Thus, 1 ≲ µ is recommended for the moving technique.

Next, we investigate how the initial refinement threshold η, the refinement threshold

adjustment ratio γ, and the coarsening threshold η0 affect the p-adaptive technique’s perfor-

mance when q = 0.99, ν = 1.02, δ = 10−4, and µ = 1.00005 are fixed, and the initial variables

are set to β = 1, x0 = 0, N = 40. Fixing the maximum increment to Nmax = 6, we start

with the initial parameter values γ = 1.02, η = 1.05, and η0 = 1.02, and vary each of them

one by one and plot the relative L2-error and N . Fig. 7.3(a) shows that apart from trans-

lating rightward and decaying more slowly, the analytic solution is increasingly oscillatory

which requires adjusting the expansion order N of the numerical solution. Fig. 7.3(b) shows
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Figure 7.3: Plots of the real part of the analytic solution Re(u)(x, t) at different times, the error
and the expansion order N at t = 2 when we vary the refinement threshold adjustment ratio γ, the
initial refinement threshold η, and the coarsening threshold η0. (a) The real part of the analytic
solution, which translates rightward, becomes more diffusive, and is increasingly oscillatory over
time. (b) The error increases with γ while the expansion order decreases with γ. A larger γ implies
a faster-increasing refinement threshold η. (c) A larger initial refinement threshold η results in a
smaller expansion order at t = 2, yet the error is not reduced as η decreases and N increases with
the initial γ. This indicates that as long as γ is small enough, a larger initial η can be tolerated to
lead to a smaller computational cost without compromising accuracy. (d) The expansion order N
tends to increase as the coarsening threshold η0 increases.
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that if γ is large, then the threshold for increasing the expansion order η will increase more

quickly. This renders the p-adaptive technique unable to sufficiently adjust the expansion

order, leading to smaller expansion orders N and larger errors. Fig. 7.3(c) shows that the

larger the initial threshold η for increasing the expansion order, the smaller the expansion

order. In the depicted regime, larger initial values of η do not degrade accuracy since N ≳ 65

is sufficient to maintain high accuracy. Therefore, to maintain accuracy while reducing the

computational burden, it is crucial to set 1 ≲ γ so that the p-adaptive technique can capture

oscillatory behavior over long periods of time. Using a smaller initial η may lead to more

computational costs but does not lead to improvement in accuracy. Overall, since the func-

tion exhibits higher frequency spatial oscillations as time increases, coarsening is typically

not activated. However, a large coarsening threshold η0 can still impede coarsening resulting

in a slightly larger N than a smaller η0 (Fig. 7.3(d)).

Finally, as shown in Figs. 7.2 and 7.3, we numerically verify that the appropriate strategy

for the adaptive spectral parameters is to set q ≲ 1, 1 ≲ ν, 0 ≲ δ, and 1 ≲ µ. In fact, for

good performance, the scaling procedure strongly requires q ≲ 1 and the moving procedure

requires both 0 ≲ δ and 1 ≲ µ. For an effective refinement, it is more important to set 1 ≲ γ

rather than to set the initial 1 ≲ η (i.e., setting 1 ≲ γ rather than setting the initial 1 ≲ η

leads to more accurate results with smaller computational costs).

-8 -6 -4 -2 0 2 4 6 8

Figure 7.4: Distribution of the collocation points of generalized Hermite functions {Ĥβ
i,x0
}Ni=0 with

β = 1, x0 = 0, and N = 24. xL := xβ
[N
3
]
and xR := xβ

[ 2N+2
3

]
are marked in red. The number

of collocation points that are in the right-exterior region (xR,∞) for calculating ER and in the
left-exterior region (−∞, xL) for calculating EL are both approximately N/3.

When using the generalized Hermite functions defined in R, the desired solution might

move leftward or rightward, requiring both leftward and rightward displacement of the ba-

sis functions. Since only rightward basis function shifts have been previously considered
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[XSC21b, XSC21a], here, we generalize the moving technique to allow for bidirectional ad-

justment of the displacement x0. We first propose a left exterior-error indicator

EL(Uβ
N,x0

) =
∥∂xUβ

N,x0
· I(−∞,xL)∥

∥∂xUβ
N,x0
· I(−∞,+∞)∥

, (7.4.5)

where we use xL = xβ
[N
3
]
following the often-used 2

3
-rule [HL07, Ors71]. The left exterior-error

indicator (7.4.5) can be seen as the upper bound for the ratio of the error in (−∞, xL) to

the error across the whole space R, in analogy to the (right) exterior-error indicator defined

in [XSC21a]

ER(Uβ
N,x0

) =
∥∂xUβ

N,x0
· I(xR,∞)∥

∥∂xUβ
N,x0
· I(−∞,+∞)∥

, (7.4.6)

where xR = xβ
[ 2N+2

3
]
. The number of nodes in the left-exterior region (−∞, xL) and in the

right-exterior region (xR,∞) are both roughly N
3
. It was shown in [XSC21a] that if the right

exterior-error indicator (7.4.6) increases, then the ratio of the error in the right exterior

region (xR,+∞) to the total error may also increase, suggesting that one should move the

basis functions rightward (increase x0). In Fig. 7.4, we show the positions of collocation

nodes of generalized Hermite functions {Hβ
i,x0
}Ni=0 with β = 1, x0 = 0, and N = 24. The

endpoints xL and xR are shown in red, showing that the right and left exterior regions,

(xR,∞) and (−∞, xL), are near-symmetric. The left exterior-error indicator (7.4.5) also

measures the relative error in the left exterior region (−∞, xL), and, if it increases, one

can consider shifting the basis functions leftward (decrease x0). With both left and right

exterior-error indicators, we propose the following bidirectional moving scheme.

In Alg. 6, the left exterior error indicator subroutine calculates the right exterior-

error indicator by Eq. (7.4.5) and the right exterior error indicator calculates the

left exterior-error indicator by Eq. (7.4.6). If the right or left exterior-error indicator is larger

than their corresponding thresholds, i.e, ER > µẼR or EL > µẼL, the moving technique is

activated, calculating the rightward displacement d0 or the leftward displacement d1 of the
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Algorithm 6 Pseudo-code of the bidirectional exterior-error-dependent moving technique.

1: Initialize N , ∆t, T , β, x0, U
β
N,x0

(x, 0), µ > 1, dmax > δ > 0
2: t← 0
3: xR ← xβ

[ 2N+2
3

]

4: xL ← xβ
[N
3
]

5: ẼR ← right exterior error indicator(Uβ
N,x0

(x, 0))

6: ẼL ← left exterior error indicator(Uβ
N,x0

(x, 0))
7: while t < T do
8: Uβ

N,x0
(x, t+∆t)← evolve(Uβ

N,x0
(x, t),∆t)

9: ER ← right exterior error indicator(Uβ
N,x0

(x, t+∆t))

10: EL ← left exterior error indicator(Uβ
N,x0

(x, t+∆t))

11: if ER > µẼR || EL > µẼL then
12: dR ← move right(Uβ

N,x0
(t+∆t), δ, dmax, µe0)

13: dL ← move left(Uβ
N,x0

(t+∆t), δ, dmax, µe1)

14: Uβ
N,x0

(x, t)← πβ
N,x0+dR−dLU

β
N,x0

(x, t+∆t)
15: x0 ← x0 + dR − dL
16: xL ← xL + dR − dL
17: xR ← xR + dR − dL
18: ẼR ← right exterior error indicator(Uβ

N,x0
(x, t+∆t))

19: ẼL ← left exterior error indicator(Uβ
N,x0

(x, t+∆t))
20: end if
21: t← t+∆t
22: end while

basis functions. In [XSC21b], the rightward displacement dR = min{nRδ, dmax} is deter-

mined by the move right subroutine in Line 12, where n is the smallest integer satisfying

ER(U (α,β)
N,x0

(x − nRδ, t)) < µẼR. Similarly, the leftward displacement dL = min{nLδ, dmax}
is determined by the move left subroutine in Line 13, where nL is the smallest integer

satisfying EL(U (α,β)
N,x0

(x+ nLδ, t)) < µẼL.

Example 23. Consider numerically solving the following parabolic equation in the weak

form in R× R+

(ut(x, t), v) +
(
ux(x, t), vx(x, t)

)
=
(
f(x, t), v(x, t)

)
,∀v(x) ∈ H1(R),

u(x, 0) = sin(x) exp(−x2),
(7.4.7)
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where

f(x, t) =



[(
3− 2(x+ vt)

(
v + 2(x+ vt)

))
sin(x+ vt)

+
(
v + 4(x+ vt)

)
cos(x+ vt)

]
e−(x+vt)2

t ≤ 2,

[(
3− 4

(
x+ v(4− t)

)2
+ 2v

(
x+ v(4− t)

))
sin(x− v(t− 4))

+
(
4x+ v(15− 4t)

)
cos(x− v(t− 4))

]
e−(x−v(t−4))

2
t ≥ 2.

(7.4.8)

This PDE is solved by

u(x, t) =


e−(x+vt)2 sin (x+ vt) t ≤ 2,

e−(x−vt+4v)2 sin (x− vt+ 4v) t ≥ 2.

(7.4.9)

We set v = 2 in Eq. (7.4.8) so that the center of the solution moves with velocity −2 from

x = 0 to x = −4 when t ∈ [0, 2], and when t ∈ [2, 6] the center of the solution moves from

x = −4 to x = 4 with velocity +2. Since the solution displays only convective behavior, we

deactivate the scaling and p-adaptive procedures and apply only the moving technique. Since

the translation switches from leftward to rightward at t = 2, the moving technique needs to

allow for both leftward and rightward displacement of the basis functions. The parameters

in the moving technique are set to be µ = 1.0005, δ = 0.0005, and the maximal displacement

within a timestep dmax = 0.2. We take the scaling factor, the expansion order, and the

initial displacement of the basis function to be β0 = 1.2, N0 = 24, x0 = 0, respectively, and

plot the results obtained with no moving technique, the leftward-only moving technique, the

rightward-only moving technique, and the bidirectional moving technique.

Fig. 7.5(a) shows that the spectral method equipped with the bidirectional moving tech-

nique (red) can maintain the smallest error because the displacement x0 can be decreased

when t ∈ [0, 2] and increased when t > 2 (see Fig. 7.5(b)). The spectral method with the

leftward-only moving technique (blue) can maintain a small error in [0, 2] when the center of

the function moves leftward but fails to keep the error small when t > 2 due to its inability
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Figure 7.5: Plots of the error, x0, the left exterior-error indicator Eq. (7.4.5), and the right exterior-
error indicator Eq. (7.4.6). (a) The bidirectional moving technique Alg. 6 can main the smallest
error while failure to accommodate either leftward or rightward displacement leads to much larger
errors. (b,c,d) The displacement x0, the left exterior-error indicator, and the right exterior-error
indicator of spectral methods with the bidirectional, the leftward-only, the rightward-only moving
technique, and the spectral method without any moving.
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to increase x0. When t < 2, the rightward-only moving technique (green) cannot decrease

the displacement x0 and therefore the error for the rightward-only moving technique is large

at t = 2. Furthermore, large error accumulation before t = 4 of the rightward-only moving

technique makes it unable to properly increase x0 for t > 4 when the center of the solution

moves to the right of the origin x = 0. The right and left exterior-error indicators for the

bidirectional moving technique Alg. 6 can be well controlled as shown in Fig. 7.5(c,d), while

for the leftward-only moving technique the right exterior-error indicator grows dramatically

when t > 2 and for the rightward-only moving technique, the left exterior-error indicator

grows when t < 2. Therefore, the leftward- and rightward-only moving techniques both

fail to maintain a small error in at least one exterior region (xR,∞) or (−∞, xL). The left

exterior-error indicator grows when t < 2 (the center moves to the left of the origin) and the

right exterior-error indicator grows when t > 4 (the center moves to the right of the origin)

for the spectral method without the moving technique (black), suggesting that it cannot

maintain a small error in both exterior regions.

7.5 Summary and conclusions

In this chapter, we carried out a numerical analysis of recently proposed adaptive spectral

methods in unbounded domains using generalized Hermite functions. Specifically, our anal-

ysis helps guide parameter choice across three adaptive spectral techniques, i.e., the scaling

procedure, the moving procedure, and the p-adaptive technique to properly adjust the three

key variables associated with these techniques, the scaling factor, the displacement, and the

spectral expansion order. Based on our analyses, rules for properly choosing parameters in

the scaling, moving, and p-adaptive techniques to most efficiently and accurately solve PDEs

are derived. Numerical experiments were carried out to verify our theoretical results. Fur-

thermore, we developed a new bidirectional moving technique to accommodate both leftward

and rightward displacements.

What remain are analyses of adaptive spectral techniques using other classes of basis
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functions that have been of recent interest [TWY20]. These include generalized Laguerre

functions in R+ and the modified mapped Gegenbauer functions in R. Another potentially

useful extension is to explore developing methods to automatically determine and adjust the

decay rate of solutions at infinity by adaptively switching among different classes of basis

functions in order to match underlying physics or observations.
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CHAPTER 8

Spectrally adapted physics-informed neural networks

for solving unbounded domain problems

This is the Accepted Manuscript version of an article accepted for publication in Machine

Learning: Science and Technology, 4, (2023), pp.025024. It is an open-access paper. The

Version of Record is available online at [10.1088/2632-2153/acd0a1].
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8.1 Introduction

The use of neural networks as universal function approximators [Hor91, PYL20] led to var-

ious applications in simulating [RPK19, KKL21] and controlling [ABA22b, BAA22, BA22,

LJY20] physical, biological, and engineering systems. Training neural networks in function-

approximation tasks is typically realized in two steps. In the first step, an observable us

associated with each distinct sample or measurement point (x, t)s ≡ (xs, ts), s = 1, 2, . . . , n

is used to construct the corresponding loss function (e.g., the mean squared loss) in order to

find representations for the constraint us ≡ u(xs, ts) or infer the equation that the function

u(x, t) obeys. In many physical settings, the variables x and t denote the space and time

variables, respectively. Thus, the data points (x, t)s in many cases can be classified in two

groups, {xs} and {ts}, and the information they contain may be manifested differently in an

optimization process. In the second step, the loss function is minimized by backpropagating

gradients to adjust neural network parameters Θ. If the number of observations n is limited,

additional constraints may help to make the training process more effective [KGC17].

To learn and represent the dynamics of physical systems, the constraints used in physics-

informed neural networks (PINNs) [RPK19, KKL21] provide one possible option of an induc-

tive bias in the training process. The key idea underlying PINN-based training is that the

constraints imposed by the known equations of motion for some parts of the system are em-

bedded in the loss function. Terms in the loss function associated with the differential equa-

tion can be evaluated using a neural network, which could be trained via backpropagation

and automatic differentiation. In accordance with the distinction between Lagrangian and

Hamiltonian formulations of the equations of motion in classical mechanics, physics-informed

neural networks can be also divided into these two categories [LRP19, RRB20, ZDC19]. An-

other formulation of PINNs uses variational principles [KZK19] in the loss function to further

constrain the types of functions used. Such variational PINNs rely on finite element (FE)

methods to discretize partial differential equation (PDE)-type constraints.

Many other PINN-based numerical algorithms have been recently proposed. A space-

190



time domain decomposition PINN method was proposed for solving nonlinear PDEs [JK20].

In other variants, physics-informed Fourier neural operators have also been proposed to

learn the underlying PDE models [LZK21]. In general, PINNs link modern neural network

methods with traditional complex physical models and allow algorithms to efficiently use

higher-order numerical schemes to (i) solve complex physical problems with high accuracy,

(ii) infer model parameters, and (iii) reconstruct physical models in data-driven inverse

problems [RPK19]. Therefore, PINNs have become increasingly popular as they can avoid

certain computational difficulties encountered when using traditional FE/FD methods to

find solutions to physics models.

The broad utility of PINNs is revealed by their numerous applications to problems in

aerodynamics [MJK20], surface physics [FZ19], power systems [MVC20], cardiology [SYP20],

and soft biological tissues [LLS20]. PINNs have also been integrated into the multi-task

learning [TNF21] and meta-learning [PZN23] frameworks. When implementing PINN algo-

rithms to find functions in an unbounded system, the unbounded variables cannot be simply

normalized, precluding the reconstruction of solutions outside the range of data. Nonethe-

less, many problems in nature are associated with long-ranged potentials [BH21, SB19] (i.e.,

unbounded spatial domains) and processes that are subject to algebraic damping [BOY11]

(i.e., unbounded temporal domains), and thus need to be solved in unbounded domains.

For example, to capture the oscillatory and decaying behavior at infinity of the solution to

Schrödinger’s equation, efficient numerical methods are required in the unbounded domain

R [LZZ18]. As another example, in structured cellular proliferation models in mathematical

biology, efficient unbounded domain numerical methods are required to detect and better

resolve possible blow-up in mean cell size [XGC20, XC21]. Finally, in solid-state physics,

long-range interactions [MHR11, HDO12] require algorithms tailored for unbounded domain

problems to accurately simulate particle interactions over long distances.

Solving unbounded domain problems is thus a key challenge in various fields that cannot

be addressed with standard PINN-based solvers. In static problems, if the solution’s behavior

at infinity is known, one can use boundary-layer methods to truncate the unbounded domain
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by discretizing space [BE22]. However, in spatiotemporal problems, it is often the case that

the solution’s behavior is evolving over time or otherwise unknown. Solving a PDE in this

situation requires proper detection and capturing of the function’s long-range behavior over

time. Thus, simply discretizing space or truncating the domain is usually not effective in

spatiotemporal problems. To efficiently solve PDEs in unbounded domains, we will treat the

information carried by the xs data using spectral decompositions of the function u(x, t) in

the x variable. Typically, a spatial initial condition of the desired solution is given and some

spatial regularity is assumed from the underlying physical process. As a consequence, we

suppose that at time t, we can use a spectral expansion in x to record spatial information.

On the other hand, a solution’s behavior in time t is unknown and one still has to numerically

step forward in time to obtain the solution. Thus, we combine PINNs with spectral methods

and propose a spectrally adapted PINN (s-PINN) method that can utilize recently developed

adaptive function expansion techniques [XSC21a, XSC21b].

In contrast to traditional numerical spectral schemes that can only furnish solutions at

discrete, predetermined timesteps, our approach uses time t as an input variable into the

neural network combined with the PINN method to define a loss function, which enables (i)

easy implementation of high-order Runge-Kutta schemes to relax the constraint on timesteps

and (ii) easy extrapolation of the numerical solution at any time. However, our approach is

distinct from that taken in standard PINNs, variational-PINNs, or physics-informed neural

operator approaches. We do not input spatial positions x into the network or try to learn the

x-dependence of u(x, t); instead, we assume that the function u(x, t) can be approximated

by a spectral expansion in x with appropriate basis functions. Rather than learning the ex-

plicit spatial dependence directly, we train the neural network to learn the time-dependent

expansion coefficients. Our main contributions include (i) integrating spectral methods into

multi-output neural networks to approximate the spectral expansions of functions when par-

tial information is available, (ii) incorporating recently developed adaptive spectral methods

in our s-PINNs to allow accurate solutions of unbounded-domain spatiotemporal PDEs, and

(iii) presenting explicit examples illustrating how s-PINNs can be used to solve unbounded
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domain problems, recover spectral convergence, and more easily solve inverse-type PDE in-

ference problems. We show how s-PINNs provide a unified, easy-to-implement method for

solving PDEs and performing parameter inference given noisy observation data and how

complementary adaptive spectral techniques can further improve efficiency, especially for

solving problems in unbounded domains.

In Section 8.2.7, we show how neural networks can be combined with modern adap-

tive spectral methods to outperform standard neural networks in function approximation

tasks. As a first application, we show in Section 8.3 how efficient PDE solvers can be de-

rived from spectral PINN methods. In Section 8.4, we discuss another application that

focuses on reconstructing underlying physical models and inferring model parameters given

observational data. In Section 8.5, we summarize our work and discuss possible directions

for future research. A summary of the main variables and parameters used in this study

is given in Table 8.1. Our source codes are publicly available at https://gitlab.com/

ComputationalScience/spectrally-adapted-pinns.

8.2 Combining Spectral Methods with Neural Networks

In this section, we first introduce the basic features of function approximators that rely

on neural networks and spectral methods designed to handle variables that are defined in

unbounded domains. In a dataset (xs, ts, us), s ∈ {1, . . . , n}, xs are values of the sampled

“spatial” variable x which can be defined in an unbounded domain. We will also assume

that our problem is defined within a finite time horizon so that ts are time points restricted

to a bounded domain, and are thus normalizable. Our key assumption is that the solution’s

behavior in x can be represented by a spectral decomposition, while u’s behavior in t remains

unknown and is to be learned from the neural network. This is achieved by isolating the

possibly unbounded spatial variables x from the bounded variables t by expressing u in terms

of suitable basis functions in x with time-dependent weights. As indicated in Fig. 8.1(a), we
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Symbol Definition

n Number of observations
N Spectral expansion order
NH Number of intermediate layers in the neural network
H Number of neurons per layer

η Learning rate of stochastic gradient descent

Θ Neural network parameters (weights and biases)

K Order of the Runge–Kutta scheme

L Loss function, e.g., sum of squared errors (SSEs)

β Scaling factor in basis functions ϕβ
i,xL

(x) := ϕi(β(x− xL))
xL Translation of basis functions ϕβ

i,xL
:= ϕi(β(x− xL))

uβN,xL

Spectral expansion of order N generated by the neural network:
uβN,xL

=
∑N

i=0w
β
i,xL

ϕi(β(x− xL))

F(uβN,xL
)

Frequency indicator for the spectral expansion uβN,xL

Ĥβ
i,xL

Generalized Hermite function of order i, scaling factor β, and trans-
lation xL

P β
N,xL

Function space defined by the firstN+1 generalized Hermite functions
P β
N,xL

:= {Ĥβ
i,xL
}Ni=0

q Scaling factor (β) adjustment ratio

ν Threshold for adjusting the scaling factor β

ρ, ρ0 Threshold for increasing, decreasing N

γ Ratio for adjusting ρ

Table 8.1: Overview of variables. Definitions of the main variables and parameters used
in this chapter.

approximate us using

us := u(xs, ts) ≈ uN(xs, ts) :=
N∑
i=0

wi(ts)ϕi(xs), (8.2.1)

where {ϕi}Ni=0 are suitable basis functions that can be used to approximate u in an un-

bounded domain (see Fig. 8.1(b) for a schematic of a basis function ϕi(x) that decays with

x). Examples of such basis functions include, for example, the generalized Laguerre functions

in R+ and the generalized Hermite functions in R [STW11]. In addition to being defined

on an unbounded domain, spectral expansions allow high accuracy [Tre00] calculations with
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Figure 8.1: Solving unbounded domain problems with spectrally adapted physics-informed neu-
ral networks for functions uN (x, t) that can be expressed as a spectral expansion uN (x, t) =∑N

i=0wi(t)ϕi(x). (a) An example of a function uN (x, t) plotted at three different time points.
(b) Decaying behavior of a corresponding basis function element ϕi(x). (c) PDEs in unbounded
domains can be solved by combining a PINN with a neural network approximation of the spectral
representation, uN (x, t, ; Θ) =

∑N
i=0wi(t; Θ)ϕi(x), and minimizing the loss function L. Spatial

derivatives of basis functions are explicitly defined and easily obtained. Here, g denotes an activa-
tion function such as the ReLU function.

errors that decay exponentially (spectral convergence) in space if the target function u(x, t)

is smooth.

Figure 8.1(c) shows a schematic of our proposed spectrally adapted PINN algorithm.

The variable x is directly fed into the basis functions ϕi instead of being used as an input

in the neural network. If one wishes to connect the output uN(x, t; Θ) of the neural net-

work (here, Θ represents the parameters of the neural network) to the solution of a PDE

and perform backpropagation to minimize a loss functional L[uN(x, t; Θ), us(x, t)], it must

contain spatial derivatives of uN intrinsic to the underlying PDE. Derivatives that involve

the variable x can be easily and explicitly calculated by taking derivatives of the basis func-

tions with high accuracy while derivatives with respect to t can be obtained via automatic
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differentiation [Lin76, PGC17].

If a function u can be written in terms of a spectral expansion in some dimensions (e.g.,

x in Eq. (8.2.1)) with appropriate spectral basis functions, we can approximate u using a

multi-output neural network by solving the corresponding least squares optimization problem

min
Θ

{
n∑

s=1

∣∣uN(xs, ts; Θ)− us
∣∣2} , uN(x, t; Θ) =

N∑
i=0

wi(t; Θ)ϕi(x), (8.2.2)

where n is the number of sample points. The neural network outputs the t-dependent vector

of coefficients wi(t; Θ). This representation will be used in the appropriate loss function

depending on the application. The neural network can achieve arbitrarily high accuracy

in the minimization of the loss function if it is deep enough and contains sufficiently many

neurons in each layer [HSW89]. Since the solution’s spatial behavior has been approximated

by the spectral expansion which could achieve high accuracy with proper ϕi, we shall show

that solving Eq. (8.2.2) can be more accurate and efficient than directly fitting to us by

a neural network without using a spectral expansion. The proper choice of basis function

ϕi(x) usually depends on the domain and how the solution decays at infinity. Overviews

of asymptotic properties of basis functions are given in [STW11, BVO20]. For instance, in

bounded domains, using any set of basis functions in the Jacobi polynomial family leads

to the same convergence order for smooth functions and usually similar performance; in

a semi-unbounded domain R+, the generalized Laguerre functions are often used; in the

whole unbounded domain R+, the generalized Hermite functions are a common choice if the

function decays exponentially at infinity. If the solution is expected to decay algebraically at

infinity, the mapped Jacobi functions, such as the modified mapped Gegenbauer functions

(MMGFs) are to be used [STW11].

As a motivating example, we compare the approximation error of a neural network that is

fed both xs and ts with that of the s-PINN method in which only ts are inputted, but with the

information contained in xs imposed on the solution via the basis functions {ϕi(x)}Ni=0. We

show that taking advantage of the prior knowledge on the x-data greatly improves training
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efficiency and accuracy. All neural networks that we use in our examples are based on fully

connected linear layers with ReLU activation functions. Weights and biases in each layer are

initially distributed according to a uniform distribution U(−√a,√a), where a is the inverse

of the number of input features. To normalize hidden-layer outputs, we apply the batch

normalization technique [IS15]. Neural network parameters are optimized using stochastic

gradient descent.

Example 24.: Function approximation

Consider approximating the function

u(x, t) =
8x sin 3x

(x2 + 4)2
t, (8.2.3)

which decays algebraically as u(x→∞, t) ∼ t/|x|3 when |x| → ∞. To numerically approxi-

mate Eq. (8.2.3), we choose the loss function to be the mean-squared error

MSE =
1

n

n∑
s=1

∣∣uN(xs, ts)− us∣∣2. (8.2.4)

A standard feed-forward neural network approach is applied by inputting both xs and ts

into a 5-layer, 15 neuron-per-layer network defined by the neural network parameters Θ̃ to

find a numerical approximation to

uN(xs, ts) := ũ(xs, ts; Θ̃) (8.2.5)

by minimizing Eq. (8.2.4) with respect to Θ̃.

To apply a multi-output neural network to this problem, we need to choose an appropriate

spectral representation of the spatial dependence of Eq. (8.2.3), in the form of Eq. (8.2.2). To

capture an algebraic decay at infinity as well as the oscillatory behavior resulting from the

sin(3x) term, we start from the modified mapped Gegenbauer functions (MMGFs) [TWY20]

Rλ,β
i (x) = (1 + (βx)2)−(λ+1)/2Cλ

i

(
βx/

√
1 + (βx)2

)
, x ∈ R, (8.2.6)
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Figure 8.2: Example 24: Function approximation. Approximation of the target function Eq. (8.2.3)
using both standard feed-forward neural networks and a spectral multi-output neural network that
learns the coefficients wi(t; Θ) in the spectral expansion Eq. (8.2.1). Comparison of the approxima-
tion error using a spectral multi-output neural network (red) with the error incurred when using a
standard neural-network function approximator (black). Here, both the spectral and non-spectral
function approximators use the same number of parameters, but the spectral multi-output neural
network converges much faster on the training set and has a smaller validation error than the
standard feed-forward neural network. (a) The training curve of the spectral multi-output neural
network decreases much faster than that of the standard feed-forward neural network. (b) Since the
spectral multi-output neural network is better at fitting the data by taking advantage of the spec-
tral expansion in x, its validation error is also much smaller and decreases faster. (c) Asymptotic
behavior of the spatial derivatives of the analytic solution ∂xu(x, t), the feed-forward neural network
∂xũ(x, t; Θ̃) (Eq. (8.2.5)), and the spectral neural network ∂xuN (x, t; Θ) (Eq. (8.2.7)). The feed-
forward neural network fails to capture the function’s behavior when |x| is large because ∂xũ(x, t; Θ̃)
is not vanishing for large |x|, but the spectral approximation Eq. (8.2.7) leads to smaller errors be-
cause ∂xuN (x, t; Θ) better approximates ∂xu(x, t) especially when |x| is large. Here, t = 0.937 is
randomly chosen from one of the training samples.

where Cλ
i (·) is the Gegenbauer polynomial of order i. At infinity, the MMGFs decay as

Rλ,β
i (x) ∼ sign(x)i (2λ)

(i)

i!
(1 + (βx)2)−(λ+1)/2, where (2λ)(i) is the ith rising factorial of 2λ. A

suitable basis ϕi needs to include functions that decay more slowly than x−3. If we choose

β = 1/4 and the special case λ = 0, the basis function is defined as ϕi(x) = R0,β
i (x) ≡

(1 + (βx)2)−1/2Ti(βx/
√

1 + (βx)2), where Ti are the Chebyshev polynomials. We thus use

uN(xs, ts; Θ) =
N=9∑
i=0

wi(ts; Θ)R0,β
i (xs) (8.2.7)

in Eq. (8.2.4) and use a 4-layer neural network with 15 neurons per layer to learn the coef-

ficients {wi(t; Θ)}1i=04 by minimizing the MSE (Eq. (8.2.4)) with respect to Θ. The total

numbers of parameters for both the 4-layer spectral multi-output neural network and the
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normal 5-layer neural network are the same. The training set and the validation set each

contain n = 200 pairs of values (x, t)s = (xs, ts) where xs are sampled from the Cauchy dis-

tribution, xs ∼ C(12, 0), and ts ∼ U(0, 1). For each pair (xs, ts), we find us ≡ u(xs, ts) using

equation (8.2.3). The positions xs are sampled from the unbounded domain R and cannot

be normalized (the expectation and variance of the Cauchy distribution do not exist). The

minimum (maximum) value of x in the training set and the validation set are −18.65 (50.32)

and −721.50 (120.01), respectively.

We set the learning rate η = 5 × 10−4 and plot the training and validation MSEs

(Eq. (8.2.4)) as a function of the number of training epochs in Fig. 8.2. Figures 8.2(a) and

(b) show that the spectral multi-output neural network yields smaller errors since it natu-

rally and efficiently captures the oscillatory and decaying feature of the underlying function

u from Eq. (8.2.3). Directly fitting u ≈ ũ leads to over-fitting on the training set which

does nothing to reduce the validation error. We can see from Fig. 8.2(c) that using the

feed-forward neural network, Eq. (8.2.5) results in a nonvanishing spatial derivative when

|x| is large. Such an approximation to the original function u(x, t), which vanishes for large

|x|, is thus inaccurate. On the other hand, the spatial derivative of the spectral neural net-

work Eq. (8.2.7) better fits u(x, t) especially as |x| → ∞. Therefore, it is important to take

advantage of the data structure, in this case, using the spectral expansion to represent the

function’s known oscillations and decay as x→∞.

In this and subsequent examples, all computations are performed using Python 3.8.10 on

a laptop with a 4-core Intel® i7-8550U CPU @ 1.80 GHz.

8.3 Application to Solving PDEs

In this section, we show that spectrally adapted neural networks can be combined with

physics-informed neural networks (PINNs) which we shall call spectrally adapted PINNs

(s-PINNs). We apply s-PINNs to numerically solve PDEs, and in particular, spatiotempo-

ral PDEs in unbounded domains for which standard PINN approaches cannot be directly
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applied. Although we mainly focus on solving spatiotemporal problems, s-PINNs are also

applicable to other types of PDEs.

Again, we assume that the problem is defined over a finite time horizon t while the spatial

variable x may be defined in an unbounded domain. Assuming the solution’s asymptotic

behavior in x is known, we approximate it by a spectral expansion in x with suitable basis

functions (e.g., MMGFs in Example 24 for describing algebraic decay at infinity). Assuming

M is an operator that only involves the spatial variable x (e.g., ∂x, ∂
2
x, etc.), we can represent

the solution to the spatiotemporal PDE ∂tu = M[u](x, t) by the spectral expansion in

Eq. (8.2.2) with expansion coefficients {wi(t; Θ)} to be learned by a neural network with

parameters Θ. If the solution’s behavior in both x and t are known and one can find proper

basis functions in both the x and t directions, then one could use a spectral expansion in

both x and t to solve the PDE directly without time-stepping. However, it is often the case

that the time dependence is unknown and u(x, t) needs to be solved step-by-step in time.

As in standard PINNs, we use a high-order Runge–Kutta scheme to advance time by

uniform timesteps ∆t. What distinguishes our s-PINNs from standard PINNs is that only the

intermediate times ts between timesteps are provided as inputs to the neural network, while

the outputs contain global spatial information (the spectral expansion coefficients), as shown

in Fig. 8.1(c). Over a longer time scale, the optimal basis functions in the spectral expansion

Eq. (8.2.2) may change. Therefore, one can use new adaptive spectral methods proposed

in [XSC21b, XSC21a]. Using s-PINNs to solve PDEs has the advantages that they can

(i) accurately represent spatial information via spectral decomposition, (ii) convert solving a

PDE into an optimization and data fitting problem, (iii) easily implement high-order, implicit

schemes to advance time with high accuracy, and (iv) allow the use of recently developed

spectral-adaptive techniques that dynamically find the most suitable basis functions.

The approximated solution to the PDE ∂tu = M[u](x, t) can be written at discrete
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timesteps tj+1 − tj = ∆t as

uN(x, tj+1; Θj+1) =
N∑
i=0

wi(tj+1; Θj+1)ϕi(x), (8.3.1)

where Θj+1, j ≥ 1 is the parameter set of the neural network used in the time interval

(j∆t, (j + 1)∆t). In order to forward time from tj = j∆t to tj+1 = (j + 1)∆t, we can

use, e.g., a Kth-order implicit Runge–Kutta scheme, with 0 < cs < 1 (s = 1, . . . , K) as

parameters describing different collocation points in time and ars, br (r = 1, . . . , K) the

associated coefficients.

