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Cell Fate Decisions in the Wake of
Histone H3 Deposition
Reuben Franklin, Jernej Murn* and Sihem Cheloufi*

Department of Biochemistry, Stem Cell Center, University of California, Riverside, Riverside, CA, United States

An expanding repertoire of histone variants and specialized histone chaperone partners
showcases the versatility of nucleosome assembly during different cellular processes.
Recent research has suggested an integral role of nucleosome assembly pathways in
both maintaining cell identity and influencing cell fate decisions during development
and normal homeostasis. Mutations and altered expression profiles of histones and
corresponding histone chaperone partners are associated with developmental defects
and cancer. Here, we discuss the spatiotemporal deposition mechanisms of the Histone
H3 variants and their influence on mammalian cell fate during development. We focus
on H3 given its profound effect on nucleosome stability and its recently characterized
deposition pathways. We propose that differences in deposition of H3 variants are
largely dependent on the phase of the cell cycle and cellular potency but are also
affected by cellular stress and changes in cell fate. We also discuss the utility of modern
technologies in dissecting the spatiotemporal control of H3 variant deposition, and
how this could shed light on the mechanisms of cell identity maintenance and lineage
commitment. The current knowledge and future studies will help us better understand
how organisms employ nucleosome dynamics in health, disease, and aging. Ultimately,
these pathways can be manipulated to induce cell fate change in a therapeutic setting
depending on the cellular context.

Keywords: chromatin, histone H3, nucleosome diversity, histone chaperone, cell cycle, reprogramming,
development, cellular plasticity

INTRODUCTION

The Nucleosome and the Histone H3 Family
Cell fate decisions are central to development, normal homeostasis, and responding to infections,
injury, and aging. During these processes, stem cells sustain the ability to self-renew and
differentiate. These stem cell properties are tightly controlled by signaling pathways that
orchestrate complex transcriptional and posttranscriptional layers of gene regulation. The
structural foundation of these cell type-specific transcriptional programs is determined by DNA-
protein-RNA complexes within the nuclear space. In 1879, Walther Flemming first described
this complex structure in mitotic salamander cells, terming it “chromatin” from the Greek word
chroma, referring to the color affinity of the intensely stained nuclear content. Almost a century
later, X-ray diffraction patterns of chromatin by Maurice Wilkins, Vittorio Luzzati, and Aaron
Klug suggested a repeating building unit and that histones are involved in packaging DNA
(Luzzati and Nicolaieff, 1959; Wilkins et al., 1959). Indeed, subsequent enzymatic digestion of
chromatin isolated from rat liver cells using DNA nuclease revealed multiples of 200 base pair DNA
fragments (Hewish and Burgoyne, 1973). Electron micrographs of chromatin fibers also revealed
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that these repeating units, known as nucleosomes, were
composed of DNA wrapped around histone molecules
(Kornberg, 1974; Olins and Olins, 1974; Oudet et al., 1975). Two
decades later, Karoline Luger’s structural studies determined
that the core of the nucleosome consists of 147 base pairs of
DNA wrapped around an octamer of histones assembled from a
tetramer of histone H3:H4 dimers that is flanked by two Histone
H2A:H2B dimers (Luger et al., 1997). Since then, nucleosomes
have become known as highly dynamic hubs of DNA-protein-
RNA interactions, that not only allow for cell-type specific
gene regulation, but for higher order chromatin organization
important to many cellular processes.

The histones within the core nucleosome are interchangeable
with different isoforms, identified as histone variants by Franklin
and Zweidler (1977). While the repertoire of histones continues
to expand, the Histone H3 family in particular has been in the
spotlight of chromatin and cellular plasticity research. H3 carries
the majority of well characterized heritable posttranslational
modifications (PTMs) known to date, evolved a centromere
specific histone variant, has a pronounced effect on nucleosome
stability compared to other histones and can act as an oncogene
due to mutations within critical residues subject to PTMs
(Filipescu et al., 2014). Moreover, the current research on H3
shows how profound this integral nucleosome component is to
the regulation of chromatin states and cell identity (Filipescu
et al., 2014; Loppin and Berger, 2020; Martire and Banaszynski,
2020). The histone H3 family is composed of 8 members, H3.1,
H3.2, H3.3, CENPA, H3.4, H3.5, H3.X and H3.Y. While the latter
4 members are poorly characterized, the replicative H3.1/H3.2
variants and the non-replicative H3.3 and CENPA variants have
received much attention.

H3 histone forms differ markedly in their gene structure,
expression profiles, deposition mode and post translational
modifications (Mendiratta et al., 2018; Martire and Banaszynski,
2020). H3.1 and H3.2 are found in multiple copies in the genome.
In dividing cells, they are defined as replicative histones due
to their S-phase specific expression and replication-dependent
deposition, which allows for chromatin assembly in the wake of
DNA synthesis when parental histones are diluted (Figure 1A;
Mendiratta et al., 2018; Grover et al., 2018). The H3.3 variant
differs from the H3.1 and H3.2 by only 5 and 4 amino acids,
respectively. On the other hand, there are two H3.3 genes in
mammals, H3f3a and H3f3b, that encode identical amino acid
sequence but are different in their primary DNA sequence and are
tightly regulated transcriptionally and post-transcriptionally in
different cell types (Muhire et al., 2019). H3.3 genes are expressed
throughout the cell cycle in dividing cells (Figure 1) and are
highly abundant, if not the predominant H3, in non-dividing
cells. Finally, CENPA, the centromere specific H3 variant,
shares less than 51% sequence identity with the replicative
histones and forms a highly compacted nucleosome core that is
wrapped by only 121 base pairs of DNA. It is encoded by one
gene expressed during G2 and mitosis in preparation for new
CENPA incorporation in centromeres (Figure 1B; Jansen et al.,
2007; Martire and Banaszynski, 2020). For recent evolutionary
analysis of H3 variants and their role in development and
disease, readers are referred to (Buschbeck and Hake, 2017;
Loppin and Berger, 2020).

Overall, the positioning, modifications, and histone
composition of nucleosomes can have profound effects on
chromatin accessibility to transcription factors at actively
transcribed (euchromatic) and repressed (heterochromatic)
compartments, whose activity determines cell identity. Indeed,
recent integration of different epigenomic maps, including higher
order chromatin structures, nucleosome positioning, histone
distribution and modifications during early development, and
different cell fate change paradigms, demonstrates the complexity
of spatiotemporal chromatin rearrangements (Eckersley-Maslin
et al., 2018; Pérez-Palacios and Bourc’his, 2018; Fang et al., 2018;
Ishiuchi et al., 2021). However, how nucleosome components
and assembly pathways contribute to this regulation is still
being dissected.

Histone Chaperone Roles in Nucleosome
Dynamics and Beyond
Nucleosomes are diverse and dynamic. They can be
shifted, assembled, or disassembled, and organized into
different chromatin compartments through cooperation
of histone chaperones, chromatin remodelers, and
chromatin modifying factors (Dixon et al., 2012; Struhl
and Segal, 2013). In particular, histone chaperones are
the life partners of the nucleosome’s core histones.
They are involved in escorting histones from their
synthesis, storage, and transport, to histone modification,
deposition, eviction, and recycling in the nucleosome
(Grover et al., 2018).

