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Abstract

A remaining challenge within microbial ecology is to understand the determinants of richness and 

diversity observed in environmental microbial communities. In a range of systems, including 

activated sludge bioreactors, the microbial residence time (MRT) has been previously shown to 

shape the microbial community composition. However, the physiological and ecological 

mechanisms driving this influence have remained unclear. Here, this relationship is explored by 

analyzing an activated sludge system fed with municipal wastewater. Using a model designed in 

this study based on Monod-growth kinetics, longer MRTs were shown to increase the range of 

growth parameters that enable persistence, resulting in increased richness and diversity in the 

modelled community. In laboratory experiments, six sequencing batch reactors treating domestic 

wastewater were operated in parallel at MRTs between 1-15 d. The communities were 

characterized using both 16S ribosomal RNA and non-target messenger RNA sequencing 

(metatranscriptomic analysis), and model-predicted monotonic increases in richness were 

confirmed in both profiles. Accordingly, taxonomic Shannon diversity also increased with MRT. In 

contrast, the diversity in enzyme class annotations resulting from the metatranscriptomic analysis 

displayed a non-monotonic trend over the MRT gradient. Disproportionately high abundances of 
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transcripts encoding for rarer enzymes occur at longer MRTs and contribute to the disconnect 

between taxonomic and functional diversity profiles.

Keywords

Diversity; richness; microbial residence time; taxonomic profiling; functional profiling; RNA 
sequencing; Monod kinetic modelling; activated sludge

Introduction

Environmental microbial communities often house a rich and diverse set of species and 

expressed enzymes1,2. A remaining challenge within microbial ecology is to understand the 

mechanisms driving the differences in metabolic and taxonomic diversity between 

communities3. Of the influencing mechanisms, the microbial residence time (MRT; the 

average amount of time a microorganism resides in a system) has been postulated to be a key 

parameter influencing microbial diversity4,5. Recent investigations in engineered systems 

showed that as MRT increases, the diversity and richness of the community increases as 

well. However, specific studies exploring the relationship between MRT and community 

composition have shown opposing or more confounded trends6,7 (albeit with differing 

experimental setups and analysis methods), suggesting that the relationship between MRT of 

a system and community composition is complex. The influence of MRT is also relevant in 

natural8 and host-associated systems9 suggesting that more clearly identifying the influence 

of this parameter on community composition in engineered environments may provide 

insights that are also relevant to other systems.

In addition to the influence on taxonomic diversity and composition, communities also 

express more functions at longer MRT4. In wastewater treatment, functions related to 

substrate transformation have been demonstrated to emerge at longer MRT, e.g., nitrification 

and the biotransformation of trace organics10,11. In a survey of 10 wastewater treatment 

plants, functional richness was positively associated with taxonomic richness, and both 

parameters were in turn positively associated with plant performance in terms of trace 

organic contaminant removal12. By contrast, additional studies have noted that expressed 

functional richness and diversity may not be directly related to taxonomic parameters13–15. 

In streams16, forests17,18, and host associated communities19, the monitored functional 

signals were independent of the parameters controlling the taxonomic profiles. Both the 

taxonomic and functional profiles must be monitored to understand further the linkage 

between community structure and function and to characterize more accurately the influence 

of an external variable (such as MRT) on the community20.

In this study, the influence of the MRT on the observed taxonomic composition and 

functional profile of microbial communities cultivated in six parallel lab-scale sequencing 

batch reactors (SBR) treating domestic wastewater was explored experimentally and 

described using a Monod-model. Wastewater bioreactors provide a controllable experimental 

system21 with available established computational models22–24 that have provided 

previous insights into microbial ecological concepts including novel niches and community 

assembly13. Experimentally, the microbial communities were monitored using 16S-
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ribosomal RNA (rRNA) and messenger RNA (mRNA) metatranscriptomic non-target 

sequencing. Recently, 16S-rRNA sequencing has become an established method for 

analyzing bacterial communities25,26 in biotechnological applications, with detailed sample 

preparation and data-processing pipelines available27. To complement the taxonomic survey, 

mRNA sequencing (RNAseq) was performed to determine the functional profiles of the 

communities, for which Enzyme Commission (EC) numbers were used as a proxy for an 

expressed function. Numerically, Monod growth kinetics were employed in a simplistic 

MRT-diversity model to provide a concrete mechanistic basis for the connection between the 

MRT and the community composition within the SBR. This model uniquely investigates the 

underlying available range of growth parameters that result in persistence within the 

community. Organisms must survive substrate-rich and –poor conditions, suggesting the 

importance of selecting growth parameters that in combination describe the ability of the 

organism to capture resources and to withstand starvation. Therefore, individual distinctive 

combinations of the maximum growth rate (μmax) and endogenous decay rate (be) are 

modelled and considered to be bounded in an ecological range of permissible values. 

Critically, allowing be, a parameter that has been previously shown to be species-specific28, 

to vary between community members allows for the coexistence of multiple μmax values 

within a given community. This novel approach permits observing how the MRT, the 

independent factor in the model, influences the available set of μmax and be values. This 

simplified view of community composition leads to a better conceptual understanding of the 

influence of the MRT on the richness and diversity of microbial communities in the studied 

system.