Given u(x, tj), the K
th-order implicit Runge–Kutta scheme aims to approximate u(x, tj+

cs∆t) and u(x, tj +∆t) through

uN(x, tj + cs∆t) = u(x, tj) +
K∑
r=1

arsM
[
uN(x, tj + cr∆t)

]
,

uN(x, tj +∆t) = u(x, tj) +
K∑
r=1

brM
[
uN(x, tj + cr∆t)

]
. (8.3.2)

With the starting point uN(t0, x; Θ0) := uN(t0, x) defined by the initial condition at t0, we

define the target function as the sum of squared errors

SSEj =
K∑
s=1

∥∥∥uN(x, tj + cs∆t; Θj+1)− uN(x, tj; Θj)−
K∑
r=1

asrM[uN(x, tj + cr∆t; Θj+1)]
∥∥∥2
2

+
∥∥∥uN(x, tj +∆t; Θj+1)− uN(x, tj; Θj)−

K∑
r=1

brM[uN(x, tj + cr∆t; Θj+1)]
∥∥∥2
2
,

(8.3.3)

where the L2 norm is taken over the spatial variable x. Minimization of Eq. (8.3.3) provides

a numerical solution at tj+1 given its value at tj. If coefficients in the PDE are sufficiently

smooth, we can use the basis function expansion in Eq. (8.3.1) for uN and find that the

weights at the intermediate Runge–Kutta timesteps can be written as the Taylor expansion
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wi(tj + cr∆t; Θj+1) =
∞∑
ℓ=0

w
(ℓ)
i (tj; Θj+1)

ℓ!
(cr∆t)

ℓ, (8.3.4)

where w
(ℓ)
i (tj) is the ℓ

th derivative of wi with respect to time, evaluated at tj. Therefore, the

neural network is learning the mapping tj + cs∆t →
∑∞

ℓ=0w
(ℓ)
i (tj)(cs∆t)

ℓ/ℓ! for every i by

minimizing the loss function Eq. (8.3.3).

Example 25.: Solving bounded domain PDEs

Before focusing on the application of s-PINNs to PDEs whose solution is defined in an

unbounded domain, we first consider the numerical solution of a PDE in a bounded domain

to compare the performance of the spectral PINN method (using recently developed adaptive

methods) to that of the standard PINN.

Consider the following PDE:

∂tu =

(
x+ 2

t+ 1

)
∂xu, x ∈ (−1, 1),

u(x, 0) = cos(x+ 2), u(1, t) = cos(3(t+ 1)), (8.3.5)

which admits the analytical solution u(x, t) = cos((t + 1)(x + 2)). In this example, we

use Chebyshev polynomials Ti(x) as basis functions and the corresponding Chebyshev-

Gauss-Lobatto quadrature collocation points and weights such that the boundary u(1, t) =

cos(3(t + 1)) can be directly imposed at a collocation point x = 1. Since the solution

becomes increasingly oscillatory in x over time, an ever-increasing expansion order (i.e., the

number of basis functions) is needed to accurately capture this behavior. Between consecu-

tive timesteps, we employ a recently developed p-adaptive technique for tuning the expansion

order [XSC21b]. This method is based on monitoring and controlling a frequency indicator

F(uN) defined by

F(uN) =


N∑

i=N−[N
3
]+1

γiw
2
i

N∑
i=0

γiw2
i


1
2

, (8.3.6)
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Figure 8.3: Example 25: Solving Eq. (8.3.5) in a bounded domain. L2 errors, frequency indicators,
and expansion order associated with the numerical solution of Eq. (8.3.5) using the adaptive s-PINN
method with a timestep ∆t = 0.01. (a) In a bounded domain, the s-PINNs, with and without the
adaptive spectral technique, have smaller errors than the standard PINN (black). Moreover, the s-
PINN method combined with a p-adaptive technique that dynamically increases the number of basis
functions (red) exhibits a smaller error than the non-adaptive s-PINN (blue). The higher accuracy
of the adaptive s-PINN is a consequence of maintaining a small frequency indicator Eq. (8.3.6),
as shown in (b). (c) Keeping the frequency indicator at small values is realized by increasing the
spectral expansion order.

where γi :=
∫ 1

−1 T
2
i (x)(1 − x2)−1/2dx. The frequency indicator F(uN) measures the propor-

tion of high-frequency waves and serves as a lower error bound of the numerical solution

uN(x, t; Θ) :=
∑N

i=0wi(t; Θ)Ti(x). When F(uN) exceeds its previous value by more than a

factor ρ, the expansion order is increased by one. The indicator is then updated and the

factor ρ also is scaled by a parameter γ ≥ 1.

We use a fourth-order implicit Runge–Kutta method to advance time in the loss function

(8.3.3) and in order to adjust the expansion order in a timely way, we take ∆t = 0.01. The

initial expansion order N = 8, and the two parameters used to determine the threshold

of adjusting the expansion order are set to ρ = 1.5 and γ = 1.3. A neural network with

NH = 4 layers and H = 200 neurons per layer is used in conjunction with the loss function

((8.3.3)) to approximate the solution of equation (8.3.5). We compare the results obtained

using the s-PINN method with those obtained using a fourth-order implicit Runge–Kutta

scheme with ∆x = 1
256
,∆t = 0.01 in a standard PINN approach [RPK19], also using NH = 4

and H = 200.

Figure 8.3 shows that s-PINNs can be used to greatly improve accuracy because the
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spectral method can recover exponential convergence in space, and when combined with a

high-order accurate implicit scheme in time, the overall error is small. In particular, the

large error shown in Fig. 8.3 of the standard PINN suggests that the error of applying

auto-differentiation to calculate the spatial derivative is significantly larger than the spatial

derivatives calculated using spectral methods. Moreover, when equipping spectral PINNs

with the p-adaptive technique to dynamically adjust the expansion order, the frequency

indicator can be controlled, leading to even smaller errors as shown in Fig. 8.3(b,c).

Computationally, using our 4-core laptop in this example, the standard PINN method

requires ∼ 106 seconds while the s-PINN approach with and without adaptive spectral tech-

niques (dynamically increasing the expansion order N) required 1711 and 1008 seconds,

respectively. Thus, s-PINN methods can be computationally more efficient than the stan-

dard PINN approach. This advantage can be better understood by noting that training of

standard PINNs requires time ∼ O(∑NH

i=0HiHi+1) (Hi is the number of neurons in the ith

layer) to calculate each spatial derivative (e.g., ∂xu, ∂
2
xu, ...) by autodifferentiation [BPR18].

However, in an s-PINN, since a spectral decomposition uN(x, t; Θ) has been imposed, the

computational time to calculate derivatives of all orders is O(N), where N is the expansion

order. Since
∑NH

i=0HiHi+1 ≥
∑NH

i=0Hi and the total number of neurons
∑NH

i=0Hi is usually

much larger than the expansion order N , using s-PINNs can substantially reduce computa-

tional cost.

In bounded-domain problems, there are many other good machine-learning-based PDE

solvers against which we can compare, such as the DeepONet method [LJP21], its PINN

extension [WWP21], and the Fourier neural operator method [LKA20]. However, what

distinguishes s-PINNs from the standard PINN framework is that the latter uses spatial

and temporal variables as neural-network inputs, implicitly assuming that all variables are

normalizable especially when batch-normalization techniques are applied while training the

underlying neural network. Our s-PINN approach relies on spectral expansions to represent

the dependence of a function u(x, t) on the spatial variable x, which can then be defined

in unbounded domains and does not need to be normalizable. Thus, our s-PINN method
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provides a novel machine-learning-based PDE solver for unbounded-domain spatiotemporal

problems. In the following example, we shall explore how our s-PINN is applied to solving

a PDE defined in (x, t) ∈ R+ × [0, T ].
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Figure 8.4: Example 26: Solving equation (8.3.7) in an unbounded domain. L2 error, frequency
indicator, and expansion order associated with the numerical solution of equation (8.3.7) using
the s-PINN method combined with the spectral scaling technique. (a) The s-PINN method with
the scaling technique (red) has a smaller error than the s-PINN without scaling (blue). The
higher accuracy of the adaptive s-PINN is a consequence of maintaining a small frequency indicator
equation (8.3.6), as shown in (b). (c) Keeping the frequency indicator at small values is possible by
reducing the scaling factor so that the basis functions decay more slowly at infinity. The timestep
is ∆t = 0.05. (d) The errors for the spectral method with and without scaling at t = 2. When
the scaling factor is properly adjusted, very high accuracy can be obtained with only a few basis
functions. Not dynamically adjusting the scaling factor leads to a much slower convergence.

Example 26.: Solving unbounded domain PDEs

Consider the following PDE, which is similar to Eq. (8.3.5) but is defined in (x, t) ∈ R+ ×
[0, T ]:

∂tu = −
(

x

t+ 1

)
∂xu, u(x, 0) = e−x, u(0, t) = 1. (8.3.7)

Equation (8.3.7) admits the analytical solution u(x, t) = exp[−x/(t + 1)]. In this example,
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we use the basis functions {L̂β
i (x)} := {L̂(0)

i (βx)} where L̂(0)
i (x) is the generalized Laguerre

function of order i defined in [STW11]. Here, we use the Laguerre-Gauss quadrature collo-

cation points and weights so that x = 0 is not included in the collocation node set. We use

a fourth-order implicit Runge–Kutta method to minimize the SSE Eq. (8.3.3) by advancing

time. In order to address the boundary condition, we augment the loss function in Eq. (8.3.3)

with terms that represent the cost of deviating from the boundary condition:

SSEj =
K∑
s=1

∥∥∥uN(x, tj + cs∆t; Θj+1)− uN(x, tj; Θj)−
K∑
r=1

asrM[uN(x, tj + cr∆t; Θj+1)]
∥∥∥2
2

+
∥∥∥uN(x, tj +∆t; Θj+1)− uN(x, tj; Θj)−

K∑
r=1

brM[uN(x, tj + cr∆t; Θj+1)]
∥∥∥2
2

+
K∑
s=1

[
uN(0, tj + cs∆t; Θj+1)− u(0, tj + cs∆t)

]2
+
[
uN(0, tj+1; Θj+1)− u(0, tj+1)

]2
,

where the last two terms push the constraints associated with the Dirichlet boundary con-

dition at x = 0 at all time points:

uN(0, tj + cs∆t; Θj+1) = u(0, tj + cs∆t), uN(0, tj+1; Θj+1) = u(0, tj+1), (8.3.8)

where in this example, u(0, tj + cs∆t) = u(0, tj+1) ≡ 1.

Because the solution of Eq. (8.3.7) becomes more diffusive with x (i.e., decays more

slowly at infinity), it is necessary to decrease the scaling factor β to allow basis functions to

decay more slowly at infinity. Between consecutive timesteps, we adjust the scaling factor

by applying the scaling algorithm proposed in [XSC21a]. Thus, we dynamically adjust the

basis functions in Eq. (8.2.1). As with the p-adaptive technique we used in Example 25, the

scaling technique also relies on monitoring and controlling the frequency indicator given in

Eq. (8.3.6). In order to efficiently and dynamically tune the scaling factor, we set ∆t = 0.05.

The initial expansion order is N = 8, the initial scaling factor is β = 2, the scaling factor

adjustment ratio is set to q = 0.95, and the threshold for tuning the scaling factor is set

to ν = 1/(0.95). A neural network with 3 intermediate layers and 100 neurons per layer is
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used in conjunction with the loss function given in equation ((8.3.3)). Figure 8.4(a) shows

that s-PINNs can achieve very high accuracy even when a relatively large timestep (∆t =

0.05) is used. Scaling techniques to dynamically control the frequency indicator are also

successfully incorporated into s-PINNs, as shown in Figs. 8.3.7(b,c), and very high accuracy

can be achieved with only a few basis functions, as shown in Fig. 8.3.7(d). Actually, such

spatiotemporal diffusive behavior in unbounded domains distinguishes unbounded-domain

problems from bounded-domain problems, as we have to dynamically adjust the scaling

factor over time using the scaling technique in [XSC21a].

In Eq. (8.3.7), we imposed a Dirichlet boundary condition by modifying the SSE Eq. (8.3.8)

to include boundary terms. Other types of boundary conditions can be applied in s-PINNs

by including boundary constraints in the SSE as in standard PINN approaches.

In the next example, we focus on solving a PDE with two spatial variables, x and y, each

defined on an unbounded domain.

Example 27.: Solving 2D unbounded domain PDEs

Consider the two-dimensional heat equation on (x, y) ∈ R2

∂tu(x, y, t) = ∆u(x, y, t), u(x, y, 0) =
1√
2
e−x

2/12−y2/8, (8.3.9)

which admits the analytical solution

u(x, y, t) =
1√

(t+ 3)(t+ 2)
exp

[
− x2

4(t+ 3)
− y2

4(t+ 2)

]
. (8.3.10)

Note that the solution spreads out over time in both dimensions, i.e., it decays more slowly at

infinity as time increases. Therefore, we apply the scaling technique to capture the increasing

spread by adjusting the scaling factors βx and βy of the generalized Hermite basis functions.

Generalized Hermite functions of orders i = 0, . . . , Nx and ℓ = 0, . . . , Ny are used in the x

and y directions, respectively.

In order to solve Eq. (8.3.9), we multiply it by any test function v ∈ H1(R) and integrate
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the resulting equation by parts to convert it to the weak form (∂tu, v) = −(∇u,∇v). Solving
the weak form of Eq. (8.3.9) ensures numerical stability. When implementing the spectral

method, the goal is to find

u
βx,βy

Nx,Ny
(x, y, t) =

Nx∑
i=0

Ny∑
ℓ=0

wi,ℓ(t)Ĥβx

i,0(x)Ĥ
βy

ℓ,0(y), (8.3.11)

where Ĥβx

i,0, Ĥ
βy

ℓ,0 are generalized Hermite functions defined in Table 8.1 such that (∂tu, v) =

−(∇u,∇v) t ∈ (tj, tj+1) for all v ∈ P βx

Nx,0
× P βy

Ny ,0
, t ∈ (tj, tj+1). This allows one to advance

time from tj to tj+1 given u
βx,βy

Nx,Ny
(x, y, tj).

Figure 8.5: Example 27: Solving a 2D unbounded domain PDE (Eq. (8.3.9)). L2 error, scaling
factor, and frequency indicators associated with the numerical solution of equation (8.3.9) using
s-PINNs, with and without dynamic scaling. (a) L2 error as a function of time. The s-PINNs
that are equipped with the scaling technique (red) achieve higher accuracy than those without
(black). (b) The scaling factors βx (blue) and βy (red) as functions of time. Both scaling factors
are decreased to match the spread of the solution in both the x and y directions. Scaling factors
are adjusted to maintain small frequency indicators in the x-direction (c), and in the y-direction
(d). In all computations, the timestep is ∆t = 0.1.

208



Tuning the scaling factors βx, βy across different timesteps is achieved by monitoring the

frequency indicators in the x- and y-directions, Fx and Fy, as detailed in [XSC21b]. We

use initial expansion orders Nx = Ny = 8 and scaling factors βx = 0.4, βy = 0.5. The ratio

and threshold for adjusting the scaling factors are set to be q = 0.95 and ν−1 = 0.95. The

timestep ∆t = 0.1 is used to adjust both scaling factors in both dimensions in a timely

manner and a fourth-order implicit Runge–Kutta scheme is used for numerical integration.

The neural network that we use to learn wi,ℓ(t) has 5 intermediate layers with 150 neurons

in each layer.

The results depicted in Fig. 8.5(a) show that an s-PINN using the scaling technique

can achieve high accuracy by using high-order Runge–Kutta schemes in minimizing the

SSE Eq. (8.3.3) and by properly adjusting βx and βy (shown in Fig. 8.5(b)) to control the

frequency indicators Fx and Fy (shown in Fig. 8.5(c) and (d)). The s-PINNs can be extended

to higher spatial dimensions by calculating the numerical solution expressed in the tensor

product form as in Eq. (8.3.11).

Since our method outputs spectral expansion coefficients, using the full tensor product in

the spatial spectral decomposition leads to a number of outputs that increase exponentially

with dimensionality. The very wide neural networks needed for such high-dimensional prob-

lems result in less efficient training. However, unlike other recent machine–learning–based

PDE solvers or PDE learning methods [BWW21, LKA20] that explicitly rely on a spatial

discretization of grids or meshes, the curse of dimensionality can be partially mitigated in

our s-PINN method. By using a hyperbolic cross space [SW10b], we can effectively reduce

the number of coefficients needed to accurately reconstruct the numerical solution. In the

next example, we solve a 3D parabolic spatiotemporal PDE, similar to that in Example 27,

but we demonstrate how implementing a hyperbolic cross space can reduce the number of

outputs and boost training efficiency.

Example 28.: Solving 3D unbounded domain PDEs
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Consider the (3+1)-dimensional heat equation

∂tu(x, y, z, t) = ∆u(x, y, z, t), u(x, y, 0) =
1√
6
e−x

2/12−y2/8−z2/4, (8.3.12)

which admits the analytical solution

u(x, y, z, t) =
1√

(t+ 3)(t+ 2)(t+ 1)
exp

[
− x2

4(t+ 3)
− y2

4(t+ 2)
− z2

4(t+ 1)

]
(8.3.13)

for (x, y, z) ∈ R3. If we use the full tensor product of spectral expansions with expansion

orders Nx = Ny = Nz = 9, we will need to output 103 = 1000 expansion coefficients, and

in turn, a relatively wide neural network with many parameters will be needed to generate

the corresponding weights as shown in Fig. 8.1(c). Training such wide networks can be

inefficient. However, many of the spectral expansion coefficients are close to zero and can

be eliminated without compromising accuracy. One way to select expansion coefficients is

to use the hyperbolic cross space technique [SW10b] to output coefficients of the generalized

Hermite basis functions only in the space

V β⃗,x⃗0

N,γ×
:= span

{
ĤNx(βxx)ĤNy(βyy)ĤNz(βzz) : |N⃗ |mix∥N⃗∥−γ×∞ ≤ N1−γ×

}
,

N⃗ := (Nx, Ny, Nz), |N⃗ |mix := max{Nx, 1}max{Ny, 1}max{Nz, 1}, (8.3.14)

where the hyperbolic space index γ× ∈ (−∞, 1). Taking γ× = −∞ in Eq. (8.3.14) corre-

sponds to the full tensor product with N + 1 basis functions in each dimension. βx, βy, βx

are the scaling factors for the basis functions in the x, y, z directions, and Nx, Ny, Nz are the

orders of the basis function expansions in the x, y, z directions. For fixed N in Eqs. (8.3.14),

the number of total basis function tends to decrease with increasing γ×. We set N = 9 in

Eq. (8.3.14) and use the initial scaling factors βx = 0.4, βy = 0.5, βz = 0.7. Using a fourth-

order implicit Runge–Kutta scheme with a timestep ∆t = 0.2, we set the ratio and threshold

for adjusting the scaling factors are set to q = 0.95 and ν−1 = 0.95 in each dimension.
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H

γ× −∞ −1 0 1
2

200 2.217× 10−3, (22911) 1.651× 10−4, (4309) 5.356× 10−5, (2886) 3.173× 10−4, (3956)

400 1.072× 10−3, (26725) 2.970× 10−5, (7014) 5.356× 10−5, (3309) 3.173× 10−4, (2356)

700 2.276× 10−3, (43923) 2.900× 10−5, (3133) 5.356× 10−5, (3229) 3.173× 10−4, (2098)

1000 7.871× 10−5, (55880) 2.901× 10−5, (3002) 5.356× 10−5, (2016) 3.173× 10−4, (1894)

Table 8.2: Example 28: Applying hyperbolic cross space and s-PINNs to the (3+1) dimensional

PDE equation (8.3.12). Applying the hyperbolic cross space (equation (8.3.14)), we record the L2

error as well as the training time (in seconds). The number of coefficients (outputs in the neural

network) for γ× = −∞,−1, 0, 12 are 1000, 205, 141, 110, respectively. Using γ× = −1 or 0 leads

to the most accurate results. The training time tends to increase with the number of outputs (a

smaller γ× corresponds to more outputs). By comparing the results in different rows for the same

column, it can be seen that more outputs require a wide neural network for training.

To illustrate the potential numerical difficulties arising from outputting large numbers of

coefficients when solving higher-dimensional spatiotemporal PDEs, we use a neural network

with two hidden layers and different numbers of neurons in the intermediate layers. We

also adjust γ× to explore how decreasing the number of coefficients can improve training

efficiency. Our results are listed in Table 8.2.

The results shown in Table 8.2 indicate that, compared to using the full tensor product

γ× = −∞, implementing the hyperbolic cross space with a moderate γ× = −1 or 0, the total

number of outputs is significantly reduced, leading to faster training and better accuracy.

However, increasing the hyperbolicity to γ× = 1
2
, the error increases relative to using γ× =

−1, 0 because some useful, nonzero coefficients are excluded. Also, comparing the results

across different rows, wider layers lead to both more accurate results and faster training

speed. The sensitivity of our s-PINN method to the number of intermediate layers in the

neural network and the number of neurons in each layer are further discussed in Example 30.

Overall, in higher-dimensional problems, there is a balance between computational cost and

accuracy as the number of outputs needed will grow fast with dimensionality. Spectrally-

adapted PINNs can easily incorporate a hyperbolic cross space so that the total number
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of outputs can be reduced to a manageable number for moderate-dimensional problems.

Finding the optimal hyperbolicity index γ× for the cross space Eq. (8.3.14) will be problem-

specific.

In the next example, we explore how s-PINNs can be used to solve the Schrödinger’s equa-

tion in x ∈ R. Solving this complex-valued equation poses substantial numerical difficulties

as the solution exhibits diffusive, oscillatory, and convective behavior [LZZ18].

Example 29.: Solving an unbounded domain Schrödinger equation

We seek to numerically solve the following Schrödinger equation defined on x ∈ R

i∂tψ(x, t) = −∂2xψ(x, t), ψ(x, 0) =
1√
ζ
exp

[
ikx− x2

4ζ

]
. (8.3.15)

For reference, Eq. (8.3.15) admits the analytical solution

ψ(x, t) =
1√
ζ + it

exp

[
ik(x− kt)− (x− 2kt)2

4(ζ + it)

]
. (8.3.16)

As in Example 27, we shall numerically solve Eq. (8.3.15) in the weak form

(∂tΨ(x, t), v) + i(∂xΨ(x, t), ∂xv) = 0, ∀v ∈ H1(R). (8.3.17)

Since the solution to Eq. (8.3.15) decays as ∼ exp[−x2/(4
√
(ζ2 + t2))] at infinity, we shall use

the generalized Hermite functions as basis functions. The solution is rightward-translating for

k > 0 and increasingly oscillatory and spread out over time. Hence, as detailed in [XSC21b],

we apply three additional adaptive spectral techniques to improve efficiency and accuracy:

(i) a scaling technique to adjust the scaling factor β over time in order to capture diffusive

behavior, (ii) a moving technique to adjust the center of the basis function xL to capture

convective behavior, and (iii) a p-adaptive technique to increase the number of basis functions

N to better capture the oscillations. We set the initial parameters β = 0.8, xL = 0, N = 24

at t = 0. The scaling factor adjustment ratio and the threshold for adjusting the scaling

factor are q = ν−1 = 0.95, the minimum and maximum change in displacements of the basis
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functions are 0.004 and 0.1 within each timestep, respectively, and the threshold for moving

is 1.001. Finally, the thresholds of the p-adaptive technique are set to ρ = ρ0 = 2 and

γ = 1.4.

Generally speaking, it is desirable to set the adaptive spectral method scaling hyper-

parameters to ν ≳ 1 ≳ q. When implementing adaptive moving, it is desirable to make

the change in the basis functions’ displacement as accurate as possible by setting a small

minimum change in displacement per timestep, a large maximum change in displacement

per timestep, and a threshold for moving which is slightly larger than 1. For the p-adaptive

technique that adjusts the spectral expansion order, there is a cost-accuracy tradeoff; set-

ting ρ and γ to small values but ρ0 to a large value leads to the smallest errors but higher

computational costs. A more detailed and theoretical discussion of how the choices of those

hyperparameters influence the results is given in [CSX23].

To numerically solve Eq. (8.3.17), a fourth-order implicit Runge–Kutta scheme is applied

to advance time with timestep ∆t = 0.1. The neural network underlying the s-PINN that we

use in this example contains 13 layers with 100 neurons in each layer. Figure 8.6(a) shows

that the s-PINN with adaptive spectral techniques leads to very high accuracy as it can

properly adjust the basis functions over a longer timescale (across different timesteps), while

not adapting the basis functions results in larger errors. Figs. 8.6(b–d) show that the scaling

factor β decreases over time to match the spread of the solution, the displacement of the basis

function xL increases in time to capture the rightward movement of the basis functions, and

the expansion orderN increases to capture the solution’s increasing oscillatory behavior. Our

results indicate that our s-PINN method can effectively utilize all three adaptive algorithms.

We now explore how the timestep and the order of the implicit Runge–Kutta method af-

fect the approximation error, i.e., to what extent can we relax the constraint on the timestep

and maintain the accuracy of the basis functions, or, if higher-order Runge–Kutta schemes

are better. Another feature to explore is the neural network structure, such as the number of

layers and neurons per layer, and how it affects the performance of s-PINNs. In the following

example, we carry out a sensitivity analysis.
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Figure 8.6: Example 29: Solving the Schrödinger equation (Eq. (8.3.15)) in an unbounded do-
main. Approximation error, scaling factor, displacement, and expansion order associated with the
numerical solution of Eq. (8.3.15) using adaptive (red) and non-adaptive (black) s-PINNs. (a)
Errors for numerically solving Eq. (8.3.15) with and without adaptive techniques. (b) The change
in the scaling factor which decreases over time as the solution becomes more spread out. (c) The
displacement of the basis functions xL which is increased as the solution moves rightwards. (d)
The expansion order N increases over time as the solution becomes more oscillatory. A timestep
∆t = 0.1 was used.

Example 30.: Sensitivity analysis of s-PINN

To explore how the performance of an s-PINN depends on algorithmic set-up and parameters,

we apply it to solving the heat equation defined on x ∈ R,

∂tu(x, t) = ∂2xu(x, t) + f(x, t), u(x, 0) = e−x
2/4 sinx (8.3.18)

using generalized Hermite functions as basis functions. For the source f(x, t) = [x cosx +

(t+ 1) sinx] (t+ 1)−3/2 exp[− x2

4(t+1)
], Eq. (8.3.18) admits the analytical solution

u(x, t) =
sinx√
t+ 1

exp

[
− x2

4(t+ 1)

]
. (8.3.19)
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We solve Eq. (8.3.18) in the weak form by multiplying any test function v ∈ H1(R) on both

sides and integrating by parts to obtain

(∂tu, v) = −(∂xu, ∂xv) + (f, v), ∀v ∈ H1(R). (8.3.20)

The solution diffusively spreads over time, requiring one to decrease the scaling factor β

of the generalized Hermite functions {Ĥβ
i (x)}. We shall first study how the timestep and

the order of the implicit Runge–Kutta method associated with solving the minimization

problem (8.3.3) affect our results. We use a neural network with five intermediate layers

and 200 neurons per layer, and set the learning rate η = 5× 10−4. The initial scaling factor

is set to β = 0.8. The scaling factor adjustment ratio and threshold are set to q = 0.98,

and ν = q−1, respectively. For comparison, we also apply a Crank-Nicolson scheme for

numerically solving Eq. (8.3.20), i.e.,

Uβ
N(tj+1)− Uβ

N(tj)

∆t
= Dβ

N

[
Uβ
N(tj+1) + Uβ

N(tj)
]

2
+
F β
N(tj+1) + F β

N(tj)

2
. (8.3.21)

where Uβ
N(t), F

β
N(t) are the N + 1-dimensional vectors of spectral expansion coefficients of

the numerical solution and of the source, respectively. Dβ
N ∈ R(N+1)×(N+1) is the tridiagonal

block matrix representing the discretized Laplacian operator ∂2x:

Di,i−2 = β2

√
(i− 2)(i− 1)

2
, Di,i = −β2

(
i− 1

2

)
, Di,i+2 = β2

√
i(i+ 1)

2
,

and Di,j = 0, otherwise.

Table 8.3 shows that since the error from temporal discretization ∆t2K is already quite

small for K ≥ 4, using a higher-order Runge–Kutta method does not significantly improve

accuracy for all choices of ∆t. Using higher-order (K ≥ 4) schemes tends to require longer

run times. Higher orders require fitting over more data points (using the same number of

parameters) leading to slower convergence when minimizing Eq. (8.3.3), which can result in

larger errors. Compared to the second-order Crank-Nicolson scheme, whose error is O(∆t2),
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∆t

K
C-N scheme 2 4 6 10

0.02 12, 8.252e-06, 0.545 27, 4.011e-08, 0.545 54, 1.368e-08, 0.545 279, 2.545e-07, 0.545 7071, 6.358e-05, 0.695

0.05 5, 5.157e-05, 0.545 12, 2.799e-08, 0.545 23, 1.651e-08, 0.545 105, 2.566e-07, 0.545 3172, 1.052e-06, 0.545

0.1 3, 2.239e-04, 0.695 6, 1.331e-06, 0.695 10, 1.314e-06, 0.695 72, 1.346e-06, 0.695 1788, 2.782e-06, 0.695

0.2 2, 9.308e-04, 0.695 3, 3.760e-06, 0.695 9, 2.087e-06, 0.695 317, 2.107e-06, 0.695 1310, 1.925e-03, 0.753

Table 8.3: Example 30: Sensitivity analysis of s-PINN. Computational runtime (in seconds),

error, and the final scaling factor for different timesteps ∆t, different implicit order-K Runge–

Kutta schemes, and the traditional Crank-Nicolson scheme. In each box, the run time (in seconds)

and the SSE are listed, with the final scaling factor given just below. The results associated with
the smallest error are highlighted in italics while the results associated with the shortest run
time for our s-PINN method are indicated in bold.

the errors of our s-PINN method do not grow significantly when ∆t increases. In fact, the

accuracy using the smallest timestep ∆t = 0.02 in the Crank-Nicolson scheme was still

inferior to that of the s-PINN method using the second order or fourth order Runge-Kutta

scheme with ∆t = 0.2. Moreover, the run time of our s-PINN method using a second or

fourth-order implicit Runge–Kutta scheme for the loss function is not significantly larger

than that of the Crank-Nicolson scheme. Thus, compared to traditional spectral methods

for numerically solving PDEs, our s-PINN method, even when incorporating some lower-

order Runge–Kutta schemes, can greatly improve accuracy without significantly increasing

computational cost.

In Table 8.3, the smallest run time of our s-PINN method, which occurs for K = 2,∆t =

0.2, is shown in blue. The smallest error case, which arises for K = 4,∆t = 0.02, is

shown in red. The run time always increases with the order K of the implicit Runge–Kutta

scheme and always decreases with ∆t due to fewer timesteps. Additionally, the error always

increases with ∆t regardless of the order of the Runge–Kutta scheme. However, the expected

convergence order is not observed, implying that the increase in error results from increased

lag in the adjustment of the scaling factor β when ∆t is too large, rather than from an

insufficiently small time discretization error ∆t2K . Using a fourth-order implicit Runge–

Kutta scheme with ∆t = 0.05 to solve Eq. (8.3.20) seems to both achieve high accuracy and

avoid large computational costs.
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H

NH 3 5 8 13

50 1348(0.0014), 6.317e-04, 0.74 798(0.0015), 9.984e-05, 0.70 995(0.0020), 1.891e-04, 0.58 778(0.0039), 4.022e-04, 0.70

80 784(0.0015), 7.164e-04, 0.65 234(0.0016), 1.349e-06, 0.70 216(0.0023), 1.345e-06, 0.70 376(0.0043), 1.982e-06, 0.70

100 1080(0.0018), 8.804e-05, 0.70 114(0.0017), 1.344e-06, 0.70 102(0.0024), 1.346e-06, 0.70 145(0.0043), 1.348e-06, 0.70

200 219(0.0022), 1.349e-06, 0.70 72(0.0035), 1.346e-06, 0.70 43(0.0048), 1.347e-06, 0.70 64(0.0057), 1.345e-06, 0.70

Table 8.4: Example 30: Sensitivity analysis of our s-PINN for different numbers of intermediate

layers NH and neurons per layer H. The first line gives the total computational runtime (seconds)

and the runtime per epoch (in parentheses), while the second line lists the SSE (equation ((8.3.3)))

and the final scaling factor. Results associated with the smallest error are marked in italics
while those associated with the shortest run time are highlighted in bold.

We also investigate how the total number of parameters in the neural network and the

structure of the network affect efficiency and accuracy. We use a sixth-order implicit Runge–

Kutta scheme with ∆t = 0.1. The learning rate is set to η = 5×10−4 for all neural networks.

As shown in Table 8.4, the computational cost tends to decrease with the number of

neurons H in each layer as it takes fewer epochs to converge when minimizing Eq. (8.3.3).

The run time tends to decrease with NH due to a faster convergence rate, until about

NH = 8. The errors when H = 50 are significantly larger as the training terminates (after

a maximum of 100000 epochs) before it converges. For NH = 3, the corresponding s-PINN

always fails to achieve accuracy within 100000 epochs unless H ≳ 200. Actually, the mean

run time for training one epoch increases with H,NH . Nonetheless, a neural network with 8

intermediate layers and 200 neurons in each layer performs the best with the smallest total

run time. Therefore, overparametrization is indeed helpful in improving the neural network’s

performance, leading to faster convergence rates, in contrast to most traditional optimization

methods that take longer to converge with more parameters. Similar observations have

been made in other optimization tasks that involve deep neural networks [ACH18, CCZ20].

Consequently, our s-PINN method retains the advantages of deep and wide neural networks

for improving accuracy and efficiency.
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8.4 Parameter Inference and Source Reconstruction

As with standard PINN approaches, s-PINNs can also be used for parameter inference in

PDE models or reconstructing unknown sources in a physical model. Assuming observational

data at uniform time intervals tj = j∆t associated with a partially known underlying PDE

model, s-PINNs can be trained to infer model parameters θ by minimizing the sum of squared

errors, weighted from both ends of the time interval (tj, tj+1),

SSEj = SSEL
j + SSER

j , (8.4.1)

where

SSEL
j =

K∑
s=1

∥∥∥u(x, tj + cs∆t; θj+1; Θj+1)− u(x, tj; θj)

−
K∑
r=1

asrM
[
u(x, tj + cr∆t; θj+1; Θj+1)

]∥∥∥2
2
,

SSER
j =

K∑
s=1

∥∥∥u(x, tj + cs∆t; θj+1; Θj+1)− u(x, tj+1; θj+1)

−
K∑
r=1

(asr − br)M
[
u(x, tj + cr∆t; θj+1; Θj+1)

]∥∥∥2
2
.

Here, θj+1 are the set of model parameters to be found using the sample points cs∆t between

tj and tj+1. The most obvious advantage of s-PINNs over standard PINN methods is that

they can deal with models defined on unbounded domains, extending PINN-based methods

that are typically applied to finite domains. Note that the revised loss function Eq. (8.4.1)

differs from Eq. (8.3.3) because now the solutions at tj and tj+1 are both known, while for

Eq. (8.3.3) the solution at tj+1 is to be solved.