Originally, the term “molecular chaperone” was used by
Ron Laskey who isolated and characterized the function of
nucleoplasmin as the first histone chaperone using Xenopus
egg extracts (Laskey et al., 1977, 1978). This was the proof of
principle that histone chaperones are involved in nucleosome
assembly by binding directly to histones, neutralizing their
positive charges and preventing non-specific interactions and
aggregates formed with DNA in vitro under physiological
salt concentrations (Dilworth et al., 1987). This seminal
discovery laid the groundwork for our knowledge today
that nucleosome assembly involves a step wise transfer of
H3:H4 and H2A:H2B dimers and a complex network of
histone chaperone partners (Hammond et al., 2017). As a
whole, histone chaperones have no consensus sequences or
structural motifs, making the discovery of novel chaperones more
challenging. They exhibit considerable differences perhaps due
to specialized functions in (1) recognition of distinct histone
variants, (2) dedicated activities in different DNA transactions:
replication, transcription, repair, and recombination, (3) diverse
complex formation in histone dependent or independent
manners and (4) spatiotemporal requirements in different cell-
types.

Histone H3 and its variants especially exhibit a highly
complex and specialized histone chaperone network in addition
to more general chaperone interactions as seen with other
histones (Figure 1). However, studying the interplay between
the different histone chaperone pathways has been challenging
to disentangle in the context of cell fate transitions. Recent
technological advances combining histone labeling, genetic
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FIGURE 1 | A complex histone chaperone network regulates spatiotemporal H3 deposition. The temporal H3 expression and deposition pathways are illustrated
using the cell cycle phases (G1, S, G2, M) as a centerpiece. Three solid dots on the ends indicate continuous cycling. Histones H3.1/2 (blue) are expressed during S
phase, H3.3 (green) is expressed throughout the cell cycle and CENPA is expressed during G2 and mitosis. Histone deposition molecules are color coded: RD
(blue), RI (green), Dual (orange). Recycling of old histones (dark shaded H3 molecules) and deposition of new histones (light shaded H3 molecules) are indicated by
gray and red arrows, respectively. The spatial deposition is illustrated either in the context of heterochromatin or euchromatin compartments, transcription sites or
repetitive elements. (A) CAF-1 trimer deposits new H3.1/2 during S phase. ASF1 and MCM2 cooperate to promote histone recycling to the lagging strand, while
subunits POLE3-POLE4 recycle histones to the leading strand. Early replicating regions occur in euchromatin and are enriched with H3.3 histones, while late
replicating regions occur in heterochromatic regions and are enriched with replicative histone H3.1/2. In the absence of CAF-1, HIRA deposits H3.3 at replication
sites in a gap-filling mechanism. (B) CENPA is deposited in a spatiotemporal manner. HJURP deposits new CENPA at centromeres during late M and early G1
phases. SUPT6 recycles parental CENPA during transcription in late M and early G1 to prevent CENPA eviction at centromeres. HJURP cooperates with MCM2
during S phase to recycle parental CENPA at the centromere. (C) HIRA-mediated H3.3 deposition at a transcriptional unit. Two different HIRA complexes deposit
new and parental H3.3. (D) DAXX-ATRX deposits H3.3 at telomeres, pericentric regions, and repetitive elements. When CENPA is overexpressed, DAXX-ATRX
deposits heterotypic tetramers containing both H3.3 and CENPA at sites of high histone turnover.

engineering, epigenomics, high resolution microscopy, and
structural and biochemical approaches in different contexts
have started to shed light on understanding the role of
nucleosome dynamics in cell fate decisions. In this review, we
focus on H3 deposition pathways in the context of the cell
cycle and how they relate to cell fate transitions during early
development and several culture systems (Figures 2, 3 and
Table 1). The roles of other histone variants, accompanying
chaperones, chromatin remodelers and modifiers in cell fate
transitions are reviewed in recent publications, including
this special issue.

HISTONE H3 DEPOSITION PATHWAYS

Spatiotemporal Regulation of CAF-1,
HIRA and DAXX Pathways
Early work on nucleosome assembly pathways demonstrated a
specificity of histone H3 chaperones to assemble nucleosomes
in a DNA replication dependent (RD) or independent (RI)
manner (Almouzni and Méchali, 1988; Smith and Stillman,
1989; Ray-Gallet et al., 2002). This cell cycle determinant of
histone chaperone pathways is further complicated by the specific
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partnerships of histone chaperones with different variants,
parental “old” histones versus newly synthesized histones
and the deposition coordinates in the genome (Figure 1).
Assembly of newly synthesized histones has been extensively
studied and recent work is beginning to uncover the recycling
mechanisms of old histones (Venkatesh and Workman, 2015;
Serra-Cardona and Zhang, 2018). Moreover, some plasticity
and redundancy across these pathways has been observed,
especially in terms of handing over new histones, recycling old
histones, or when some pathways are absent or compromised
(placeholding/gap filling) (Figures 1A,B) (Dunleavy et al., 2011;
Ray-Gallet et al., 2011; Schneiderman et al., 2012).

The first discovery of a RD histone chaperone was reported
more than three decades ago from human cell extracts by the
purification and characterization of the Chromatin Assembly
Factor complex CAF-1, a trimeric subunit composed of p150,
p60 and Rbbp4 (Smith and Stillman, 1989). To date, CAF-1 is
the only known histone chaperone that loads newly synthesized
H3.1/2:H4 dimers onto DNA in a RD manner (Figure 1A).

It took another decade to discover the Histone H3.3-specific
chaperone HIRA (histone cell cycle regulator). Subsequently,
HIRA was found to also function as a trimeric complex with
UBN1 and CABIN subunits (Lorain et al., 1998; Magnaghi
et al., 1998). The HIRA complex incorporates newly synthesized
H3.3 in a RI manner and was initially associated with histone
deposition at active sites of transcription (Ahmad and Henikoff,
2002; Ray-Gallet et al., 2002; Figure 1C).

Genome wide distribution of H3.3 deposition in mouse
embryonic stem cells (mESCs) led to the discovery of an
additional H3.3-specific histone chaperone death domain
associated protein (DAXX) (Tang et al., 2004; Goldberg et al.,
2010; Lewis et al., 2010). DAXX in complex with the chromatin
remodeler ATRX specializes in the deposition of H3.3 at
repetitive elements, including telomeres, pericentromeric
DNA, and a subset of endogenous retroviral elements
(Goldberg et al., 2010; Lewis et al., 2010; Elsässer et al.,
2015; Hoelper et al., 2017; Figure 1D). Although, the cell
cycle timing of DAXX mediated H3.3 deposition is unclear,
considering that the deposition of newly synthesized CENPA
on centromeres via the Holliday junction recognition protein
(HJURP) histone chaperone occurs in late mitosis/early G1 phase
(Dunleavy et al., 2009; Figure 1B), it is tempting to speculate
that the H3.3 deposition at repetitive elements coincides
with this timing.

During S phase, HJURP mediates parental CENPA recycling
with MCM2, a subunit of the helicase complex, and H3 histones
act as place holders until new CENPA is deposited (Dunleavy
et al., 2011; Zasadziñska et al., 2018; Figure 1B). Notably, CENPA
overexpression leads to heterotypic deposition with H3.3 by
the histone chaperone DAXX, reinforcing the plasticity of the
histone chaperone network (Figure 1D; Arimura et al., 2014;
Lacoste et al., 2014).