Materials and Methods

Activated Sludge Reactor Configuration

Briefly, six automated sequencing batch reactors (6 × 12 L) treating local municipal 

wastewater after primary clarification were operated in parallel at MRTs of 1, 3, 5, 7, 10, or 

15 days (d) as detailed previously29 and summarized in Supplemental Table 1. Forty-eight 

days (time-point 1; TP1) and 187 days (time-point 2, TP2) after start-up, activated sludge 

samples were collected for DNA (at the start of the previously described biotransformation 

experiment29) and RNA (5 hours after the start of the experiment) extraction.

Sample Collection

To collect samples, culture (two 20-mL samples for TP1 and a 20-mL and 40-mL sample for 

TP2 for DNA and RNA analysis, respectively) was withdrawn and centrifuged at 3,345 x g 

for 10 min at 4°C. The supernatant was then discarded and the pellets were stored at -80°C 

until further processing.

DNA/RNA Isolation

The total RNA and genomic DNA isolation protocol consisted of a 

phenol:chloroform:isoamylalcohol extraction followed by either a DNA PowerCleanup PRO 

Kit (Qiagen, Venlo, Netherlands) or MoBIO RNA Pro Clean-Up Kit (MoBio, Carlsbad, CA, 

USA) and purification with a TURBO DNase step (ThermoFisher Scientific, Waltham, MA, 

USA) as detailed in the Supplemental Materials and modified from Johnson et al. 2015. The 
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RNA pellet was re-suspended with diethyl pyrocarbonate (DEPC) treated RNase-free water 

to a total volume of 50 μl. DNA samples were quantified on a Qubit (Invitrogen, Waltham, 

MA, USA) analyzer following the manufacturer’s instructions, whereas RNA samples were 

quantified on a Nanodrop (Invitrogen) and quality-checked on a Bioanalyzer 2000 (RNA 

6000 kit; Agilent Technologies, Santa Clara, CA, USA).

16S Library Preparation and Sequencing

In preparation for the 16S sequencing, The total RNA was reverse transcribed into 

complementary DNA (cDNA) using the Superscript III Kit (Invitrogen) with random 

hexamer primers following the manufacturer’s instructions. The genomic DNA (gDNA) was 

used directly after the purification described above.

The 16S-rRNA or -rDNA amplicon library preparation followed a standard procedure for the 

Illumina MiSeq platform (Illumina, San Diego, CA) that is detailed in Supplemental 

Materials 1. Two sets of 16S-rRNA primers (Integrated DNA Technologies, Inc., Skokie, 

Illinois, USA) were used in this analysis to amplify the sample cDNA and gDNA to account 

for the potential for the bias of a single primer-set30. The details of primers B1 and B2 are 

provided in Supplemental Table 2. The samples were sequenced using the PE 300 method 

on a MiSeq platform (Illumina) at the Genomics Diversity Centre at ETH Zurich, 

Switzerland. The raw data is publically available at EMBL-EBI under the study number 

PRJEB22087. The read count per sample and associated rarefaction curves are presented in 

Supplemental Figures 1 and 2, respectively.

16S rRNA and rDNA Sequencing Data Processing and Analysis

The raw data was checked for quality using FastQC31 v0.11.2. The reported nucleic 

sequence of the reads was then trimmed using PRINSEQ-lite32 v0.20.4 to a length of 295 

bp and merged using USEARCH33 v8.1.1756 (with a minimum overlap of 15 bp, minimum 

merge-length of 100, and a maximum error of 5 bp). The primers were trimmed from the 

merged read using cutadapt34 v1.5 with wildcards allowed, a full-length overlap, and an 

error rate of 0.01. The reads were then filtered using PRINSEQ-lite with an amplicon range 

of 431-506 and 252-254 for B1 and B2, respectively, a minimum quality mean of 15, and no 

ambiguous nucleotides allowed. USEARCH was employed to denoise the reads into exact 

sequence variants (ESVs; zero-level operational taxonomical units, ZOTUs using 

UNOISE3) and assign taxonomic origin (using usearch_global, 70% identity against the 

SILVA 16S database (release 128), followed by sintax with a 70% identity cutoff). The total 

number of raw and cleaned reads per sample for the B2 primer ranged from 59,311-191,897 

with a median of 113,347 and 54,864-185,331 with a median of 104,537, respectively (the 

details for every sample are provided for primers B1 and B2 in Supplemental Tables 3 and 4, 

respectively). In total, 99.3% of these reads were binned into 10,644 ESVs, with 2,918 ESVs 

displaying more than 10 reads in at least one sample. Primer B2 is considered in the main 

text because more positive and negative controls were analyzed for B2 than B1.

The resulting data was then analyzed in R v3.5.1 using phyloseq35 v1.24.2 as detailed in 

Supplemental File 1. The bacterial 16S richness (0D; on rarefied data to remove potential 

sampling effort effects) and Shannon diversity index (ln(1D); on non-rarefied data) were 
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calculated as n and exp(−∑i = 1
n p

i
∗ ln (pi)), respectively, where n is the number of ESVs and 

pi is the abundance-weighted proportion of ESVi36–38. When relating metrics throughout 

this study, Spearman rank-correlation (denoted as r) analyses were employed to avoid 

imposing assumptions of linearity.