Given observations over a certain time interval, one may wish to both infer parameters

θj in the underlying physical model and reconstruct the solution u at any given time. Here,

we provide an example in which both a parameter in the model is to be inferred and the

numerical solution is to be obtained.

Example 31.: Parameter (diffusivity) inference
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As a starting point for a parameter-inference problem, we consider diffusion with a source

defined on x ∈ R

∂tu(x, t) = κ∂2xu(x, t) + f(x, t), u(x, 0) = e−x
2/4 sinx, (8.4.2)

where the constant parameter κ is the thermal conductivity (or diffusion coefficient) in the

entire domain. In this example, we set κ = 2 as a reference and assume the source

f(x, t) =

[
2 (x cosx+ (t+ 1) sinx)

(t+ 1)3/2
− x2

4(t+ 1)2
+

sinx

2(t+ 1)3/2

]
exp

[
− x2

4(t+ 1)

]
.

(8.4.3)

In this case, the analytical solution to Eq. (8.4.2) is given by Eq. (8.3.19). We numerically

solve Eq. (8.4.2) in the weak form of Eq. (8.3.20). If the form of the spatiotemporal heat

equation is known (such as Eq. (8.4.2)), but some parameters such as κ is unknown,

reconstructing it from measurements is usually performed by defining and minimizing a loss

function as was done in [Hun21]. It can also be shown that κ = κ(t) in Eq. (8.4.2) can

be uniquely determined by the observed solution u(x, t) [Iva93, Jon62, Bez74] under certain

conditions. Here, however, we assume that observations are taken at discrete time points

tj = j∆t and seek to reconstruct both the parameter κ and the numerical solution at tj+cs∆t

(defined in Eqs. (8.4.2)) by minimizing Eq. (8.4.1). We use a neural network with 13 layers

and 100 neurons per layer with a sixth-order implicit Runge–Kutta scheme. The timestep

∆t is 0.1. At each timestep, we draw the function values from

u(x, tj) =
sinx√
tj + 1

exp

[
− x2

4(tj + 1)

]
+ ξ(x, tj), (8.4.4)

where ξ(x, t) is the noise term that is both spatially and temporally uncorrelated, and

ξ(x, t) ∼ N (0, σ2), where N (0, σ2) is the normal distribution of mean 0 and variance σ2

(i.e., ⟨ξ(x, t)ξ(y, s)⟩ = σ2δx,yδs,t). For different levels of noise σ, we take one trajectory of

the measured solution with noise u(x, tj) to reconstruct the parameter κ, which is presumed

to be a constant in [tj, tj+1), and simultaneously obtain the numerical solutions at the in-
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termediate time points tj + cs∆t. We are interested in how different levels of noise and

the increasing spread of the solution will affect the SSE and the reconstructed parameter

κ̂. Figure 8.7 shows the deviation of the reconstructed κ̂ from its true value, |κ̂ − 2|, the
SSE, the scaling factor, and the frequency indicator as functions of time for different noise

levels. Figure 8.7(a) shows that the larger the noise, the less accurate the reconstructed

 

Figure 8.7: Example 31: Parameter (diffusivity) inference. The parameter κ inferred within suc-
cessive time windows of ∆t = 0.1, the SSE error Eq. (8.4.1), the scaling factor, and the frequency
indicators associated with solving Eq. (8.4.2), for different noise levels σ. Here, the SSE was min-
imized to find the estimate θ̂ ≡ κ̂ and the solutions uN at intermediate timesteps tj + cs∆t. (a,
b) Smaller σ leads to smaller SSE Eq. (8.4.2) and a more accurate reconstruction of κ̂. When the
function has spread out significantly at long times, the reconstructed κ̂ becomes less accurate, sug-
gesting that unboundedness and small function values render the problem susceptible to numerical
difficulties. (c, d) Noisy data results in a larger proportion of high-frequency waves and thus a large
frequency indicator, impeding proper scaling.

κ. Moreover, as the function becomes more spread out (when σ = 0), the error in both the

reconstructed diffusivity and the SSE increases across time, as shown in Fig. 8.7(b). This

behavior suggests that a diffusive solution that decays more slowly at infinity can give rise

to inaccuracies in the numerical computation of the intermediate timestep solutions and in
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reconstructing model parameters. Finally, as indicated in Fig. 8.7(c,d), larger variances in

the noise will impede the scaling process since the frequency indicator cannot be as easily

controlled because larger variances in the noise usually correspond to high-frequency and

oscillatory components of a solution.

In Example 31, both the parameter and the unknown solution were inferred. Apart from

reconstructing the coefficients in a given physical model, in certain applications, we may

also wish to reconstruct the underlying physical model by inferring, e.g., the heat source

f(x, t). Source recovery from observational data commonly arises and has been the subject

of many previous studies [YYF09, YDY11, YF10]. We now discuss how the s-PINN methods

presented here can also be used for this purpose. For example, in Eq. (8.3.18) or Eq. (8.4.2),

we may wish to reconstruct an unknown source f(x, t) by also approximating it with a

spectral decomposition

f(x, t) ≈ fN(x, t) =
N∑
i=0

hi(t)ϕ
β
i,xL

(x), (8.4.5)

and minimizing an SSE that is augmented by a penalty on the coefficients hi, i = 0, . . . , N .

We learn the expansion coefficients hi within [tj, tj+1] by minimizing

SSEj = SSEL
j + SSER

j + λ
∑K

s=1

∥∥hN(tj + cs∆t; Θj+1)
∥∥2
2
, λ ≥ 0,

SSEL
j =

K∑
s=1

∥∥∥u(x, tj + cs∆t)− u(x, tj)

−
K∑
r=1

asr
[
∂xxu(x, tj + cr∆t) + fN(x, tj + cr∆t; Θj+1)

]∥∥∥2
2
,

SSER
j =

K∑
s=1

∥∥∥u(x, tj + cs∆t)− u(x, tj+1)

−
K∑
r=1

(asr − br)
[
∂xxu(x, tj + cr∆t) + fN(x, tj + cr∆t; Θj+1)

]∥∥∥2
2
,
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where hN(tj + cs∆t; Θj+1) ≡
(
h1(tj + cs∆t; Θj+1), . . . , hN(tj + cs∆t; Θj+1)

)
and u (or the

spectral expansion coefficients wi of u) is assumed known at all intermediate time points

cs∆t in (tj, tj+1).

The last term in Eq. (8.4.6) adds an L2 penalty term on the coefficients of f which tends

to reconstruct smoother and smaller-magnitude sources as λ is increased. Other forms of

regularization such as L1 can also be considered [WT19]. In the presence of noise, an L1

regularization further drives small expansion weights to zero, yielding an inferred source fN

described by fewer nonzero weights.

Since the reconstructed heat source fN is expressed in terms of a spectral expansion in

Eq. (8.4.5), and minimizing the loss function Eq. (8.4.6) depends on the global information of

the observation u, f at any location x also contains global information intrinsic to u. In other

words, for such inverse problems, the s-PINN approach extracts global spatial information

and is thus able to reconstruct global quantities. We consider an explicit case in the next

example.

Example 32.: Source recovery

Consider the canonical source reconstruction problem [Can68, JL07, HP14] of finding f(x, t)

in the heat equation model in Eq. (8.3.18) for which observational data are given by Eq. (8.4.4)

but evaluated at tj + cs∆t. A physical interpretation of the reconstruction problem is identi-

fying the heat source f(x, t) using measurement data in conjunction with Eq. (8.3.18). As in

Example 5, we numerically solve the weak form Eq. (8.3.20). To study how the L2 penalty

term in Eq. (8.4.6) affects source recovery and whether increasing the regularization λ will

make the inference of f more robust against noise, we minimize Eq. (8.4.1) for different

values of λ and σ.

We use a neural network with 13 layers and 100 neurons per layer to reconstruct fi(t) in

the decomposition Eq. (8.4.5) with N = 16, i.e., the neural network outputs the coefficients

hi at the intermediate timesteps tj + cs∆t. The basis functions ϕβ
i,xL

(x) are chosen to be

Hermite functions Ĥβ
i,xL

(x). For simplicity, we consider the problem only at times within the

first time interval [0, 0.2] and a fixed scaling factor β = 0.8 as well as a fixed displacement
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σ
λ

0 10−3 10−2 10−1

0 0.1370, (1.543× 10−8) 0.1370, (1.368× 10−5) 0.1477, (0.00132) 0.3228, (0.0888)

10−3 0.1821, (2.837× 10−6) 0.1818, (2.736× 10−5) 0.1702, (1.387× 10−3) 0.3222, (0.08964)

10−2 1.0497, (0.001517) 1.0383, (1.579× 10−3) 0.8031, (6.078× 10−3) 0.3434, (0.1168)

10−1 11.505, (0.2976) 11.458, (0.3032) 8.2961, (0.6905) 1.3018, (2.9330)

Table 8.5: The error SSE0 from Eq. (8.4.2) and the error of the reconstructed source Eq. (8.4.6)
(in parentheses), under different strengths of data noise and regularization coefficients λ.

xL = 0.

In Table 8.5, we record the L2 error

∥∥f(x, t)− 16∑
i=0

hi(t; Θ)Ĥβ
i,xL

(x)
∥∥
2

(8.4.6)

the lower-left of each entry and the SSE0 in the upper-right. Observe that as the variance of

the noise increases, the reconstruction of f via the spectral expansion becomes increasingly

inaccurate. In the noise-free case, taking λ = 0 in equation (8.4.6) achieves the smallest

Figure 8.8: Example 32: Source recovery. SSE0 plotted against the reconstructed heat source
∥hN∥2 as given by equation (8.4.6), as a function of λ for various values of σ (an “L-curve”). When
λ is large, the norm of the reconstructed heat source ∥hN∥2 always tends to decrease while the
“error” SSE0 tends to increase. When λ = 10−1, ∥hN∥2 is small and the SSE0 is large. A moderate
λ ∈ [10−2, 10−3] could reduce the error SSE0, compared to using a large λ, while also generating a
heat source with smaller ∥hN∥2.
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SSE0 and the smallest reconstruction error. However, with increasing noise σ, using an L2

regularization term in Eqs. (8.4.6) can prevent over-fitting of the data although SSE0 in-

creases with the regularization strength λ. When σ = 10−3, taking λ = 10−2 achieves the

smallest reconstruction error Eq. (8.4.6); when σ = 10−2, 10−1, λ = 10−1 achieves the small-

est reconstruction error. However, if λ is too large, coefficients of the spectral approximation

to f are pushed to zero. Thus, it is important to choose an intermediate λ so that the recon-

struction of the source is robust to noise. In Fig. 8.8, we plot the norm of the reconstructed

heat source ∥hN∥2 and the “error” SSE0 which varies as λ changes for different σ.

8.5 Summary and Conclusions

In this chapter, we propose an approach that blends standard PINN algorithms with adaptive

spectral methods and show through examples that this hybrid approach can be applied to

a wide variety of data-driven problems including function approximation, solving PDEs,

parameter inference, and model selection. The underlying feature that we exploit is the

physical differences across classes of data. For example, by understanding the difference

between space and time variables in a PDE model, we can describe the spatial dependence

in terms of basis functions, obviating the need to normalize spatial data. Thus, s-PINNs

are ideal for solving problems in unbounded domains. The only additional “prior” needed

is an assumption on the asymptotic spatial behavior and an appropriate choice of basis

functions. Additionally, adaptive techniques have been recently developed to further improve

efficiency and accuracy, making spectral decomposition especially suitable for unbounded-

domain problems that the standard PINN cannot easily address.

We applied s-PINNs (exploiting adaptive spectral methods) across a number of exam-

ples and showed that they can outperform simple feed-forward neural networks for function

approximation and existing PINNs for solving certain PDEs. Three major advantages are

that s-PINNs can be applied to unbounded domain problems, more accurate by recovering

spectral convergence in space, and more efficient as a result of faster evaluation of spatial
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derivatives of all orders compared to standard PINNs that use autodifferentiation. These

advantages are rooted in separated data structures, allowing for spectral computation and

high-accuracy numerics. A straightforward implementation of s-PINNs retains most of the

advantageous features of deep PINN architectures, making s-PINNs ideal for data-driven

inference problems. However, in the context of solving higher-dimensional PDEs, a trade-

off is necessary when using s-PINNs instead of PINNs. For s-PINNs, the network structure

needs to be significantly widened to output an exponentially increasing (with dimensionality)

number of expansion coefficients, while in standard PINNs, the network structure remains

largely preserved but an exponentially larger number of trajectories are needed for sufficient

training. We found that by restricting the spatial domain to a hyperbolic cross space, the

number of outputs required for s-PINNs can be appreciably decreased for problems of mod-

erate dimensions. While using a hyperbolic cross space cannot reduce the number of outputs

sufficiently to allow s-PINNs to be effective for very high-dimensional problems, the standard

PINNs approach to problems in very high dimensions could require an unattainable number

of samples for sufficient training.

In Table 8.6, we compare the advantages and disadvantages of the standard PINN and

s-PINN methods. Potential improvements and extensions include applying techniques for

selecting basis functions that best characterize the expected underlying process and inferring

forms of the underlying model PDEs [LLM18, Rai18]. While standard PINN methods deal

with local information (e.g., ∂xu, ∂
2
xu), spectral decompositions capture global information

making them a natural choice for also efficiently learning and approximating nonlocal terms

such as convolutions and integral kernels. Potential future extensions of our s-PINN method

may include adapting it to solve higher-dimensional problems by more systematically choos-

ing a proper hyperbolic space or using other coefficient-reducing techniques, as well as using

wavelets as activation functions [UGA23] to solve nonlinear differential equations. Also, re-

cent Gaussian–process–based smoothing techniques [BMA23] can be considered to improve

the robustness of our s-PINN method against noise/errors in measurements, and noise-aware

physics-informed machine learning techniques [TMN22] can be incorporated when applying
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our s-PINN for inverse-type PDE discovery problems. Finally, one can incorporate a recently

proposed Bayesian-PINN (B-PINN) [YMK21] method into our s-PINN method to quantify

uncertainty when solving inverse problems under noisy data.
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Methods

Solvers
Traditional PINN

Non-spectral

+ leverages existing numerical methods
+ low-order FD/FE schemes

easily implemented
+ efficient evaluation of function

and derivatives
-- mainly restricted to bounded domains
-- complicated time-extrapolation
-- complicated implementation of
higher-order schemes
-- algebraic convergence, less accurate
-- more complicated inverse-type problems
-- more complicated temporal

and spatial extrapolation
-- requires understanding of the problem

to choose suitable discretization

+ easy implementation
+ efficient deep-neural-network training
+ easy extrapolation
+ easily handles inverse-type problems
-- mainly restricted to bounded domains
-- less accurate
-- less interpretable spatial derivatives
-- limited control of spatial discretization
-- expensive evaluation of neural networks
-- incompatible with existing

numerical methods

Spectral

+ suitable for bounded and
unbounded domains

+ spectral convergence in space,
more accurate

+ leverage existing numerical methods
+ efficient evaluation of function

and derivatives
-- information required for choosing

basis functions
-- more complicated inverse-type problems
-- more complicated implementation
-- more complicated temporal

extrapolation in time
-- usually requires a “regular” domain

e.g. rectangle, Rd, a ball, etc.

+ suitable for both bounded and
unbounded domains
+ easy implementation
+ spectral convergence in space,

more accurate
+ efficient deep-neural-network training
+ more interpretable derivatives of
spatial variables
+ easy extrapolation
+ easily handles inverse-type problems
+ compatible with existing

adaptive techniques
-- requires some information to

choose basis functions
-- expensive evaluation of neural networks
-- usually requires a “regular” domain

Table 8.6: Advantages and disadvantages of traditional and PINN-based numerical solvers.
This table provides an overview of the advantages (‘+’) and disadvantages (‘--’) associated
with different methods and solvers. Finite difference (FD), finite-element (FE), and spectral
methods can be used in a traditional sense without relying on neural networks.
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CHAPTER 9

Why case fatality ratios can be misleading: individual-

and population-based mortality estimates and factors

influencing them

This is the Accepted Manuscript version of an article accepted for publication in Physical

Biology, 17, 065003, (2020). IOP Publishing Ltd is not responsible for any errors or omissions

in this version of the manuscript or any version derived from it. The Version of Record is

available online at [10.1088/1751-8121/abf532].
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9.1 Introduction

Mortality metrics are key quantities describing the severity of a viral disease [VOD20]. Dur-

ing an outbreak, these metrics typically evolve in time before converging to a constant value

and can be defined in a number of ways. Commonly used metrics are the case fatality

ratio, case fatality rate, and case fatality risk, which are all confusingly denoted “CFR”

[KC13, DC].

Fatality rate implies a change in deaths per unit time, risk implies an individual prob-

ability, while ratio implies a fraction of two numbers, typically populations. CFR is most

often defined as the ratio of the total estimated number of deaths to date, D(t), to the

estimated number of all confirmed cases to date Nc(t) [GLD09, XSW20, WM20, VOD20].

These numbers are key to estimating disease severity. Usually, antibody [tes20a] and reverse

transcription-polymerase chain reaction (RT-PCR) testing [tes20b] is used to confirm SARS-

CoV-2-positive patients. To find D(t), the number of patients who actually die of COVID-19

must also be quantified. In Italy, deaths of patients with positive RT-PCR testing for SARS-

CoV-2 are reported as COVID-19 deaths, but the criteria for COVID-19-related deaths are

currently not clearly defined and may vary from region to region [ORB20].

Some studies define CFR as the “case fatality risk” and associate it with the probability

of death of an individual confirmed case within “a period of time” [LDF15]. Yet others define

case fatality ratio as simply “case fatality” and reserve the term case fatality ratio to mean

the ratio of the case fatalities of two different diseases [DC]. Infection fatality ratios (IFR),

the number of deaths to date divided by the number of all infected individuals, have also been

used [JAH20, Fam20, OH20] although the IFR = D(t)/N(t) requires an estimate of N(t),

the number of total (including unconfirmed) infected individuals. Similarly, IFR has also

been called the “infection fatality risk,” the probability of an individual dying conditioned on

being infected. This individual-based definition of IFR is thus equivalent to the individual-

based case fatality risk. However, in nearly all practical cases, both the CFR and IFR are

estimated from aggregated population data from past outbreaks [GLD09] as well as from
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those of the recent SARS-CoV-2 outbreaks [VOD20, OH20, JAH20, APV20, MC20, Rua20,

SBK20].

Since the case fatality ratio is the most commonly used, we henceforth define CFR =

D(t)/Nc(t). We show examples of CFR curves (orange), which typically vary significantly

both by region and in time, in Fig. 9.1 and in the Results and Discussion section. During the

severe 2003 acute respiratory syndrome (SARS) outbreak in Hong Kong, the World Health

Organization (WHO) also used the aforementioned estimate to obtain an initial CFR ∼ 3%

while the final values, after the resolution of infections, approached 17.0% [YLL05a, YLL05b]

(see Fig. 9.1(a)).

Figure 9.1: Mortality estimates. (a–b) Estimates of mortality ratios (see Eqs. (9.2.9) and
(9.2.14)) of SARS-CoV infections in Hong Kong (2003) [Org20a] and SARS-CoV-2 infections in
Italy. (c) Evolution of the cumulative number of infected (red), death (black), and recovered
(green) cases. The size of the circles indicates the number of cases in the respective compartments
on a certain day. Note that CFR and M0

p(t) have exhibited qualitatively similar behavior across
different epidemics. The data are based on Ref. [DDG20].

Another population-based mortality ratio is Mp(t) = D(t)/(D(t) +R(t)), the number of

deaths divided by the sum of death and recovered cases (the number of resolved cases), up to

time t is shown in blue in Figs. 9.1(a–b). In principle,Mp(t) should be a better measure of the

likelihood of death, but it is underestimated by the CFR = D(t)/Nc(t). For example,Mp(t) is
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reference CFR
Xu et al. [XSW20, XLT20] and Mahase [Mah20] 2%
Wu et al. [WM20] 0.1-1% (outside Wuhan)
World Health Organization [Org20b, Org20c] 2-4%
Porcheddu et al. [PSK20] 2.3% (Italy and China)
Peeri [PSR20] et al. 2%

Table 9.1: Different CFR estimates of COVID-19.

currently (as of April 25, 2020) 203, 164/(203, 164+836, 612) ≈ 20%, significantly higher than

the April 25, 2020 CFR(t) = D(t)/Nc(t) = 203, 164/2, 919, 404 ≈ 7% estimate [cor20]. De-

spite this underestimation, the CFR is still commonly used by the WHO and other health offi-

cials, such as in the ongoing SARS-CoV-2 outbreaks [SBK20, MC20, OH20, Fam20, VOD20]

(see Table 9.1). As shown in Fig. 9.1(c), the CFR would correspond to the mortality ratio

only if all tested infected individuals recover. Such underestimations by CFRs may lead to

insufficient countermeasures and a more severe epidemic [BWA15, BWG16].

Since meaningful and accurate mortality metrics are critical for assessing the risks asso-

ciated with epidemic outbreaks, we first unambiguously define the probability M1(t) that a

single, newly infected individual will die of the disease by a given time. This probability has

also been called the case fatality risk, but without specifying its dependence on time after

infection [LDF15]. This intrinsic mortality or probability of death can be identified as one

minus the survival probability of a single infected individual. It should be an intrinsic prop-

erty of the virus and the infected individual, depending on age, health, access to health care,

etc., and not directly on the population-level dynamics of infected and recovered individuals.

Whether this individual infects others does not directly affect his probability of eventually

dying 1.

In the next section, we derive a survival probability model for M1(t) similar to that in

Ghani et al. [GDC05]. Importantly, our individual survival model incorporates the duration

of infection (including an incubation period) before a patient tests positive at time t = 0.

However, the CFR and other mortality measures are typically reported based on population

1Of course, at the population level, if there are many deaths, medical facilities may be stressed, which
can indirectly lead to an increase in death rates.
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data. Do these population-based measures, including CFR, provide reasonable measures of

the probability of death of an individual? To address these and related issues, we develop

an analogous population-based mortality metric based on a disease duration-structured SIR

model. While population-based estimates of CFR are typically not a meaningful measure

of individual mortality, under simplifying assumptions, the population-based mortality ratio

Mp(t) is more closely related to the true probability of death M1(t) [GDC05].

We will use the same rate parameters in our individual and population models to com-

pute and compare the different mortality measures. By critically analyzing and comparing

these estimates, the CFR, and a “delayed” case fatality ratio CFRd, we illustrate and in-

terpret the differences among these measures and discuss how changes or uncertainty in the

data affect them. In the Results and Discussion section, we identify a correction factor to

transform population-level mortality estimates into individual mortality probabilities, and

we discuss the effects of other possible confounding factors such as heterogeneous populations

and undertesting (unconfirmed cases).

9.2 Mortality Measures

In this section, we present different mortality measures for confirmed cases and outline their

underlying mathematical models.

9.2.1 Intrinsic individual mortality rate

Consider an individual that, at the time of positive testing (t = 0), had been infected for

a duration τ1. A “survival” probability density can be defined such that P (τ, t|τ1)dτ is the

probability that the patient is still alive and infected (not recovered) at time t > 0 and has

been infected for a duration between τ and τ+dτ . Since τ1 is unknown, it must be estimated

or averaged over some distribution. The individual survival probability evolves according to

2.

2Since the disease timescale is much shorter than the timescale over which aging appreciably affects death
or recovery, the age-dependent transport terms ∂P/∂a can be neglected.
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∂P (τ, t|τ1)
∂t

+
∂P (τ, t|τ1)

∂τ
= −(µ(τ, t|τ1) + γ(τ, t|τ1))P (τ, t|τ1), (9.2.1)

where the death and recovery rates, µ(τ, t|τ1) and γ(τ, t|τ1), depend explicitly on the duration

of infection at time t and can be further implicitly stratified according to patient age, gender,

health condition, etc. [RHC20, VOD20]. They may also depend explicitly on time t to reflect

changes in clinical policy or available health care. For example, enhanced medical care may

decrease the death rate µ, giving the individual’s intrinsic physiological processes a chance

to cure the patient.

If we assume an initial condition of one individual having been infected for time τ1 at

the time of confirmation, Eq. 9.2.1 can be solved using the method of characteristics shown

in the Appendix. From the solution P (τ = t + τ1, t|τ1), one can derive the probabilities of

death and recovery by time t as

Pd(t|τ1) =
∫ t

0

ds µ(τ1 + s, s)P (τ1 + s, t|τ1), Pr(t|τ1) =
∫ t

0

ds γ(τ1 + s, s)P (τ1 + s, t|τ1).
(9.2.2)

The probability that an individual died before time t, conditioned on resolution (either

death or recovery), is then defined as

M1(t|τ1) =
Pd(t|τ1)

Pd(t|τ1) + Pr(t|τ1)
. (9.2.3)

Equations (9.2.2) and (9.2.3) also depend on all other relevant patient attributes such as age,

accessibility to health care, etc. In the long-time limit, when the resolution has occurred

(Pd(∞|τ1) + Pr(∞|τ1) = 1), the individual mortality ratio is simply M1(∞|τ1) = Pd(∞|τ1).
In order to capture the dependence of death and recovery rates on the time an individual

has been infected, we propose a constant recovery rate γ and a piecewise constant death rate

µ(τ |τ1) that is not explicitly a function of time t:
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γ(τ, t|τ1) = γ, µ(τ |τ1) =

 0 τ ≤ τinc

µ1 τ > τinc
. (9.2.4)

Here, τinc is the incubation time during which the patient is asymptomatic, has a negligible

chance of dying, but can recover by clearing the virus. In other words, some patients fully

recover without ever developing serious symptoms.

Figure 9.2: Individual mortality. (a) Recovery time after first symptoms occurred based on
individual data of 178 patients [COV20]. The inset shows the age distribution of these patients.
(b) Death- and recovery rates as defined in Eq. (9.2.4). The death rate µ(τ1) approaches µ1 for
τ1 > τinc, where τinc is the incubation period and τ1 is the time the patient has been infected
before first being tested positive. (c) The individual mortality ratio M1(t|τ1) for τinc = 6.4 days at
different values of τ1. Note that the individual death probability Pd(t|τ1) and M1(t|τ1) are nonzero
only after t > τinc − τ1. (d) The asymptotic individual mortality ratio M1(∞) (see Eq. (9.2.3)) as
a function of τ1.

For coronavirus infections, the incubation period appears to be highly variable with a

mean of τinc ≈ 6.4 days [LSK20]. We can estimate µ1 and γ using recent individual patient

data from Singapore where 178 patients (mean age: 46 years) had been tracked from the date

on which their first symptoms occurred until they recovered [COV20], on average, after 13.7

days. We show the recovery-time distribution in Fig. 9.2(a). Compared to other existing
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datasets, the Singapore COVID-19 dataset provides complete line lists for a large number of

patients and is being updated regularly.

We then use the global mortality of all resolved cases (≈ 20% [cor20]) to determine the

dependence between µ1 and γ via µ1/(µ1 + γ) ≈ 1/5 (or γ/µ1 ≈ 4). The constant recovery

and post-incubation death rates [KR11] are thus

γ ≈ 1

13.7
/day = 0.073/day and µ1 ≈ γ/4 = 0.018/day. (9.2.5)

Using these numbers, the recovery and death rate functions γ(τ, t|τ1) and µ(τ |τ1) are

plotted as functions of τ in Fig. 9.2(b). We show the evolution ofM1(t|τ1) at different values
of τ1 in Fig. 9.2(c). The corresponding long-time limit M1(∞|τ1) is readily apparent in

Fig. 9.2(d): for τ1 ≥ τinc,M1(∞|τ1) = µ1/(µ1+γ) ≈ 0.2, whileM1(∞|τ1) < µ1/(µ1+γ) when

τ1 < τinc. The smaller expected mortality associated with early identification of infection

arises from the remaining incubation time during which the patient has a chance to recover

without possibility of death. When conditioned on testing positive at or after the incubation

period, the patient immediately experiences a positive death rate, increasing his M1(∞|τ1).

In order to infer M1 (and also indirectly µ and γ) during an outbreak, a number of

statistical issues must be considered. First, if the outbreak is ongoing, there may not be

sufficient long-time cohort data. Second, τ1 is unknown. Since testing typically occurs at the

onset of symptoms, most positive patients will have been infected a few days earlier. The

uncertainty in τ1 can be represented by a probability density ρ(τ1) for the individual. The

expected mortality can then be constructed as an average over ρ(τ1):

M̄1(t) =
P̄d(t)

P̄d(t) + P̄r(t)
, (9.2.6)

where P̄d(t) and P̄r(t) are the τ1-averaged probabilities death and cure probabilities.

Some properties of the distribution ρ(τ1) can be inferred from the behavior of patients.

Before symptoms arise, only very few patients will know they have been infected, seek
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medical care, and get their case confirmed (i.e., ρ(τ1) ≈ 0 for τ1 ≈ 0). The majority of

patients will seek care when they have been infected for approximately τinc. We choose the

gamma distribution

ρ(τ1;n, λ) =
λn

Γ(n)
τn−11 e−λτ1 (9.2.7)

with shape parameter n = 8 and rate parameter λ = 1.25/day so that the mean n/λ is equal

to τinc = 6.4. Note that, independent of the distribution ρ, the average M̄1(t) is bounded

from above by M1(∞) = µ1/(µ1 + γ) for all times t.

Upon using the rates in Eqs. (9.2.4) and averaging over ρ(τ1), we derived expressions

for P̄ (t), P̄d(t), and P̄r(t) which are explicitly given in the Appendix. Using the values in

Eq. (9.2.5) we find an expected individual mortality ratio M̄1(t) (which are subsequently

plotted in Fig. 9.3) and its asymptotic value M̄1(∞) = P̄d(∞) ≈ 0.19 (slightly less than

M1(∞|τ1) due to averaging over ρ(τ1)). Of course, it is also possible to account for more

complex time-dependent forms of γ and µ1 [BA20], but we will primarily use Eqs. (9.2.4) in

our subsequent analyses. We stress that M1(t) tracks mortality of a cohort of individuals

infected at about the same time, and does not include mortality of newly infected individuals.

Thus, it can be trivially stratified according to different age groups and defined as the

mortality M1(t|µ) of each age subpopulation with death rate µ.

In the next subsection, we define population-based estimates for mortality ratios, Mp(t),

and explore how they can be computed using SIR-type models. By comparing M̄1(t) to

Mp(t), we gain insight into whether population-based metrics are good proxies for individual

mortality ratios.

9.2.2 Relation to infection duration-dependent SIR model

While individual mortalities can be estimated by tracking many individuals from infection

to recovery or death, often, the available data are not resolved at the individual level and

only total populations are given. Typically, one only has the total number of confirmed
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cases accumulated up to time t, Nc(t), the number of deaths to date D(t), and the number

of cured/recovered patients to date R(t) (see Fig. 9.1). Note that Nc(t) includes unresolved

cases and that Nc(t) ≥ R(t)+D(t). Resolution (death or recovery) of all patients, Nc(∞) =

R(∞) +D(∞), occurs only well after the epidemic completely passes.

A variant of the CFR commonly used in the literature is the delayed CFR [XSW20,

WM20]

CFRd(t, τres) =
D(t)

Nc(t− τres)
, (9.2.8)

which uses an earlier and smaller case number to compensate for underestimation by the

standard CFR

CFR(t) =
D(t)

Nc(t)
≡ CFRd(t, τres = 0). (9.2.9)

The delay τres used is typically the time between the day symptoms first occurred and the

day of death or recovery. To determine a realistic value of the delay time τres (which can

be qualitatively interpreted as a resolution time), we use data on death/recovery periods of

36 tracked COVID-19 patients [20120] and find that patients recover/die, on average, τres ≈
2 weeks after first symptoms occurred. The delayed CFRd(t, τres > 0) also underestimates

the individual mortality in previous epidemic outbreaks of SARS [GDC05, YLL05a] and

Ebola [AWN15], but is highly sensitive to τ res. If the delay between the time of infection

and the time of resolution were vanishingly small, we can set τres = 0 and find that the CFRd

and CFR are equivalent (see Eq. (9.2.9)).

Alternatively, a simple and interpretable population-level mortality isMp(t) = D(t)/(R(t)+

D(t)), the ratio of infected deaths to all resolved cases of confirmed infections. To provide

a concrete model for D(t) and R(t), and hence Mp(t), we will use a variant of the stan-

dard infection duration-dependent susceptible-infected-recovered (SIR)-type model described

by [Web08, WLB20]

dS(t)

dt
= −S(t)

∫ ∞
0

dτ ′ β(τ ′, t)I(τ ′, t),
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∂I(τ, t)

∂t
+
∂I(τ, t)

∂τ
= −(µ(τ, t) + γ(τ, t))I(τ, t), (9.2.10)

and dR(t)/dt =
∫∞
0
dτγ(τ, t)I(τ, t), where S(t) is the number of susceptibles, I(τ, t) is density

of individuals at time t who have been infected for time τ , and R(t) is the number of recovered

individuals. The rate at which an individual infected for time τ at time t infects susceptibles

is denoted by β(τ, t)S(t). For simplicity, we assume only community spread and neglect

immigration of infected individuals, which could be straightforwardly included [WLB20].

Note that the equation for I(τ, t) is identical to the equation for the survival probability

described by Eq. (9.2.1). It is also equivalent to McKendrick age-structured models [McK26,

CG16]. In both the individual model (Eq. (9.2.1)) and population model (Eq. (9.2.10)), the

death and recovery rates are insensitive to changes in age a over the ≲ 1 year epidemic

timescale. In this limit, we consider only infection-duration dependence on the population

dynamics. However, in contrast to the individual survival probability, new infections of

susceptibles are described by the boundary condition (or renewal equation)

I(τ = 0, t) = S(t)

∫ ∞
0

dτ ′ β(τ ′, t)I(τ ′, t), (9.2.11)

which is similar to that used in age-structured models to represent birth [McK26]. The

initial time t = 0 is arbitrary as long as the initial condition I(τ, 0) is defined. We use an

initial condition corresponding to a single infected with the infection duration density given

by Eq. (9.2.7): I(τ, 0) = ρ(τ ;n = 8, λ = 1.25). Note that Eq. (9.2.11) assumes that all newly

infected individuals are immediately identified; i.e., these newly infected individuals start

with τ1 = 0. After solving for the infected population density, we find the total number of

deaths, recoveries, and total cases to date,

D0(t) =

∫ t

0

dt′
∫ ∞
0

dτ µ(τ, t′)I(τ, t′), R0(t) =

∫ t

0

dt′
∫ ∞
0

dτ γ(τ, t′)I(τ, t′),

N0(t) = R0(t) +D0(t) +

∫ ∞
0

dτ I(τ, t),

(9.2.12)
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and use D0(t) and N0(t) for D(t) and Nc(t) in definitions of CFR(t) and CFRd(t, τres)

(Eq. (9.2.8)). In the definitions of D0(t), R0(t), and N0(t), we account for all possible

death and recovery cases to date (see Appendix) and that newly infected individuals are

immediately identified. We use these case numbers as approximations of the reported case

numbers to study the evolution of mortality ratio estimates. Mortalities based on these

numbers underestimate the actual individual mortality M1 (see the previous “Intrinsic indi-

vidual mortality rate” subsection) since they involve individuals that have been infected for

different durations τ , particularly recently infected individuals who have not yet died.