The ASF1 Hub
The ASF1 histone chaperone, originally discovered in yeast
(Tyler et al., 1999), serves dual RD and RI nucleosome assembly
pathways as it functions in handing over newly synthesized

H3.1:H4 and H3.3:H4 dimers to CAF-1 and HIRA complexes,
respectively (Grover et al., 2018). In mammals, the ASF1
network is diversified by the emergence of two paralogs,
ASF1A and ASF1B, with preferences for HIRA and CAF-1 p60,
respectively (Tang et al., 2006; Abascal et al., 2013). Interestingly,
recent work by Almouzni’s group demonstrated that ASF1
coordinates with HIRA to distinguish between old and new
histone incorporation during transcription. In this model, ASF1
participates in the HIRA complex to recycle old H3.3, while new
H3.3 is deposited via a UBN1-containing complex (Figure 1C;
Torné et al., 2020).

Depletion of both ASF1 paralogs showed ASF1 is important
for histone recycling during replication. This recycling is
accomplished in partnership with MCM2, a subunit of the
helicase complex. Together, they promote the recycling of
old H3:H4 dimers in a RD manner (Groth et al., 2007;
Huang et al., 2015; Figure 1A). Furthermore, recent evidence
indicates MCM2 promotes symmetric loading of parental
H3:H4 during DNA replication by preventing biased parental
histone loading on the leading strand (Petryk et al., 2018).
Conversely, newly identified histone chaperones POLE3-
POLE4, subunits of the leading strand polymerase POLE,
are proposed to load parental H3:H4 on the leading strand
(Bellelli et al., 2018; Figure 1A). Considering these intriguing
findings, it will be interesting to probe the interplay between
POLE subunits, MCM2, and ASF1 and how leading and
lagging strand deposition is balanced during self-renewal or
differentiation.

Genome wide distribution and high-resolution microscopy
mapping of parental histones in human cells demonstrate
that H3.1 and H3.3 associate with late and early replicating
regions, respectively (Clément et al., 2018; Mendiratta
et al., 2018; Figure 1A). Therefore, it is tempting to
hypothesize that due to its preference for HIRA interaction,
ASF1A could act by recycling H3.3 while ASF1B could
participate in recycling H3.1/2:H4 at the replication fork.
It would therefore be interesting to investigate how ASF1
paralogs could participate in loading parental H3.1/2:H4
and H3.3:H4 dimers depending on their associated
partners, replication sites/timing and leading versus lagging
strand preference.

Another histone chaperone discovered in yeast, Suppressor of
Ty 6 (SPT6) (Kaplan et al., 2003) plays a role in recycling parental
H3:H4 during transcription and ASF1 can fill in the nucleosome
gaps in spt6 yeast mutants (Jeronimo et al., 2019). Interestingly,
yeast has only one form of H3 that is closely related to the
mammalian H3.3 variant (Talbert and Henikoff, 2010). Given
that SPT6 has an important role in transcription elongation (Vos
et al., 2018, 2020), the interplay of ASF1 and SPT6 in histone
deposition and recycling during transcription may yield further
insights into nucleosome dynamics during this process. While
commonly cited as a H3 histone chaperone, as shown in yeast,
it remains to be concretely determined if SPT6 functions in
H3:H4 deposition in mammalian cells. However, in support of
this hypothesis, a recent study proposes a role for the histone
chaperone SPT6 as a recycling factor for CENPA, with evidence
in Drosophila and HeLa cells (Bobkov et al., 2020; Figure 1B).
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Altogether the recent advances in labeling and mapping
spatiotemporal distribution of old and new histones, structural
mechanisms of histone-chaperone recognition, how they
interact directly with DNA templates, and mapping nucleosome
positions during different DNA processes have deepened our
understanding on how the cell uses nucleosome assembly
to maintain or reprogram chromatin organization. While
mechanistic studies are largely performed in vitro or in immortal
human or mouse cell lines, this knowledge could provide the
fundamental mechanisms at play for stem cell maintenance and
lineage commitment during development and tissue homeostasis
(see sections below).

H3 DEPOSITION IN DIFFERENT
PHYSIOLOGICAL SETTINGS

How the nucleosome assembly pathways discussed above
(Figure 1) modulate cell fate decisions and cell identity
maintenance puzzled scientists for decades. The recent
breakthroughs in the field coincide with a burst of technological
advances and their relevant applications in studying culture
models and developmental processes (Figure 2). A wide
spectrum of phenotypes has been observed upon manipulation
of RD and RI nucleosome assembly pathways that depend
on spatiotemporal histone requirements, with RD pathways
arguably more challenging to study due to their requirement
in cellular proliferation and subsequent lethality. Here, we will
describe some examples and discuss possible mechanisms along
with future implications.

CULTURE MODELS

Culture models to study cellular differentiation and
reprogramming are powerful platforms to explore the molecular
mechanisms orchestrated by the histone variants-histone
chaperone network because they provide an opportunity to
study cell autonomous effects within specific lineages, with
some systems being more homogenous compared to others
and are compatible with biochemical approaches (Figure 2A).
Here we describe stem cell-based systems that mimic normal
development and that have proved useful in understanding H3
deposition pathways.

Embryonic Stem Cells
ESCs are the earliest embryonic cells that can be captured in vitro
from the blastocyst and propagated without compromising
their pluripotent potential (Figure 2A; Evans and Kaufman,
1981; Martin, 1981). A change in culture conditions and/or
intrinsic factors can coax ESCs to interchange their potency
levels and/or commit to different lineages (Figure 2A). For
example, ESCs can be maintained in culture in various states of
pluripotency reflecting naïve (ground) or primed developmental
states. Human ESCs (hESCs) derived from blastocysts reflect an
even later pluripotency state during mouse development akin to

the epiblast stem cells (epiSCs) that can be derived from the post
implantation mouse embryo (Figure 2A).

In contrast to the developmental arrests that have been
observed in CAF-1 depleted embryos (Houlard et al., 2006), it
has been more amenable to probe the function of H3 deposition
pathways particularly in mESCs without compromising cellular
viability. The loss of the Chaf1a and Chaf1b subunits of
the CAF-1 complex in ESCs results in their reprogramming
to an earlier embryonic cell state mimicking the two-cell
stage of embryonic development (2C-like cells) (Ishiuchi
et al., 2015, 2021). The conversion of ESCs to 2C-like
cells is dependent on cell progression through S-phase and
on the chromatin assembly activity of CAF-1, displaying
similar molecular features to spontaneously derived 2C-like
cells and 2-cell stage embryos. Although, the recent finding
that H3.3 deposition resumes non-canonical distribution upon
CAF-1 ablation in ESCs suggests that this 2C-like cell fate
induction is in fact reflecting a transient or even earlier
embryonic cell state (Ishiuchi et al., 2021; Table 1). It will
be interesting to compare additional epigenetic features and
transcriptomes during this developmental window in the CAF-
1 mutants.

This induction of a permissive chromatin state upon
CAF-1 loss in ESCs is consistent with the initial observations
where CAF-1 loss in ESCs affects heterochromatin features
specific to stem cells (Houlard et al., 2006). Indeed,
recent work demonstrated that CAF-1 loss impairs ESC
differentiation in an embryoid body assay (Cheng et al., 2019;
Figure 2A). Interestingly, this defect was linked to failure of
establishing H3K27me3 marks at pluripotency promoters upon
differentiation through CAF-1-PCNA and CAF-1-Polycomb
(PRC2) recruitment to the replication fork. In this context,
Cheng et al. (2019) detected a reduced association of H3.1 and
H3K27me3 with replicating chromatin. It would be interesting
to test how H3.1/H3.3 ratio affects H3K27me3 establishment
and how parental histone inheritance is influenced during this
process, potentially conferring a resistance of CAF-1 ESCs to
differentiation.