RNAseq Library Preparation and Sequencing

The RNA samples were processed into libraries and sequenced following the Illumina 

TruSeq Single-End-Read 150 bp pipeline of the Genomics Facility at the University of 

Basel. In brief, the abundant ribosomal sequences in the samples were degraded to enhance 

the mRNA fraction using the Ribo-Zero Gold Epidemiology Kit (Illumina) to target 

Eukaryotic, Bacterial, and Archaeal sequences. During testing, this Epidemiology Kit was 

found to outperform a sequential application of the Ribo-Zero Gold Bacterial and 

Eukaryotic Kits (Illumina) on the activated sludge samples (81.3±5.2% versus 15.4±1.8% of 

resulting reads of non-rRNA origin). The adapter addition, sample cleanup, and fragment 

selection were performed as outlined in the Illumina TruSeq protocol. The samples were 

then sequenced on a NextSeq 500 Platform (Illumina pipeline 2.4.11). The raw data are 

publically available at EMBL-EBI under the study number PRJEB22087. The quality of the 

RNA as extracted, RNA after depletion, and resulting fragments are provided in 

Supplemental Figures 3-5.

RNAseq Data Processing, Normalization, and Analysis

The raw read files were trimmed of adapter sequences, index sequences, and low-quality 

reads using Trimmomatic39 v0.33. The raw and trimmed reads were also checked for 

quality using FastQC31 (Supplemental Figure 6-9). To remove contaminating rRNA reads in 
silico, the trimmed reads were compared against rRNA databases (Silva version 119 

(Bacteria 16S & 23S, Archaea 16S & 23S, Eukaryote 18S & 28S) and RFAM (5S & 5.8S)) 

and filtered using SortMeRNA40. Sequences passing the quality control were annotated 

with the descriptors provided in the Enzyme Commission (EC) Number Uniprot database 

using DIAMOND41 v0.2.1 with the blastx command and a minimum bitscore cutoff of 50 

(all other parameters set to their default). Because we are primarily investigating EC 

annotation that can be shared across taxa and not specific genes from individual species, 

only the best annotation per read was recorded. The full Uniprot-TrEMBL database was 

created by downloading the database on March 6th, 2018 (36.8 billion amino acids in 109 

million sequences). The narrower Uniprot-EC database was created by searching for ec:* 

and downloading all matching hits on March 6th, 2018 (5.8 billion amino acids in 14.9 

million sequences). The script required to process the raw RNAseq files, generate the 

database, annotate the reads, and extract the taxonomic Uniprot identifiers is provided as 

Supplemental File 2. The resulting raw sequencing files contained 41.8-54.4 million reads, 

of which 72.5-87.7% remained in the dataset after quality and rRNA filtering. In total, 

32.8-47.7 million reads per sample were submitted for annotation, resulting in 5.1-9.8 

million reads being annotated per sample (Supplemental Table 5; Supplemental Figures 

10-11).
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The read counts were aggregated per EC number, and these EC numbers were used as a 

proxy of the functional profile in this study. When the Uniprot entry that provided the 

annotation of a read maintained multiple EC numbers, the read was assigned equally to each 

EC number (<5% of all annotations maintained multiple EC designations). The rarefaction 

curves showed that the richness of EC numbers saturated within the library’s sequencing 

depth (Supplemental Figure 12). For normalization, the count data was treated 

compositionally in that the abundance of a specific EC number was divided by the total 

number of reads identified to encode a protein. The total number of protein encoding reads 

was determined by first using 500 k reads from each library to search against the full 

Uniprot-TrEMBL database and then multiplying the fraction annotated with the total 

number of reads submitted to the Uniprot-EC database (Supplemental Table 5; Supplemental 

Figure 13).

MRT-Diversity Model Construction

i MRT-Diversity Model Approach, Assumptions, and Limitations—In the MRT-

diversity model, Monod-type bacterial growth mathematics42 were employed dynamically 

to approximate the linkage between the MRT and community composition in the 

experimental reactor (Figure 1.a). Monod-kinetics use the μmax, be, substrate affinity (Ks), 

and yield (Y) to describe the growth of an organism’s biomass (X) on a given substrate (S). 

The approach presented here utilizes these parameters in a novel manner by exploring the 

range of their combined values (an approximation of community diversity) that leads to 

persistence over a MRT gradient.

In our approach, we apply a number of simplifications to typical considerations employed in 

other Monod-growth based dynamic models24 to determine the range of growth parameters 

leading to persistence. Specifically, the wastewater is considered a single substrate (e.g., no 

distinction of carbonaceous or nitrogenous compounds), growth limitations resulting from 

sources other than substrate availability are considered constant (e.g., mass transfer, toxic 

product formation, additional substrates), and competition is allowed only for this single 

substrate. When triggered, assigned flow rates and influent composition are also assumed to 

be temporally stable to remove variability resulting from other independent variables, and 

mixing within the reactors is considered perfect (except during the settle phase). Changes in 

steady-state growth depend only on the maximal gene expression and enzyme kinetics, and 

the availability of the enzyme pool is considered temporally stable thereby neglecting 

evolution. In turn, this stability is assumed to allow instantaneous adjustments of the growth 

rate to the change in the substrate concentrations (i.e., time lags have elapsed).