An alternative way to compute populations is to exclude new infections and consider

only an initial cohort. The corresponding populations in this case are defined as

D1(t) =

∫ t

0

dt′
∫ ∞
t′

dτ µ(τ, t′)I(τ, t′), R1(t) =

∫ t

0

dt′
∫ ∞
t′

dτ γ(τ, t′)I(τ, t′). (9.2.13)

Since D1(t) and R1(t) do not include infected individuals with τ < t, they exclude the effect

of newly infected individuals and may yield more meaningful mortalities as they would be

based on an initial cohort of individuals in the distant past. It is superfluous to define

CFR using D1(t)/Nc because the corresponding Nc of a cohort is a constant. The infections

that occur after t = 0 contribute only to I(τ < t, t); thus, D1(t) and R1(t) do not depend

on the transmission rate β, possible immigration of infected individuals, or the number

of susceptibles S(t). Note that all the populations derived above implicitly average over

ρ(τ1;n, γ) for the first cohort of identified infected individuals (but not subsequent infections).

Moreover, the population density I(τ ≥ t, t) follows the same equation as P̄ (t|τ1) provided
the same ρ(τ1;n, λ) is used in their respective calculations.

The two different ways of partitioning populations (Eqs. (9.2.12) and (9.2.13)) lead to

two different population-level mortality ratios

M0
p(t) ≡

D0(t)

D0(t) +R0(t)
and M1

p(t) ≡
D1(t)

D1(t) +R1(t)
. (9.2.14)

Since the populations D0(t) and R0(t), and hence M0
p(t), depend on disease transmission
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through β(τ, t) and S(t), we expect M0
p(t) to carry a different interpretation from M1(t) and

M1
p(t).

In the special case in which µ and γ are constants, the time-integrated populations∫ t

0
dt′
∫∞
0
dτ I(τ, t′) and

∫ t

0
dt′
∫∞
t′
dτ I(τ, t′) factor out of M0

p(t) and M1
p(t), rendering them

time-independent and

M0,1
p =

µ1

µ1 + γ
=M1. (9.2.15)

Thus, only in the special time-homogeneous case do both population-based mortality ratios

become independent of the population (and transmission β) and coincide with the individual

death probability.

To illustrate, in more general cases, the differences between M1(t),M
0,1
p (t) and

CFRd(t, τres), we use the simple death and recovery rate functions given by Eqs. (9.2.4)

in solving Eqs. (9.2.1) and (9.2.10). For β(τ, t) in Eq. (9.2.11), we use a recently inferred

infectiousness profile [HLW20] which is described by a gamma distribution

β(τ) = β0ρ(τ ;n, λ) (9.2.16)

with a peak that occurs shortly before the onset of symptoms at the time τinc and co-

incidentally has n = 8 and λ = 1.25/day as in the testing time distribution ρ(τ1) from a

single infected (Eq. (9.2.7)). The constant dimensionless prefactor β0 sets the amplitude of

the transmission rate. For the chosen parameters n and λ, the gamma distribution ρ(τ ;n, λ)

reaches a maximum at τ ≈ 5.6 days, about one day before τinc = 6.4 days [HLW20]. Assum-

ing that the susceptible pool is not appreciably depleted, S(t) ≈ S0 and Eq. (9.2.11) becomes

I(τ = 0, t) = β0S0

∫∞
0
dτ ′ ρ(τ ;n, λ)I(τ ′, t). The amplitude β0S0 can be found by assuming a

single infected for I(τ, t) in the renewal equation and using the estimated basic reproduction

number. The basic reproduction number R0 is the average number of secondary infections

that result from any single infected individual before he dies or recovers [KR11]. There are
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two terms to consider when determining R0: (i) β(τ) dτ is the probability that an infection

occurs in [τ, τ +dτ ] and (ii) exp
[
−
∫ τ

0
(µ(τ ′) + γ)dτ ′

]
is the probability that a single infected

individual has not died or recovered prior to time τ . If we integrate over the product of

these quantities and multiply by the total susceptible population S0 (which is equivalent

to the boundary condition (9.2.11) applied to a single infected individual), we obtain the

average number of susceptibles infected by one infected individual, i.e., R0. Thus, upon

using Eq. (9.2.16), β0S0 can be found by solving

S0

∫ ∞
0

β(τ) exp

[
−
∫ τ

0

(µ(τ ′) + γ)dτ ′
]
dτ = β0S0

∫ ∞
0

ρ(τ ;n, λ) exp

[
−
∫ τ

0

(µ(τ ′) + γ)dτ ′
]
dτ

= R0 ≈ 2.91. (9.2.17)

Using the death and recovery rate functions given by Eqs. 9.2.4 and 9.2.5, we find β0S0 ≈
4.64/day. Using this value, we numerically solve Eqs. (9.2.10) and (9.2.11) (see Appendix

for further details) and use these solutions to compute D0,1(t), R0,1(t), and N0,1(t), which

are then used in Eqs. (9.2.14) and CFRd(t, τres).

9.3 Results and Discussion

9.3.1 Comparison of mortalities

Here, we evaluate and compare the different mortality metrics and show how some of them

qualitatively resemble the measured mortality estimates shown in Fig. 9.1. In Fig. 9.3(a), we

show the unbounded subpopulations I0(t), D0(t), and R0(t) computed using Eqs. (9.2.10),

(9.2.11), and (9.2.12) when the susceptible population is assumed constant. Fig. 9.3(b) shows

the populations when a strict quarantine (S(t > tq) = 0) is applied after tq = 50 days.

The mortalities plotted in Figs. 9.3(c) show thatM1
p(t) approaches the individual mortal-

ity ratio M̄1(∞) ≈ 0.19 given in the “Intrinsic individual mortality rate” subsection above.

241



Figure 9.3: Population-level mortality estimates. Outbreak evolution and mortality ratios
without containment measures (a,c) and with quarantine (b,d). The curves are based on numer-
ical solutions of Eqs. (9.2.10) using the initial condition I(τ, 0) = ρ(τ ; 8, 1.25) (see Eq. (9.2.7)).
The death and recovery rates are defined in Eqs. (9.2.4) and (9.2.5). We use an infection rate
(Eq. (9.2.16)) defined by β0S0 = 4.64/day, which we estimated from the basic reproduction num-
ber of SARS-CoV-2 [LSK20]. To model quarantine effects, we set β0S0 = 0 for t > 50 days.
We show the mortality-ratio estimates M0

p(t) and M1
p(t) (see Eq. (9.2.14)) and CFRd(t, τres) (see

Eqs. (9.2.8), (9.2.12), and (9.2.14)). CFRd(t, τ res = 14 days) behaves very differently from CFR,
initially decreasing for τres > 0 and significantly overestimating M0

p(t) but providing a reasonable
estimate of M̄1(t) = M1

p(t) without quarantine. Note that under quarantine, CFR(∞), CFRd(∞),
and M0

p(∞) approach the same value since they reflect the mortality ratio of the total cohort at
the time of quarantine. On the other hand, M̄1(t) = M1

p(t) reflects the ratio of the initial cohort
at the start of the outbreak and remains unchanged from the no-quarantine case.

This occurs because the model for P (τ, t) and I(τ, t) are equivalent and we assumed the same

initial distribution ρ(τ ; 8, 1.25) for both quantities. However, the population-level mortality

ratios CFRd(t, τres) and M
0
p(t) also take into account recently infected individuals who may

recover before symptoms. This difference yields different mortality ratios because newly

infected individuals are implicitly assumed to be detected immediately and all have τ1 = 0.

Thus, the underlying infection-time distribution is not the same as that used to compute

M̄1
p(t) (see Appendix for further details). The mortality ratio M0

p(t) should not be used to

quantify the individual mortality probability M̄1(t) of individuals who tested positive, while

the accuracy of CFRd(t, τres) is sensitive to τres and quarantining. Moreover, due to the
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evolution of the disease, D(t), R(t), and N(t) do not change with the same rates during an

outbreak, the population-level mortality measures CFRd(t, τres) and M
0
p(t) reach their final

steady-state values only after sufficiently long times. Figs. 9.3(d) shows the corresponding

mortalities with quarantining after tq = 50 days.

The population-level ratios M0
p(t) and CFR(t) implicitly depend on new infections and

the transmission rate β. Despite this confounding factor, M0
p(t) and CFRd(t, τres) approach

e−γτ incµ1/(µ1+γ) as t→∞, where e−γτinc is the probability that no recovery occurred during

the incubation time τinc. Based on these results, we can establish the following connection

between the different mortality ratios for initial infection times with distribution ρ(τ1;n, λ)

and mean τ̄ = n/λ:

CFRd(∞) =M0
p(∞) ≈ e−γτ̄M1

p(∞) = e−γτ̄M̄1(∞). (9.3.1)

According to Eq. (9.3.1), population-level mortality estimates (e.g., CFR and M0
p), can

be transformed, at least approximately, into individual mortality probabilities using the

correction factor e−γτ̄ with τ̄ ≈ τinc.

Although population-level quarantining does not directly affect the individual mortality

M1(t|τ1) or M̄1(t), it can be easily incorporated into the SIR-type population dynamics

equations through changes in β(τ, t)S(t). For example, we have set S(t > tq) = 0 to

represent the implementation of a perfect quarantine after tq = 50 days of the outbreak. After

tq = 50 days, no new infections occur and the estimates CFR(t) and M0
p(t) start to converge

towards their common larger value (see Fig. 9.3(d)). In other words, without quarantining,

the infected and recovered populations are continuously increasing, keeping CFR and M0
p(t)

low. Since the number of deaths decreases after the implementation of quarantine measures,

the delayed CFRd(t, τres = 14 days) is first decreasing until t = tq + τres = 64 days. For

t > 64 days, the CFRd(t, τres = 14 days) measures no new cases and is thus equal to the

CFR.

The overall time evolution of some of the mortalities in Fig. 9.3 qualitatively resembles

243



Figure 9.4: Mortality estimates in different countries. Estimates of mortality ratios (see
Eqs. (9.2.8) and (9.2.14)) of SARS-CoV-2 infections in different countries. The data are derived from
Ref. [DDG20]. The case fatality rate, CFR, corresponds to the number of deaths to date divided
by the total number of cases to date. The “delayed” mortality-ratio estimate CFRd corresponds
to the number of deaths to date divided by the total number of cases at time t− τres is also shown
for China. The population-based mortality ratios Mp(t) are also shown, except for the UK which
has reported an inexplicable M0

p(t) ∼ 1.

the behavior of the mortality estimates in Fig. 9.1. As shown in Fig. 9.1, the CFR is

increasing over time whereas M0
p provides a more stable mortality estimate for the SARS-

CoV outbreak in Hong Kong (2003) and seems to follow a similar behavior in the current

SARS-CoV-2 outbreak in Italy. In Fig. 9.4, we show additional examples of mortality-ratio

estimates for China, South Korea, Spain, Germany, Switzerland, and the United Kingdom.

After an initial transient, the CFR, in most cases, increases to a new asymptote after the

epidemic passes. As in Fig. 9.1, we observe, consistent with their definitions, that the

population-based mortality ratio M0
p(t) is larger than the corresponding CFR in all cases.

M0
p(t) also appears to be a temporally more stable metric. Differences in the evolution of

mortality ratios in different regions could result from changing practices in data collection

or from explicitly time-inhomogeneous parameters µ(τ, t), γ(τ, t), and/or β(τ, t).

Differences in demographics can easily be a source of variability in mortality rates mea-

sured across different regions. Older patients and those with underlying medical conditions
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typically have a higher death rate µ(τ, t) and/or lower recovery rate γ. Since we focus on

mortality, the different subpopulations within the confirmed population matter only through

their differences in µ and/or γ. For the M̄1(t) and M
1
p(t) metrics, no new infections are used

in their determination. Thus, these metrics are associated with the mean death and recovery

rates of the original group of infected individuals, i.e., the ratios M̄1(t|µ, γ) and M1
p(t|µ, γ)

refer to the mortality ratios of each subpopulation or individual described by µ and γ.

The effective M1
p(t) over the entire confirmed population can be trivially constructed by

population-averaging D1(t|µ, γ) and R1(t|µ, γ) over µ and γ before constructing M1
p(t).

Figure 9.5: Population-level mortality estimate for two age groups. The mortality ratio
M0

p(t) without containment measures (a) and under quarantining (b). The curves are based on
numerical solutions of Eqs. (9.3.2) and (9.3.3) assuming constant S(t) ≈ S0 and using the initial
condition Ia(τ, 0) = Ib(τ, 0) = ρ(τ ; 8, 1.25)/2 (see Eq. (9.2.7)), where the subscripts “a” and “b”
denote the young and old age group, respectively. The death and recovery rates for the younger
age group are defined in Eqs. (9.2.4) and (9.2.5). For the older age group, we set µb = 4µa and
γb = γa. We use an infection rate (Eq. (9.2.16)) defined by β a aS0 = 4.64/day, which we estimated
from the basic reproduction number of SARS-CoV-2 [LSK20]. The remaining infection rates are
defined via βa a =

√
2βb a =

√
2βa b = 2βb b. To model quarantine effects, we set β0S0 = 0 for

t > 50 days in (b).

For the other confirmed mortalities M0
p(t) and CFR(t), new infections are taken into

account and subpopulations with different death and recovery rates can infect each other.

Suppose there are two subpopulations “a” and “b” (e.g., young and old) with associated

death and recovery rates µa,b and γa,b, respectively. The equations for each subpopulation

are

∂Ia(τ, t)

∂t
+
∂Ia(τ, t)

∂τ
= −(µa(τ, t) + γa(τ, t))Ia(τ, t),
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∂Ib(τ, t)

∂t
+
∂Ib(τ, t)

∂τ
= −(µb(τ, t) + γb(τ, t))Ib(τ, t), (9.3.2)

indicating that each subpopulation follows its own dynamics for τ > 0. However, the sub-

populations interact with each other through the coupled boundary conditions

Ia(0, t) = S(t)

∫ ∞
0

dτ ′ [βaa(τ
′, t)Ia(τ

′, t) + β ab(τ
′, t)Ib(τ

′, t)]

Ib(0, t) = S(t)

∫ ∞
0

dτ ′ [βab(τ
′, t)Ia(τ

′, t) + β bb(τ
′, t)Ib(τ

′, t)] (9.3.3)

that describe cross-infections between the “a” and “b” subpopulations. Thus, the infection

levels in each subpopulation also depend on the transmission rates βaa, βab, and βbb. To

compute the overall confirmed mortality M0
p(t) or CFR(t) of the entire population, we must

solve Eqs. (9.3.2) and (9.3.3) for Ia and Ib, and hence Da(t), Db(t), and D(t) = Da(t)+Db(t).

In Fig. 9.5, we show the evolution of M0
p(t) for two age groups representing young and

old individuals with different mortality and infection rates. The behavior of M0
p(t) for the

entire population is qualitatively similar to, but falls in between those of each age group

(see Fig. 9.3). Whether the overall mortality is closer to that of the young or old population

depends on the relative populations of the young and old infected, their death and recovery

rates, and their cross transmission rates βab. For age-stratified case data, the subpopulation

model outlined above, or other approaches such as scaling approximations [Seo21] may be

useful for capturing age-dependent variations in M0
p(t).

9.3.2 Undertesting and unconfirmed cases

Another important confounding factor is the large number of untested and often asymp-

tomatic infected individuals. The mortality rate often quoted in the literature ranges from

< 1 − 3%, which is much smaller than the resolved mortality ratios we have used for illus-

tration. Our estimates of M0,1
p (t) and CFRd(t, τres) using I(τ, t) actually describe the mor-
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tality of the population conditioned on being tested positive. Since we used Eqs. (9.2.10) to

compute infected populations, we implicitly assumed that all infected individuals have been

tested/confirmed. However, the total infected population is comprised of tested and untested

individuals, which may or may not carry different death and recovery rates. Typically, only

a small fraction f of the total number of infected individuals might be tested and confirmed

positive.

Our confirmed mortalities (derived from only the positively tested population) can be

extended to the entire population, tested or untested. The “true”M0
p and the fatality ratio

conditioned on having been infected (the IFR) would typically be much smaller than the

M0
p and CFR calculated using only confirmed cases. How the testing fraction f < 1 might

qualitatively affect the “true” underlying mortality measures (the mortality conditioned on

simply being infected) is illustrated in Fig. 9.6.

(a) (b) (c) (d)

Figure 9.6: Fractional testing. An example of fractional testing in which a fixed fraction f of the
real total infected population is assumed to be tested. The remaining 1− f proportion of infected
individuals is untested. Equivalently, if the total tested fraction has a unit population, then the
fraction of the population that remains untested is 1/f − 1. (a) At short times after an outbreak,
most of the infected patients, tested and untested, have not yet resolved (red). Only a small number
have died (gray) or have recovered (green). (b) At later times, if the untested population dies at
the same rate as the tested population, Mp(t) and CFR remain accurate estimates for the entire
infected population. (c) If the untested population is, say, asymptomatic and rarely dies, the true
mortalityM0,1

p (∞) ≈ fM0,1
p (∞) can be significantly overestimated by the tested mortality M0,1

p (t).
(d) Finally, in a scenario in which untested infected individuals die at a higher rate than tested
ones, M0,1

p (t) and CFR based on the tested fraction underestimate the true mortalityM0,1
p .

Estimates for SARS-CoV-2 show that f is small (e.g., f ≈ 14% in China before January

23, 2020) [LPC20]. At early times (Fig. 9.6(a)) most patients, tested or untested, have

not yet resolved. A reported/tested fraction f < 1 would not directly affect or alter the

CFRs or mortality ratios if the unreported/untested population dies and recovers in the
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same proportion as those tested, as depicted in Fig. 9.6(b). That is, undertesting would still

provide a good estimate of the true mortality if the entire population were homogeneous

in death and recovery rates. However, if the untested (presumably mildly or asymptomatic

infected) are less likely to die than the tested infected individuals, undertesting would give rise

to M0
p(t) and CFR(t) that overestimate the true mortalityM0

p(t) and the infection fatality

ratio (IFR). If untested infected individuals do not die at all, as depicted in Fig. 9.6(c), the

true long-time mortalityM0,1
p (∞) ≈ fM0,1

p (∞). In the unlikely scenario in which untested

individuals do not receive medical care and hence die at a faster rate (Fig. 9.6(d)), M0,1
p (∞)

and CFR based on the tested fraction would underestimate the true long-time mortality

M0,1
p (∞) and IFR, respectively.

To quantitatively estimate the underlying mortality of the population conditioned sim-

ply on being infected, we have to quantify the number of confirmed and untested infected

individuals, Ic(τ, t) and Iu(τ, t), which can be further divided into subpopulations with in-

trinsically different transmission, death, and recovery rates. The act of confirmation itself

may change behavior and/or treatment, further changing transmission, death, and recovery

parameters.

Subpopulation

Metric
Fatality Ratios Resolved Mortality w/inf Resolved Mortality w/o inf Individual Risk

confirmed (tested) CFR =
D0

c

N0
c

M
0
p =

D0
c

D0
c + R0

c

M
1
p =

D1
c

D1
c + R1

c

M̄1 =
P̄d

P̄d + P̄r

total (tested+untested) IFR =
D0

c + D0
u

N0
c + N0

u

M0
p =

D0
c + D0

u

D0
c + D0

u + R0
c + R0

u

M1
p =

D1
c + D1

u

D1
c + D1

u + R1
c + R1

u

not defined

Table 9.2: Definitions of the main metrics. The superscript “0” and “1” denote quantities
that are based on the total population (including new infections) and a cohort (excluding new
infections), respectively. Quantities with subscript “c” and “u” denote confirmed and untested
pools (for example, N0

u(t) is the total number of untested individuals at time t) that must be
inferred using other measurements such as random testing. The columns denoted by “w/inf”
and “w/o inf” denote the mortalities associated with no new infections and with including new
infections, respectively. We have suppressed the time dependences for notational simplicity.

By constructing the accumulated deaths and recoveries associated with Ic(τ, t) and Iu(τ, t),

D0,1
c,u(t) and R0,1

c,u(t), respectively, we can define true, whole population mortality ratios as
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listed in Table II. For example,

D0
c,u(t) =

∫ t

0

dt′
∫ ∞
0

dτ µc,u(τ, t
′)Ic,u(τ, t

′), R0
c,u(t) =

∫ t

0

dt′
∫ ∞
0

dτ γc,u(τ, t
′)Ic,u(τ, t

′), (9.3.4)

where µc,u and γc,u are the death and recovery rates associated with infected individuals

who are confirmed and untested, respectively. Analogous expressions arise for D1
c,u(t) and

R1
c,u(t). If the confirmed and untested populations are further subdivided, the µc,uIc,u and

γc,uIc,u integrands would be replaced by a Hadamard (i.e., element-wise) product of two

vectors representing subpopulations and their corresponding rates. The populations Ic,u

themselves can be found from a specific disease transmission model that also includes a

testing process that converts Iu to Ic.

9.4 Summary and conclusions

The CFR has been predominantly used but appears to evolve in qualitatively similar ways

as epidemics evolve. Although CFRd(t, τres) is based on a delay reflecting the timescales for

recovery, in general, there is no clear mechanistic interpretation for using the CFR or IFR

as mortality ratios.

Here, we stress that more mechanistically meaningful and interpretable metrics can be

readily defined and just as easily estimated from population data as CFRs are. Our proposed

mortality ratios for viral epidemics are defined in terms of (i) individual survival probabilities

and (ii) population ratios using numbers of deaths and recovered individuals. Both of these

measures are based on the within-host evolution of the disease, and in the case of M0,1
p (t),

the population-level transmission dynamics. On a single patient level, M̄1(t) is the metric of

interest. However, to estimate this, one needs accurate cohort data, for which few exist for

coronavirus. Nonetheless, cumulative population-based mortalities can provide insight.

Among the metrics we describe, M1
p(t) is structurally closest to the individual mortality

M̄1(t) in that both are independent of disease transmission since new infections are not
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counted. Both of these mortality ratios converge after an incubation time τinc to a value

smaller than or equal to µ1/(µ1+γ) and are best interpreted as approximately the mortality

probability conditioned on being tested positive. The most accurate estimates of M̄1 can be

obtained if we keep track of the fate of cohorts who were confirmed within a small time

window in the past. By following only these individuals, one can track how many of them

die as a function of time. As more cases arise, one should stratify them according to their

estimated times since infection to obtain better statistics forM1(∞). With the further spread

of SARS-CoV-2 in different countries, data on more individual cases of death and recovery

can also be more easily stratified according to other central factors in COVID-19 mortality:

age, sex, and health condition. Population heterogeneity and uncertainty in intrinsic disease

parameters such as the incubation period and the time τ1 a patient had been infected before

confirmation can affect the mortality measures.

Besides demographic heterogeneity and the highly variable estimates of COVID-19 deaths

due to different clinical protocols for assigning cause of death, undertesting also confounds

accurate estimation of the true underlying mortality. Infected individuals in the population

at large who are untested comprise an unknown population Iu which contributes to deaths

and recovery, and needs to be factored into the “true” mortalitiesM0,1
p or the IFR.

These untested/unconfirmed populations can, in principle, be computed from a multicom-

partment mathematical model for disease transmission and testing. The relevant expressions

forM0,1
p are listed in Table II. Even though Mp(t) typically overestimates the true mortal-

ity, tracking M̄1(t) or M1
p(t) of an initially confirmed cohort can still provide a reasonable

estimate of the mortality ratio, especially if untested infected individuals die at the same

rate as confirmed individuals.
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CHAPTER 10

Controlling epidemics through optimal allocation of

test kits and vaccine doses across networks

This is the Accepted Manuscript version of an article accepted for publication in IEEE

Transactions on Network Science and Engineering, 9, pp. 1422-1436, (2021). It is an open-

access paper. The Version of Record is available online at [10.1109/TNSE.2022.3144624].
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10.1 Introduction

Limiting the spread of novel pathogens such as SARS-CoV-2 requires efficient testing [ABM20,

YAT20] and quarantine strategies [QCH21], especially when vaccines are not available or ef-

fective [SDW22]. Even if effective vaccines are available at scale, their population-wide distri-

bution is a complex and time-consuming endeavor, influenced by, for example, age-structure

[MHD21, M98, ZNL21], vaccine hesitancy [PG21], and different objectives [ADB21].

Until a sufficient level of immunity within a population is reached, distancing and quar-

antine policies can also be used to help slow the spread and evolutionary dynamics [CDC21]

of infectious diseases. Epidemic modeling and control-theoretic approaches are useful for

identifying both efficient testing and vaccination policies. For an epidemic model of SARS-

CoV-2 transmission, Pontryagin’s maximum principle (PMP) has been used to derive op-

timal distancing and testing strategies that minimize the number of COVID-19 cases and

intervention costs [CS21, NLV21]. Optimal control theory has also been applied to a multi-

objective control problem that uses isolation and vaccination to limit the epidemic size and

duration [BBD19]. These recent investigations describe the underlying infectious disease

dynamics through compartmental models without underlying network structure, meaning

that all interactions among different individuals are assumed to be homogeneous.

Multicompartment models that may be associated with contact networks have been inves-

tigated. For example, optimal vaccination strategies have been derived for a rapidly spread-

ing disease in a highly mobile multi-compartment susceptible-infected-recovered (SIR) model

using PMP [OM00]. The application of optimal control methods and PMP to heterogeneous

node-based susceptible-infected-recovered-susceptible (SIRS) models were also studied in the

context of multiplex networks [WXC21] and rumor spreading [LB20].

Complementing these control-theory-based investigations, reinforcement learning (RL)

has been recently used to identify infectious high-degree nodes (“superspreaders”) in tem-

poral networks [WSD20]. It has been found that RL was able to outperform intervention

policies derived from purely structural node characterizations that are, for instance, based
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on centrality measures [WSD20]. However, these RL methods could only be applied to

rather small networks with about 400 nodes. For social networks describing much larger

populations, early work by May and Anderson employed effective degree models to study

the population-level dynamics of human immunodeficiency virus (HIV) infections [MA88].

These degree-based models and later variants [BBP04, PV01a, PV01b] did not account for

degree correlations. Effective degree models for susceptible-infected-susceptible (SIS) dy-

namics with degree correlations were derived in [BPV03] and applied to SIR dynamics in

[BBP05]. A further generalization of these methods to model SIR dynamics with networked

and well-mixed transmission pathways was presented in [KGK06]. For a detailed summary

of degree-based epidemic models, see [LMD11].

In this work, we focus on formulating both optimal control and RL-based target policies

on a degree-based epidemic model [New18] that is constrained only by the maximum degree

and not by the system size (i.e., number of nodes). We construct effective control strategies

to slow down disease spread across heterogeneous network models which include both degree

distributions and higher-order correlations of the degree distribution. Our approach is not

limited by size as agent-based models are [WSD20], is simpler because we do not resolve

interpersonal contact times or other individual details, and is thus easier to solve. On the

other hand, unlike simple multi-compartment epidemic control models [CS21, BBD19], we

take into account a heterogeneous contact network and control measures that depend on

both time and node degree.

In the next section, we propose and justify a degree-based epidemic, testing, and quar-

antining model. An optimal control framework for this model is presented in Sec. 10.3 and,

given limited testing resources, an optimal testing strategy is computed. We extend the same

underlying disease model to include vaccination in Sec. 10.4 and derive optimal vaccination

strategies that minimize infection given a limited vaccination rate. We summarize our results

and discuss how they depend on network and dynamical features of the model in Sec. 10.5.

For comparison, we also present in Appendix A.5.3 a reinforcement-learning-based algorithm

that can approximate optimal testing strategies for the model introduced in Sec. 10.2.
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Finally, we implemented a stochastic Monte-Carlo simulation of disease transmission,

testing, and vaccination on networks. By using the optimal strategies computed using the

PMP on ODE-based deterministic models, we find significant differences in the stochastic

model. In Appendix A.5.4, we show that these differences arise from higher correlations in

network connectivity that arise in the discrete stochastic model used.

10.2 Degree-based epidemic and testing model

For the formulation of optimal testing policies that allocate testing resources to different

individuals in a contact network, we adopt an effective degree model of SIR dynamics with

testing in a static network of N nodes. Nodes represent individuals, and edges between nodes

represent corresponding contacts. Therefore, the degree of a node represents the number of

its contacts. If K is the maximum degree across all nodes, we can divide the population into

K distinct subpopulations, each of size Nk (k = 1, 2, . . . , K) such that all nodes in the kth

group have degree k. Therefore, N =
∑K

k=1Nk.

In our epidemic model, we distinguish between untested and tested infected individu-

als. Let Sk(t), I
u
k (t), I

∗
k(t), and Rk(t) denote the numbers of susceptible, untested infected,

tested infected, and recovered nodes with degree k at time t, respectively. Since these sub-

populations together represent the entire population (the total number of nodes N), both

N and Nk are constants in our model. Their values satisfy the normalization condition

Sk + Iuk + I∗k +Rk = Nk. The corresponding fractions are

sk(t) = Sk(t)/N, iuk(t) = Iuk (t)/N,

i∗k(t) = I∗k(t)/N, rk(t) = Rk(t)/N,
(10.2.1)

such that
∑

k(sk + iuk + i∗k + rk) = 1. Using an effective-degree approach [MA88, KGK06],
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we describe the evolution of the above subpopulations by

dsk(t)

dt
=− ksk(t)

K∑
ℓ=1

P (ℓ|k)
P (ℓ)

(
βuiuℓ (t) + β∗i∗ℓ(t)

)
, (10.2.2)

diuk(t)

dt
=ksk(t)

K∑
ℓ=1

P (ℓ|k)
P (ℓ)

(
βuiuℓ (t) + β∗i∗ℓ(t)

)
(10.2.3)

− γuiuk(t)−
fk(t)

Nk

iuk(t),

di∗k(t)

dt
=− γ∗i∗k(t) +

fk(t)

Nk

iuk(t), (10.2.4)

drk(t)

dt
=γuiuk(t) + γ∗i∗k(t), (10.2.5)

where P (ℓ) = Nℓ/N is the degree distribution. P (ℓ|k) is the conditional probability that a

chosen node with degree k is connected to a node with degree ℓ. By defining Eℓ,k as the

number of edges connecting a node with degree k with another node with degree ℓ in a

given network, the conditional probability can be directly evaluated as P (ℓ|k) = Eℓ,k/(kNk).

Our degree-based formulation of SIR dynamics with testing, Eqs. (10.2.2)–(10.2.5), is an

approximation of the full node-based dynamics assuming that nodes of the same degree are

equally likely to be infected at any given time [New18].

Susceptible individuals become infected through contact with untested and tested infected

individuals at rates βu and β∗, respectively. Untested and tested infected individuals recover

at rates γu and γ∗, respectively. Differences in the recovery rates γu and γ∗ reflect differences

in disease severity and treatment options for untested and tested infected individuals. Once

recovered, individuals develop long-lasting immunity that protects them from reinfection.

Temporary immunity can be easily modeled by using an SIS-type model with or without

delays. Reduced transmissibility of tested infected (and potentially quarantined) individuals

corresponds to setting β∗ ≪ βu.

The testing rate of nodes with degree k is defined as fk(t), such that fk(t)∆t is the

total number of tests given to nodes with degree k in the time window ∆t. Tests given to

recovereds, susceptibles, and already-tested infecteds do not lead to quarantining and will
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not affect the disease dynamics. However, a fraction Iuk/(Sk+I
u
k +I

∗
k +Rk) ≡ Iuk/Nk of these

fk(t)∆t tests will be administered to untested infecteds. Once infected nodes have been

identified by testing, they can be quarantined and removed from the disease transmission

dynamics. If infected individuals who already have been tested strictly avoid future testing,

more tests will be available for the other subpopulations, increasing the rate at which the

remaining untested infecteds will be tested. In this case, the fraction of tests administered

to untested infecteds is modified: Iuk/(Sk + Iuk + Rk) ≡ Iuk/(Nk − I∗k). After normalizing by

the total population N to write tested fractions in terms of Eqs. (10.2.1), the testing term

becomes −fk(t)iuk/Nk (Eq. (10.2.3)) or −fk(t)iuk/[Nk(1− I∗k/Nk)], respectively.

Biased testing can also be represented by using a testing fraction of the form Iuk e
b/(Iuk e

b+

Sk + I∗k + Rk), where b > 0 increases the fraction of tests given to infecteds. To correct for

false-positive tests, Eqs. (10.2.2)–(10.2.5) can be modified by including an additional term

that transfers the I∗k population back to Sk. False negatives can be accounted for by a

reduction in fk(t)/Nk. For a detailed overview of statistical models that account for testing

errors and bias, see [BDC21, BDC22].

What remains is to assign network structures, extract P (ℓ|k) from them, and determine

reasonable parameter values before calculating the optimal testing protocol fk(t). We apply

our disease-control framework to (i) a Barabási-Albert (BA) network [BA99, AB02] and (ii)

a stochastic block model (SBM) [HLL83] with four communities and a probability matrix

P = 10−4


1 2 2 2

2 4 2 2

2 2 5 2

2 2 2 3

 . (10.2.6)

These two network types exhibit properties, such as hub nodes with high degrees and com-

munity structure, that are observable in real-world contact networks [BNM13, ZLZ12]. In

the construction of the BA network, each new node is connected to 2 existing nodes. Fig-

ure 10.1(a) shows the degree distribution of a 99,817-node BA network that we use in this
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study.

(a) (b)

(c) (d)
0.08
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Figure 10.1: Degree distribution of a Barabási–Albert network and a stochastic block model. (a)
The degree distribution of a Barabási–Albert network with 99,817 nodes. To generate the network,
we start with a dyad and iteratively add new nodes until we reach 100,000 nodes. Each new node
has 2 edges that connect it to existing nodes using the linear preferential attachment. Isolated nodes
or nodes with degrees larger than 100 [BNM13] are then removed from the network. The grey solid
line is a guide-to-the-eye with slope -3 [AB02]. For illustration, the inset shows a realization of a
Barabási–Albert network with 100 nodes. Node size scales with their betweenness centrality. (b)
The conditional probability P (ℓ|k) associated with the Barabási–Albert network generated in (a).
(c) The degree distribution of a stochastic block model with four blocks and 100,000 nodes. The
inset shows a realization of a stochastic block model with 800 nodes, but using the same block
probability matrix. (d) The conditional probability P (ℓ|k) associated with the SBM. In both (b)
and (d), all elements that are strictly zero are uncolored.
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A heatmap of the conditional degree distribution matrix of the BA network with the

degree distribution P (k) shown in Fig. 10.1(a) is given in Fig. 10.1(b). The degree distri-

bution and the conditional degree distribution matrix of the 100,000-node SBM network

are shown in Figs. 10.1(c) and (d), respectively. Taking into account empirical findings on

the degree distributions in real-world contact networks [BNM13], we use a degree cutoff of

k ≤ K = 100. We will use the specific configurations of the BA and SBM networks shown

in Fig. 10.1 for our subsequent analysis of Eqs. (10.2.2)-(10.2.5).