Parental and new histone distribution was examined at a
single cell level using a Wnt3a-induced asymmetric ESC division
model, demonstrating there is differential distribution of old and
new canonical histones in the daughter cells (Ma et al., 2020).
This suggests a specialized action of histone chaperones during
asymmetric division. Additionally, in light of the new implication
that MCM2 promotes symmetric cell division through RD
histone recycling to the lagging strand (Bellelli et al., 2018; Petryk
et al., 2018), possibly with ASF1 as seen in HeLa cells (Bellelli
et al., 2018; Petryk et al., 2018; Figure 1A), it will be interesting
to examine how perturbation of different histone chaperones in
ESC self-renewal and differentiation affects histone distribution
during replication. Of note, the involvement of CAF-1 and
histone mutations has been previously proposed to play a role
in asymmetric histone deposition during C. elegans development
(Nakano et al., 2011). Whether similar mechanisms are conserved
in mammals remains to be tested.

Contrary to the loss of CAF-1 in ESCs, perturbation of RI
nucleosome assembly in ESCs does not alter gene expression
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profiles nor compromise ESC identity under self-renewal
conditions. However, H3.3 together with its partners DAXX and
ATRX are involved in silencing repetitive elements in ESCs,
including a subset of retroelements and telomeres (Goldberg
et al., 2010; Lewis et al., 2010; Elsässer et al., 2015; Hoelper et al.,
2017; Figure 1D). Remarkably, this effect is more pronounced
in more naïve or hypomethylated ESC cultures reflecting an
important role in early preimplantation development (He et al.,
2015). Whether this effect is purely a function in safeguarding
genome stability or fine tuning transcriptional programs co-
opted by repetitive elements remains to be explored (Macfarlan
et al., 2012). The physiological effect of RI nucleosome assembly
pathway depletion is exacerbated upon differentiation of ESCs
where lineage specific gene expression programs are perturbed.

Interestingly the loss of ASF1A, HIRA and H3.3 affect Histone
H3 K27 methylation (H3K27me3) specifically at developmentally
regulated genes (Banaszynski et al., 2013; Gehre et al., 2020;
Gao et al., 2018; Figure 2A and Table 1). HIRA dependent
deposition of H3.3 is proposed to establish bivalent marks in
ESCs at developmentally regulated genes while ASF1A dependent
disassembly of nucleosomes facilitates resolution of bivalent
domains upon ESC differentiation. H3.3 loss in ESCs also reduces
enhancer H3 acetylation marks including H3K27ac, H3K18ac,
H3K64ac, and H3K122ac (Martire et al., 2019). H3K27ac, in
particular, a mark known to coincide with active enhancers
is stimulated by the phosphorylation of the serine 31 residue
on the H3.3 tail in mESCs. H3.3 serine 31 (H3.3S31) is one
of the amino acids unique to H3.3. Supplementing H3.3 KO
mESCs with replicative histone H3.2, bearing an alanine 31
residue, cannot rescue the enhancer acetylation defect despite
being deposited at these sites. Moreover, the loss of H3.3 in
ESCs does not affect chromatin accessibility or the recruitment of
p300 histone acetyltransferase at enhancer elements suggesting
that the H3.3S31 residue is uniquely required downstream of
HIRA mediated deposition for subsequent chromatin signaling
pathways. Consistent with the loss of H3K27me3 or DNA
methylation in ESCs, the reduced acetylation of the H3.3
KO is tolerated by ESCs under self-renewing conditions with
no dramatic effect on gene expression (Martire et al., 2019).
However, their differentiation triggers defects in chromatin
accessibility and establishing active enhancer elements and
subsequent activation of differentiation genes.

A recent systematic characterization of all four H3.3 specific
residues in a Xenopus gastrulation model reinforces the
essential role of H3.3S31 specific phosphorylation during this
developmental process (Sitbon et al., 2020). Strikingly, the
replacement of all three H3.3 residues that are required for
specific RI chaperone interactions with their H3.2 replicative
counterparts was compatible with normal gastrulation. It will be
interesting to perform similar genetic analyses in the context of
ESC differentiation.

Recent work interrogated the function of H3.3 lysine residues
(K4 and K36) in ESCs (Gehre et al., 2020). Alanine substitutions
of H3.3K4 and H3.3K36 did not compromise ESC self-renewal
but perturbed lineage specific transcriptional programs and
differentiation, albeit with varying degrees. H3.3K4, but not
H3.3K36, mutant ESCs exhibited severe defects and resulted

in reduced H3.3 deposition at regulatory elements, especially
promoters, independently of the lysine charge. While wild type
replicative histones share these same residues with H3.3 and are
able to compensate and maintain normal nucleosome density
around transcription start sites (TSS), this is not sufficient to
maintain the correct chromatin state. This observation reinforces
the importance of H3.3 specific residues. Interestingly, H3.3K4
mutation did not perturb H3.3 histone chaperone expression
or binding but diminished the interactions with chromatin
remodelers and increased RNA polymerase activity. The authors
thus propose a role for K4 in maintaining H3.3 at regulatory
elements through proper recruitment of remodelers and accurate
transcriptional activity. This study highlights how histone
chaperones act in concert with remodelers and accompanying
PTM signals to regulate nucleosome dynamics.

Taken together, these H3.3 studies in ESCs and model
organisms justify some of the needs to incorporate H3.3 at
regulatory elements and highlight the relevance of unique and
common H3 residues in regulating nucleosome dynamics and
setting specialized chromatin environments post nucleosome
assembly (Figure 2 and Table 1).

Considering these findings, it is tempting to speculate
that during mESC differentiation, RD assembly pathways
play a passive role in diluting ESC identity and RI pathways
play an active role in establishing new identity. However,
discrepancies in the effect of manipulating these pathways
between hESCs compared to mESCs still need to be resolved.
For example, the loss of both HIRA and ASF1 compromise
hESCs self-renewal (Gonzalez-Muñoz et al., 2014; Zhu et al.,
2017). HIRA loss in hESCs results in downregulation of
pluripotency factors, activation of various lineage markers
and differentiation. Moreover, in hESCs, the HIRA complex
is proposed to associate with a stem cell specific subunit
PROHIBITIN that stabilizes distinct complexes and cooperates
with HIRA to regulate the metabolic circuitry in hESCs
through H3.3 deposition. Considering that hESCs resemble
mouse epiSCs (Figure 2A), which reflect a more primed
pluripotent cell state, it is possible that phenotypes similar
to mESCs could arise when examined in more naïve
hESCs (Brumbaugh et al., 2019). It would be exciting to
probe histone exchange dynamics and histone chaperone
networks during interconversion of these pluripotency states
to build on the current study documenting the changes in
histone modifications to shape chromatin environments
(De Clerck et al., 2019).