To capture competition over both substrate-rich and –poor phases, individuals within this 

model are allowed to be distinct in two growth parameters only: μmax and be. Both internal 

(consumption of stored substrate) and external (adverse environmental conditions, cell 

programmed death, and viral attack) decay are considered incorporated in the be 

parameter43; higher order ecological considerations dependent on the consideration of 

additional substrates such as predation and growth on lysis products are excluded from the 

model. The maximum and minimum μmax and be values are bounded by ecological limits, 

and a constraining combination of growth parameters must be satisfied by the range. In 
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summary, the main uncertainties in the model include the appropriateness of restricting the 

analysis to a single substrate, the placement of the constraining growth parameters, the 

uncertain assignment of the ecological constraints, and the exclusion of other contributors to 

diversity such as population oscillation and the time to reach equilibrium44.

ii Role of μmax and be in the MRT-Diversity Model—To conceptualize the 

interaction of the μmax, be, and MRT within the MRT-Diversity model of a SBR, the solution 

for the minimum substrate concentration (S*min) that leads to persistence in a continuously 

stirred tank reactor45 (Supplemental Materials 2) provides a simplified analogy that can be 

written without including differential equations:

Smin
∗ =

(1 + be ∗ MRT)
(μmax − be) ∗ MRT − 1Ks Eq. 1

where all parameters were defined previously. Organisms with the lowest calculated S*min 

values will persist in the reactor because they will outcompete other community members 

for the sole resource. In previous models, a single surviving species would be selected 

because of the hypothesized inability of other organisms to exactly match the μmax, Ks, and 

be combination required for persistence in the reactor45. Notably, we relax this constraint 

and allow multiple organisms to grow on a single substrate. Modelling co-existing 

combinations of growth parameters explores whether we can predict richness and diversity 

values similar to the experimentally observed values over a MRT gradient.

In developing this Monod-kinetics model of multiple organisms for the investigated SBR 

(Figure 1.a), the combination of growth parameters that are allowed at a given MRT is 

simply given by the maximum and minimum μmax and be values that persist in the reactor 

(Figure 1.b). Varying be influences the range of μmax values leading to persistence in the 

reactor more than Ks (Supplemental Figure 14) because be represents an additional 

component other than resource capture, i.e., survival during low or no production. Ks was 

therefore held constant to reduce model complexity. The line of growth parameter 

combinations that results in persistence (and determined by the equations detailed below) is 

required to fall within a roughly set ecological range and to pass through constraining 

growth parameters (μmax,constrain and be,constrain; values that are initially assumed to remain 

unchanged between reactors, arbitrarily set to the center of the range, and explored further in 

Supplemental Figure 15). To establish the permissible ecological values of be, the extremes 

of previously reported observations (from ~0.02 47,48 to ~0.2 d-1 49) were used as 

approximate boundaries (be,eco; 0.02 to 0.2 d-1), and an average value (0.11 d-1) was selected 

as the be,contrain (Table 1). The μmax,eco boundaries (0.2 to 9.8 d-1) were set to exceed the 

range of values reported for a previous MRT gradient50, and an average value of 5 d-1 was 

selected as the μmax,contrain (Table 1). The model was found to be rather insensitive to the 

selection of these constraining points (Supplemental Figure 15).

iii SBR Differential Equations—The combination of growth parameter values 

resulting in persistence (i.e., non-zero steady-state concentrations) across the ecological 
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range were determined with the following system of differential equations that describes the 

flow, biomass, and substrate concentrations within the SBR (Figure 1.a):

dV
dt = Qin − Qclari f ied drain − Qmixed drain Eq. 2

dXi
dt = −Xi(t) ∗ Qmixed drain/V(t) +

μmax, i ∗ S(t)
Ks + S(t) − be, i ∗ Xi(t)

n
i = 1 Eq. 3

dS
dt = Sin ∗

Qin
V(t) − (Qclari f ied drain + Qmixed drain) ∗ S(t)/V(t) − ∑i = 1

n μmax, i ∗ S(t)
Ks + S(t)

∗
Xi(t)

Y

Eq. 4

where the flowrates are triggered during their respective cycles (and are zero otherwise); the 

i subscript indicates parameters and biomass for the ith combination of growth parameters 

(ranging from 1 to n) that were modelled simultaneously; and all other parameters are 

defined in Table 1 and further described in Supplemental File 3. To ensure flow balance 

across the SBR cycle (Figure 1.a), the Qclarified drain is calculated to offset the Qin and 

Qmixed drain (outflow of suspended biomass):

Qclari f ied drain =
Qin ∗ tin − Qmixed drain ∗ tmixed drain

tclari f ied drain
Eq. 5

where all parameters are defined in Table 1. Notably, the MRT is determined as the full 

volume of the reactor divided by the total volume of suspended biomass removed 

(Qmixed drain*tmixed drain) per six cycles (one day).

An iterative approach was used to calculate the μmax values resulting in persistence for nine 

be values distributed across the ecological range. A full solution line was then fit to these 

nine points (Figure 1.b). This solution line was found to depend only on those parameters 

directly influencing μmax, be, and MRT and was insensitive to changes in other global 

parameters such as the Sin, Y, and Ks. All differential equations mentioned in this study were 

analyzed using deSolve51 v1.21, and all calculations were performed in R v3.5.1 

(Supplemental File 3).

iv MRT-Diversity Model Alpha Diversity Calculation—After determining the 

solution (Figure 1.b), the length of the line representing all combinations of μmax and be 

leading to survival within the reactor was then calculated:
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Growth Parameter Solution Length

=
μmax,max − μmax,min

μmax, eco, max − μmax, eco, min

2
+

be, max − be, min
be, eco, max − be, eco, min

∗ Scaling Factor
2

Eq. 6

where the Scaling Factor is set to 0.25 to represent a case when the μmax range contributes 

more to the length than the be (emphasizing the fact that be serves more to allow the 

coexistence of different μmax values rather than contribute to diversity directly; see 

Supplemental File 3). The growth parameter solution length is utilized as a proxy for the 

richness of a community; this length will most likely be an underestimate of true richness as 

a result of binning organisms (or ESVs when comparing to 16S data) that display the 

identical combination of growth parameters. The Shannon diversity index was determined 

by numerically solving differential equations for the steady-state biomasses (Xi(steady-

state)) when considering the number of distinct combinations of growth parameters within 

the community to be the length of the range multiplied by a constant value (n = 50; 

discretionarily set to achieve an integer value representative of community size and a timely 

computation of the differential equations). The instantaneous substrate utilization rate (ktheo) 

was calculated as the maximum substrate utilization rate determined at the beginning of one 

cycle.