Next, to constrain the parameter values, we first invoke estimates of the basic repro-

duction number (i.e., the average number of secondary cases that results from one case in a

completely susceptible population), which for a network model is defined as [DW02, DHM90]

R0 = ρ(JV −1) (10.2.7)

in which ρ(·) is the largest eigenvalue (spectral radius), V ≡ diag(γu) ∈ RK×K , and J ∈
RK×K is the Jacobian of the linearized dynamical system (Eqs. (10.2.2) and (10.2.3)) about

the disease-free state with sk(t = 0) = Nk/N and fk = 0 corresponding to the initial,

untested, and uncontrolled spread of the infection:

Jij = iP (j|i)Ni

Nj

βu, i, j ≤ K. (10.2.8)

This “next-generation” method associates R0 with the largest eigenvalue inherent to the

dynamical system. Additional expressions for R0 for an uncorrelated degree network are

given in Appendix A.5.1.

Empirically, the basic reproduction number for COVID-19 varies across different regions.

For the early outbreak in Wuhan [WYW20], R0 was estimated to be 3.49, while for the

early outbreak in Italy R0 ∼ 2.43− 3.10 [DC20]. Here we set R0 = 4.5 which was suggested

in [KMB20] as the basic reproduction number of early COVID-19 spread in the absence of

any intervention. For a given value of the recovery rate γu of untested individuals, which

can be inferred from empirical data [KMB20, BRB20], we determine the transmissibility
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βu by numerically solving R0(β
u) = 4.5 for βu. Our source codes are publicly available at

https://gitlab.com/ComputationalScience/epidemic-control.

10.3 Allocating limited testing resources

Without any testing constraints, it would be most effective for disease control to use a testing

rate fk(t) sufficiently large to keep the fraction of untested individuals, iuk(t), close to zero.

In general, the testing rates are constrained by

fmin
k ≤ fk(t)

Nk

≤ fmax
k , (10.3.1)

and the total testing rate is also bounded by availability and logistics of testing

K∑
k=1

fk(t) = F (t). (10.3.2)

The goal is to determine, under these constraints, the function fk(t) or fk(t)/Nk that most

effectively reduces the total number of infections. In practice, high-degree nodes (e.g., highly

social individuals) might be subject to more testing (and quarantining if positive) than low-

degree nodes because of their higher expected rate of infecting others. This rationale trans-

lates to fk(t)/Nk > fk′(t)/Nk′ if k > k′. In our numerical experiments, we use sufficiently

broad bounds of fk(t) and set fmin
k = fmin and fmax

k = fmax.

To minimize the number of total infections over time, while simultaneously stressing the

importance of reducing early infections, we define a loss function as

L(T ) =

∫ T

0

dt δt
K∑
k=1

ksk(t)
K∑
ℓ=1

P (ℓ|k)
P (ℓ)

(
βuiuℓ (t) + β∗i∗ℓ(t)

)
, (10.3.3)

where δ ∈ (0, 1] denotes a discount factor, which describes how we balance between minimiz-

ing current infections and future infections. The smaller the parameter δ, the less attention

we pay to future infections, and the more we focus on reducing early infections. For exam-
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ple, medical resources can better handle confirmed patients and new treatments can be given

time to develop if the number of infections are spread over longer time periods. These effects

can be effectively incorporated into the loss function by using δ < 1. Minimizing the loss

Eq. (10.3.3) is equivalent to minimizing the number of infections, weighted by the discount

factor δt, in the time horizon [0, T ].

Figure 10.2: Optimal testing and quarantining strategy for T = 200 and discount factor δ = 0.95.
We plot the optimal strategies and the corresponding susceptible, untested infected, and tested
infected fractions at each degree k across time t = n∆t. (a) A heatmap of the PMP-optimal testing
strategy (see Alg. 7) for the BA network. The corresponding populations of degree-k susceptibles,
untested infecteds, and tested infecteds are plotted in (b-d), respectively. (e) Time-evolution of the
total fraction infected 1 −∑K

k=1 sk(t) under the PMP-optimal testing strategy (dashed red). The
fractions infected under hypothetical uniform testing (dashed blue/circle) and no testing (black)
scenarios are shown for comparison. For the BA network, optimal testing both delays and suppresses
epidemic spreading more effectively than uniform testing. The bottom row (f-j) shows analogous
results for the SBM network. Panels (f-i) show the corresponding optimal testing rates, susceptible,
untested infected, and untested infected populations with degree k as a function of time. Panel
(j) shows the fraction infected as a function of time. Although optimal testing and quarantining
reduce the fraction infected relative to uniform or no testing, its effects are only modestly better.
Given the same testing budget constraint, the effects of optimal testing strategies are greater in
the BA network because its distribution of node degrees is more heterogeneous and testing and
quarantining high-degree nodes can more effectively control disease spread. However, since the
node degree distribution in the SBM network is sharply peaked, an optimal testing strategy is less
effective overall.

To search for the optimal testing function fk(t) that minimizes Eq. (10.3.3), we invoke
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Pontryagin’s maximum principle (PMP) and construct the associated Hamiltonian

H = δt
K∑
k=1

ksk(t)
K∑
ℓ=1

P (ℓ|k)
P (ℓ)

(
βuiuℓ (t) + β∗i∗ℓ(t)

)
+

K∑
k=1

(
λsk

dsk(t)

dt
+ λuk

diuk(t)

dt
+ λ∗k

di∗k(t)

dt

)

=
K∑
k=1

(δt − λsk + λuk)ksk(t)
K∑
ℓ=1

P (ℓ|k)
P (ℓ)

(
βuiuℓ (t) + β∗i∗ℓ(t)

)
+

K∑
k=1

[fk(t)
Nk

(λ∗k − λuk)iuk(t)− γuiuk(t)λuk − γ∗i∗k(t)λ∗k
]
,

(10.3.4)

where λsk, λ
u
k, and λ

∗
k are adjoint variables associated with sk, i

u
k, and i

∗
k, respectively. PMP

states that a necessary condition for the loss-minimizing control fk(t) is that it minimizes H

(or maximizes −H) at every time point t. This method of optimal control has been applied

to many other contexts, including control of economic growth [AK07]. In our problem,

applying PMP under the total budget constraint
∑K

k=1 fk(t) = F (t), we explicitly find the

minimizing testing function (f ∗k ) = argminfH, which we will assume to be optimal control

that minimizes L(T ). The dynamics for (λsk, λ
u
k, λ

∗
k) obey

dλsk
dt

=− ∂H

∂sk
= −δtk

K∑
ℓ=1

P (ℓ|k)
P (ℓ)

(
βuiuℓ (t) + β∗i∗ℓ(t)

)
+ λskk

K∑
ℓ=1

P (ℓ|k)
P (ℓ)

(
βuiuℓ (t) + β∗i∗ℓ(t)

)
(10.3.5)

− λukk
K∑
ℓ=1

P (ℓ|k)
P (ℓ)

(
βuiuℓ (t) + β∗i∗ℓ(t)

)
,

dλuk
dt

=− ∂H

∂iuk
= − βu

P (k)

K∑
j=1

P (k|j)sj(t)(δt − λsj + λuj ) (10.3.6)

+ γuλuk +
fk(t)

Nk

(λuk − λ∗k),
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dλ∗k
dt

= −∂H
∂i∗k

(10.3.7)

= − β∗

P (k)

K∑
j=1

P (k|j)sj(t)(δt − λsj + λuj ) + γ∗λ∗k,

with end conditions λsk(T ) = λuk(T ) = λ∗k(T ) = 0. To minimize H with respect to the testing

rates fk(t), we have to minimize the term

K∑
k=1

fk(t)

Nk

(λ∗k − λuk)iuk(t) (10.3.8)

given the budget constraints Eqs. (10.3.1) and (10.3.2). Hence, after giving each subpopu-

lation the minimal testing resources fminNk, we maximize the testing rates fk(t) with the

smallest coefficients (λ∗k − λuk)i
u
k(t)/Nk of fmaxNk as long as a sufficient testing budget is

available. In other words, we should give testing resources to those groups presumed to be

at the highest risk, as quantified by the quantity (λ∗k − λuk)iuk(t)/Nk. We use the PMP-based

algorithm outlined in Appendix A.5.2 to iteratively calculate the loss function (10.3.3) and

optimal testing strategy.

In accordance with empirical data on COVID-19 patients [BRB20, WSJ20, HM22], we

set γ = γu = γ∗ = (1/14)/day and β∗ = βu/10. The transmissibility of untested individuals,

βu, is calculated according to Eq. (10.2.7) as βu = 0.0411/day for the BA network and

βu = 0.0130/day for the SBM network. We set the discount factor δ = 0.95 so that initial

infections contribute more to the loss function (10.3.3). The total daily number of SARS-

CoV-2 tests in the US after an initial ramping-up phase in 2020 is about 0.6%/day [BDC22].

Hence, we set ∑
k

fk(t) = 0.006N, (10.3.9)
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and fmin = 0, fmax = 0.4Nk. As the initial condition, we use

sk(0) = P (k)− iuk(0), i∗k(0) = 0,

iuk(0) = 10−6P (k), rk(0) = 0,
(10.3.10)

corresponding to about 0.1 of an infected individual uniformly distributed on N ≈ 105

susceptible nodes. The optimal testing strategy is supposed to identify those nodes that are

most likely to be infected and transmit the disease to others. Upon using T = 200,∆t = 0.1

and δ = 0.95, we find the optimal testing strategy fk(t)/Nk for our BA network and plot it in

Fig. 10.2(a). Here Eqs. (10.2.2)–(10.2.5) and (10.3.5)–(10.3.7) are solved using an improved

Euler method. For the BA network, the value of the loss function defined in Eq. (10.3.3) is

L(T = 200) = 0.0109 under the optimal testing strategy, while it is L(T = 200) = 0.0325

under uniform testing

fk = F0
Nk

N
. (10.3.11)

Figs. 10.2(b-d) show the associated populations under optimal testing, while (e) shows the

dynamics of the fraction of nodes infected, 1−∑K
k=1 sk(t). The disease spread under optimal

testing is significantly slowed relative to the no testing (black) and uniform testing (dashed

blue/circle) cases. Fig. 10.2(f) plots the optimal testing rate for the SBM network. Panels (g-

i) show the corresponding subpopulations, and panel (j) plots the fraction of nodes infected

under PMP-optimal, uniform, and no-testing conditions. For the SBM network, L(T =

200) = 0.0564 under the optimal strategy and L(T = 200) = 0.0571 under the uniform

testing strategy, suggesting that the PMP approach yields better solutions than uniform

testing. However, the improvement is modest and the SBM network is rather insensitive to

testing and quarantining. The slight improvement from testing is shown by the reduction in

the fraction infected relative to the no testing case (inset).

In both networks, nodes with larger degrees are more likely to be tested at the beginning

of the outbreak [Figs. 10.2(a,f)], indicating that people with more contacts are more likely to

infect others or get infected, and should be given priority to get tested. Yet, in both networks,
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as time evolves, the optimal testing strategy tends to shift focus from higher-degree nodes to

nodes with smaller degrees because testing those nodes that were infected and have already

recovered is not meaningful in terms of disease control.

Comparing Figs. 10.2(e) and (j), we see that the differences between optimal and uniform

testing are larger for the BA network compared to the SBM. A possible explanation for

this behavior is that in the BA network, the degree distribution P (k) decays algebraically.

Therefore, as long as testing focuses primarily on high-degree nodes, the spreading of the

disease can be controlled very effectively since the majority of nodes have small degrees and

are more unlikely to be infected. On the other hand, for our SBM network, the degrees of

most nodes are close to each other and larger than 10, indicating that nodes with a small

degree are more likely to be infected compared to the BA network. Even if we use the same

uniform testing rates [see Eq. (10.3.11)] in both networks, the proportion of infections in the

BA network is less than that in the SBM network.

10.4 Optimal vaccination policy

Optimal vaccination has also been studied within the classic SIR model [GKC17]. However,

devising vaccination strategies based on social network structure may provide a more refined

and efficient way of administering vaccines and extinguishing an epidemic. Our simple

testing model presented in the previous section can be straightforwardly adapted to describe

vaccination on a network. The goal is to determine the optimal allocation of vaccine doses

to a population with heterogeneous contacts to minimize the impact of the infection across

the entire population.

For COVID-19, there are a variety of vaccines that require one or two shots [PRK21]. In

our simulations, we assume that the administered vaccine provides full protection after one

shot and that a vaccinated individual will instantly leave the susceptible group and enter

the recovered group. This means that vaccinated individuals will no longer be infectious and

can be treated as “recovered” after receiving one vaccination dose. Furthermore, we assume
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Figure 10.3: Vaccination model optimized for T = 150 under different constraints. We plot the
optimal strategies and the corresponding susceptible, untested infected, and tested infected frac-
tions at each degree k across time t = n∆t. (a) Heatmap of the optimal vaccination strategy
vk(t)/(sk(t)Nk) for the BA network given by Alg. 7. Panels (b,c) show the corresponding suscepti-
ble and infected subpopulations sk(t) and ik(t), while (d) plots the fraction infected as a function of
time, derived from solving Eqs. (10.4.1)–(10.4.3) under optimal vaccination using a discount factor
δ = 0.95. The dashed red curve indicates the fraction infected under optimal vaccination. For com-
parison, the infected population with no vaccination (solid black) and constant, uniform (dashed
blue/circles) vaccination are also plotted and show how optimizing vaccination significantly sup-
presses infectivity. Panels (e-h) show the corresponding quantities for the SBM network. Optimal
vaccination is less effective at decreasing infection in the SBM network than in the BA network,
again because of the SBM’s peaked (more homogeneous) node degree distribution. Note from the
logarithmic scale that vaccination is qualitatively more effective in reducing infections than testing
and quarantining.

that only susceptible persons will be vaccinated. Other mechanisms such as prime-boost

protocols and time delays between vaccination and onset of immune response can also be

accounted for in similar models as detailed in [BN21].

We reformulate Eqs. (10.2.2)-(10.2.5) to study optimal vaccination protocols that are

constrained by vaccine supplies in a heterogeneous population. For simplicity, we do not

take into account the effect of testing and quarantining when devising optimal vaccinating

strategies, although testing and vaccination can be performed concurrently. The resulting
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rate equations are

dsk(t)

dt
= −βksk(t)

K∑
ℓ=1

P (ℓ|k)
P (ℓ)

iℓ(t)−
vk(t)

N
, (10.4.1)

dik(t)

dt
= βksk(t)

K∑
ℓ=1

P (ℓ|k)
P (ℓ)

iℓ(t)− γik(t), (10.4.2)

drk(t)

dt
= γik(t) +

vk(t)

N
, (10.4.3)

where vk(t) is the rate of vaccination of susceptibles with degree k at time t. Once vaccinated,

susceptibles become “recovered” because they are immunized and no longer susceptible to

the infection. The total rate of administering vaccines at time t is defined as

K∑
k=1

vk(t) = V (t). (10.4.4)

In other words, in time increment ∆t at time t, we can administer only V (t)∆t doses.

Eq. (10.4.1) assumes that vaccination is resource-limited and that the rate of protecting

susceptibles is proportional only to the rate vk(t) of administering vaccines. In addition, we

assume that the vaccination rates for different subpopulations are confined to the interval

vmin ≤
vk(t)

Nsk(t)
≤ vmax, (10.4.5)

where vmin, vmax ∈ [0, 0.4]/day are minimum and maximum vaccination rates. Note that

vaccines are allocated only to susceptibles, while tests are typically given to individuals of

all categories: susceptible, infected, and recovered, according to their relative proportions.

To formulate the vaccine distribution problem in a heterogeneous contact network, we use

the following loss function

L(T ) =

∫ T

0

dt δt
K∑
k=1

ksk(t)
K∑
ℓ=1

P (ℓ|k)
P (ℓ)

β(t)iℓ(t), (10.4.6)

to minimize the total number of infections over time (with a constant discount factor δ ∈
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(0, 1]) by appropriately distributing vaccines to groups with different degrees k at different

rates.

To minimize the loss function (10.4.6), we construct the Hamiltonian

H =βδt
K∑
k=1

ksk(t)
K∑
ℓ=1

P (ℓ|k)
P (ℓ)

iℓ(t)

+
K∑
k=1

(
λsk

dsk(t)

dt
+ λik

dik(t)

dt

)
=β

K∑
k=1

(δt − λsk + λik)ksk(t)
K∑
ℓ=1

P (ℓ|k)
P (ℓ)

iℓ(t)

+
K∑
k=1

(vk(t)
N

λsk(t)− γik(t)
)
,

(10.4.7)

where λsk and λik are the adjoint variables satisfying the differential equations

dλsk
dt

= −∂H
∂sk

= −βk
K∑
ℓ=1

P (ℓ|k)
P (ℓ)

iℓ(t)(δ
t − λsk + λik) (10.4.8)

dλik
dt

= −∂H
∂ik

(10.4.9)

= − β

P (k)

K∑
ℓ=1

P (k|ℓ)ℓsℓ(t)(δt − λsℓ + λiℓ) + γλsk.

Again, PMP explicitly generates the control that minimizes Eq. (10.4.7) for every t, which

we assume also minimizes the target loss function Eq. (10.4.6). From the constraints (10.4.4)

and (10.4.5), minimizing the Hamiltonian is achieved by giving vaccination doses to those

subpopulations with the smallest λsk. We use the same Alg. 7 to solve the minimization

problem (10.4.6) numerically and obtain the optimal strategy.

In the US, about two million doses of SARS-CoV-2 vaccines were delivered in May

2021 [MRO21], most of which were two-dose vaccines. Since approximately 0.3% of the

entire US population is fully vaccinated daily, we set V (t) = 0.003N/day, vmin = 0/day, and

vmax = 0.4/day in the constraint (10.4.5). The infection rates β are set to be 0.0411/day for
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the BA network and 0.0130/day for the SBM network, and the recovery rate γ = (1/14)/day.

For comparison, we also simulate a vaccination strategy with a uniform vaccination rate

vk(t) =
sk(t)V (t)∑K

k=1 sk(t)
. (10.4.10)

In all simulations, we use the following initial condition:

ik(0) = 10−6P (k), rk(0) = 0, sk(0) = P (k)− ik(0). (10.4.11)

We plot the PMP-optimal vaccination strategy vk/Nk in Figure 10.3(a) and the correspond-

ing susceptible and infected k-degree subpopulations sk(t) and ik(t) in (b) and (c). We set

T = 150,∆t = 0.1 and we use an improved Euler method to numerically solve Eqs. (10.4.1)–

(10.4.3), (10.4.8)–(10.4.9). Alg. 7 is applied (without the infected and tested compartment)

to determine the optimal vaccination strategy by the PMP approach. For the BA network,

L(T = 150) = 1.165× 10−5 under the PMP-optimal strategy and L(T = 150) = 0.01953 un-

der a uniform vaccination rate. Figure 10.3(d) shows that the optimal vaccination strategy

on a BA network significantly reduces the fraction infected compared to the uniform vaccina-

tion strategy. Panels (e-h) show the corresponding quantities for the SBM network for which

L(T = 150) = 0.0210 under the optimal vaccination strategy and L(T = 150) = 0.0360 un-

der a constant, uniform vaccination strategy. In both networks, the optimal vaccination

strategies obtained via Alg. 7 tend to prioritize those nodes with higher degrees first and

eventually expand to those nodes with smaller degrees [see Figs. 10.3(a) and (e)]. As with

testing and quarantining, the reduction in the fraction infected by vaccination is greater in

the BA network. Since the BA network has a degree distribution with algebraic decay, the

effect of the optimal vaccination strategy will be more pronounced than for the SBM, whose

nodes have similar degrees.
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Figure 10.4: Total fraction infected under testing or vaccination model as a function of different
intervention starting times t0. We minimize the corresponding loss function at T = 150 and use
δ = 0.95. (a) The fraction infected in the BA network as a function of start times for different
testing amplitudes F . The total infected fraction is fairly insensitive to intervention starting times,
especially for small intervention delays. The effect of delayed vaccination on the fraction infected is
shown in (c), with the corresponding loss function shown in (d). For the SBM network, the fraction
infected as a function of the testing start time shown in (e) reflects the small effect of testing on the
infected population. However, the loss functions shown in (f) are monotonic in the starting time.
This implies that an early intervention time on the SBM network is able to “flatten” the curve by
postponing infection so even if total infections stay roughly the same when t0 varies in ∼ [0, 50],
the earlier the intervention time, the fewer the earlier infections, with little change in the final total
infected fraction. The starting time dependence of the fraction infected on an optimally vaccinated
SBM network in (g) shows a monotonic and smooth decrease in effectiveness as vaccination is
delayed. In (h), the loss function for vaccination on the SBM network also monotonically increases
with the start time.

10.5 Discussion

Effective testing and vaccination strategies are an essential part of epidemic management.

In this chapter, we derived optimal testing and vaccination policies by applying Pontrya-

gin’s maximum principle to a degree-based epidemic model in a heterogeneous contact net-

work. We complemented our analytical results with reinforcement learning (RL) approaches

that identify effective policies (see Appendix A.5.3). On occasions when the best optimal

strategy can be analytically solved, the controls derived from the Pontryagin’s maximum
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principle outperform RL-based interventions. However, reinforcement learning is useful for

epidemic management problems when an efficient procedure for computing optimal solu-

tions is not available. Our results show that the two approaches can complement each other;

preliminary findings from optimal-control analysis can be used to pre-train and restrict the

space of possible actions, which may lead to more efficient RL algorithms. In addition to

RL-based control strategies, it may also be worthwhile to apply neural ODE control frame-

works [ABA22a, BAA22] to resource allocation problems since they have exhibited better

performance than RL and numerical adjoint system solvers.

Our analytical results show that optimal testing and vaccination policies under resource

constraints initially tend to prioritize nodes with higher degrees to control the spread of

the disease. In situations where the number of contacts of individuals is known or can be

estimated with reasonable precision, Algs. 7 and 8 may be useful for identifying effective

epidemic management strategies. Using our control-theoretic approach, we also explored the

relative effectiveness of testing and vaccination under different conditions. If more informa-

tion on contact patterns of individual nodes is available, it is possible to further refine the

proposed policies using interventions that rely not only on node degrees but also on other

structural features such as percolation and betweenness centrality [New18, PPH13].

10.5.1 Effects of delayed intervention

First, we consider the effectiveness of interventions as a function of the time between the first

infection and the implementation of testing or vaccination. The initial conditions are set to

be the same as Eqs. (10.3.10) and (10.4.11). Fig. 10.4 shows the total fraction infected and

the loss function at T = 150, for both the BA and SBM networks, as a function of intervention

starting time t0. We set F = F (t)1t>t0 or V = V (t)1t>t0 and explore the effects of different

constant levels of test kits or vaccine availability, F (t) = 0.002, 0.004, 0.006, 0.008N/day and

V (t) = 0.001, 0.002, 0.003, 0.004N/day, respectively. The transmissibility rates βu, β∗, β and

the recovery rates γu, γ∗, γ are set to the same values as those used in Section 10.3 for the

testing model and those used in Section 10.4 for the vaccination model.
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In the BA network, the total infected fraction shown in Fig. 10.4(a) is fairly insensitive

to starting times for all testing rates F , especially at small starting times t0 ≲ 50. How-

ever, the loss functions corresponding to all testing rates increase monotonically with the

testing starting time t0, as shown in Fig. 10.4(b). On the other hand, vaccination of a BA

network leads to infected fractions that change significantly with delay time, but with an

overall vaccination-rate-dependent starting time before which disease spread can be nearly

completely suppressed, as shown in (c). For the vaccination model applied to both networks,

an earlier intervention time will always lead to fewer infected nodes. Overall, we found that

earlier and stronger intervention measures lead to more effective control of disease spread

and a smaller loss function defined by Eqs. (10.3.3), (10.4.6). For all cases, the testing loss

functions monotonically increase with t0.

Similarly, for the SBM model, the final infections shown in Fig. 10.4(d) are insensitive

to starting times t0 ≲ 50 for each of the four choices of total testing budgets F . Earlier

intervention times t0 lead to smaller testing loss functions that indicate more effective early-

time disease control and fewer early infections (which are followed by larger later infections)

than those associated with later start times t0. Vaccination of the SBM network reveals more

smoothly monotonically increasing infected fraction and loss functions and does not display

the sigmoidal dependence on intervention time t0 as exhibited by the infected fraction and

loss function for the BA network. For the vaccination model applied to both networks, an

earlier intervention time will always lead to fewer infected nodes.

Overall, higher levels of F and V lead to high-k nodes being addressed sooner and total

infections can be reduced. In summary, for both networks, when the discount factor δ < 1,

earlier intervention starting times t0 more effectively reduce early infections although it might

be at the cost of larger later infections.
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Figure 10.5: Dependence of intervention effectiveness on the degree of the initial infected indi-
vidual. (a) The PMP-optimal testing strategy computed using IC2 (ki = 20) on the BA network.
Strategies for IC1 (ki = 3) and IC3 (ki = 90) are qualitatively similar (not shown) with small
differences at the beginning leading to the different delays in the infection dynamics shown in (b).
Specifically, for IC1 and IC3, the initial transient of the optimal testing strategy maximizes the
testing rate for the subpopulation with the same degree as k1 and k3, respectively, indicating that
the optimal testing strategy is sensitive to the degree properties of the initial seed infection. Once
the disease spreads out, the testing strategies “forget” the initial condition and converge to each
other. Despite optimal testing, initial infecteds with larger degrees, such as IC3, lead to the earlier
spread of the epidemic. Results are found by using a discount factor δ = 0.95, the optimal strategy
given in Alg. 7, and solving Eqs. (10.2.2)–(10.2.5). (c-d) The optimal vaccination strategy for IC2
and the associated fraction infected for the BA network. As with testing, the vaccination strategies
associated with IC1 (ki = 5) and IC3 (ki = 30) lead to differences in infection magnitudes. However,
the optimal vaccination strategies are insensitive to different initial conditions, even at early times.
Since the mechanism of vaccination is always to protect high-degree susceptibles, the vaccination
strategies are not as dependent on the current infected population as the testing strategies are.
Panel (e) shows the optimal testing strategy for the SBM network, assuming IC2 (ki = 20). (f)
The fraction infected exhibits slower dynamics for smaller-degree initial conditions. (g) Optimal
vaccination strategy for IC2 in the SBM network, and (h), the associated infected fraction showing
both delay and amplitude changes with changes in the initial condition.

10.5.2 Dependence on initial conditions

Besides the start time of testing or vaccination, initial conditions may also affect the optimal

strategy. For example, the initial propagation of the disease may depend on the degree k of

the first infected individual [OCK21]. Instead of an initial infectious source that is uniformly
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distributed across all nodes, as described in Eqs. (10.3.10) and (10.4.11), we vary the degree

of the first infected node and explore how the strategies change as a function of concentrated

initial condition ik(0) = N0δk,ki/N . We take N0 = 10−6N for both networks, ki = 3, 20, 90 for

the BA network, and ki = 5, 20, 30 for the SBM network. These different initial conditions

are denoted IC1, IC2, and IC3 for each network, respectively.

Optimal testing strategies are found to be subtly dependent on the initial conditions,

i.e., the degree of the initial infected patient. In Fig. 10.5 we show only the optimal strategy

associated with IC2, but plot the time-dependent fraction infected under optimal strategies

for all ICs. Under both optimal testing and vaccination, a smaller degree of the first infected

source typically leads to a smaller subsequent infected population. Specifically for testing,

this decrease is greatest at intermediate times because at early stages there are fewer infect-

eds. At later times, the testing strategy becomes insensitive to the initial condition because

persons with all degrees are infected and those with a higher degree tend to be infected

sooner.

The optimal vaccination strategies obtained through Alg. 7 are also relatively insensitive

to initial conditions in both networks, particularly at longer times. Although not shown,

the optimal strategies associated with different ICs are mostly the same because nodes with

larger degrees tend to always be vaccinated first to minimize the loss function Eq. (10.4.6).

Susceptibles with higher degrees are more vulnerable and should be vaccinated first to miti-

gate subsequent infection events. For vaccination, the different ICs lead to long-term differ-

ences in infected fractions because low-degree ICs allows more time for vaccination to more

effectively remove susceptibles.

10.5.3 Monte-Carlo simulation of stochastic network model

Our results are derived from a mass-action ODE model and it is unclear how they apply

to stochastic network dynamics. To compare these different representations of the disease,

we define the discrete stochastic versions of our network models and impose a stochastic
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version of the optimal strategies found using the PMP on our ODEs. In Appendix A.5.4 we

implemented the optimal testing and vaccination strategies on the BA and SBM network

realizations used in the PMP study. Infection, recovery, testing, and vaccination processes

are described as Markov events in continuous time. Results from rejection-free, event-based

Monte-Carlo simulation indicate that the degree-based mean-field ODE model tends to over-

estimate new infections because it assumes that all subpopulations interact in a well-mixed

manner, thus neglecting certain structural features of the considered networks. The loss func-

tion derived from the stochastic model and using the PMP-derived optimal strategy is shown

to be lower than that of the ODE model, except for vaccination on the SBM network for

which they are comparable. Nonetheless, optimal strategies derived from the ODE model

still outperform a uniform or unstructured testing or vaccination strategy applied to the

stochastic model. Therefore, although not optimal, the PMP-optimal strategies nonetheless

provide advantages in the real-life agent-based stochastic process.

10.6 Summary and conclusions

Our overall results indicate that different network structures (e.g., BA vs. SBM) have

different susceptibilities to optimal intervention strategies. Thus, policies such as selective

social distancing can potentially be used to shift network structure towards one that is more

sensitive to direct testing and vaccination strategies.

We have analyzed testing and vaccination separately, but in practice, both are simulta-

neously implemented. The relative efforts of these two interventions, as a function of time,

will depend on their constraints and costs as well as the desired loss function time T . A

further generalization of either our mass-action or stochastic versions of our network models

may be to derive different loss functions other than Eqs. (10.3.3) and (10.4.6) to take into

account factors such as economic effects or prioritization of certain groups (e.g., healthcare

workers or individuals with comorbidities). Formulating more specific loss functions would

allow one to balance mitigation and suppression strategies, as studied in a well-mixed SIR
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model [NLV21]. Another important and straightforward extension of our model is to con-

sider the effects of waning protection of vaccination, which has become a relevant feature of

disease control in the context of booster shots. Recovered individuals that include previously

vaccinated or infected individuals can become susceptible again at a rate equal to the rate

of loss of immunity. Thus, another timescale (months) is introduced which is comparable

to timescales T that are used to define the loss function. We expect even wider variety and

richness in the analysis of optimization problems under waning immunity.

Finally, the discrepancies between the effective degree ODE model and the Monte-Carlo

simulations, under the same ODE-derived optimal strategies appear to arise from the differ-

ences in the underlying disease propagation. The discrete stochastic models tend to show

lower infected fractions than the corresponding mass-action ODE models since its discrete-

ness and finite infection lifetimes prevents high-degree nodes in some network regions to

be infected while the mass-action model allows all nodes to be partially infected. Further

analysis of fluctuations in real-world stochastic models could provide insight into a better

estimation of optimal strategies without simulating the large space of intervention strategies.

This and many other important extensions will be topics of future exploration.
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APPENDIX A

Appendix

A.1 Appendix for Chapter 2

A.1.1 Existence and uniqueness of a weak solution for the adder-sizer model

Here, we show the existence and uniqueness of the solution to the sizer-adder model PDE.

The full problem is defined as



∂n

∂t
+
∂(ng)

∂x
+
∂(ng)

∂y
= −β(x, y, t)n(x, y, t),

g(x, 0, t)n(x, 0, t) = 2

∫ ∞
x

dx′
∫ x′

0

dy β̃(x′, y, x, t)n(x′, y, t),

β(x, y, t) :=

∫ x

0

β̃(x, y, z, t)dz,

β̃(x, y, z′, t) = β̃(x, y, z − z′, t), β̃(x, y, 0, t) = 0, n(x, x, t) = 0,

n(x, y, t = 0) := n0(x, y).

(A.1.1)

where the independent variables (x, y, t) ∈ R2 ∩ {y < x} ×R+.

First, we assume that

0 < gmin ≤ g ∈ C1(R+ ×R2 ∩ {y ≤ x}),

n0(x, y) ∈ L1 ∩ L∞(R+ ∩ {y < x}),

0 ≤ β̃ ∈ L∞ ∩ L1 ∩C1(R+ × (R+)3 ∩ {y < x, z < x})

β(x, y, t) ∈ L∞ ∩ L1(R+ × (R+)2)

(A.1.2)

and nondimensionalize the size and added size by ∆, the fixed added size parameter that
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represents the adder mechanism. We also impose an additional assumption on g:

|g(x, y, t)| < K(t+ x+ 1), K <∞. (A.1.3)

We also assume the initial distribution n0(x, y) has compact support bounded in (0,Ω) ×
[0,Ω),Ω <∞. From this assumption and A.1.3, the closure of n(x, y, T )’s support is compact

for any finite time T since n ̸= 0 only when y < x and

dx

dt
≤ K(x+ t+ 1) ≤ K(x+ T + 1).

From Grönwall’s Inequality x(s) ≤ CeMs − (1 + T ), where C < 1 + T + Ω is given by the

initial condition. At any finite time T , the support of n(x, y, T ) is bounded and we assume

it is contained in [0,Ω(T ))× [0,Ω(T )). Furthermore, by setting g, β, β̃ = 0 at the given time

T when (x, y) is out of the support of n, we can assume the closure of g, β, β̃’s support to

be compact. One can generalize the definition of the weak solution n to [0,∞) × (R+)2 as

in [Per08].

Definition A.1 Given time T <∞ and assuming A.1.2, for a function

n ∈ L1((([0,Ω(T )])2
⋂{y < x}) × [0, T ]),Ω(T ) < ∞ with n(x, y, t) ̸= 0 in [0,Ω(T )) ×

[0,Ω(T )), y < x, t ∈ [0, T ], we say that n satisfies the adder-sizer PDE in the weak sense in

time [0, T ], if

−
∫ T

0

dt

∫ ∞
0

dx

∫ x

0

dy n(x, y, t)

[
∂Ψ

∂t
+ g(x, y, t)

∂Ψ

∂x
+ g(x, y, t)

∂Ψ

∂y
− β(x, y, t)Ψ(x, y, t)

]
=

∫ ∞
0

dx

∫ x

0

dy n0(x, y)Ψ0(x, y) +

∫ T

0

dt

∫ ∞
0

dxΨ(x, 0, t)n(x, 0, t)g(x, 0, t),

(A.1.4)

holds for all test function Ψ ∈ C1(([0,Ω(T )])2
⋂{y ≤ x}) × [0, T ]) satisfying Ψ(x, y, T ) ≡

0,Ψ(Ω(T ), y, t) = 0 and Ψ(x, x, t) = 0, where we set g, β̃, β = 0 for x ≥ Ω(T ), x ≤ y or

x ≤ z. Upon using the boundary condition in A.1.1, the right-hand-side becomes
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∫ ∞
0

dx

∫ x

0

dy n0(x, y)Ψ0(x, y) + 2

∫ T

0

dt

∫ ∞
0

dx

∫ x

0

dy

∫ x

0

dzΨ(z, 0, t)β̃(x, y, z, t)n(x, y, t).