Reprogramming and Transdifferentiation
Reprogramming and transdifferentiation platforms have
proved valuable in revealing unprecedented physiological
roles of nucleosome assembly pathways in somatic cells
(Figure 2A). For example, probing the function of CAF-1 in
the context of transcription factor mediated reprogramming
of mouse embryonic fibroblasts to induced pluripotent stem
cells (iPSCs) implicated its role in maintaining somatic cell
identity. In this system, CAF-1 is proposed to act in part
through its nucleosome assembly function by restricting access
to pluripotency transcription factors (Cheloufi et al., 2015;
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Cheloufi and Hochedlinger, 2017). Supporting the role of CAF-1
in reprogramming, CAF-1 depletion in mESCs facilitates the
generation of cloned blastocysts using somatic cell nuclear
transfer technology and transdifferentiation between different
lineages (Cheloufi et al., 2015; Ishiuchi et al., 2015). Contrary
to CAF-1, ASF1A loss inhibits reprogramming of human
somatic cells to iPSCs (Gonzalez-Muñoz et al., 2014). In this
system, ASF1A co-expression with pluripotent transcription
factor OCT4 is sufficient to reprogram human adult dermal
fibroblasts when exposed to the oocyte-specific paracrine growth
factor GDF9. In this context, ASF1A is proposed to work by
promoting acetylation of histone H3K56 and cooperating with
OCT4 to activate the pluripotency transcriptional network.
ASF1A acts upstream of CAF-1 as a donor of newly synthesized
histones but its functions also overlap with other nucleosome
assembly pathways (Figures 1A,C). Thus, this discrepancy
in reprogramming phenotypes between CAF-1 and ASF1A
can be purely dependent on the spatiotemporal requirement
of histone deposition and/or histone chaperone-independent
functions. The implication of ASF1A in cellular reprogramming
stemmed from it being a maternally deposited factor in the
oocyte cytoplasm. Similarly, the H3.3 histone variant proved
to be an essential maternal factor for reprogramming and
the development of fertilized, parthenogenetically derived
and SCNT embryos (Wen D. et al., 2014) (Figure 2A). In
this context, H3.3 plays an important role in nucleosome
remodeling in either the parental pronuclei or the donor nucleus
(Figure 2A). Consistent with a spatiotemporal requirement
of histone deposition pathways in shaping cellular identity,
a recent study demonstrates a dual role of HIRA mediated
H3.3 deposition in maintaining somatic cell identity and
establishing pluripotency during reprogramming (Fang et al.,
2018). Thus, this global rearrangement of H3.3 deposition
akin to the one observed during oogenesis and the early
cleavage embryo represents an important mechanism in
preparation for cell fate conversions (see preimplantation
development & Ishiuchi et al., 2021). However, the interplay with
other histone chaperone pathways remains to be determined
especially in a setting where the cell cycle is required for
cell fate switches.

In light of these observations, we propose that nucleosome
pathways at different potency states during development can
dictate cell identity maintenance versus cell fate commitment or
reprogramming toward different lineages. This could be purely
dependent on specific remodeling of histone variants distribution
and cell cycle properties (Figure 3).

FROM GAMETOGENESIS TO EARLY
EMBRYONIC DEVELOPMENT

Gametogenesis
The sperm and oocyte are highly specialized cell types that
transmit both genetic and epigenetic information through
generations (Figure 2B). During spermatogenesis, the genome
undergoes a stepwise replacement of histones with transition
proteins and ultimately protamines to form the highly condensed

nucleus of the sperm (Raja and Renkawitz-Pohl, 2005; Torres-
Flores and Hernández-Hernández, 2020). This process is
thought to prevent DNA damage, confer better sperm quality,
and reprogram the paternal nucleosomes in preparation for
fertilization as protamine knockouts result in defective sperm
and developmental arrest (Cho et al., 2001, 2003). The nuclear
condensation within the sperm head is accompanied with
complex PTMs of the disassembled histones and the newly
deposited protamines which could potentially involve the action
of different histone chaperones whose identity remains to be
determined. However, despite the removal of nearly 90% of
all histones in the sperm, CENPA is retained. Also, select
nucleosomes at regulatory DNA elements retain H3.1/2 and H3.3
(Hammoud et al., 2009; Erkek et al., 2013; Das et al., 2017).
The retention of nucleosomes containing specific histone variants
and corresponding PTMs on the paternal genome is thought to
be a mechanism for transmitting epigenetic information to the
embryo (Champroux et al., 2018). Of note, profiling the accurate
histone distribution in the sperm nucleus has proved to be
technically challenging depending on the method used to purify
mature sperm that have undergone proper histone replacement
and chromatin digestion for histone pull downs (Yoshida et al.,
2018).

Consistent with the histone retention in the mature sperm,
genetic studies support these observations. To date, several
mouse knockout and conditional alleles of the two H3.3
genes have been generated albeit with variable phenotypic
consequences on the germline and embryonic development (see
post-implantation development) possibly due to the different
targeting strategies, genetic heterogeneity of the mouse strains
as well as possible redundancy with testis specific H3 variants.
For example, in a mixed C57BL/6 and 129 mouse background,
H3f3a+/−; H3f3b−/− compound mutant with one remaining
copy of the H3f3a gene are male sterile (Jang et al., 2015)
while other studies reported that the surviving single H3f3a and
H3f3b knockouts have variable levels of sterility (Couldrey et al.,
1999; Bush et al., 2013; Tang et al., 2013, 2015; Yuen et al.,
2014). Regardless of these differences, accumulating evidence
supports a unique role of H3.3 in chromatin remodeling in
the male germline.

The effect of H3.3 loss in the female germline is more
debatable. In contrast to previous studies reporting female
sterility of single H3.3 knockouts, H3f3a+/−; H3f3b−/−
compound mutant females are viable and fertile (Bush et al.,
2013; Jang et al., 2015; Tang et al., 2013, 2015; Figure 2B). This
is surprising given that mature oocytes are devoid of replicative
histones in their genome and that there is H3.3 redistribution
during oogenesis in preparation for embryogenesis (Ishiuchi
et al., 2021) (see preimplantation development). Furthermore,
the requirement of H3.3 histone partners during gametogenesis
warrant further investigations. Interestingly, Asf1b knockout
mice are viable but have reduced reproductive capacity showing
a more severe defect in females versus males (Messiaen et al.,
2016). This study showed that ASF1B is specifically expressed
in the female gonads during development and propose its role
in regulating meiotic entry. In light of these findings and the
proposed molecular function of ASF1 (see The ASF1 Hub), it is
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FIGURE 2 | H3 deposition pathways in a physiological setting: development and culture models. H3 Deposition pathways characterized in cell fate transitions during
development or in cellular systems are indicated by colored triangles using the same color scheme used in Figure 1 (RD: blue, RI: green, and dual: orange).
(A) Ex vivo models are represented above their most relevant developmental stages as indicated in the developmental timeline (B) Black arrows indicate
differentiation of the zygote from a higher potency to a lower potency. Red arrows indicate key cell plasticity pathways, including, zygote reprogramming following
oocyte activation via parthenogenesis or SCNT, reprogramming of somatic cells to pluripotency and transdifferentiation of cells directly from one lineage to another.
(B) A mouse developmental timeline, depicting the sperm and oocyte generating the zygote, early cleavage embryos, blastocyst, and early post-implantation
embryo followed by specialized lineages discussed in the text (mouse development icons were created using BioRender software). (C) Summary of histone variants
or histone chaperone mutant lethality in early embryo development. See Table 1 for a summary of phenotypes and corresponding references.

tempting to speculate that the Asf1b paralog plays a specialized
role in retaining H3.3 containing nucleosomes in a RD manner
in the oocytes. On the other hand, given that it does not have an
effect on the male germline, it might function independent of its
histone chaperone role.