Results and Discussion

Observed Taxonomic Richness and Diversity Increases with MRT

The ESV richness increases monotonically across the MRT gradient for the active 

community members, i.e., the 16S rRNA (Spearman rank correlation r = 0.98 and 0.89 for 

TP1 and TP2, respectively), but displays a lower correlation to a monotonic trend for the 

present community members, i.e., the 16S rDNA (r = 0.81 and 0.77 for TP1 and TP2, 

respectively)(Figure 2.a & b). Additionally, the abundance weighted diversity metric, the 

Shannon diversity index, shows a decelerating increase in the rRNA transcripts which levels 

off above 5.1. Overall, the observed increase in the Shannon diversity value between 3 to 10 

d (i.e., a mean±s.d. of 4.6±0.27 to 5.3±0.20, respectively) agrees with a previous study 

investigating lab-scale synthetic wastewater-treating membrane bioreactors (MBRs)52. 

Other studies utilizing synthetic wastewater indicated no substantial difference between the 

community diversity metrics at ~2 and 10 d MRT in a MBR system6,7, or a decrease in 

diversity from 3 to 8 d MRT in a SBR system53. These studies also employed other 

sequencing techniques such as denaturing gel gradient electrophoresis7 and terminal 

restriction length polymorphism analysis53 that can affect the exact quantified values, but 

are not expected to affect the reported trends of stable or decreasing diversity metrics. By 

contrast, investigations of full-scale WWTPs reported a comparable increase in diversity 

metrics at longer MRT4,5,54, suggesting that real wastewater is required to consistently 

display a direct MRT-diversity relationship as also observed here.
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Of the fifteen highlighted orders (Figure 2.c & d), six (Burkholderiales, Rhodocyclales, 

Myxococcales, Sphingobacteriales, Rhodobacteriales, and Pseudomonadales) were 

previously demonstrated to be commonly shared by a wide variety of activated sludge55,56. 

Across a set of 13 Danish WWTPs, genera of the Thiotrichales order were abundantly 

observed in only two WWTPs, highlighting the potential transient nature of this population 

in WWTPs56. At both time-points, the relative 16S rRNA transcript abundance of 

Burkholderiales decreases by nearly a factor of two with increasing MRT (from 41.3±0.30% 

to 19.6±0.23% and 37.5±0.60% to 21.1±0.15% of the community for TP1 and TP2, 

respectively) consistent with a previous study4, whereas Rhodocyclales (from 21.2±0.44% 

to 41.3±0.20% and 12.3±0.21% to 19.6±0.59%) and Myxococcales (from 0.11±0.30% to 

12.2±0.38% and 0.14±0.01% to 5.7±0.12%) show increasing abundances. Additionally, a 

low abundance subpopulation capable of oxidizing ammonia to nitrate, the 

Nitrosomonadales, established at longer MRT when nitrification was noted28 and 

expected57.

The relative distribution of the orders are maintained in both the TP2 16S rRNA and rDNA 

profiles (Spearman r for the top 50 orders of 0.90, 0.88, 0.80, 0.74, 0.72, and 0.60 for 1, 3, 5, 

7, 10, 15 d MRT, respectively). However, the profile in TP1 was substantially more variable 

(r = 0.27, 0.33, 0.47, 0.47, 0.38, and 0.25, respectively). This divergence is attributed to the 

detection of unique orders (Caldilineales, Lactobacillales, Micrococcales) and to the over-

abundance of members within the Thiotrichales order in the TP1 rDNA profile (Figure 2.c). 

This over-abundance suggests that the filamentous Thiotrichales in TP1 causes a negative 

selection event in those reactors in which the most dominant organism by biomass (rDNA) is 

not the most active or productive (rRNA)58. This more variable signal also results in the 

Nitrosomonadales order displaying a 10- to 100-fold lower rDNA than rRNA signal (Figure 

2.c and d), obscuring the ability to detect the known MRT-dependent emergence of this 

organism and its causal relationship to nitrification59. Overall, the 16S results suggest that 

the expression of 16S rRNA is more reflective of activity than the detection of an organism 

(16S rDNA) in the activated sludge experiments, supporting previous findings in surveys of 

other aerobic systems60.

MRT is a Driver of Modeled Taxonomic Richness and Diversity

In the constructed MRT-diversity model, increasing the MRT expands the range of 

combinations of μmax and be values that lead to persistence (Figure 1.b; Supplemental Table 

6). Strikingly, the increase in the range of growth parameters (Figure 3.a) strongly correlates 

with the 16S rRNA observed richness (Figure 2.a and b) with r-values of 0.98 and 0.89 for 

TP1 and TP2, respectively (Figure 3.a inset). Substantially reducing the community 

complexity into parameters that describe resource capture and represent survival during low 

production (μmax and be, respectively; components of the Competition-Stress-Ruderal 

continuum61,62) recaptures the trend of increasing richness across the MRT range. 