Note that if n ∈ C1(R+×((R+)2∩{y < x})) is a classical solution to the PDE (Eq. A.1.1),

then it must also satisfy Eq. A.1.4 in any time interval [0, T ]. We refer to [Per08] for proof

of the existence and uniqueness of a weak solution of a related, simpler renewal equation.

However, our adder-sizer PDE is more complicated, requiring additional steps to prove the

existence and uniqueness of a weak solution.

A.1.2 Uniqueness

First, we prove the uniqueness of the solution to A.1.4. Assume there are two weak solu-

tions n(0) and n(1) for the adder-sizer PDE satisfying A.1.4 with the same initial condition

n
(0)
0 (x, y) = n

(1)
0 (x, y). Taking the difference between using these purported solutions, we

obtain

−
∫ T

0

dt

∫ ∞
0

dx

∫ x

0

dy∆n(x, y, t)

[
∂Ψ

∂t
+ g(x, y, t)

∂Ψ

∂x
+ g(x, y, t)

∂Ψ

∂y
− β(x, y, t)Ψ(x, y, t)

]
= 2

∫ T

0

dt

∫ ∞
0

dx

∫ x

0

dy

∫ x

0

dzΨ(z, 0, t)β̃(x, y, z, t)∆n(x, y, t),

(A.1.5)

where ∆n = n(1) − n(0).

A.1.2.1 Adjoint Problem

First, we consider the adjoint problem for Ψ in the given time interval [0, T ] and with a with

a source term S(x, y, t) for 0 ≤ y < x:
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∂Ψ

∂t
+ g(x, y, t)

∂Ψ

∂x
+ g(x, y, t)

∂Ψ

∂x
− β(x, y, t)Ψ(x, y, t) = −2

∫ x

0
Ψ(z, 0, t)β̃(x, y, z, t)dz − S(x, y, t),

Ψ(x, y, T ) = 0, Ψ(Ω(T ), y, t) = 0, Ψ(x, x, t) = 0.

(A.1.6)

Theorem A.1 Assume A.1.2, and S ∈ C1([0, T ] × [0,Ω(T )]2), S(Ω(T ), y, t) = 0, and

S = 0 when x ≤ y. Then, there exists a unique C1 solution to the adjoint problem.

Proof: We can transform the above equation into an ODE along the characteristic line,

and then use contraction mapping, which is a standard practice in functional analysis to

prove the existence and uniqueness of the solution to an ODE problem. On the left-hand

side of Eq. A.1.6, we apply the characteristic line method. Setting X(c, t) = (x(c, t), y(c, t))

on the characteristic lines leads to


∂X(c, s)

∂s
= (g(x, y, s), g(x, y, s)), t ≤ s ≤ T,

X(c, t) = (xt, yt), 0 ≤ yt < xt, xt − yt = c.

Since we have x(s)− y(s) = xt − yt, the above equation can be simplified as

∂X(c, s)

∂s
= g̃(X(c, s), s), x(c, t) = xt, y(c, t) = xt − c

where g̃(X(c, s), s) = (g(x(c, s), x(c, s)− c, s), g(x(c, s), x(c, s)− c, s)). Once c is fixed and xt

is given, the above equation becomes an ordinary differential equation. Given xt, we define

Ψ̃(c, s) := Ψ(X(c, s), s)e−
∫ s
t β(X(c,v),v)dv,

U(c, z, s) := 2β̃(X(c, s), z, s)e−
∫ s
t β(X(c,v),v)dv, S̃(c, s) := S(X(c, s), s)e−

∫ s
t β(X(c,v),v)dv.

Thus, along the characteristic line, we can write A.1.6 as

∂

∂s
Ψ̃(c, s) = −

∫ x(c,s)

0

Ψ(z, 0, s)U(c, z, s)dz − S̃(c, s). (A.1.7)
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Since Ψ̃(c, T ) = 0 and Ψ̃(c, t) = Ψ(xt, xt − c, t),

Ψ(xt, xt − c, t) =
∫ T

t

S̃(c, s)ds+

∫ T

t

ds

∫ x(c,s)

0

dzΨ(z, 0, s)U(c, z, s), 0 < c ≤ xt. (A.1.8)

We can see that if x ≤ y or xt ≥ Ω(T ), Ψ(t, xt, xt − c) = Ψ(t, x, x) = 0 since U, S̃ = 0 for

c ≤ 0 or xt > Ω(T ). Using c = xt, Eq. A.1.8 becomes

Ψ(xt, 0, t) =

∫ T

t

S̃(xt, s)ds+

∫ T

t

ds

∫ x(xt,s)

0

dzΨ(z, 0, s)U(xt, z, s). (A.1.9)

From condition A.1.3 we obtain x(s) ≤ (xt+1+T )eK(s−t)− (1+T ). From condition A.3, we

define B̃ = 2∥β̃∥∞ <∞. Next, we choose s = max{T − 1
K
ln(1+ 1

2B̃(1+T )
), T − 1

K
ln 2, T − 1}

such that eK(T−t) ≤ 1 + 1
2B̃(1+T )

, s ≤ t ≤ T , and choose xs small enough such that xs <

min{1, 1
8B̃(T−s)}. We denote a mapping T defined on the functional space as

T (Ψ)(xt, 0, t) =

∫ T

t

S̃(xt, s)ds+

∫ T

t

ds

∫ x(s,xt)

0

dzΨ(z, 0, s)U(xt, z, s), t ∈ [s, T ], xt ∈ [0, xs].

It is easy to verify that T is a contraction mapping for Ψ(xt, 0, t) and thus there exists a unique

solution Ψ0 satisfying A.1.6 in D0 defined as D0 = {(x, t)|s ≤ t ≤ T, 0 ≤ x ≤ x(xs, t)}, then
we let x1s > xs and define D1 = {(x, t)|s ≤ t ≤ T, 0 ≤ x ≤ x(x1s, t)} such that the difference

of the area of the region D1 and D0 is less than B̃
−1. So we can define a second mapping T1

as


T1(Ψ)(xt, 0, t) =

∫ T

t

ds

∫ x(xt,s)

x(xs,s)

dzΨ(z, 0, s)U(xt, z, s) + I(xs, t), t ∈ [s, T ], xt ∈ [x(t, xs), x
1
s],

I(xs, t) =

∫ T

t

dsS̃(xt, s) +

∫ T

t

ds

∫ x(xs,s)

0

dzΨ0(z, 0, s)U(xt, z, s).

T1 is also a contraction mapping and we can obtain a Ψ1 on D1 such that T (Ψ1) = Ψ1.
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Denote

Ψ(x, 0, t) = Ψ0(x, 0, t), (x, t) ∈ D0,

Ψ(x, 0, t) = Ψ1(x, 0, t), (x, t) ∈ D1,
(A.1.10)

and it is easy to verify that Ψ is C1 continuous on D0

⋂
D1 by first proving it is continuous

and then taking the partial derivatives, and Ψ satisfy A.1.6 in the region D0

⋃
D1.

Following the same procedure, we can extend Ψ to satisfy A.1.6 in the region t ∈ [s, T ].

Then, for [0, s], we choose a s̃ close enough to s and use the same strategy by defining T2 as


T2(Ψ)(xt, 0, t) =

∫ s

t

dr S̃(xt, r) +

∫ s

t

dr

∫ x(xt,r)

0

dzΨ(z, 0, r)U(xt, z, r) + Ĩ(t, xs), t ∈ [s̃, s],

Ĩ(xs, t) =

∫ T

s

dr S̃(xt, r) +

∫ T

s

dr

∫ x(xt,r)

0

dzΨ(z, 0, r)U(xt, z, r).

(A.1.11)

We finally obtain a unique function Ψ satisfying A.1.6 in [0, T ]× [0,∞).

From A.1.8, the value of Ψ is determined by S̃,Ψ(x, 0, t), U and we conclude that there

exists a unique C1 solution for A.1.6.

A.1.2.2 Uniqueness of weak solution for the adder-sizer model

From Section A.1.1 we obtain the existence and uniqueness of Ψ of the adjoint problem.

Given any time T and S(x, y, t) ∈ C1(R+× (R+)2) satisfying the condition in Theorem A.1,

since we can set g, β, β̃’s support to be compact in [0, T ], we can find a unique C1 continuous

Ψ satisfying A.1.6. By substituting A.1.6 into A.1.5, we obtain

∫ T

0

dt

∫ Ω(T )

0

dx

∫ x

0

dy∆n(x, y, t)S(x, y, t) = 0 (A.1.12)

for any S(x, y, t) ∈ C1(R+ × R+2
) satisfying S(x, y, t) = 0, x ≤ y, S(x ≥ Ω(T ), y, t) = 0,

which implies n ≡ 0 a.e. in y < x ≤ Ω(T ). So at any given time T the weak solution, if
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exists, is unique.

One can also set the condition for β̃, g weaker even when we define the weak solution in

the unbounded region [0,∞)× (R+)2∩{y < x}. In [Per08] such work is done for the renewal

equation. We do not discuss this generalization in detail here.

A.1.3 Existence of the weak solution

We construct a series of functions {ni} with a limit n for this series satisfying A.1.6 for

all test functions Ψ. We use semi-discrete approximation to discretize the PDE and obtain

piecewise solutions. As the mesh size becomes smaller, we expect the piecewise solution to

converge to a function n satisfying A.1.4.

A.1.3.1 Semi-discrete approximation for the PDE

We choose a uniform grid with mesh size h > 0 fixed in both x and y axis and let time t be

continuous. We denote

(xi, yj) = (ih, jh), (xi+ 1
2
, yj+ 1

2
) = ((i+

1

2
)h, (j +

1

2
)h), j < i ∈ N,

βi+ 1
2
,j+ 1

2
(t) =

1

h2

∫ (i+1)h

ih

dy

∫ (j+1)h

jh

dx β(x, y, t), j < i ∈ N,

β̃i+ 1
2
,j+ 1

2
((s+

1

2
)h, t) =

1

h3

∫ (i+1)h

ih

dz

∫ (j+1)h

jh

dy

∫ (s+1)h

sh

dx β̃(x, y, z, t), s ≤ i,

gi,j(t) = g(ih, jh, t), j < i ∈ 1

2
N.

(A.1.13)

Here, βi+ 1
2
,j+ 1

2
(t) = h

∑i
s=0 β̃i+ 1

2
,j+ 1

2
((s+ 1

2
)h, t). Given a fixed time T , we wish to find a

solution of point-wise function nh(t), which takes values on the grid points (xi+ 1
2
, yj+ 1

2
) as we

denote above. Then nh can be seen as a vector function. According to our assumption there

exists Ω such that the initial value n0 is nonzero within the region {(x, y)|y < x, x < Ω},
and from our previous illustration there exists Ω(T ) <∞ such that n is nonzero within the
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region {(x, y)|y < x, x < Ω(T )}. So we can take hk =
Ω(T )
k

so as k tends to infinity the width

of the mesh grid will tend to zero.

By discretizing A.1.1, we expect the vector function nh(t) to satisfy the below equations

for t ∈ [0, T ] and 0 < j < i < L (L is the number of discretization points along one direction):

h2
dni+ 1

2
,j+ 1

2
(t)

dt
+ h(gi+1,j+ 1

2
(t)ni+1,j+ 1

2
(t)− gi,j+ 1

2
(t)ni,j+ 1

2
(t))

+ h(gi+ 1
2
,j+1(t)ni+ 1

2
,j+1(t)− gi+ 1

2
,j(t)ni+ 1

2
,j(t)) + h2βi+ 1

2
,j+ 1

2
(t)ni+ 1

2
,j+ 1

2
(t) = 0,

0 ≤ j < i− 1

h2
dni+ 1

2
,j+ 1

2
(t)

dt
+ hgi+1,j+ 1

2
(t)ni+1,j+ 1

2
(t)− hgi+ 1

2
,j(t)ni+ 1

2
,j(t)

+ h2βi+ 1
2
,j+ 1

2
(t)ni+ 1

2
,j+ 1

2
(t) = 0, 0 ≤ j = i− 1 (A.1.14)

gi+ 1
2
,0(t)ni+ 1

2
,− 1

2
(t) = 2h2

K−1∑
l=i

l−1∑
j=0

β̃l+ 1
2
,j+ 1

2
((i+

1

2
)h, t)nl+ 1

2
,j+ 1

2
(t),

ni+ 1
2
,j+ 1

2
(0) =

1

h2

∫ xi+1

xi

dy

∫ yj+1

yj

dx n0(x, y), ni+ 1
2
,i+ 1

2
(t) = 0, (A.1.15)

where we henceforth omit the h superscript in the proof. In the two-dimensional upwind

scheme, derivatives in one direction are neglected on neighboring sites in the other direction:

ni,j± 1
2
= ni− 1

2
,j± 1

2
, ni± 1

2
,j = ni± 1

2
,j− 1

2
. The boundary condition n(x, x, t) = 0 is implemented

by ni+ 1
2
,i+ 1

2
(t) = 0 for any t and i.

We will obtain a uniform bound irrelevant of h for n. All coefficients in the above

ODE equations are C1 continuous, which means that there exists a unique solution in time

[0, T ], T <∞.
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Theorem A.2 For t ∈ [0, T ] and assuming A.1.2 hold, we find the bound

L−1∑
i=1

i∑
j=0

|ni+ 1
2
,j+ 1

2
(t)| ≤ eMt

L−1∑
i=1

i∑
j=0

|ni+ 1
2
,j+ 1

2
(0)|, (A.1.16)

where B̃ = 2∥β̃∥∞,M = 2B − b, B = ∥β∥∞, and b = min
t

min
i,j

βi+ 1
2
,j+ 1

2
(t).

And the L∞ bound is given as

∥nh(t)∥∞ ≤ e(2g̃
′)tR (A.1.17)

where R = max{ 1
gmin

B̃eMT∥n(0)∥1, ∥nh(0)∥∞}, g̃′ is the L∞ bound of g’s spatial partial

derivatives.

Proof For the summation of n over all grid points, we multiply the first equation in

Eq.(A.1.15) by sign(ni+ 1
2
,j+ 1

2
) for each i, j ≤ i we have,

h2
d

dt
|ni+ 1

2
,j+ 1

2
(t)|+ hgi+1,j+ 1

2
|ni+ 1

2
,j+ 1

2
|+ hgi+ 1

2
,j+1|ni+ 1

2
,j+ 1

2
|+ h2βi+ 1

2
,j+ 1

2
|ni+ 1

2
,j+ 1

2
| ≤

hgi,j+ 1
2
|ni− 1

2
,j+ 1

2
|+ hgi+ 1

2
,j|ni+ 1

2
,j− 1

2
|

(A.1.18)

By multiplying the second equation in Eq. (A.1.15) by sign(ni+ 1
2
,j+ 1

2
) for each i, j ≤ i pair

and summing over index
∑L−1

i=1

∑i−1
j=0,

h2
L−1∑
i=1

i−1∑
j=0

|ni+ 1
2
,j+ 1

2
(t)|+ h

L−1∑
i=1

gi+ 1
2
,i− 1

2
(t)|ni+ 1

2
,i− 1

2
(t)|+ h

i−1∑
j=0

gL,j+ 1
2
(t)|nL−1+ 1

2
,j+ 1

2
(t)|+

h2
L−1∑
i=1

i−1∑
j=0

βi+ 1
2
,j+ 1

2
|ni+ 1

2
,j+ 1

2
| ≤ h

L−1∑
i=0

gi+ 1
2
,0(t)|ni+ 1

2
,− 1

2
(t)|.

We can simplify the above expression to
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h2
d

dt

L−1∑
i=1

i−1∑
j=0

|ni+ 1
2
,j+ 1

2
(t)| + h2

L−1∑
i=1

i−1∑
j=0

βi+ 1
2
,j+ 1

2
|ni+ 1

2
,j+ 1

2
(t)|

≤ 2h3
L−1∑
i=0

|
L−1∑
l=i

l−1∑
j=0

β̃l+ 1
2
,j+ 1

2
((i+ 1/2)h, t)nl+ 1

2
,j+ 1

2
(t)|

≤ 2h2
L−1∑
l=1

l−1∑
j=0

|βl+ 1
2
,j+ 1

2
(t)||nl+ 1

2
,j+ 1

2
(t)|.

We then have

d

dt

L−1∑
i=1

i−1∑
j=0

|ni+ 1
2
,j+ 1

2
(t)| ≤ (2B − b)

L−1∑
i=1

i−1∑
j=0

|ni+ 1
2
,j+ 1

2
(t)|,

which yields
L−1∑
i=1

i−1∑
j=0

|ni+ 1
2
,j+ 1

2
(t)| ≤ eMt

L−1∑
i=1

i−1∑
j=0

|ni+ 1
2
,j+ 1

2
(t)(0)|. (A.1.19)

A.1.19 states that the l1 norm of all the values on the grid points is uniformly bounded and

the upper bound is not relevant to h. Next, estimate the L∞ bound of nh. First, we consider

j = 0 and assume S(t) = max
1≤i≤L−1

|ni+ 1
2
, 1
2
(t)|e−g̃′t for t ∈ [0, T ]. For the maximum value of S

at some index i, we find

h2
d|n

i+1
2 , 12

(t)|

dt
+ h(gi+1, 1

2
(t)|ni+ 1

2
, 1
2
(t)| − gi, 1

2
(t)|ni− 1

2
, 1
2
(t)|)+

h(gi+ 1
2
,1(t)|ni+ 1

2
, 1
2
(t)| − gi+ 1

2
,0(t)|ni+ 1

2
,− 1

2
(t)|) ≤ 0,

h2
d|n

i+1
2 , 12

(t)|

dt
+ hgi+1, 1

2
(t)|ni+ 1

2
, 1
2
(t)| − gi+ 1

2
,0(t)|ni+ 1

2
,− 1

2
(t)| ≤ 0, i = 1.

and

d(|ni+ 1
2
, 1
2
(t)|e−g̃′t)

dt
+ h−1gi+ 1

2
,1(t)|ni+ 1

2
, 1
2
(t)|e−g̃′t ≤ h−1gi+ 1

2
,0(t)|ni+ 1

2
,− 1

2
(t)|e−g̃′t,

By the assumption that g(x, y, t) ≥ gmin(t) ≥ gmin > 0 and g < K(T + 1 + Ω(T )), we have
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d(|ni+ 1
2
, 1
2
(t)|e−g̃′t)

dt
+h−1gmin(t)(|ni+ 1

2
, 1
2
(t)|e−g̃′t) ≤ h−1

(
gmin(t)

gmin

)
max

1≤i≤L−1
|gi+ 1

2
,0(t)ni+ 1

2
,− 1

2
(t)|.

(A.1.20)

Finally defining G(t) = h−1
∫ t

0
gmin(s)ds yields

d(|ni+ 1
2
, 1
2
(t)|e−g̃′teG(t))

dt
≤ gmin(t)

h
(

1

gmin

) max
1≤i≤L−1

|gi+ 1
2
,0(t)ni+ 1

2
,− 1

2
(t)|eG(t).

From the L1 bound, we can deduce

max
t

max
1≤i≤L−1

|gi+ 1
2
(t)ni+ 1

2
,− 1

2
(t)| ≤ h2B̃eMT∥nh(0)∥1 ≤ B̃eMT∥n(0)∥1, t > 0

and conclude that for the function S(t)eG(t)

S(t)eG(t) ≤ S(0) +
1

gmin

B̃eMT∥n(0)∥1(eG(t) − 1), (A.1.21)

and S(t) ≤ max
1≤i≤L−1

{ni+ 1
2
, 1
2
(0), 1

gmin
B̃eMT∥n(0)∥1}, which then gives the L∞ bound for the

point-wise solution nh when j = 0.

Now, we set R = max{ 1
gmin

B̃eMT∥n(0)∥1, ∥nh(0)∥∞} and estimate |ni+ 1
2
,j+ 1

2
(t)| for j ≥ 0

by setting P (t) = max
0≤i≤L−1,0≤j≤i−1

|ni+ 1
2
,j+ 1

2
(t)|e−2g̃′t and S̃(t) = S(t)e−g̃

′t ≤ S(t). At a fixed

time t, P (t) is taken on a certain (i + 1
2
, j + 1

2
), so either P (t) = S̃(t) or P (t) is taken

somewhere j > 0.

If i− 1 > j > 0, we have

d

dt
(|ni+ 1

2
,j+ 1

2
(t)|e−2g̃′t) ≤ (

gi,j+ 1
2
(t)|ni+ 1

2
,j+ 1

2
(t)| − gi+1,j+ 1

2
(t)|ni+ 1

2
,j+ 1

2
(t)|

h

+
gi+ 1

2
,j(t)|ni+ 1

2
,j+ 1

2
(t)| − gi+ 1

2
,j+1(t)|ni+ 1

2
,j+ 1

2
(t)|

h
− 2g̃′|ni+ 1

2
, 1
2
(t)|)e−2g̃′t ≤ 0;

if j = i− 1 > 0, we have
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d

dt
(|ni+ 1

2
,j+ 1

2
(t)|e−2g̃′t) ≤

[
h−1

(
gi+ 1

2
,j(t)− gi+1,j+ 1

2
(t)
)
|ni+ 1

2
, 1
2
(t)| − 2g̃′|ni+ 1

2
,j+ 1

2
(t)|
]
e−2g̃

′t

≤ 0.

For any t ∈ (0, T ] we can set t̃ < t to be the lower bound that P (v) > S̃(v), v ∈ (t̃, t], if

t̃ = 0 then P (t) ≤ P (0) = ∥nh(0)∥∞ from above equation, or if t̃ < t then P (t) ≤ P (t̃) ≤
S(t̃) ≤ max

0≤t≤T
S(t) (since P (t) is nonincreasing in [t̃, t] and is evaluated at some j > 0). If

t̃ = t then P (t) = S(t) ≤ max
0≤t≤T

S(t) so P (t) ≤ max{max
0≤t≤T

S(t), ∥nh(0)∥∞} = R, and

∥nh(t)∥∞ ≤ e2g̃
′tR. (A.1.22)

We arrive at the second conclusion in Theorem A.2, which states that the L∞ bound again

not related to h.

A.1.3.2 Existence of the weak solution

Given the time T <∞, if we take the limit h→ 0, we will obtain a vector functions family

{nh(k)}, just take k as integer numbers and let h(k) = Ω(T )/k. Now we can obtain piecewise

functions based on the vector functions nh(k). By setting nh
i+ 1

2
,i+ 1

2

(t) = 0, we define nh(x, y, t)

and related βh, β̃h as

nh(x, y, t) =
L−1∑
i=0

i−1∑
j=0

nh
i+ 1

2
,j+ 1

2
(t)χ{ih≤x<(i+1)h,jh≤y<(j+1)h},

βh(x, y, t) =
L−1∑
i=0

i∑
j=0

βi+ 1
2
,j+ 1

2
(t)χ{ih≤x<(i+1)h,jh≤y<(j+1)h},

β̃h(x, y, z, t) =
L−1∑
i=0

i−1∑
j=0

i−1∑
l=0

β̃i+ 1
2
,j+ 1

2
((l +

1

2
)h, t)χ{ih≤x<(i+1)h,jh≤y<(j+1)h,lh≤z<(l+1)h},

nh(x, 0, t) =nh
i+ 1

2
,− 1

2
(t), ih ≤ x < (i+ 1)h,

287



where χ is the indicator function. Since there is an upper bound for both β and β̃, and both

β, β̃ are continuous, we have the following result

lim
k→∞

βh(k)(x, y, t)→β(x, y, t) a.e. 0 ≤ βh(k) ≤ ∥β∥∞ <∞,

lim
k→∞

β̃h(k)(x, y, z, t)→β(x, y, z, t) a.e. 0 ≤ β̃h(k) ≤ ∥β̃∥∞ <∞,

lim
k→∞

nh(k)(x, y, 0)→n(x, y, 0) a.e..

Then, we can easily extend Theorem A.2 for our piecewise constant functions nh(k).

Corollary A.3 Under the conditions of Theorem A.2, we have for any t ∈ [0, T ] and any

h, ∫ Ω(T )

0

dy

∫ Ω(T )

0

dx |nh(x, y, t)| ≤ eMt

∫ Ω(0)

0

dy

∫ Ω(0)

0

dx |nh(x, y, 0)|, (A.1.23)

and

∥nh(t)∥∞ ≤ max{∥n(0)∥∞, BeMT∥n(0)∥1}e2g̃′t, (A.1.24)

where B,M, g̃′ are defined in Theorem A.2. The proof is the direct consequence of Theorem

A.2.

The piecewise constant functions {nh(k)} are uniformly bounded and

nh(k) ∈ L1⋂L∞([0, T ]× [0,Ω(T )]2), so nh are all L2 functions. We have the fact that their

exists a function n ∈ L2([0, T ]× [0,Ω(T )]2) and b(x, t) such that there exists a series ki →∞
and

nh(k) → n,w∗ − L2([0, T ]× [0,Ω(T )]2 ∩ {y < x}) (A.1.25)

Since L2[0, T ] × [0,Ω(T ))2 implies L1 bound, we can deduce that n, b are L1 functions as

desired. For the piecewise-constant-in-space function nh(k), k ∈ N+, there exists a function

n ∈ L2([0, T ]× [0,Ω(T )]2 sequence ki →∞ such that nh(ki) → n,w∗−L2([0, T ]× [0,Ω(T )]2).

To prove this, we need only to verify that there exists a sequence nh(ki) such that for

all test functions f ∈ L2,
∫ T

0
dt
∫ Ω(T )

0
dx
∫ x

0
dy nh(ki)f →

∫ T

0
dt
∫ Ω(T )

0
dx
∫ x

0
dy nf . Since L2 space
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is separable, we have a countable set of basis function {bi(x, y, t)} for the space L2([0, T ]×
[0,Ω(T )]2 ∩ {y < x}). Thus, every nh(k) can be decomposed as nh(k) =

∑∞
i=1 α

k
i bi. The

nh(k)s are uniformly L∞ bounded, so
∑
α2
k are all uniformly bounded. If the bound is S,

we can select a sequence {nh(ki)} from {nh(k)} satisfying limi→∞ α
ki
j = αj < ∞ so that∑∞

i=1 α
2
j ≤ S <∞. If we decompose n =

∑∞
i=1 αibi, then by decomposing any test function

Ψ ∈ L2([0, T ]× [0,Ω(T )]2 ∩ {y < x}) by Ψ =
∑∞

i=1 γibi, we have

lim
i→∞

∣∣∣∣ ∫ T

0

dt

∫ Ω(T )

0

dx

∫ x

0

dy
(
nh(ki) − n

)
Ψ

∣∣∣∣ = ∣∣∣∣ ∞∑
s=1

(αki
s − αs)γs

∣∣∣∣ = 0, (A.1.26)

which gives the result nh(k) → n,w∗ − L2([0, T ]× [0,Ω(T )]2 ∩ {y < x}) as desired.

We can now show that n is a weak solution by using the first equation in Eq.(A.1.15). For

any test function Ψ ∈ C1([0, T ] × [0,Ω(T )]2), we have Ψ(x, y, T ) = 0,Ψ(x, y, t) = 0, y ≥ x.

We define

Ψi+ 1
2
,j+ 1

2
(t) =

1

h2

∫ xi+1

xi

dx

∫ yj+1

yj

dyΨ(x, y, t), j ≤ i.

For a given L ∈ N+ and h = Ω(T )
L

,

∫ T

0

dt

L−1∑
i=1

i−1∑
j=0

(
h2

dnh
i+ 1

2 ,j+
1
2

(t)

dt
Ψi+ 1

2 ,j+
1
2
(t) + h[gi+1,j+ 1

2
(t)nh

i+ 1
2 ,j+

1
2
(t)− gi,j+ 1

2
(t)nh

i− 1
2 ,j+

1
2
]Ψi+ 1

2 ,j+
1
2
(t)

+h[gi+ 1
2 ,j+1(t)n

h
i+ 1

2 ,j+
1
2
(t)− gi+ 1

2 ,j
(t)nh

i+ 1
2 ,j−

1
2
]Ψi+ 1

2 ,j+
1
2
(t) + h2βi+ 1

2 ,j+
1
2
(t)nh

i+ 1
2 ,j+

1
2
Ψi+ 1

2 ,j+
1
2
(t)
)

= −
∫ T

0

dt

L−1∑
i=1

hgi+ 1
2 ,i−

1
2
(t)nh

i+ 1
2 ,i−

1
2
.

Integrating the above equation by parts with respect to time, we find
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∫ T

0

dt

L−1∑
i=1

i−1∑
j=0

h2nh
i+ 1

2 ,j+
1
2
(t)

dΨi+ 1
2 ,j+

1
2
(t)

dt
+ h

L−2∑
i=1

i−1∑
j=0

gi+1,j+ 1
2
(t)nh

i+ 1
2 ,j+

1
2
(t)(Ψi+ 3

2 ,j+
1
2
(t)−Ψi+ 1

2 ,j+
1
2
(t))

+h

L−1∑
i=1

i−2∑
j=0

gi+ 1
2 ,j+1(t)n

h
i+ 1

2 ,j+
1
2
(t)(Ψi+ 1

2 ,j+
3
2
(t)−Ψi+ 1

2 ,j+
1
2
(t))

+ h

∫ T

0

dt

L−1∑
i=1

gi+ 1
2 ,0

(t)nh
i+ 1

2 ,−
1
2
(t)Ψi+ 1

2 ,
1
2
(t)

−h
∫ T

0

dt

L−2∑
j=0

gL,j+ 1
2
(t)nh

L− 1
2 ,j+

1
2
(t)ΨL− 1

2 ,j+
1
2
(t) +

L−1∑
i=1

i−1∑
j=0

h2βi+ 1
2 ,j+

1
2
(t)nh

i+ 1
2 ,j+

1
2
(t)Ψi+ 1

2 ,j+
1
2
(t)

 =

h2
L−1∑
i=0

i−1∑
j=0

nh
i+ 1

2 ,j+
1
2
(0)Ψi+ 1

2 ,j+
1
2
(0).

(A.1.27)

Since Ψi+ 3
2
,j+ 1

2
(t) − Ψi+ 1

2
,j+ 1

2
(t) =

∫ (i+1)h

ih
dx
∫ (j+1)h

jh
dy
∫ x+h

x
ds ∂Ψ

∂s
(s, y, t), |nh| is uniformly

bounded while g is C1 continuous. From above we can pick a series in {nh(k)}, denoted by

{nh(ki)} satisfying A.1.25. We take nh = nh(ki) in the above formula, since Ψ ∈ C1[0, T ] ×
[0,Ω(T )]2, then given any Ψ we have a positive upper bound R(Ψ) <∞ for both Ψ and its

any first-order partial derivatives. Thus,

∣∣∣∣ ∫ T

0

dt
L−1∑
i=1

i−1∑
j=0

(
h2n

h(ki)

i+ 1
2
,j+ 1

2

(t)
dΨi+ 1

2
,j+ 1

2
(t)

dt

)
+

∫ T

0

dt

∫ Ω(T )

0

dx

∫ x

0

dy nh(ki)(x, y, t)
∂Ψ(x, y, t)

∂t

∣∣∣∣
≤
∫ T

0

dt
L−1∑
i=0

∫ (i+1)h

ih

dx

∫ x

ih

dy

∣∣∣∣nh(ki)(x, y, t)
∂Ψ(x, y, t)

∂t

∣∣∣∣.
As i tends to infinity, |

∫ T

0
dt
∑L−1

i=0

∫ (i+1)h

ih
dx
∫ x

ih
dy nh(ki)(x, y, t)∂Ψ(x,y,t)

∂t
| tends to zero since ∂Ψ

∂t

and nh(ki) are all bounded, and

∫ T

0

dt

∫ Ω(T )

0

dx

∫ x

0

dy h2nh(ki)(x, y, t)
∂Ψ(x, y, t)

∂t
→
∫ T

0

dt

∫ Ω(T )

0

dx

∫ x

0

dy h2n(x, y, t)
∂Ψ(x, y, t)

∂t
(A.1.28)

as i tends to infinity, so the first term in A.1.27 tends to the limit in A.1.28.

By the same procedure and using the condition that g is uniformly continuous in [0, T ]×
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[0,Ω(t)]2(g is C1), it is easy to verify that the second term in the LHS of A.1.27 tends to∫ T

0
dt
∫ Ω(T )

0
dx
∫ x

0
dy (gn)(x, y, t)∂Ψ∂x , and the third term in the LHS of A.1.27 tends to∫ T

0
dt
∫ Ω(T )

0
dx
∫ x

0
dy (gn)(x, y, t)∂Ψ∂y .

We turn to the right-hand side of A.1.27, by the same procedure, it is easy to ver-

ify the first term tends to
∫ T

0
dt
∫ Ω(T )

0
dx
∫ x

0
dy n(x, y, 0)Ψ(x, y, 0), and the second term tends to∫ T

0
dt
∫∞
0
dx
∫ x

0
dy
∫ x

0
dzΨ(z, 0, t)β̃(x, y, z, t)n(x, y, t). The third term will tend to 0 since Ψ is C1 con-

tinuous and takes 0 on the boundary x = y and x = Ω(T ). Thus, there exists a uniform

upper bound on g, nh and the last term tends to
∫ T

0
dt
∫ Ω(T )

0
dx
∫ x

0
dy β(x, y, t)n(x, y, t)Ψ(x, y, t).

By passing to the limit i → ∞, we obtain that n exactly satisfies the condition of a

weak solution in A.1.4. One can follow the proof in [Per08] and generalize the conclusions

to R+ × (R+)2
⋂{y < x}.

A.1.4 Numerical scheme

We denote u(t) = {n1(t),n2(t), . . . ,nL−1(t)}T where nj(t) = {n 1
2
,j− 1

2
, n1+ 1

2
,j− 1

2
, . . . , nL− 1

2
,j− 1

2
}

and ni≤j = 0. Equations 2.1.18 and 2.1.19 can then be written in the form u(t + ∆t) =

A(t)u(t), where

A(t) =



B1 +C1 C2 C3 C4 · · · CL−2 CL−1

D2 B2 0 0 · · · 0 0

0 D3 B3 0 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · DL−1 BL−1


, (A.1.29)

Bi =



0 0 ... 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

· · · 1 − 2µg
i+1,i− 1

2
− β

i+1
2
,i− 1

2
(t) 0 ... 0

0 µg
i+1,i− 1

2
1 − 2µg

i+2,i− 1
2

− β
i+3

2
,i− 1

2
(t) ... 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 ... µg
L−1,i− 1

2
1 − 2µg

L,i− 1
2

− β
L− 1

2
,i− 1

2
(t)

 ,

291



Ci =



0 0 · · · · · · 0

0 0 β̃(i+1)− 1
2 ,i−

1
2
( 32h, t) · · · β̃L− 1

2 ,i−
1
2
( 32h, t)

...
...