Notably, due to the early lethality of most histone chaperone
mutants (see Preimplantation Development), the use of
conditional knockouts and the development of ex vivo
gametogenesis culture systems (Hamazaki et al., 2021) will
be instrumental in resolving these limitations. Furthermore,
this will shed light on the mechanisms and differences in
spatiotemporal H3 re-distribution during spermatogenesis
and oogenesis and how germline reprogramming may impact
epigenetic inheritance.

Preimplantation Development
The fertilization between the sperm and oocyte gives rise to
the zygote. In the zygote, both the paternal and maternal
genomes undergo dramatic reprogramming events to give rise
to the most plastic embryonic cell state known as “totipotency”
(Figures 2A,B). If successful, the zygote will ultimately give rise
to all cell types necessary for the development of an organism
including the extraembryonic tissues. During this process, both
the paternal and maternal pronuclei undergo major chromatin
remodeling using maternally deposited factors in preparation
for the first mitotic divisions and the transition to zygotic
transcription (Figure 2B; Probst and Almouzni, 2011; Eckersley-
Maslin et al., 2018). Accumulating evidence supports the idea

that maternally deposited histones and histone chaperones are
essential for reprogramming the zygote following fertilization.
Indeed, the paternal genome is decondensed when incorporation
of maternally deposited H3.3 replaces protamines, allowing for
genome reprogramming (Loppin et al., 2005; Torres-Padilla
et al., 2006). This is now known to be triggered by site specific
phosphorylation of protamines by the RNA splicing factor
SRPK1 which permits recruitment of nucleoplasmin (NPM2) and
HIRA for protamine unloading and H3.3 deposition, respectively
(Gou et al., 2020).

The manipulation of maternally deposited factors in oocytes
followed by natural fertilization, parthenogenetic activation,
or somatic cell nuclear transfer has been instrumental in
understanding the mechanisms of RI incorporation of H3.3 onto
parental chromatin (Figure 2B and Table 1; Lin et al., 2014;
Wen D. et al., 2014). For example, deletion of HIRA in mouse
oocytes results in inhibition of nucleosome assembly in the male
genome and oocytes are unable to develop parthenogenetically.
This study links HIRA-dependent H3.3 deposition to active
transcription of ribosomal RNA in the zygote (Lin et al., 2014).

It will be interesting to probe the function of other H3.3
mediated site-specific histone chaperone pathways in the oocytes.
Using ultra-low input native CHIP-seq a recent study generated
a spatiotemporal map of H3.3 distribution during oogenesis,
the zygote, and the early cleavage stage embryos (Ishiuchi
et al., 2021). Interestingly, H3.3 undergoes a gradual global
rearrangement during oogenesis forming a unique non-canonical
pattern in the mature oocyte and zygote. At this developmental
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window, H3.3 is more broadly distributed across the genome
and exhibits some enrichment at heterochromatic regions.
Remarkably, the non-canonical H3.3 distribution is similar
between the maternal and paternal pronuclei in the zygote
but is different from other post-mitotic cells, such as neurons.
Interestingly, this unique chromatin incorporation of H3.3
in the oocyte and zygote coincides with previously reported
distinct epigenetic features, including chromatin accessibility,
histone marks and DNA methylation during preimplantation
development (Eckersley-Maslin et al., 2018; Burton et al., 2020).
For example, temporal regulation of histone methyltransferases
(SUV39H1&H2) involved in the deposition of the H3K9me3
repressive mark post fertilization results in establishing an
accessible and non-repressive constitutive heterochromatin in
the zygote that ultimately matures in later stages to a compacted
and repressive state. While Ishiuchi et al., 2021 did not report a
correlation between H3.3 deposition and H3K9me3 profiles in
the zygote, it is tempting to speculate that this early marking
of heterochromatin is established as a consequence of the slight
preferential loading of H3.3 on heterochromatin compartments
in the zygote. H3.3 deposition within these domains could
create a chromatin environment to recruit SUV39H1 similar
to the mechanism proposed for PRC2 recruitment in ESCs
at developmentally regulated genes (Figure 2 and Table 1;
Banaszynski et al., 2013). However, comparison of existing ChIP-
seq data over constitutive heterochromatin domains may be
challenging due to variable chromatin fragmentations, timing of
the embryos, and considering multi-mapping reads at repetitive
elements. Notably, as the zygote transitions to the 2-cell stage,
the broad H3.3 distribution is reprogrammed to a more localized
pattern reminiscent of the known canonical pattern initially
described in ESCs. The reorganization and/or retention of H3.3
in the zygote occurs with the loading of replicative H3.1&H3.2
in a RD and transcription independent manner. Furthermore,
it is regulated by CAF-1 as injecting a dominant negative
form of the CAF-1 p150 subunit in the zygote reduces the
canonical H3.3 rearrangement. Importantly this unique H3.3
rearrangement and deposition of replicative histones is essential
for development as inhibition of maternally deposited CAF-1
results in developmental arrest at the 4-cell stage, consistent with
previous reports ablating CAF-1 in the embryo (Figure 2C and
Table 1; Houlard et al., 2006; Akiyama et al., 2011).

Considering the oocyte is devoid of replicative histones and
that the expression of H3.1/2 peaks only after the embryo has
undergone one cell division, it will be interesting to investigate
how the non-canonical H3.3 distribution is propagated during
the first round of replication, and how its recycling is regulated
by histone chaperones in the context of replication timing.
Therefore, it will be important to further characterize the
histone chaperones required for H3.3 nucleosome exchange
during these early cell divisions and how they are involved in
preparing for zygotic genome activation and the establishment
of heterochromatin and euchromatin domains. We think that
the H3.3 broad distribution in the oocytes and zygote is possibly
pre-programmed because of the need for fast RI eviction of
protamines genome wide in the paternal pronucleus to ensure
near-equal reprogramming of parental pronuclei in the zygote.

Post-implantation Development
In contrast to the severity of maternal or zygotic CAF-1 loss, mice
lacking ASF1A survive to mid-gestation (Figure 2C; Hartford
et al., 2011). Given that Asf1b knockout mice are viable, it
would be interesting to probe phenotypic consequences of
Asf1a/b double knockouts. Similarly, in mice lacking either
H3.3 gene and their histone chaperone partners, HIRA or
DAAX, embryos also progress to mid-gestation (Figure 2C;
Michaelson et al., 1999; Roberts et al., 2002; Jang et al., 2015).
Interestingly, H3f3a/b double knockout mice progress through
early patterning of the embryo but are lethal 2 days after
implantation (Figure 2C). Single knockouts of H3f3a and H3f3b,
however, are reported with a spectrum of phenotypes depending
on the study resulting in compromised viability and sterility
(see gametogenesis). Similarly, CENP-A knockout mice are also
lethal shortly after implantation (Howman et al., 2000). Of
note, chromatin defects in these different mutants suggest a
convergent mechanism between RD and RI pathways where
heterochromatin structures are primarily affected leading to
mitotic defects and developmental arrest. The relatively late
phenotypic manifestations of RI nucleosome assembly pathways
could be due to maternal deposition of mRNA and proteins
of histones and histone chaperones, or redundancy of histone
chaperone pathways. It would therefore be interesting to test the
effects of their maternal contribution and the consequences of
individual histone chaperone perturbation on histone deposition
and chromatin accessibility in the early embryo.