Alternatively, when varying parameters describing resource capture alone (μmax and Ks; 

components of the r/k-specialist theory63), the resulting range of growth parameter 

combinations is lower because the influence of variations in both μmax and Ks diminishes as 

the substrate concentration approaches zero (Supplemental Figure 14). Therefore, employing 
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a variable parameter that is independent of the substrate concentration (i.e., be) results in a 

higher range of growth parameters leading to persistence.

Although a range of growth parameters will persist (Figure 1.b), the organisms they 

represent will be present at various abundances at steady-state (Xi in Figure 1.c). The 

Shannon diversity for the SBR shows a decelerating increase with MRT (Figure 3.b), 

matching the 16S rRNA observed data (r = 0.97 and 0.74 for TP1 and TP2, respectively 

(Figure 3.b inset)). An underlying assumption in this comparison is that the ratio of the 

biomass resulting from a given combination of growth parameters to the number of 

representative rRNA transcripts is constant; however, this ratio varies even at the gene copy 

per genome level64. Therefore, the general trend of the curve is informative of whether the 

MRT influences the diversity, but the magnitude of the shifts would be substantially affected 

by this rRNA-to-biomass ratio.

The substrate consumption rate of the entire activated sludge community is often monitored 

through respirogram bulk tests (i.e., biomass normalized maximal oxygen uptake rate (OUR) 

analyses)65 and has been previously reported to slow with increasing MRT50,66, suggesting 

an adaptation of the community. Our model allows predicting the instantaneous substrate 

utilization rate (ktheo), and the previously published slowing trend is not observed from the 

initial default parameters (modelled ktheo of 5.0 and 5.8 d-1 at 1 and 15 d, respectively). This 

disconnect likely stems from underlying assumptions of our model, most notably fixing 

constraining central growth parameters (μmax,constrain and be,constrain). However, when using 

be,ecomax as be,constrain instead, the decreasing trend in the previously reported empirical 

values is successfully mirrored (ktheo of 4.8 and 4.1 d-1 at 1 and 15 d, respectively) while the 

diversity profiles are conserved. Therefore, ambiguity remains regarding the accurate 

placement of these controlling parameters as well as the ecological range parameter values.

Overall, these observed and modelled results complement a previous study monitoring an 

activated sludge reactor for 313 days in a 30, 12, 3, 30 d MRT disturbance cycle, in which an 

increased diversity was noted for the higher MRT values4,67. In that study, two mechanisms 

were proposed that contribute to the higher richness and diversity: decreases in unconsumed 

resources (analogous to decreases in the S*min in Eq. 1 or an increase in the length of the 

starvation phase in the SBR) and increases in niche space (represented by the range of 

growth parameters and assumed to represent the richness in the MRT-diversity model). Our 

model uses the MRT and growth parameters to represent these two mechanisms in separate 

equations and predicts that the richness increases as the availability of unconsumed 

resources decreases across the observed MRT range (Figure 3). Notably, the MRT-richness 

profile can display a non-monotonic trend at higher MRT or by placing the constraining 

growth parameters (μmax,constrain or be,constrain) close to the ecological limits. By contrast, the 

availability of unconsumed resources will consistently decrease with increasing MRT. 

Notably, observing a non-monotonic MRT-richness relationship would suggest that niche 

space contributes more to diversity. In future studies, the potential for this non-monotonic 

profile should be tested by establishing reactors exceeding the maximum MRT observed 

here (Figure 2.a and b). Additionally, uncovering a transition from a monotonic to non-

monotonic MRT-richness relationship would assist in testing the underlying assumptions of 
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the model and more accurately estimating the ecological ranges and constraining growth 

parameters.

Observed Functional Richness, but not Diversity, Increases with MRT

With increasing MRT, conceptually either an organism absent at lower MRT may occupy the 

additional growth parameter space or a shared microorganism across MRT expresses 

different functional enzymes. To test for shifts in the functional profile, the 

metatranscriptomes of the experimental communities were sequenced, annotated as EC 

numbers, and analyzed using alpha diversity indicators of the number of unique (richness) 

and evenness of the relative abundance (Shannon diversity index) of the EC sub-subclasses 

and numbers (Figure 4). Similar to what was noted in a previous study, the 16S rRNA 

taxonomic and EC number richness of both time-points display a strong correlation (r = 0.98 

and 0.97 for the TP1 and TP2 samples, respectively)12 and a nearly monotonic increase with 

MRT in richness (Figure 2.a and b; Figure 4). This relationship between the taxonomic and 

functional richness is not as consistently strong with the 16S rDNA (r = 0.81 and 0.94, 

respectively). These results again highlight that a measure more reflective of current activity 

within the cell (16S rRNA) links better with the overall functional profile (mRNA) than a 

survey of presence alone (16S rDNA). When considering the relative abundances of a given 

EC sub-subclass or number, the Shannon diversity displays a non-monotonic profile, 

contrasting the taxonomic profiles and the EC sub-subclass or number richness. This 

disconnect between taxonomic and functional diversity has been previously demonstrated in 

model wastewater reactors13, suggesting that this result represents a true signal beyond 

simple limitations with the 16S rRNA measure (e.g., abundance not always correlating with 

growth rate, inter-species differences in copy numbers per cell68, steep ecological gradients 

across the SBR cycle). However, the disconnect between the functional richness and 

Shannon diversity indicates that although the quantity of EC sub-subclasses or numbers 

increases across the gradient, specific categories increase in dominance at longer MRTs, 

offsetting the increased richness (Figure 4).