...
...

...

0 · · · 0 0 β̃L− 1
2 ,i−

1
2
((L− 3

2 )h, t)

0 · · · 0 0 0


,

and

Di =



0 0 0 ... 0 0
...

...
...

...
...

...

0 ... µgi+ 1
2
,i−1 0 ... 0

...
...

...
...

...
...

0 0 ... 0 0 µgL− 1
2
,i−1


A.1.5 Monte-Carlo simulations

In this section, we describe the implementation of our Monte-Carlo simulations of the process

underlying the adder-sizer mechanism. Suppose we have a list of cells at time t given as

S(t) = {c1(xi, yi, t, b1), ..., ci(xi, y,i , t, bi)}, where xi is cell ci’s volume and yi is its added

volume. The cell’s division factor bi is determined at birth, which is drawn from a uniform

distribution U(0, 1).

Suppose we have a β of the form Eq. 2.1.11 and β̃ of the form Eq. 2.1.13. We set a

time step ∆t = 0.01, the maximum allowable time step, and determine the next state of the

system at time t′ by the following

• Step 1: For each cell i, calculate its age ai at time t by the exponential growth law

dx
dt

= λx. We require that Gi =
∫ ai
0
γ(a′)da′ < bi at the beginning of each step for

every i.

• Step 2: For each cell, calculate Gi =
∫ ai+∆t

0
γ(a′)da′. If Gi ≥ bi, then we numerical

calculate a ∆ti such that
∫ ai+∆ti
0

γ(a′)da′ ≈ bi.
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• Step 3: Choose the smallest ∆ti among all possible ∆tis as the new time step, set time

t′ = t+∆ti and let all cells gain an extra volume λxi∆ti. If there is no such ∆ti, which

means Gi < bi for every i, go to step 5.

• Step 4: Remove cell i from S(t′), record its volume x at t′, and generate one random

number r ∈ (0, 1) observing a distribution which has a probability density function of

h(r), add two new cells in S(t′) as cm(rx, 0, t) and cm+1(x− rx, 0, t).

• Step 5: If Gi < bi for all i, then set t′ = t and let all cells gain an extra volume λxi∆ti.

• Step 6: Return to step 1 until t′ > tmax, the maximum time of the simulation.

Here, we set the initial added volume of all cells to zero so the condition in step 1 above

is automatically satisfied at t = 0. For our runs, we used 10 cells of initial volume 0.5 and

tmax = T is the same as the maximum time for the numerical PDE experiments. We also

generalize the model to incorporate the mother-daughter growth coefficient correlation by

including a new label λi to each cell.

A.2 Appendix for Chapter 3

A.2.1 Conservation of probability

We now define probability fluxes
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Jm,n;m+1,n−1(t) = (m+ 1)

∫
dXmdY2n−2dAmdBn−1

∫
L3

dy1dy2ds

β̃m+1,n−1(y1 + y2, y1, s, t)

× ρm+1,n−1(X
m+1[Xm+1 = y1 + y2],Y

2n−2,Am+1[Am+1 = s],Bn−1, t),

Jm,n;m−1,n(t) =
2n

m

∫
dXmdY2n−2dAmdBn−1

∫
L2

dy1dy2

m∑
i=1

β̃m−1,n(y1 + y2, y1, A
i, t)

× ρm−1,n(t,Xm
−i,Y

2n[Y 2n−1 = X i, Y 2n = y1 + y2],A
m
−i,B

n[Bn = Ai], t),

Jm,n;m′,n′(t) = 0, if m+ 2n−m′ − 2n′ ̸= 1.

(A.2.1)

Jm,n;m′,n′(t)dt is the probability flux within time [t, t+dt] from state (m′, n′) to state (m,n)

arising from from cell division. When dt is sufficiently small, the probability that more than

one cell divides during [t, t+dt] is o(dt), which is negligible, allowing us to set Jm,n;m′,n′(t) = 0

if m+ 2n−m′ − 2n′ ̸= 1. We now verify the conservation of probability flux

Jm−1,n+1;m,n(t) + Jm+1,n;m,n(t)

=

∫
dXmdY2ndAmdBn

( m∑
i=1

βm,n(A
i, t) +

n∑
i=j

2βm,n(B
j, t)

)
ρm,n

=

∫
dXmdY2ndAmdBn

(
mβm,n(A

m, t) + 2nβm,n(B
n, t)

)
ρm,n,

(A.2.2)

where ρm,n = ρm,n(X
m,Y2n,Am,Bn, t). The first term is
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Jm−1,n+1;m,n(t) = m

∫
dXm−1dY2mdAm−1dBn

∫
L3

dy1dy2dA
m

β̃m,n(y1 + y2, y1, A
m, t)ρm,n(X

m[Xm = y1 + y2],Y
2n,Am,Bn, t)

= m

∫
dXm−1dY2ndAm−1dBn

∫
L2

dAmdy

∫ y

0

ds

β̃m,n(y, s, A
m, t)ρm,n(X

m[Xm= y],Y2n,Am,Bn, t)

= m

∫
dXm−1dY2ndAm−1dBn

∫
L2

dAmdXm βm,n(A
m, t)ρm,n

(A.2.3)

which is exactly the first term on the right-hand side of Eq. (A.2.2). The second term

Jm+1,n;m,n(t) =
2n

m+ 1

∫
dXm+1dY2ndAm+1dBn−1

∫
L2

dy1dy2

m+1∑
i=1

β̃m,n(y1 + y2, y1, A
i, t)

× ρm,n(X
m+1
−i ,Y2n[Y 2n−1 = X i, Y 2n = y1 + y2],A

m+1
−i ,Bn[Bn = Ai], t)

=
2n

m+ 1

m+1∑
i=1

∫
dXm+1dY2n−2dAm+1dBn−1

∫
L

dy

∫ y

0

ds β̃m,n(y, s, A
i, t)

× ρm,n(X
m+1
−i ,Y2n[Y 2n−1 = X i, Y 2n = y],Am+1

−i ,Bn[Bn = Ai], t)

= 2n

∫
dXmdY2ndAmdBn βm,n(B

n, t)ρm,n

(A.2.4)

which is precisely the second term on the right-hand side of Eq. (A.2.2). We have thus verified

that the probability flux out of state (m,n) due to cell division is the sum of probability

currents into (m− 1, n + 1) and into (m + 1, n). Summing up over m and n, we obtain for

m+ n > 0
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∞∑
m,n=0

(
Jm−1,n+1;m,n(t) + Jm+1,n;m,n(t)

)
=

∞∑
m,n=0

∫
dXmdY2ndAmdBn

(
mβm,n(A

m, t) + 2nβm,n(B
n, t)

)
ρm,n.

(A.2.5)

Finally, it is readily observed that

∞∑
m,n=0

∫
dXmdY2ndAmdBn∂ρm,n

∂t

=
∞∑

m,n=0

n∑
j=1

∫
dXmdY2ndAmdBn

−j ρm,n(X
m,Y2n,Am,Bn[Bj = 0], t)

−
∞∑

m,n=0

∫
dXmdY2ndAmdBn

( m∑
i=1

βm,n(A
i, t) + 2

n∑
j=1

βm,n(B
j, t)

)
ρm,n

=
∞∑

m=1

∞∑
n=0

(Jm,n;m−1,n − Jm−1,n+1;m,n)−
∞∑

m,n=0

Jm+1,n;m,n +
∞∑

m=0

∞∑
n=1

Jm,n;m+1,n−1 = 0

(A.2.6)

Therefore, we have verified that

∞∑
m=0

∞∑
n=0

∫
dXmdY2ndAmdBnρm,n(X

m,Y2n,Am,Bn, t)

is time-independent.

A.2.2 Explicit expressions for u(k,ℓ)

Below, we display the explicit expressions of u(k,ℓ) in terms of ρ
(h,k,ℓ)
m,n for k + ℓ ≤ 2:

u(1,0)(x, a, t) =
∞∑

m,n=0

mρ(1,0,0)m,n (X1 = x,A1 = a, t)

+
∞∑

m,n=0

2nρ(0,1,0)m,n (Y2
e[Y

2 = x], B1 = a, t),
(A.2.7)
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u(0,1)(y1, y2, b1, t) =
∞∑

m,n=0

2nρ(0,0,1)m,n (Y 1 = y1, Y
2 = y2, B

1 = b1, t), (A.2.8)

u(1,1)(x1, y1, y2, a1, b1, t) =

∞∑
m,n=0

4n(n− 1)ρ(0,1,1)m,n (Y4
e[Y

2 = x1, Y
3 = y1, Y

4 = y2], B
1 = a1, B

2 = b1, t)

+
∞∑

m,n=0

2mnρ(1,0,1)m,n (X1 = x1, Y
1 = y1, Y

2 = y2, A
1 = a1, B

1 = b1, t),

(A.2.9)

u(2,0)(x1, x2, a1, a2, t) =
∞∑

m,n=0

m(m− 1)ρ(2,0,0)m,n (X1 = x1, X
2 = x2, A

1 = a1, A
2 = a2, t)

+
∞∑

m,n=0

2mnρ(1,1,0)m,n (X1 = x1, A
1 = a1,Y

2
e[Y

2 = x2], B
1 = a2, t)

+
∞∑

m,n=0

2mnρ(1,1,0)m,n (X1 = x2, A
1 = a2,Y

2
e[Y

2 = x1], B
1 = a1, t)

+
∞∑

m,n=0

4n(n− 1)ρ(0,2,0)m,n (Y4
e[Y

2 = x1, Y
4 = x2], B

1 = a1, B
2 = a2, t),

(A.2.10)

u(0,2)(y1, y2, y3, y4, b1, b2, t) =
∞∑

m,n=0

4n(n− 1)ρ(0,0,2)m,n (Y4= [y1, y2, y3, y4],B
2= [b1, b2], t).

(A.2.11)

A.2.3 Reduction to simpler models

Besides the general marginalizations we have considered (Eqs. (3.3.2) and (3.3.8)), we can

define other useful quantities by e.g., integrating over all volumes or all ages. Under

some additional assumptions, these additional integrations reduce the kinetic theory sim-

pler, known models. For example, if the solution u(k,ℓ) of Eqs. (3.3.9) and (3.3.12) satisfies

lim
xi→∞

∂(σ2u(k,ℓ))
∂xi

= lim
yj→∞

∂(σ2u(k,ℓ))
∂yj

= 0 for any i, j, integrating u(k,ℓ)(xk,y2ℓ, ak,bℓ, t) over all

sizes xk and y2ℓ yields
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u(k,ℓ)a (ak,bℓ, t) :=

∫
Lk+2ℓ

dxkdy2ℓ u(k,ℓ)(xk,y2ℓ, ak,bℓ, t) (A.2.12)

which satisfies

∂u
(k,ℓ)
a (ak,b2ℓ, t)

∂t
+

k∑
i=1

∂u
(k,ℓ)
a

∂ai
+

ℓ∑
j=1

∂u
(k,ℓ)
a

∂bj
= −

( k∑
i=1

β(ai, t)+
ℓ∑

j=1

2β(bj, t)

)
u(k,ℓ)a , (A.2.13)

with corresponding boundary conditions

u(k,ℓ)a (ak[av = 0],bℓ, t) =2

∫
L

da β(a, t)u(k,ℓ)a (ak[ak = a],bℓ, t) (A.2.14)

+ 2
k∑

w=1,̸=v

β(aw, t)u(k−2,ℓ+1)
a (ak

−v,−w,b
ℓ+1[bℓ+1 = aw], t),

u(k,ℓ)a (ak,bℓ[bv = 0], t) =2

∫
L

da β(a, t)u(k+1,ℓ−1)
a (ak+1[ak+1 = a],bℓ

−v, t) (A.2.15)

+ 2
k∑

w=1

β(aw, t)u(k−1,ℓ)a (ak
−w,b

ℓ[bv = aw], t),

and u
(k,ℓ)
a (ak,bℓ, t) = 0 if two or more ai = 0 or bj = 0. This model describes age-structured

cell populations similar to that discussed in [CG16].

On the other hand, integrating over age variables α, b defines size-dependent weighted

densities

u(k,ℓ)s (xk,y2ℓ, t) :=

∫
Lk+ℓ

dakdbℓ u(k,ℓ)(xk,y2ℓ, ak,bℓ, t). (A.2.16)

In this case, if β̃, β, g, σ do not depend on a, n
(k,ℓ)
s (xk,y2ℓ, t) is found to obey
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∂u
(k,ℓ)
s

∂t
(xk,y2ℓ, t) +

k∑
i=1

∂(g(xi, t)u
(k,ℓ)
s )

∂xi
+

2ℓ∑
j=1

∂(g(yj, t)u
(k,ℓ)
s )

∂yj
=

−
k∑

i=1

(k + 2ℓ)β(t)u(k,ℓ)s +
1

2

k∑
i=1

∂2(σ2(xi, t)u
(k,ℓ)
s )

(∂xi)2
+

1

2

2ℓ∑
j=1

∂2(σ2(yj, t)u
(k,ℓ)
s )

(∂yj)2

+ 2
k∑

v=1

∫
L

ds β̃(xv + s, xv, t)u(k,ℓ)s (x̃k[x̃v = xv + s],y2ℓ, t)

+ 2
k∑

v=1

k∑
w=1, ̸=v

∫
L

ds β̃(xw+ s, xw, t)u(k−2,ℓ+1)
s (xk

−w,−v,y
2ℓ+1[y2ℓ+1= xw, y2ℓ+2= xv + s], t)

+ 2
ℓ∑

v=1

β̃(y2v−1+ y2v, y2v, t)u(k+1,ℓ−1)
s (xk+1[xk+1= y2v−1 + y2v],y2ℓ

−(2v−1),−2v, t)

+ 2
ℓ∑

v=1

k∑
w=1

β̃(y2v−1+ y2v, y2v, t)u(k−1,ℓ)s (xk
−w, ỹ

2ℓ[ỹ2v−1= y2v−1 + y2v, ỹ2v= xw], t),

(A.2.17)

where x̃k shares the same components with xk except for the vth element and ỹ2ℓ shares 2ℓ−2
common components with y2ℓ except for the (2v−1)th and (2v)th elements, as indicated by the

replacements [...] following each variable. By integrating over age, the boundary conditions

in Eqs. (3.3.10) and (3.3.11) for newborn cells have been assimilated into Eq. (A.2.17). The

remaining conditions are

u(k,ℓ)s (xk[xi = 0],y2ℓ, t) =u(k,ℓ)s (xk[xi =∞],y2ℓ, t) = 0,

u(k,ℓ)s (xk,y2ℓ[yj = 0], t) =u(k,ℓ)s (xk,y2ℓ[yj =∞], t) = 0.
(A.2.18)

Notice that if k = 1, ℓ = 0, the last three terms on the RHS of Eq. (A.2.17) vanish and the

equation reduces to the size-structured PDE model [Per08] except for the additional diffusion

term describing growth noise.
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A.3 Appendix for Chapter 4

A.3.1 Proof of Proposition 1

Here, we shall give proof of Prop. 1 as well as the additional assumptions we need. We shall

apply Theorem 6.2 in [LOR15]. If n⃗ ̸= n⃗0, then by definition p̂n⃗ = 0, which solves Eq. (4.2.5).

If n⃗ = n⃗0, for any smooth function ϕ ∈ C∞(R|n⃗|1), we define the measure

γm(ϕ, t) =

∫
C|n⃗|

ϕ(X⃗n⃗(t;ω)) exp
(
−
∫ t

0

k∑
i=1

ni∑
j=1

(
βi,j(Xi,j(s;ω) + µi,j(Xi,j(s;ω)

)
ds
)
dm(ω),

X⃗n⃗(0) = X⃗n⃗0(0)

(A.3.1)

where Cd := C([0, t],Rd) (the integration is taken all realization of X⃗n⃗(t;ω)). Using Theorem

6.2 in [LOR15], γm(ϕ, t) solves the PDE

∂γm

∂t
+

k∑
i=1

ni∑
j=1

∂(gi,j(Xi,j, t)γ
m)

∂Xi,j

− 1

2

k∑
i=1

ni∑
j=1

∂2(σ2
i,j(Xi,j, t)γ

m)

(∂Xi,j)2

= −
k∑

i=1

ni∑
j=1

(
βi,j(Xi,j(t)) + µi,j(Xi,j(t))

)
γm

(A.3.2)

in the sense of distributions. Letting Kϵ = 1
ϵ|n⃗|1K(·) where K(·) is a smooth mollifier and

we define

uϵ(X⃗n⃗, t) = γm(Kϵ(· − X⃗n⃗), t), (A.3.3)

i.e.,

uϵ(X⃗n⃗, t) = E
[
Kϵ(X⃗n⃗(t)−X⃗n⃗) exp

(
−
∫ t

0

k∑
i=1

ni∑
j=1

(
βi,j(Xi,j(s))+µi,j(Xi,j(s))

)
ds
)∣∣∣X⃗n⃗0(0), 0

]
.

(A.3.4)

300



By Eq. (A.3.2), we have

∂uϵ

∂t
(X⃗n⃗, t) = E

[ k∑
i=1

ni∑
j=1

∂Xi,j(t)K
ϵ(X⃗n⃗(t)− X⃗n⃗)

× gi,j(Xi,j(t), t) · exp
(
−
∫ t

0

k∑
i=1

ni∑
j=1

(
βi,j(Xi,j) + µi,j(Xi,j)

)
ds
)∣∣∣X⃗n⃗0(0), 0

]
+

E
[ k∑

i=1

ni∑
j=1

1

2
∂2Xi,j(t)

Kϵ(X⃗n⃗(t)− X⃗n⃗)

× σ2
i,j(Xi,j(t), t) · exp

(
−
∫ t

0

k∑
i=1

ni∑
j=1

(
βi,j(Xi,j) + µi,j(Xi,j)

)
ds
)∣∣∣X⃗n⃗0(0), 0

]
−

E

[
k∑

i=1

ni∑
j=1

(
βi,j(Xi,j(t)) + µi,j(Xi,j(t))

)
Kϵ(X⃗n⃗ − X⃗n⃗(t))

× exp
(
−
∫ t

0

k∑
i=1

ni∑
j=1

(
βi,j(Xi,j) + µi,j(Xi,j)

)
ds
)∣∣∣X⃗n⃗0(0), 0

]
.

(A.3.5)

The assumption that we shall impose for Prop. 1 is that: i) the limit

u := lim
ϵ→0+

uϵ = E
[
δ(X⃗n⃗(t)−X⃗n⃗) exp

(
−
∫ t

0

k∑
i=1

ni∑
j=1

(
β(Xi,j)+µ(Xi,j)

)
ds
)∣∣∣X⃗n⃗0(0), 0

]
(A.3.6)
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exists, and ii) taking the limit ϵ → 0+ is interchangeable with taking the expectation and

taking the derivative w.r.t. t and Xi,j, i.e.,

∂u

∂t
(X⃗n⃗, t) = E

[ k∑
i=1

ni∑
j=1

∂Xi,j(t)δ(X⃗n⃗(t)− X⃗n⃗) · gi,j(Xi,j(t), t)

× exp
(
−
∫ t

0

k∑
i=1

ni∑
j=1

(
βi,j(Xi,j) + µi,j(Xi,j)

)
ds
)∣∣∣X⃗n⃗0(0), 0

]

+ E
[ k∑

i=1

ni∑
j=1

1

2
∂2Xi,j(t)

δ(X⃗n⃗(t)− X⃗n⃗)

× σ2
i,j(Xi,j(t), t) · exp

(
−
∫ t

0

k∑
i=1

ni∑
j=1

(
βi,j(Xi,j) + µi,j(Xi,j)

)
ds
)∣∣∣X⃗n⃗0(0), 0

]

− E
[ k∑

i=1

ni∑
j=1

(βi,j(Xi,j(t)) + µi,j(Xi,j(t))) · δ(X⃗n⃗(t)− X⃗n⃗)

× exp
(
−
∫ t

0

k∑
i=1

ni∑
j=1

(
βi,j(Xi,j) + µi,j(Xi,j)

)
ds
)∣∣∣X⃗n⃗0(0), 0

]
.

(A.3.7)

By integration in parts, the partial differential equation satisfied by u is

∂u

∂t
+

k∑
i=1

ni∑
j=1

∂(gi(Xi,j)u)

∂Xi,j

−1

2

k∑
i=1

ni∑
j=1

∂2(σ2
i (Xi,j)u)

(∂Xi,j)2
= −

k∑
i=1

ni∑
j=1

(
β(Xi,j)+µ(Xi,j)

)
u. (A.3.8)

Finally, we can also write u as

E
[
δ(X⃗n⃗(t)− X⃗n⃗) exp

(
−
∫ t

0

k∑
i=1

ni∑
j=1

(
β(Xi,j) + µ(Xi,j)

)
ds
)∣∣∣n⃗(s) = n⃗0, s ∈ [0, t], X⃗n⃗0(0), 0

]
(A.3.9)

because the number of particles is a constant, which proves Proposition 1.

A.3.2 Proof of Proposition 2

We prove this lemma by induction on m. Clearly, when m = 0, 1, p(0) and p(1) solve
Eq. (4.2.10) by using Proposition 1. If the conclusion holds for m − 1,m ≥ 2, then if
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n⃗ ̸= n⃗0, we have

∂pm+1
n⃗

∂t
= E

[
exp

(
−

∫ t

0

k0∑
i=1

n0
i∑

j=1

(
βi,j(Xi,j(r)) + µi,j(Xi,j(r))

)
dr

)

×
[ k0∑

i=1

n0
i∑

j=1

(β̃i,j(Xi,j(t), X1, X2)p
m
n⃗ (X⃗n⃗, 0|X⃗n⃗0

b,−i,−j
(t), 0)) +

k0∑
i=1

n0
i∑

j=1

(µi,j(Xi,j(t))p
m
n⃗ (X⃗n⃗, 0|X⃗n⃗0

d,−i,−j
(t), 0))

]∣∣∣X⃗n⃗0 (0), 0

]

+ E

[∫ t

0
exp

(
−

∫ s

0

k0∑
i=1

n0
i∑

j=1

(
βi,j(Xi,j(r)) + µ(Xi,j(r))

)
dr

)
·
[ k0∑
i=1

n0
i∑

j=1

(
β̃i,j(Xi,j(s), X1, X2)

∂p
(d)
n⃗

∂t
(X⃗n⃗, t− s|X⃗n⃗0

b,−i,−j
(s), 0)

+ µi,j(Xi,j(s))
∂pmn⃗
∂t

(X⃗n⃗, t− s|X⃗n⃗0
d,−i,−j

(s), 0)
)]
ds

∣∣∣X⃗n⃗0 (0), 0

]

= −
k∑

i=1

ni∑
j=1

∂(gi,j(Xi,j , t)p
m+1
n⃗

)

∂Xi,j
+

1

2

k∑
i=1

ni∑
j=1

∂2(σ2
i,j(Xi,j , t)p

m+1
n⃗

)

(∂Xi,j)2
+

k−1∑
i=1

n
b,i
i∑

j=1

∫
β̃i,j(Y,Xi+1,nr+1−1, Xr+1,ni+1 )

× E
[
δ(Xi,j − Y )δ(X⃗n⃗0

b,−i,−j
(t)− X⃗n⃗)δn⃗0

b,−i
,n⃗ exp

(
−

∫ t

0

k0∑
i=1

n0
i∑

j=1

(
βi,j(Xi,j) + µi,j(Xi,j)

)
ds

)∣∣∣X⃗n⃗0 , 0

]
dY

+

k−1∑
i=1

n
b,i
i∑

j=1

∫
β̃i,j(Y,Xi+1,ni+1−1, Xi+1,ni+1 )E

[∫ t

0
exp

(
−

∫ s

0

k0∑
r=1

n0
r∑

ℓ=1

(
βr,ℓ(Xr,ℓ) + µr,ℓ(Xr,ℓ)

)
dr

)

×
[ k0∑
r=1

n0
r∑

ℓ=1

(
β̃r,ℓ(Xr,ℓ, X1, X2)p

m−1
n⃗b,i

(X⃗n⃗b,i,j
, t− s|X⃗n⃗0

b,−r,−ℓ
(s), 0)

+ µr,ℓ(Xr,ℓ)p
m−1
n⃗b,i

(X⃗n⃗b,i,j
, t− s|X⃗n⃗0

d,−r,−ℓ
(s), 0)

)]
ds

∣∣∣X⃗n⃗0 (0), 0

]
dY +

∞∑
i=1

n
d,i
i∑

j=1

∫
µi,j(Y )

× E
[
δ(Xi,j − Y )δ(X⃗n⃗0

d,−i,−j
(t)− X⃗n⃗)δn⃗,n⃗0

d,−i
exp

(
−

∫ t

0

k0∑
r=1

n0
r∑

ℓ=1

(
βr,ℓ(Xr,ℓ) + µr,ℓ(Xr,ℓ)

)
ds

)∣∣∣X⃗n⃗0 (0), 0

]
dY

+

∞∑
i=1

n
d,i
i∑

j=1

∫
µi,j(Y )E

[∫ t

0
exp

(
−

∫ s

0

k0∑
r=1

n0
r∑

ℓ=1

(
βr,ℓ(Xr,ℓ(v), v) + µr,ℓ(Xr,ℓ(v), v)

)
dv

)

×
[ k0∑
r=1

n0
r∑

ℓ=1

(
β̃r,ℓ(Xr,ℓ(s), X1, X2)p

m
n⃗d,i,j

(X⃗n⃗d,i,−j
, t− s|X⃗n⃗0

b,−r,−ℓ
, 0)

+ µr,ℓ(Xr,ℓ)p
m
n⃗d,i,j

(X⃗n⃗d,i,j
, t− s|X⃗n⃗0

d,−r,−ℓ
, 0)

)]
ds

∣∣∣X⃗n⃗0 (0), 0

]
dY

−
k∑

i=1

ni∑
j=1

(
βi,j(Xi,j) + µi,j(Xi,j)

)
pm+1
n⃗

= −
k∑

i=1

ni∑
j=1

∂(gi,jp
m+1
n⃗

)

∂Xi,j
+

1

2

k∑
i=1

ni∑
j=1

∂2(σi,jp
m+1
n⃗

)

(∂Xi,j)2

+

k−1∑
i=1

n
b,i
i∑

j=1

∫
β̃(Y,Xi+1,ni+1−1, Xi+1,ni+1 )p

m
n⃗b,i

(X⃗n⃗b,i,j
, t|X⃗n⃗0 , n⃗0, 0)dY +

∞∑
i=1

n
d,i
i∑

j=1

∫
µ(Y )pmn⃗d,i

(X⃗n⃗d,i,j
, t|X⃗n⃗0 (0), 0)dY.

(A.3.10)

Here, nb,i
i := ni + 1 denotes the number of cells in the ith generation before the jth cell in

the ith generation divides, and nd,i
i := ni+1 denotes the number of cells in the ith generation

before the jth cell in the ith generation dies. Similarly, using Proposition 1 to observe that
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the quantity

E
[
δ(X⃗n⃗(t)− X⃗n⃗) exp

(
−
∫ t

0

k0∑
i=1

n0
i∑

j=1

(
βi,j(Xi,j(s)) + µi,j(Xi,j(s))

)
ds
)∣∣∣X⃗n⃗0(0), 0

]
(A.3.11)

satisfies Eq. (4.2.5), we can check that Eq. (4.2.10) also holds for n⃗0 = n⃗. Additionally, if

pmn⃗ ≥ pm−1n⃗ for any n⃗, X⃗n⃗, denoting ∆m
n⃗ = pmn⃗ − pm−1n⃗ , we have

∆m+1
n⃗ = E

[∫ t

0

exp
(
−
∫ s

0

k0∑
i=1

n0
i∑

j=1

(
βi,j(Xi,j(r)) + µi,j(Xi,j(r))

)
dr
)

×
[ k0∑

i=1

n0
i∑

j=1

(
β̃i,j(Xi,j(s), X1, X2)∆

m
n⃗ (X⃗n⃗, t− s|X⃗n⃗0

b,−i,−j
(s), 0)

+ µi,j(Xi,j)∆
m
n⃗ (X⃗n⃗, t− s|X⃗n⃗d,−i,−j

(s), 0)
)]
ds

]
≥ 0.

(A.3.12)

Therefore, pm+1
n⃗ ≥ pmn⃗ . Since p

m+1
n⃗ ≥ pmn⃗ holds for m = 0, pmn⃗ is non-decreasing for all m ∈ N

by induction.
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A.3.3 Differential equations satisfied by Xq(t), q ∈ N+

With Xq(t) defined in Eq. (4.3.18), it can be shown that

dXq(t)

dt
= q

∑
n⃗

∫
(

k∑
i=1

ni∑
j=1

Xi,j)
q−1 ·

k∑
i=1

ni∑
j=1

gi(Xi,j, t) · ρn⃗(X⃗n⃗, t)dX⃗n⃗

+
q(q − 1)

2

∑
n⃗

∫
(

k∑
i=1

ni∑
j=1

Xi,j)
q−2 ·

k∑
i=1

ni∑
j=1

σ2
i (Xi,j, t) · ρn⃗(X⃗n⃗, t)dX⃗n⃗

−
∑
n⃗

∫ ( k∑
i=1

ni∑
j=1

µi(Xi,j, t) ·
( q∑

r=1

(−1)r−1
(
q

r

)
(

k∑
i′=1

ni′∑
j′=1

Xi′,j′)
q−r ·Xr

i,j

))
ρn⃗(X⃗n⃗, t)dX⃗n⃗

−
∑
n⃗

∫
(

k∑
i=1

ni∑
j=1

Xi,j)
q ·

k∑
i=1

ni∑
j=1

βi(Xi,j) · ρn⃗(X⃗n⃗, t)dX⃗n⃗

+
∑
n⃗

∫
(

k∑
i=1

ni∑
j=1

Xi,j)
q

×
k−1∑
i=1

ni + 1

ni+1(ni+1 − 1)

∑
j1 ̸=j2

∫
β̃(Y,Xi+1,j1 , Xi+1,j2)ρn⃗b,i

(X⃗n⃗b,i,j1,j2
, t)dY dX⃗n⃗, q > 1.

(A.3.13)

Specifically, if X is a conserved quantity at division, then the evolution of the second-order

moment can be further simplified as

dXq(t)

dt
= q

∑
n⃗

∫
(

k∑
i=1

ni∑
j=1

Xi,j)
q−1 ·

k∑
i=1

ni∑
j=1

gi(Xi,j, t) · ρn⃗(X⃗n⃗, t)dX⃗n⃗

+
∑
n⃗

q(q − 1)

2

∫
(

k∑
i=1

ni∑
j=1

Xi,j)
q−2 · (

k∑
i=1

ni∑
j=1

·σ2
i (Xi,j, t) · ρn⃗(X⃗n⃗, t)dX⃗n⃗

−
∑
n⃗

∫ ( k∑
i=1

ni∑
j=1

µi(Xi,j, t) ·
( q∑

r=1

(−1)r−1
(
q

r

)
(

k∑
i′=1

ni′∑
j′=1

Xi′,j′)
q−r ·Xr

i,j

))
· ρn⃗(X⃗n⃗, t)dX⃗n⃗

(A.3.14)

Eq. (A.3.14) can be further simplified if the coefficients gi and σi satisfy certain conditions.

For example, if the cells grow exponentially, i.e., gi(Xi,j, t) = λXi,j and σ2
i (Xi,j, t) = σ2Xi,j
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Eq. (A.3.14) can be simplified as

dXq(t)

dt
= λqXq(t) + σ2 q(q − 1)

2
Xq−1(t)

−
∑
n⃗

∫ ( k∑
i=1

ni∑
j=1

µi(Xi,j, t) ·
( q∑

r=1

(−1)i−1
(
q

r

)
(

k∑
i′=1

ni′∑
j′=1

Xi′,j′)
q−r ·Xr

i,j

))
· ρn⃗(X⃗n⃗, t)dX⃗n⃗.

(A.3.15)

A.3.4 Birth-induced boundary conditions

We can also consider X which has a component that is reset to 0 at division, e.g., cell’s

age. Here, we shall consider a simple case where one new cell with age 0 will be created at

division, while the mother cell’s age as well as its generation will not change (“budding”).

In this case, we shall be tracking the cell’s volume denoted by X, and the cell’s age denoted

by A. We assume that in the ith generation, there are ni singlets with sizes (Xi,1, ..., Xi,ni
)

and ages (Ai,1, ..., Ai,ni
). Similarly to Prop. 1, we can show that the solution to

∂p̂n⃗
∂t

(A⃗n⃗, X⃗n⃗, t|A⃗n⃗0(0); X⃗n⃗0(0), 0) +
k∑

i=1

ni∑
j=1

∂(gi,j(Ai,j, Xi,j, t)p̂n⃗)

∂Xi,j

− 1

2

k∑
i=1

ns
i∑

j=1

∂2(σ2
i,j(Ai,j, Xi,j, t)p̂n⃗)

(∂Xi,j)2

+
k∑

i=1

ni∑
j=1

∂p̂n⃗
∂Ai,j

= −
k∑

i=1

ns
i∑

j=1

(
βi,j(Ai,j, Xi,j) + µi,j(Ai,j, Xi,j)

)
p̂n⃗,

p̂n⃗(A⃗n⃗, X⃗n⃗, 0|A⃗n⃗0(0); X⃗n⃗0(0), 0) = δ(X⃗n⃗0(0)− X⃗n⃗)δ(A⃗n⃗0(0)− A⃗n⃗), if n⃗ = n⃗0,

p̂n⃗(A⃗n⃗, X⃗n⃗, 0) = 0 if n⃗ ̸= n⃗0

(A.3.16)

is

p̂n⃗(A⃗n⃗, X⃗n⃗, t|A⃗n⃗0(0), X⃗n⃗0(0), 0) := E
[
δ(X⃗n⃗(t)− X⃗n⃗)δ(A⃗n⃗(t)− A⃗n⃗))

× exp
(
−
∫ t

0

k∑
i=1

ni∑
j=1

(
βi,j(Ai,j, Xi,j) + µi,j(Ai,j, Xi,j)

)
ds
)∣∣∣A⃗n⃗0(0), X⃗n⃗0(0), 0

]
, if n⃗ = n⃗0,

p̂n⃗(A⃗n⃗, X⃗n⃗, t) = 0, if n⃗ ̸= n⃗0

(A.3.17)
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Furthermore, if we recursively define

p0(A⃗n⃗, X⃗n⃗, t|A⃗n⃗0(0), X⃗n⃗0(0), 0) = 0,

p1(A⃗n⃗, X⃗n⃗, t|A⃗n⃗0(0), X⃗n⃗0(0), 0) = p̂n⃗(A⃗n⃗, X⃗n⃗, t|A⃗n⃗0(0), X⃗n⃗0(0), 0)
(A.3.18)

and

pm+1
n⃗ (A⃗n⃗, X⃗n⃗, t|A⃗n⃗0(0), X⃗n⃗0(0), 0) = p̂n⃗(A⃗n⃗, X⃗n⃗, t|A⃗n⃗0(0), X⃗n⃗0(0), 0)

+ E

[∫ t

0

exp
(
−
∫ s

0

k∑
i=1

n0
i∑

j=1

(
βi,j(Ai,j(r), Xi,j(r)) + µi,j(Ai,j(r), Xi,j(r))

)
dr
)

×
[ k0∑

i=1

n0
i∑

j=1

(
β̃i,j(Ai,j , Xi,j , Yi,j , Yi+1,n0

i+1+2)p
m
n⃗ (A⃗n⃗, X⃗n⃗, t− s|A⃗n⃗0

b;i,j
(s), X⃗n⃗0

b;i,j
(s), 0)

+ µi,j(Ai,j , Xi,j)p
m
n⃗ (A⃗n⃗, X⃗n⃗, t− s|A⃗n⃗0

d,−i,−j
(s), X⃗n⃗0

d,−i,−j
(s), 0)

)]
ds
∣∣∣A⃗n⃗0(0), X⃗n⃗0(0), 0

]
,

if A⃗n⃗(0) > 0,

pm+1
n⃗ (A⃗n⃗, X⃗n⃗, t|A⃗n⃗0(0), X⃗n⃗0(0), 0) =

E
[ k∑

i=1

ni∑
j=1

β̃(Ai,j , Y,Xi,j , Xi+1,ni+1)p
m
n⃗ (A⃗n⃗b,−i,−j

(t), X⃗n⃗b,−i,−j
(t), t|A⃗n⃗(0), X⃗n⃗(0), 0)

∣∣∣A⃗n⃗0(0), X⃗n⃗0(0), 0

]
,

if Ai+1,ni+1 = 0.