While examining histone exchange and chromatin dynamics
in the early embryo remain challenging, current developments in
CRISPR CAS9 gene editing (Adli, 2018; Anzalone et al., 2020),
chromatin profiling technologies such as ATAC-seq, CUT&RUN
and CUT&Tag that rely on a small number of cells (Buenrostro
et al., 2013; Corces et al., 2017; Kaya-Okur et al., 2019; Meers et al.,
2019), single cell multi-omics (Pérez-Palacios and Bourc’his,
2018), and culture systems are instrumental in understanding the
mechanisms of nucleosome assembly during these most plastic
cell states during development.

LINEAGE SPECIFIC DIFFERENTIATION,
A MIX OF IN VIVO AND CULTURE
SYSTEMS

Given the early lethal phenotypes of the H3 deposition pathways
during development (Figures 2B,C), it has been challenging to
probe their function in normal homeostasis. However, recent
work using lineage specific differentiation systems as well as
cancer and injury models (Evano et al., 2020) has not only
shed light on how some mechanisms described above (Figure 1)
are at play, but also associates histone chaperones with histone
deposition independent functions. We postulate that these
differences could be intimately linked to the spatiotemporal
expression of the H3 deposition machinery and the specific cell
cycle properties (e.g.: short versus long) within different lineages
(Figure 3). Evidence so far suggests an important role of both
RD and RI pathways in lineage restriction and maintenance. For
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TABLE 1 | Histone and histone chaperone roles in cell fate decisions.

Pathway Protein Function/ Phenotype Mechanism System References

RD H3.1/2 Male fertility – Human/mouse sperm Hammoud et al., 2009; Bush
et al., 2013; Erkek et al., 2013;
Tang et al., 2013, 2015; Jang
et al., 2015; Das et al., 2017

Zygote/embryo development Replication-associated
deposition (?)

Mouse embryo Ishiuchi et al., 2021

RD CAF-1 Hematopoiesis – Mouse bone marrow Volk et al., 2018

CD8 + T-cell identity HDAC and LSD1 CD4 silencing
in conjunction with DNMT3a

Mouse T-cell Ng et al., 2019

Restricts plasticity Chromatin accessibility and
heterochromatin maintenance

Mouse MEF/HSPC
reprogramming, ESCs, B-cell to
Mac transition, MEF to neuron

Cheloufi et al., 2015; rev. in
Cheloufi and Hochedlinger,
2017

Differentiation H3K27me3 mediated silencing mESCs Cheng et al., 2019

Heterochromatin organization LSD1? mESCs/embryo Houlard et al., 2006

Zygote/embryo development Replication-associated
deposition

Mouse embryo Ishiuchi et al., 2015, 2021

RD MCM2 Decidualization Cell cycle arrest Mouse endometrial stromal
cells

Kong et al., 2016

Symmetric cell division Symmetric histone recycling mESC/HeLa Petryk et al., 2018; Ma et al.,
2020

Adult SC deficiency DNA damage/replication
deficiency (?)

Mouse in vivo Pruitt et al., 2007

CD8 + T-cell identity – T-Cells Ng et al., 2019

RI H3.3 Male fertility – Human/mouse sperm Hammoud et al., 2009; Erkek
et al., 2013; Das et al., 2017

Fertilization Sperm decondensation

Muscle Differentiation MyoD/MEF2 expression
through H3.3 deposition

C2C12 to myotube Yang et al., 2011, 2016

Osteoblast conversion H3.3 deposition C2C12 to osteoblast Song et al., 2012

Pluripotency PRC2 Recruitment mESCs Banaszynski et al., 2013;
Schlesinger et al., 2017

MEF reprogramming HIRA-mediated H3.3
deposition at promoters

MEFs/iPSC Fang et al., 2018

Transdifferentiation – MEFs/iHPs Fang et al., 2018

Differentiation – mESC to neuron Fang et al., 2018

Macrophage activation H3.3S31ph SETD2 recruitment mouse macrophage Armache et al., 2020

Differentiation H3.3S31ph-mediated p300
activity and enhancer
acetylation

mESC Martire et al., 2019

RI DAXX Restricts plasticity ERV Accessibility Mouse pancreas Wasylishen et al., 2020; Wu
et al., 2020

Neuron activation Daxx-phosphorylation H3.3
deposition.

Mouse CNS Michod et al., 2012

RI HIRA Fertility rRNA Transcription;
H3.3-deposition

Mouse zygote Lin et al., 2014

Muscle Differentiation MyoD/MEF2 expression
through H3.3 deposition

C2C12 to myotube Yang et al., 2011, 2016

Osteoblast conversion H3.3 deposition C2C12 to osteoblast Song et al., 2012

Adult hematopoiesis Chromatin accessibility Mouse bone marrow Chen et al., 2020

Cardiac differentiation H3.3 deposition mESC differentiation to cardiac Dilg et al., 2016; Saleh et al.,
2018

Myofiber maintenance – Muscle mouse myocytes in vivo Valenzuela et al., 2017

Pluripotency/self-renewal PHB/H3.3 deposition
chromatin promoters

hESC Zhu et al., 2017

Mesoderm development – Mouse embryo Roberts et al., 2002

Neurogenesis SETD1A-mediated
beta-catenin regulation

Mouse CNS Li and Jiao, 2017; Jeanne
et al., 2021

RI CENPA Gametogenesis CENPA retention Sperm and oocyte Rev in. Das et al., 2017

(Continued)
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TABLE 1 | Continued

Pathway Protein Function/ Phenotype Mechanism System References

RI HJURP Cellular senescence P53-dependent (?) HDFs and HUVEC Heo et al., 2013

Cellular quiescence centromere identity human RPE1 and starfish
oocyte

Swartz et al., 2019

Dual ASF1A Lineage differentiation Histone eviction at promoters Mouse EBs, neural
differentiation

Gao et al., 2018

ASF1A Pluripotency/reprogramming H3K56 acetylation H9 ESCs, hADFs Gonzalez-Muñoz et al., 2014

ASF1A Muscle differentiation MyoD/MEF2 expression
through H3.3 deposition

C2C12 to myotube Yang et al., 2011

ASF1A Osteoblast conversion H3.3 deposition C2C12 to osteoblast Song et al., 2012

ASF1B Cell proliferation H3.3 recruitment Human beta-cells Paul et al., 2016

ASF1B Female fertility – Mouse oocyte Messiaen et al., 2016

Summary of histone or histone chaperone roles in cell fate decisions in context of the systems studied and illuminated mechanisms.

FIGURE 3 | H3 enrichment depends on the proliferative state and cellular potency. Adult stem cells remain in a quiescent state. Without replication these cells
become enriched in H3.3. After activation, stem cells differentiate into progenitors and rapidly expand, becoming more enriched in H3.1/2 histone. After expansion,
progenitors terminally differentiate into post-mitotic cells. Without replication, these cells also become enriched in H3.3. In quiescent cells, CENPA is actively
maintained at the centromere during transcription to preserve proliferative potential. During expansion, centromeres are maintained by HJURP and SUPT6 as
indicated in Figure 1. After terminal differentiation, post-mitotic cell centromeres can lose stability over time.

example, CENPA in quiescent cells is specifically maintained to
preserve proliferative potential (Figure 3; Swartz et al., 2019).
Additionally, many cellular differentiation paradigms implicate
CAF-1 and HIRA as a transcriptional repressor or activator,
respectively (Figure 2B and Table 1).