The Relative Abundance Shifts of “Rare” Enzyme Classes Drive the Functional Diversity 
Profile

Several overrepresented EC sub-subclasses in terms of observed abundance (Figure 5.a), 

e.g., the 2.7.7 nucleotidyltransferase (containing 2.7.7.6 RNA-polymerase, RpoB) and 5.99.1 

other-isomerase (containing 5.99.1.2 DNA topoisomerase) EC sub-subclass, decrease in 

their fractional share of the metatranscriptome as the MRT increases (Figure 5.b). 

Simultaneously, the fractional share of sub-subclasses that include oxidoreductases and 

nitrogen-processing related enzymes that are linked to the emergence of nitrification over the 

MRT gradient (e.g., nitrogenous oxidoreductase with [1.7.2] and without [1.7.99] 

cytochrome) increase (Figure 5.a and b). The over-abundance of nitrogen metabolism-

related gene transcripts has been previously noted in activated sludge even when nitrifiers 

are a minor fraction of the community69. Notably, these EC sub-subclasses and associated 

numbers that markedly increase in abundance over the MRT induced the non-monotonic 

functional diversity profile, indicating that substantially different abundances of mRNAs 

encoding for specific enzymes are likely required to achieve those growth parameters 

resulting in persistence. The discrepancy between the non-monotonic functional diversity 
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profile of all EC numbers and the monotonic taxonomic diversity profile for a single targeted 

transcript (e.g., 16S-rRNA) results from enzymes displaying additional properties70 such as 

specific substrates affinities, product turnover rates71, and protein-to-transcript ratios72,73 

that affect their relative fractional abundances.

To compare the observed diversities within each EC sub-subclass (similar to the 16S-rRNA 

analysis), specific taxonomic richness and diversity values were calculated based on the 

putative genus-level organism-origin annotation that each mRNA read is assigned (Figure 

5.c and d, respectively). Focusing on the aforementioned 2.7.7 and 1.7.99 sub-subclasses to 

highlight categories demonstrated to be common and rare, respectively (Figure 5.c), the 

diversity profile of the common EC sub-subclass 2.7.7 displays a positive relationship with 

that of the 16S rRNA (Figure 2; r = 0.89 and 0.59 for TP1 and TP2 Shannon indices, 

respectively). In contrast, a divergent profile is seen for the taxonomic diversity of the rare 

1.7.99 sub-subclass (r = -0.65 and -0.76 for TP1 and TP2, respectively), indicating that 

select organisms dominate the origin of the reads within this category at higher MRTs. 

Notably, reads from the nitrifying Nitrospira74 dominate the 1.7.99 sub-subclass. The 

nitrification rate intensifies across the MRT gradient, suggesting that Nitrospira expressed 

the proper bulk-growth parameters to persist and thrive within the community. The greater 

share of the overall reads transcribed resulting from a single, nitrification-related organism 

contributed to the noted decrease in functional diversity of the overall community (Figure 4).

When further binning reads into Domain-level taxonomic origin, a substantial fraction of 

annotations originating from Eukaryotic organisms (Figure 5.e) were noted for certain EC 

sub-subclasses increasing in abundance over the MRT gradient (Figure 5.a). In activated 

sludge, increasing MRT over the studied range have been reported to promote a higher 

abundance of Protozoa75, organisms that are overlooked in bacterial-targeted taxonomic 

surveys of WWTPs. This signal in the mRNA data could confound the previous comparison 

between the taxonomic and functional diversity metrics. However, when reanalyzing the 

functional diversity metrics (Figure 4) for the Bacterial portion (Eukaryotic filtered), a 

similar profile is obtained (Supplemental Figure 19), supporting the detection of a true 

distinction between the taxonomic composition and the functional profile.

Conclusions

As demonstrated experimentally, increasing the MRT positively affects the taxonomic 

richness and diversity as well as functional richness of the monitored activated sludge 

community. To conceptualize these findings, a naïve model was constructed that utilized 

Monod-kinetics in a novel manner by considering wastewater as a single substrate and the 

community as a collection of growth parameter combinations. Combinations of μmax and be 

values were selected to represent the two strategies of efficient resource capture and survival 

during low production, respectively. This MRT-diversity model predicted that the range of 

μmax and be values expands with increasing MRT for the studied system, suggesting a new, 

kinetic parameter-driven metric that correlates strikingly well with the observed taxonomic 

profile and the functional richness across the MRT gradient. For a new community member 

to occupy these opened growth parameter combinations and thereby increase the taxonomic 

richness, previously unobserved EC numbers are likely required because of the noted 
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increases in functional richness. In contrast to the taxonomic abundance-weighted diversity, 

the functional diversity displayed a non-monotonic trend over the MRT range. Whereas 

more EC sub-subclasses and numbers are detected at higher MRTs, their fractional share of 

the overall activity of the community varies depending on the expressed function. For 

example, rare sub-subclasses related to nitrification substantially increase in dominance at 

longer MRTs in this system. Although the complexity of the relationship between EC 

numbers is not successfully captured, the simplification of the community into combinations 

of μmax and be values appears to be a useful approximation for predicting changes in 

taxonomic richness and diversity as well as functional richness over a MRT gradient in this 

system. Because this study is the first to employ Monod-kinetics in this manner, future work 

should determine whether the approach and assumptions introduced here are valid when 

used to describe other systems, explore the concepts of the constraining growth-parameter 

combination and ecological boundary values, and subdivide influent resources into 

individual substrate types (e.g., nitrogen-containing compounds).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(a) Schematic diagram of the SBR used when running the model. All parameters are detailed 

in Table 1. (b) Iteratively solved 9 point persistence curves for the maximum growth rate 

(µmax) and endogenous decay (be) selection range at 1, 3, 5, 7, 10, and 15 d MRT. 