(A.3.19)

Here, β̃(Ai,j, Y,Xi,j, Xi+1,ni+1
) is the rate of a cell in the ith generation giving birth to a cell

in the (i+1)th generation with the state Xi+1,ni+1
and its own state shifting to Xi,j. A⃗n⃗0

b,−i,−j

differs from A⃗n⃗0 in that its (i + 1)th generation has an extra component Ai+1,n0
i+1+1 = 0,

and A⃗n⃗0
b,i,j

differs from X⃗n⃗0 in that its jth component in the ith generation is Yi,j while its

(i + 1)th generation has an extra component Yi+1,n0
i+1+1. A⃗n⃗b,−i,−j

(t) differs from A⃗n⃗(t) in

that its (i + 1)th generation does not have the (ni+1)
th component, while X⃗n⃗b,−i,−j

(t) differs

from A⃗n⃗(t) in that its jth component in the ith generation is Y while it does not have the

(ni+1)
th component in the (i + 1)th generation, respectively. Then similar to the proof of
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Proposition 2 as shown in Appendix A.3.2, pm+1
n⃗ satisfies the following PDE

∂pm+1
n⃗

∂t
(A⃗n⃗, X⃗n⃗, t) +

k∑
i=1

ni∑
j=1

∂(gi,j(Ai,j, Xi,j, t)p
m+1
n⃗ )

∂Xi,j

− 1

2

k∑
i=1

ni∑
j=1

∂2(σ2
i,j(Ai,j, Xi,j, t)p

m+1
n⃗ )

(∂Xi,j)2

+
k∑

i=1

ns
i∑

j=1

∂pm+1
n⃗

∂Ai,j

= −
k∑

i=1

ni∑
j=1

(
βi,j(Ai,j, Xi,j) + µi,j(Ai,j, Xi,j)

)
pm+1
n⃗

+
∞∑
i=1

nd
i∑

j=1

∫
µ(Y,A)pmn⃗d,i

(A⃗n⃗d,i,j
, X⃗n⃗d,i,j

, t|A⃗n⃗0(0), X⃗n⃗0(0), n⃗0, 0)dY dA , if A⃗n⃗ > 0

pm+1
n⃗ (X⃗n⃗, A⃗n⃗, t|A⃗n⃗0(0), X⃗n⃗0(0), 0) =∫ k∑

i=1

ni∑
j=1

β̃i,j(Y,Ai,j, Xi+1,ni+1−1, Xi+1,ni+1
)

× pmn⃗ (A⃗n⃗0
b,−i,−j

(t), X⃗n⃗0
d,−i,−j

(t), t|A⃗n⃗0(0), X⃗n⃗0(0), 0)dXi,jdAi,j,

if Ai+1,ni+1
= 0.

(A.3.20)

Likewise, it could be shown that pmn⃗ is non-negetive, increasing in m, and

∑
n⃗

∫
pmn⃗ (A⃗n⃗, X⃗n⃗, t|X⃗n⃗0(0), A⃗n⃗0(0), 0)dX⃗n⃗dA⃗n⃗ ≤ 1. (A.3.21)
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Therefore, there exists a limit p∗n⃗ = lim
d→∞

pmn⃗ which satisfies the PDE

∂p∗n⃗
∂t

(A⃗n⃗, X⃗n⃗, t) +
k∑

i=1

ns
i∑

j=1

∂(gi,j(Ai,j, Xi,j, s)p
∗
n⃗)

∂Xi,j

− 1

2

k∑
i=1

ni∑
j=1

∂2(σ2
i,j(Ai,j, Xi,j, t)p

∗
n⃗)

(∂Xi,j)2

+
k∑

i=1

ns
i∑

j=1

∂p∗n⃗
∂Ai,j

= −
k∑

i=1

ni∑
j=1

(
βi,j(Ai,j, Xi,j) + µi,j(Ai,j, Xi,j)

)
p∗n⃗

+
∞∑
i=1

nd
i∑

j=1

∫
µi,j(A, Y )p∗n⃗d,i

(A⃗n⃗d,i,j
, X⃗n⃗d,i,j

, t|A⃗n⃗0(0), X⃗n⃗0(0), 0)dY dA , if A⃗n⃗ > 0

p∗n⃗(A⃗n⃗, X⃗n⃗, t|X⃗n⃗0(0), A⃗n⃗0(0), 0) =∫ k∑
i=1

ni∑
j=1

β̃i,j(Ai,j, Y,Xi+1,ni+1−1, Xi+1,ni+1
)

× p∗n⃗(A⃗n⃗0
d,−i,−j

(t), X⃗n⃗0
d,−i,−j

(t), t|A⃗n⃗0(0), X⃗n⃗0(0), 0)dXi,jdAi,j, if Ai+1,ni+1
= 0.

(A.3.22)

We can also define the unconditional probability density by averaging the initial proba-

bility density pin⃗0

p∗n⃗(A⃗n⃗, X⃗n⃗, t) :=
∑
n⃗0

∫
pn⃗(A⃗n⃗, X⃗n⃗, t|A⃗n⃗0(0), X⃗n⃗0(0), 0)pin⃗0(A⃗n⃗0 , X⃗n⃗0 , 0)dX⃗n⃗0dA⃗n⃗0 . (A.3.23)

From Eq. (A.3.23), we can define the symmetric probability density distribution

ρn⃗(A⃗n⃗, X⃗n⃗, t) := Πk
i=1

1

ni!

∑
π

p∗n⃗(π(A⃗n⃗), π(X⃗n⃗), t), (A.3.24)

from which we could derive the macroscopic quantities such as the marginalized cell density.

We shall omit detailed discussions on equations satisfied by these macroscopic quantities

here for brevity.
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A.4 Appendix for Chapter 9

A.4.1 Numerical scheme

To numerically solve Eqs. (9.2.10) and (9.2.11), we use a uniform discretization τk = k∆τ, k =

0, 1, . . . , K. A backward difference operator [I(τk, t)− I(τk−1, t)] /(∆τ) is used to approx-

imate ∂τI(τ, t) and a predictor-corrector Euler scheme is used to advance time [PTV07].

Setting the cut-offs I(−∆τ, t) ≡ 0 and I(K∆τ, t) ≡ 0, the resulting discretized equations for

the full SIR model are

S(t+∆t) =S(t)−∆tS(t)
K∑
k=0

β(τk, t)I(τk, t)∆τ,

Ĩ(τk, t) =I(τk, t)−∆t
I(τk, t)− I(τk−1, t)

∆τ
−∆t(γ(τk, t) + µ(τk, t))I(τk, t),

I(τk, t+∆t) =Ĩ(τk, t)−
∆t

2

[
I(τk, t)− I(τk−1, t)

∆τ
+ (γ(τk, t) + µ(τk, t))I(τk, t)

+
Ĩ(τk, t)− Ĩ(τk−1, t)

∆τ
+ (γ(τk, t+∆t) + µ(τk, t+∆t))Ĩ(τk, t)

]

+ δk,0
∆t

∆τ
S(t)

K∑
j=0

β(τj, t)I(τj, t)∆τ,

(A.4.1)

where Ĩ is the initial predicted guess, and the last term proportional to δk,0 encodes the

boundary condition Eq. (9.2.11). Note that we use
∑K

k=0 β(τk, t)I(τk, t)∆τ to indicate the

numerical evaluation of
∫∞
0

dτ ′β(τ ′, t)I(τ ′, t). Quadrature methods such as the Simpson’s

rule and the trapezoidal rule can be used to approximate the integral more efficiently.

310



The total number of dead, recovered, and infected individuals at the time t are found by

D0(m∆t) =
1

2

m∑
j=0

K∑
k=0

c(k∆τ, j∆t)
[
I(k∆τ, j∆t) + Ĩ(k∆τ, j∆t)

]
∆τ∆t,

R0(t) =
1

2

m∑
j=0

K∑
k=0

µ(k∆τ, j∆t)
[
I(j∆τ, j∆t) + Ĩ(k∆τ, j∆t)

]
∆τ∆t,

I(m∆t) =
K∑
k=0

I(k∆τ,m∆t)∆τ,

with analogous expressions for D1(m∆t) and R1(m∆t). To obtain a stable integration

scheme, the time steps ∆t and ∆τ have to satisfy ∆t/(2∆τ) < 1. In all of our numerical

computations, we thus set ∆t = 0.002,∆τ = 0.02, and K = 104. In the next section, we

show additional plots of the magnitude of I(τ, t) in the t− τ plane.

A.4.2 Solutions for τ1-averaged probabilities

Using the method of characteristics, we find the formal solution to Eq. (9.2.1):

P (τ, t|τ1) = δ(τ − t− τ1)e−
∫ t
0 (µ(τ−t+s,s|τ1)+γ(τ−t+s,s|τ1))ds, (A.4.2)

which can be used to construct the death and cure probabilities

Pd(t|τ1) =
∫ t

0

dt′ µ(τ1 + t′, t′)e−
∫ t′
0 (µ(τ1+s,s)+γ(τ1+s,s))ds

Pr(t|τ1) =
∫ t

0

dt′ γ(τ1 + t′, t′)e−
∫ t′
0 (µ(τ1+s,s)+γ(τ1+s,s))ds. (A.4.3)

If we now invoke the functional forms of µ and γ given in Eq. (9.2.4), we find explicitly
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Pd(τ, t|τ1) =



µ1

µ1 + γ

(
1− e−(µ1+γ)t

)
τ > t+ τinc

0 τinc ≥ τ > τ1

µ1e
−γ(τinc−τ1)

µ1 + γ

(
1− e−(µ1+γ)(τ−τinc)

)
τ > τinc ≥ τ1

(A.4.4)

and

Pr(τ, t|τ1) =



γ

µ1 + γ

(
1− e−(µ1+γ)t

)
τ > t+ τinc

1− e−γt τinc ≥ τ > τ1

1− e−γ(τinc−τ1) +
γe−γ(τinc−τ1)

µ1 + γ

(
1− e−(µ1+γ)(τ−τinc)

)
τ > τinc ≥ τ1.

(A.4.5)

Figure A.1: Phase plot for P (τ > t, t) and I(τ > t, t). The regions delineate the different
forms of the solution (Eq. (A.4.6)). Here, we have included an incubation time τinc before which
no death occurs. The solution for P̄ (τ, t) or I(τ, t) in the τ < t region must be self-consistently
solved using the boundary condition Eq. (9.2.11). At any fixed time, the integral of I(τ, t) over
t < τ ≤ ∞ captures only the initial population, excludes newly infected individuals, and is used
to compute D1(t), R1(t), and M1

p(t). To compute D0(t), R0(t), and M0
p(t), we integrate across all

infected individuals (including the integral over t > τ ≥ 0 shown in magenta).

Finally, we can also find the τ1-averaged probabilities for τ ≥ t by weighting over

ρ(τ1;n, λ). For example,
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P̄ (τ, t) =


ρ(τ − t;n, λ)e−(µ1+γ)t τ ≥ t+ τinc

ρ(τ − t;n, λ)e−γt τinc ≥ τ > t

ρ(τ − t;n, λ)e−γte−µ1(τ−τinc) t+ τinc ≥ τ > τinc

.

These solutions hold for the different regions shown in the phase plot of Fig. A.1 and are

equivalent to those for I(τ > t, t). Corresponding expressions for P̄d(t) and P̄r(t) can be

found and used to construct M1
p(t). Fig. A.2(a) shows the magnitude of I(τ, t) in the

Figure A.2: Density plots of I(τ, t) in the t− τ plane. Numerical solution of the equation for
I(τ, t) in Eqs. (9.2.10) under the assumption of a fixed susceptible size and β0S0 = 4.64/day. (a)
The density without quarantine monotonically grows with time t in the region τ < t as an unlimited
number of susceptibles continually produces infections. (b) With quarantining after tq = 50 days,
we set β0S0 = 0 for t > tq, which shuts off new infections. Both plots were generated using the
same initial density ρ(τ1) defined in Eq. (9.2.7). In both cases, the density I(τ > t) is identical
to P (τ > t) if the same ρ(τ1) is used and is independent of disease transmission, susceptible
dynamics, etc. (c-d) Probability-density functions (PDFs) of the number of infected individuals
I(τ, t) for t = 0, 60 days (b) without and (c) with quarantine. The blue solid line corresponds to
the initial distribution ρ(τ ;n = 8, λ = 1.25) (see Eq. (9.2.7)).

t − τ plane when we use Eq. (9.2.16), set S(t) = S0 constant (so that the first equation
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in Eq. (A.4.1) does not apply) and assign β0S0 = 4.64/day. In this case, the epidemic

continues to grow in time, but the mortality rates M0,1
p (t) nonetheless converge as t → ∞.

In Fig. A.2(b), we set β0S0 = 0 for t > tq to model strict quarantining after tq = 50 days.

We observe no new infection after the onset of strict quarantine measures. In both cases

(quarantine and no quarantine), we use ρ(τ ;n = 8, λ = 1.25) (see Eq. (9.2.7) in the main

text) to describe the initial distribution of infection times τ . As time progresses, more of

the distribution of τ moves towards smaller values until quarantine measures take effect (see

Fig. A.2(c) and (d)).

A.5 Appendix for Chapter 10

A.5.1 Basic reproduction number

In this appendix, we analytically derive the basic reproduction number R0 for uncorrelated

networks and compare the resulting values with those obtained using Eqs. (10.2.7) and

(10.2.8). As a starting point, we note that the conditional degree distribution P (ℓ|k) can

be expressed in terms of a symmetric (for undirected networks) joint degree distribution

P (ℓ, k), the probability that a randomly chosen edge connects two nodes with degrees ℓ

and k. Marginalizing P (ℓ, k) over ℓ yields the distribution over edge ends [WP07] Pe(ℓ) ≡∑
k P (ℓ, k) = ℓP (ℓ)/⟨k⟩, where ⟨k⟩ =∑k kP (k) is the mean degree. The conditional degree

distribution is related to the joint distribution via

P (ℓ|k) = P (ℓ, k)

Pe(k)
=
⟨k⟩P (ℓ, k)
kP (k)

=
Eℓ,k

kP (k)N
, (A.5.1)

which can be further simplified in the uncorrelated network limit where P (ℓ, k) ≈ Pe(k)Pe(ℓ):

P (ℓ|k) ≈ ℓP (ℓ)

⟨k⟩ . (A.5.2)

Eqs. (A.5.1) or (A.5.2) can be used as a simpler replacement for P (ℓ|k) in Eqs. (10.2.2) and

(10.2.3) if Eℓ,k/(kNk) is not directly accessible. For example, for an uncorrelated network
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(i.e., for P (ℓ|k) = ℓP (ℓ)/⟨k⟩), we find

diuk(t)

dt
= βuksk(t)

⟨k⟩
∑
ℓ

ℓiuℓ (t)− γuiuk(t), (A.5.3)

where we have set testing rates fk(0) = 0 at the start of the infection. According to [KGK06],

we define

Iu(t) :=
∑
k

iuk(t), J
u(t) :=

∑
k

kiuk(t) (A.5.4)

and obtain
dIu(t)

dt
= βuJu(t)− γuIu(t),

dJu(t)

dt
= βu ⟨k2⟩

⟨k⟩ J(t)− γ
uJu(t).

(A.5.5)

We perform a linear stability analysis around the disease-free state (I∗, J∗) = (0, 0) and find

the eigenvalues to Eqs. (A.5.5):

λ± = −γu ± βu ⟨k2⟩
⟨k⟩ . (A.5.6)

The transition from negative to positive eigenvalues occurs for −γu + βu⟨k2⟩/⟨k⟩ = 0.

Hence, the basic reproduction number is

R0 =
βu

γu
⟨k2⟩
⟨k⟩ =

βu

γu

(
⟨k⟩+ Var[k2]

⟨k⟩

)
. (A.5.7)

If we use the conditional degree distribution P (ℓ|k) = (ℓ − 1)P (ℓ)/⟨k⟩ proposed by Kiss et

al. [KGK06] to account for a reduction in neighboring susceptible vertices, the corresponding

basic reproduction number is modified to

RKiss
0 =

βu

γu

(
⟨k⟩ − 1 +

Var[k2]

⟨k⟩

)
. (A.5.8)

The mean degrees of the BA and SBM networks are 3.77 and 23.14, and the variances for the

BA and SBM networks are 20.40 and 36.62, respectively. Using the values γu = 14−1/day
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and βu = 0.0411/day for the BA network, we find that the basic reproduction numbers

R0 = 5.361 and RKiss
0 = 4.777 are larger than 4.5, the value we used to determine βu

according to the next-generation matrix method (Eqs. (10.2.7) and (10.2.8)). The observed

approximation errors in Eqs. (A.5.7) and (A.5.8) are a consequence of the assumption that

the underlying network is uncorrelated. For the SBM network, we find R0 = 4.499 and

RKiss
0 = 4.317, close to the 4.5 value used to find βu = 0.0130 using Eqs. (10.2.7) and

(10.2.8).

To summarize, our comparison shows that in the SBM model where the degrees of neigh-

bors are uncorrelated, Eqs. (A.5.7) and (A.5.8) give close approximations of the actual

reproduction number calculated from the next-generation matrix method (10.2.7). For the

BA network, degree correlations make Eqs. (A.5.7) and (A.5.8) overestimate the actual re-

production number. Therefore, we recommend using the next-generation matrix method to

numerically determine the basic reproduction number unless degree correlations are weak

and Eqs. (A.5.7) and (A.5.8) can provide accurate estimates of R0.

A.5.2 Optimal testing and vaccination algorithms

Below, we explicitly give the pseudo-code for the testing and quarantine model based on

Pontryagin’s maximum principle.

A.5.3 Reinforcement-learning strategy

To identify effective testing and vaccination strategies, we also investigated reinforcement-

learning (RL) approaches. RL explores the space of all possible actions and directly optimizes

the loss functions for testing and vaccination defined in Eqs. (10.3.3) and (10.4.6). Here,

we use an RL approach with experience replay to learn both the optimal testing strategy in

Eqs. (10.2.2)–(10.2.5) and the optimal vaccination strategy in Eqs. (10.4.1)–(10.4.3).

Typically, applying a policy-gradient method to a continuous action space will usually

yield poor results due to the inability of such methods to explore the whole space. However,
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Algorithm 7 Pseudo-code for determining optimal testing strategies based on Pontryagin’s max-
imum principle.

1: Initialize t = 0, sk(0), i
u
k(0), i

∗
k(0), ∆t, T = n∆t, βu, β∗, γu, γ∗, δ, initial strategy

F (k∆t), k, fmax, fmin, ϵ, itermax

2: for k = 0 : n− 1 do
3: Calculate sk(t), i

∗
k(t), i

u
k(t) under the strategy F (k∆t) from Eqs. (10.2.2)–(10.2.4)

4: end for
5: Set λsk, λ

u
k, λ

∗
k = 0, k = n

6: Calculate the loss function L1 in Eq. (10.3.3)
7: for k = n− 1 : 0 do
8: Calculate λsk, λ

u
k, λ

∗
k under the strategy F (k∆t) from Eqs. (10.3.5)–(10.3.7)

9: end for
10: for k = 0 : n− 1 do
11: First renew the strategy F (k∆t), then calculate sk, i

u
k, i
∗
k under the strategy F (k∆t)

from Eqs. (10.2.2)–(10.2.4)
12: end for
13: Calculate the loss function L2 in Eq. (10.3.3)
14: i← 1
15: while |L1 − L2| > ϵ && i < itermax do
16: i← i+ 1
17: L1 ← L2

18: Set k = n, λsk, λ
u
k, λ

∗
k = 0

19: for k = n− 1 : 0 do
20: Calculate λsk, λ

u
k, λ

∗
k under the strategy F (k∆t) from Eqs. (10.3.5)–(10.3.7)

21: end for
22: for k = 0 : n− 1 do
23: First renew the strategy F (k∆t), then calculate sk, i

u
k, i
∗
k under the strategy

F (k∆t) from Eqs. (10.2.2)–(10.2.4)
24: end for
25: Calculate the Loss function L2 in Eq. (10.3.3)
26: end while
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using our previous results based on PMP, we know that the optimal strategy is always

obtained by maximizing the testing and vaccination rates for subpopulations presumed to

be at a higher risk.

Therefore, we do not need to explore the whole space of all possible actions. Instead,

from Eqs. (10.3.8), (10.4.7), we can restrict our strategy space to the extreme points1 of the

set

{(fk)|Kk=1|
K∑
k=1

fk = F (t), fmin ≤
fk
Nk

≤ fmax} (A.5.9)

for determining the testing-resource allocation and the extreme points of the set

{(vk)|Kk=1|
K∑
k=1

vk = V (t), vmin ≤
vk

Nsk(t)
≤ vmax} (A.5.10)

for determining vaccination resource allocation at each step. The set of extreme points

represents all strategies that maximize the testing/vaccination rates for some groups and

minimize them for other groups. Such strategies also cannot be written as nontrivial convex

combinations of other strategies. By confining ourselves to extreme points, the possible

action space is reduced to a finite set on which we perform RL.

Since the curse of dimensionality increases the number of all possible strategies exponen-

tially with K, we further restrict our RL approach to networks with degree cutoff K = 20.

This additional constraint allows us to perform RL with a computation time of about 30 days

for the testing model on the BA network, 3 days for the testing model on the SBM network,

6 hours for the vaccination model on the BA network, and 2 hours for the vaccination model

on an SBM network. All computations are performed using Python 3.8.10 on a laptop with

a 4-core Intel(R) Core(TM) i7-8550U CPU @ 1.80 GHz.

To identify effective testing and vaccination strategies, we use the reward functions

1Extreme points are points in a set that cannot be written as a nontrivial convex linear combination of
any other points in the same set.
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Algorithm 8 Pseudo-code of Q-Learning in testing resource allocation.

1: Initialize F, δ, C, iuk(0), i
∗
k(0), β

u, β∗, γu, γ∗,M, ϵ
2: Initialize replay memory D
3: Randomly initialize the hyperparameter set Θ− ← Θ for evaluating the action value

function Q∗(S,A; Θ)
4: for episode ℓ = 1 :M do
5: Initialize S0
6: for t = 0 : Tmax − 1 do
7: With probability ϵ, randomly select an action ai
8: otherwise select At = argmaxAQ(St,A; Θ)
9: Execute action At and observe reward Rt and state St+1

10: Store transition (St,At, Rt,St+1) in D
11: Sample random minibatch of transitions (Sj,Aj, Rj,Sj+1) from D
12: if j = Tmax − 1 then
13: Set yj = Rj

14: else
15: Set yj = Rj + δmaxA′ Q̂(Sj+1,A′; Θ−)
16: Perform a gradient descent step on the minibatch

∑
j[yj−Q(Sj,Aj; Θ)]2 with

respect to the network hyperparameter set Θ
17: end if
18: end for
19: Every C steps reset Θ− ← Θ
20: end for
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(10.3.3) and (10.4.6). We define the reward at time ti = i∆t as

R(Si,Ai, i) =
K∑
k=1

[sk(ti+1)− sk(ti)] , (A.5.11)

the “negative” of the number of total infections during the time period [ti, ti+1). Here, the

state Si and action Ai are

Si =(s1(ti), . . . , sK(ti), i
u
1(ti), . . . , i

u
K(ti),

i∗1(ti), . . . , i
∗
K(ti)) ∈ R3K ,

Ai =(f1(ti), . . . , fK(ti)) ∈ RK

(A.5.12)

for the testing model Eqs. (10.2.2)–(10.2.5) and

Si = (s1(ti), . . . , sK(ti), i1(ti), . . . , iK(ti)) ∈ R2K ,

Ai = (v1(ti), . . . , vK(ti)) ∈ RK
(A.5.13)

for the vaccination model Eqs. (10.4.1)–(10.4.3). We recursively define the state-value func-

tion under a certain policy π to be

V π(Si, i) =


V π(Si+1)δ +R(Si, π(Si)), ti < Tmax,

0, ti = Tmax,

(A.5.14)

where π(Si) is the action determined under policy π given Si and δ ∈ (0, 1] is a discount

factor. We also define the action-value function to be

Qπ(Si,Ai, i) =


V π(Si+1)δ +R(Si,Ai, i), ti < Tmax − 1,

R(Si,Ai, i), ti = Tmax − 1.

(A.5.15)

We use Q∗ and V ∗ to denote the action-value and state-value functions, respectively, under

the best policy and apply the deep Q-learning algorithm, which has been used to find the
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Input layer

Input normalization

Batch renormalization

hidden layers

Output layer

Figure A.3: Illustration of the neural network used to identify effective testing and vaccination
strategies. The inputs of the input layer are (s1(ti), . . . , sK(ti), i

u
1(ti), . . . , i

u
K(ti), i

∗
1(ti), . . . , i

∗
K(ti)) ∈

R3K . For each hidden layer i (1 ≤ i ≤ NH), we normalize the corresponding outputs xi,j for all
samples in a minibatch such that the resulting values x̂i,j have zero mean and unit variance. These
values are used as inputs to a rectified linear unit (ReLU) activation function in the next hidden
layer. Neurons labeled 1 are bias terms. The output V ∗(Si; Θ) is an estimate of the state-value
function under the optimal policy (see Eq. (A.5.14)), where Θ denotes the set of hyperparameters.

RL strategies that can approximate optimal strategies of certain Atari 2600 games [MKS15].

Here, we use a neural network with a hyperparameter set Θ, representing neural-network

weights and biases to estimate the action-value function under the best policy Q∗(S,A; Θ),

which is improved over epochs by Alg. 8.

An illustration of the neural network, its layers, and activation functions, is shown in

Fig. A.3. We use another neural network with a hyperparameter set Θ− updated every

C = 4 steps to match Θ. The neural network contains NH = 4 hidden layers with H =

30 neurons in each layer. The input data is the state at the ith step Si, and the output

is V ∗(Si; Θ), the prediction for the optimal state-value function generated by the neural

network. In each layer, the batch normalization technique is used before a rectified linear

unit (ReLU) function is applied as an activation function. We compare the optimal strategies

based on the PMP approach from Alg. 7 with the RL strategies that are based on Alg. 8.

We set T = 100 and ∆t = 1 so that the strategy is updated every day. Here, we use

fmin = 0.002/day, fmax = 0.4/day. We use Eq. (10.2.7) with γu = (1/14)/day to calculate

βu = 0.0703/day for the K = 20 BA network and βu = 0.0632/day for the K = 20 SBM

network. Both PMP and RL strategies are also compared to the uniform testing strategy
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(10.3.11). For RL, we train the underlying neural network for M = 100 epochs using Alg. 8.

Figure A.4: Reduction in fractions of infected individuals calculated as the difference between the
fractions infected obtained with testing and without testing for the BA network is shown in (a)
and for the SBM network is shown in (b). The optimal control approach based on PMP reduces
early infections the most. RL outperforms uniform testing in reducing the number of early-stage
infections. Additionally, the effect of the optimal strategy is more striking in the BA network
because it has a more heterogeneous node degree distribution.

Figure A.4 shows the differences between the infected fractions in simulations with and

without testing. The PMP-based optimal control reduces early infections the most for both

BA and SBM networks. Early infections contribute more to the loss function (10.3.3) since

we set the discount factor to δ = 0.95. We also observe that RL-based testing strategies

outperform uniform testing in reducing early-stage infections. Comparing Fig. A.4(a,b), the

effect of the optimal vaccination strategy in the BA network is more pronounced than that

in the SBM network. In the BA network, node degrees are more heterogeneous and most

nodes have small degrees, indicating that epidemic spreading can be controlled effectively as

long as the few high-degree nodes are monitored and tested. Finally, comparing the result

of the optimal-control approach in Fig. A.4 with Fig. 10.2, we observe that with a smaller K

in the SBM network, the effect of the optimal vaccination strategy is less apparent because

node degrees are more homogeneous.

Next, we compared the PMP approach with the RL approach for the optimal vaccination
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strategy model Eqs. (10.4.1)–(10.4.3). Here, we set vmin = 0.0001, vmax = 1. For both

Figure A.5: Reduction in fractions of infected individuals calculated as the difference between the
fractions infected obtained with vaccination and without vaccination for the BA network is shown
in (a) and the SBM network is shown in (b). The optimal control approach using PMP can most
effectively reduce infections for both networks and successfully suppress the spreading of the disease
in the BA network. On the other hand, although not as good as the PMP-optimal strategies, the
strategies obtained by the RL algorithm Alg. 8 can obviously reduce infections compared to the
uniform vaccination rate strategy. As with testing, we observe that the effect of optimal vaccination
is more pronounced in the BA network than in the SBM network.

networks, the optimal vaccination strategy obtained using PMP can most effectively reduce

the initial infections because early infections have a higher weight in the loss function (10.4.6).

Reinforcement-learning-based vaccination policies can also reduce initial infections, but the

reduction is less than that of the PMP approach. Comparing Fig. A.5(a,b), we again observe

that the effect of the optimal vaccination strategy for the BA network is more pronounced

than that of the SBM network because the BA network has a more heterogeneous degree

and is dominated by small-degree nodes.

To summarize, the controls derived from PMP are more effective than those based on RL.

One limitation of RL-based interventions is that the possible action space that needs to be

explored is usually large. However, based on our PMP results, we can constrain the action

space before the learning process. Such PMP-informed constraints allow us to explore just

the extreme points of the whole action space and thus make the training more efficient. Yet,

the total number of possible actions grows exponentially with the maximal degree K and
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the strategy obtained by the RL approach will probably be only locally optimal, violating

the PMP condition and thus underperforming PMP. Nonetheless, RL could be useful if a

procedure for computing an explicit solution cannot be formulated.

A.5.4 Simulations of corresponding stochastic models

We impose the optimal testing and vaccination strategies derived from applying PMP to the

ODE system Eqs. (10.2.2)–(10.2.5) and Eqs. (10.4.1)–(10.4.3) on a simple discrete stochas-

tic model and compare the resulting total infections. The corresponding optimal testing

or vaccination is implemented by probabilistically testing or vaccinating each selected sub-

population. For example, in the testing model, we can employ a rejection-free event-based

Monte-Carlo (MC) algorithm [Gil77] that implements a testing strategy.

For initial conditions, we randomly choose two nodes with a degree k = 10 to be infected.

Correspondingly, for the deterministic ODE models, we set sk(0) = p(k) − 2
N
1k,10, i

u
k(0) =

2
N
1k,10, i

∗
k(0) = 0 for the testing model and sk(0) = p(k) − 2

N
1k,10, ik(0) = 2

N
1k,10 for the

vaccination model. We set the recovery rates γ = γu = γ∗ = (14)−1/day and use the same

reproduction number R0(β
u) = 4.5 to calculate the unconstrained infection rates for the

two networks from Eqs. (10.2.7). The loss functions defined for the testing and vaccination

models in Eqs. (10.3.3) and Eqs.(10.4.6) are plotted below.

From Fig. A.6, the deterministic ODE models tend to overestimate the loss functions since

all subpopulations are well mixed by the conditional degree distribution function P (ℓ|k) and
therefore a single infected node could have an impact on the whole system. This difference

arises because in a fully discrete realization of a BA or SBM network, each node can be in

only one of three or four states and the disease may never arrive at certain critical nodes,

significantly delaying its spread and allowing the overall infection to dissipate before ever

reaching portions of the network. In contrast, the mass-action ODE model allows all nodes

to be partially infected, allowing continuous transmission of the disease. Therefore, more

network measures may be needed to accurately quantify the dynamics of disease spread
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Figure A.6: Loss functions associated with the deterministic ODE models Eqs. (10.2.2)–(10.2.5)
and (10.4.1)–(10.4.3), and the corresponding stochastic models. We apply PMP-based (solid lines)
and uniform (dashed lines) testing and vaccination protocols. Panels (a) and (b) show the loss
functions (10.3.3) and (10.4.6) associated with testing and vaccination interventions in a BA net-
work. Results from the ODE models are shown in blue while the loss functions derived from the
simulated stochastic model are shown in red. Panels (c) and (d) show loss functions for the testing
and vaccination models in the SBM network. Note the different scales for the ODE (blue, left) and
the MC (red, right) results. The loss functions of the discrete stochastic models are obtained by
averaging over 100 trajectories with the standard error of the mean (standard deviation of means
divided by

√
N) indicated by the error bars. For both networks, the deterministic ODE models

yield larger losses than those obtained from averaging MC trajectories. For both deterministic
ODEs and stochastic systems, the loss functions during optimal testing and vaccination are much
smaller than when testing and vaccination are uniformly applied.
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across discrete agent-based network models. Higher-order interactions beyond the pairwise

conditional degree distribution [IPB19, BCI20, LXP22] could help explain the discrepancy

between deterministic ODE and stochastic models and in estimating optimal policies in the

fully stochastic context.

Nonetheless, Figure A.6 shows that the PMP-based interventions that we derived in the

main text are also more effective than uniform testing and vaccination strategies in the

stochastic agent-based model. This loss function reduction arises for both the BA and SBM

networks. Thus, the optimal testing and vaccination strategies obtained from the determin-

istic model outperforms uniform testing and vaccination strategies even when applied on

discrete stochastic network models, representing a reasonable starting point for approximat-

ing optimal strategies within agent-based discrete systems.
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[BWG16] L. Böttcher, O. Woolley-Meza, E. Goles, D. Helbing, and H. J. Herrmann. “Con-
nectivity disruption sparks explosive epidemic spreading.” Physics Review E,
93(4):042315, 2016.

[BWW21] J. Brandstetter, D. Worrall, and M. Welling. “Message passing neural PDE
solvers.” In International Conference on Learning Representations, 2021.
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