Volk et al. demonstrated that while complete loss of CAF-1
in the mouse inhibits normal hematopoiesis, its reduced levels
is tolerated (Volk et al., 2018). Low levels of CAF-1 protect the
mice from cancer progression by triggering differentiation of
MLL/AF9 leukemic cells into mature myeloid cells. In this setting,
CAF-1 is proposed to maintain leukemic cell identity via its RD
nucleosome assembly activity as well as its competitive binding to
sites of myeloid specifying transcription factors.

In a screen for chromatin regulators, silencing the CD4
gene in CD8 + cytotoxic T cells, CAF-1 was also identified
as a transcriptional repressor among other fork components,
including MCM2 (Ng et al., 2019). In this setting, CAF-1,
in addition to its nucleosome assembly function, is proposed

to cooperate with DNA and histone modifying enzymes by
binding directly to histone deacetylase and histone demethylases
to ensure heritable silencing of the CD4 gene. More recently,
single cell profiling demonstrates that CAF-1 loss in myeloid
progenitor cells triggers their partial differentiation leading to a
mixed cellular state (Preprint, Guo et al., 2020). Interestingly,
in comparison to normal myeloid differentiation, CAF-1 loss
triggers a unique chromatin accessibility environment and
activation of multi-lineage specific transcription factors. How
the transcriptionally repressive role of CAF-1 in these systems
is linked to its H3 deposition, alternative deposition of histone
variants and/or recruitment of chromatin regulators remain
to be determined.

In contrast to CAF-1, HIRA is widely studied in various
cellular models including several mesoderm-derived tissues as
well as during neurogenesis (Figure 2B and Table 1). For
example, during normal hematopoiesis, Chen et al. (2020)
demonstrated that upon conditional deletion of HIRA in
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the mouse, long term hematopoietic stem cell (LT-HSC)
function is impaired, leading to lethality. Interestingly, LT-
HSC is thought to be in a more quiescent state. Accordingly,
HIRA deletion had no effect in fetal hematopoiesis where
hematopoietic stem cells are actively cycling. As seen with
the mature oocyte and the early zygote, it is tempting to
speculate that H3.3 deposition by HIRA could be involved
in maintaining a unique chromatin environment in LT-HSCs
that is subsequently remodeled during their self-renewal and
differentiation (see model in Figure 3). HIRA is also required
to maintain leukemic cells. Majumder et al. (2019) show
that down-regulation of HIRA in chronic myeloid leukemia
leads to a differentiation phenotype and implanting HIRA KO
progenitors results in increased megakaryocyte differentiation. In
this context, depletion of HIRA causes enrichment of H3.3 at
promoters of key megakaryocyte differentiation factors GATA2
and MKL1, and a loss of H3.3 at erythroid differentiation
promoters. It will be intriguing to dissect the mechanisms
of differential H3.3 deposition upon HIRA loss. In addition
to hematopoiesis, HIRA and ASF1 have been implicated in
C2C12 myoblast cellular plasticity. Both HIRA and ASF1 are
important for myoblast differentiation into myotubes and for
their osteogenic conversion (Yang et al., 2011; Song et al.,
2012). In myoblast differentiation HIRA and ASF1 drive MyoD
expression and allow for H3.3 accumulation at critical enhancer
regions. Additional studies implicate the role of HIRA in
neurogenesis showing that it can interact with B-catenin to
promote neurogenesis (Li and Jiao, 2017). In addition, in vivo
conditional deletion of HIRA causes widespread defects in
neurogenesis (Jeanne et al., 2021). Taken together in these
systems, the HIRA mediated H3 deposition mechanisms are
poorly characterized.

Interestingly, a recent study highlights HIRA’s gap filling
mechanisms in the context of metastatic transformation of breast
and colon cancer tissues (Gomes et al., 2019) (Figure 1A). In this
setting, the activation of epithelial-to-mesenchymal transition
genes to promote metastasis is dependent on downregulation
of canonical H3 deposition of CAF-1 and HIRA-mediated
H3.3 deposition at regulatory sites. It will be interesting to
determine the mechanism underlying the specific deposition
of H3.3 at these sites. Given HIRA’s selective deposition of
H3.3 to regulatory elements and the body of active genes,
HIRA’s function as a histone chaperone in addition to H3.3S31
specific phosphorylation could create a chromatin environment
to facilitate the binding of transcription factors and chromatin
regulators to maintain cell identity or instruct cell fate
change depending on the cellular context and environment.
Interestingly, H3.3 is required for neuronal stem cell proliferation
and differentiation via promoting H3K16 acetylation. Whether
H3.3S31 is required in this context remains to be explored
(Xia and Jiao, 2017).

Another example of H3.3 guided recruitment of
chromatin factors was recently highlighted while dissecting
the transcriptional response to pathogens. In this context,
selective phosphorylation of H3.3S31 at rapidly induced genes
triggers a chromatin signaling cascade via recruiting a histone
methyltransferase that promotes transcriptional elongation
and repulsing a chromatin reader that inhibits transcription

(Thorne et al., 2012; Guo et al., 2014; Wen H. et al., 2014;
Armache et al., 2020).

Considering other H3.3 deposition pathways, conditional
deletion of DAXX in pancreatic tissues supports its role in ERV
silencing (Figure 2B and Table 1; Wasylishen et al., 2020).
While no phenotypes were observed, the more permissible
transcriptional state is proposed to increase responses to stressors
and to impair recovery. Outside of DAXX function at repetitive
elements, another study in neurons reported a non-canonical
DAXX mediated H3.3 deposition at regulatory elements that is
linked to neuronal activation (Michod et al., 2012). Furthermore,
DAXX is responsible for the ectopic deposition of overexpressed
CENPA which is a hallmark of many cancers (Figure 1D; Sharma
et al., 2019). It will be interesting to probe how DAXX responds
to the loss of HIRA in these systems and investigate the function
of other histone chaperone mediated deposition of H3, including
ASF1A/B, HJURP, SPT6 in these cellular settings.

DISCUSSION

Histone chaperones are in place to modulate the deposition
of histones at the right place and right time and coordinate
the action of accompanying chromatin factors, including
lineage-specific transcription factors during quiescence, stem
cell self-renewal, differentiation, or reprogramming. While
the expression of histone variants during the cell cycle and
development is well documented, the activity, complex diversity,
and interplay of histone chaperones during these processes
is poorly understood, especially in the context of cell fate
transitions. This is clearly complicated by the multifunctional
characteristics of histone chaperones as they play additional roles
independent of nucleosome assembly that are in turn linked to
chromatin regulation.

The lessons that we learned from studying H3 deposition
pathways in the context of normal development, culture
model and disease state suggest that the RD and RI H3
deposition pathways act in a balanced manner to maintain
lineage identity and instruct cell fate change in response to
signals. Aside from the traditional culture models, it will be
interesting to exploit newly developed organoid culture models
and gametogenesis platforms to characterize the mechanisms
of histone exchange and apply the lessons we learned from
model organisms (Figure 2A). These emerging culture models
provide unique systems to perform biochemical studies and
create high resolution spatiotemporal maps of histone deposition
in the context of cell fate determination. Finally, future
therapeutic avenues include (1) the identification of unique
histone deposition machinery in disease states and investigating
the epigenetic addictions as a consequence of histone mutations
or compromised histone chaperone activity and (2) manipulate
histone chaperone pathways to generate specific cell types for
regenerative purposes.
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