Constraints are placed on the range of maximal growth rates (μmax eco; 0.2 to 9.8 d-1) and 

endogenous decay constants (be eco; 0.02 to 0.2 d-1), defining the ecological space available. 

The model uses controlling growth parameters (µmax constrain, be constrain) of 5 and 0.11 d-1, 

respectively. (c) Example of the steady-state output for the volume, substrate concentration, 

and two biomasses for the 1 d MRT.
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Figure 2. 
(a,b) The calculated diversity metrics for the rarified B2-primer amplified 16S rRNA (black) 

and rDNA (red) data. (c,d) The abundance data distributed into taxonomic orders; the top 10 

of the sums across each time-point and source (cDNA or gDNA) were assigned a color, 

resulting in 15 orders being represented overall. A replicate analysis is presented for the 

alternate B1 primer in Supplemental Figure 16.
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Figure 3. 
Alpha diversity results from the MRT-diversity model explaining the relationship between 

the community composition and the MRT. (a) The range of growth parameters, a proxy for 

the richness, with increasing MRT. The inset displays the linear relationship between the 

model predicted and the observed richness data. (b) The calculated Shannon diversity index. 

The number of species types modelled in the Shannon diversity index calculations is set to 

50 times the length of the range of growth parameters. The inset displays the linear 

relationship between the model predicted and the observed Shannon Index data.
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Figure 4. 
The richness (a,c) and Shannon diversity (b,d) values for the reaction-type annotated RNA 

data binned into Enzyme Commission (EC) number (a,b) and sub-subclass (c,d) for TP1 

(solid) and TP2 (dashed) with a fractional abundance cutoff of 10-7. These diversity values 

were calculated for each reactor using the rtk v0.2.5.4 package in R v3.5.1 for (a,c) 10 

bootstrap sub-selections of the annotations or (b,d) the full data. The lines trace the (a,c) 

bootstrap mean or (b,d) calculated value.
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Figure 5. 
Summary of the sub-subclass Enzyme Commission (EC) numbers across the MRT gradient 

averaged between TP1 and TP2 samples that exceed 10,000 normalized reads in at least 1 

reactor (n=99). The heatmaps are organized hierarchically according to a Euclidean distance 

and ward clustering of the scaled EC fraction across the MRT gradient. (a) Total relative 

abundance. (b) The 15/1d MRT abundance log ratio. The within EC sub-subclass taxonomic 

(c) richness and (d) Shannon diversity metrics were calculated based on the Uniport 

identifiers of the organism of origin at the genus level that provided the annotation to the 

reads. (e) The fraction of the total reads that were annotated per EC sub-subclass originating 

from a Eukaryotic sequence in the Uniprot database. Note: the red dashed boxes highlight 

the 2.7.7 and 1.7.99 EC numbers. The full sub-subclass and top 50 EC numbers heatmaps 

for both TP1 and TP2 samples are presented in Supplemental Figure 17 and 18.
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Table 1
Model nomenclature and parameter values

Symbol Parameter Units Value Source Model Sensitivity

μmax Maximum growth rate d-1 - - Modelled Parameter

μmax,eco,min Lowest maximum growth rate allowed d-1 0.2 50 Sensitive*

μmax,eco,max Highest maximum growth rate allowed d-1 9.8 50 Sensitive*

μmax,constrain Constraining growth rate used for 
modelling

d-1 5 Set to range center Sensitive*

be Endogenous decay d-1 - - Modelled Parameter

be,eco,min Lowest endogenous decay rate allowed d-1 0.02 47,48 Sensitive*

be,eco,max Highest endogenous decay rate allowed d-1 0.2 49 Sensitive*

be,constrain Constraining endogenous decay used for 
modelling

d-1 0.11 Set to range center Sensitive*

Ks Half-saturation constant mg/L 50 Typical value Insensitive†

Y Yield mg X/mg S 0.3 Typical value Insensitive

Sin Influent substrate concentration mg/L 250 Typical value Insensitive

S Substrate concentration in the reactor mg/L - - Modelled Parameter

X Biomass concentration mg/L - - Modelled Parameter

Xsettle Settled biomass concentration mg/L - - Modelled Parameter

Vfull Full volume of reactor L 12 Experimental Setup -

Vt Time variable volume of reactor L - - Modelled Parameter

Vmixed drain Mixed volume removed, dependent on 
MRT

L Variable‡ Experimental Setup -

Vclarified drain Clarified volume removed, 4 L - 
Vmixed drain

L Variable‡ Experimental Setup -

tcycle Total cycle time hr 4 Experimental Setup -

treact React time hr 3 Experimental Setup -

tsettle Settle time hr 0.5 Experimental Setup -

tmixed drain Time to drain the mixed volume hr 0.167 Experimental Setup -

tclarified drain Time to drain the clarified volume hr 0.167 Experimental Setup -

tfill Fill time hr 0.333 Experimental Setup -

Qmixed drain Mixed drain flowrate L/hr Vmixed drain/tmixed drain Experimental Setup -

Qclarified drain Clarified drain flowrate L/hr Vclarified drain/tclarified drain Experimental Setup -

Qin Influent flowrate L/hr 12 Experimental Setup -

*
See Supplemental Figure 15

†
See Supplemental Figure 14

‡
See Supplemental Table 1
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