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Abstract of the Dissertation

Spin and Valley Physics in Two Dimensional Systems:
Graphene and Superconducting Transition Metal Dichalcogenides

by

Evan Boyd Sosenko

Doctor of Philosophy, Graduate Program in Physics
University of California, Riverside, August 2016

Dr. Vivek Aji, Chairperson

Recent focus on two dimensional materials and spin-coupled phenomena holds future

potential for fast, efficient, flexible, and transparent devices.

The fundamental operation of a spintronic device depends on the injection, trans-

mission, and detection of spins in a conducting channel. Long spin lifetimes during

transit are critical for realizing this technology. An attractive platform for this pur-

pose is graphene, which has high mobilities and low spin-orbit coupling. Unfortu-

nately, measured spin lifetimes are orders of magnitude smaller than theoretically

expected. A source of spin loss is the resistance mismatch between the ferromagnetic

electrodes and graphene. While this has been studied numerically, here we provide

a closed form expression for Hanle spin precession which is the standard method of

measuring spin lifetimes. This allows for a detailed characterization of the nonlocal

spin valve device.

Strong spin-orbit interaction has the potential to engender unconventional super-

conducting states. A cousin to graphene, two dimensional transition metal dichalco-

genides entwine interaction, spin-orbit coupling, and topology. The noninteracting

electronic states have multiple valleys in the energy dispersion and are topologically
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nontrivial. We report on the possible superconducting states of hole-doped systems,

and analyze to what extent the correlated phase inherits the topological aspects of

the parent crystal. We find that local attractive interactions or proximal coupling

to 𝑠-wave superconductors lead to a pairing which is an equal mixture of a spin sin-

glet and the 𝑚 = 0 spin triplet. Its topology allows quasiparticle excitations of net

nonzero Berry curvature via pair-breaking by circularly polarized light. The valley

contrasting optical response, where oppositely circularly polarized light couples to

different valleys, is present even in the superconducting state, though with smaller

magnitude.
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Chapter 1

Introduction

The discovery of single-atomic-layer graphene in 2004 inspired a new generation of

research on two-dimensional semiconductors [4]. These 2D materials display extraor-

dinary properties not present in the bulk. Graphene boasts high electron mobility and

exceptional strength. Single-layer transition metal group-VI dichalcogenides (TMDs)

exhibit spin-coupled optoelectronic properties and a new valley degree of freedom.

Monolayers are inherently flexible and transparent, and future devices fabricated from

2D layers promise novel applications, reduced size, and lower power requirements.

A relatively new field, breakthroughs in spintronics have already impacted the

tech industry. In 2007, Albert Fert and Peter Grünberg were awarded the Nobel

prize in Physics for the discovery of Giant magnetoresistance (GMR) which found

wide application in computer storage technology [5]. The potential applications of

2D materials for building new spintronic devices is equally exciting. Such devices

would encode signals in spin current as opposed to electric current.

Building a dynamic spin transport device using a spin degenerate material like

graphene relies on some external means to polarize the spin. Typically, electrons are
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forced though a ferromagnetic contact which polarizes the spin along a single axis.

Any viable material must be a good conductor of spin current. As spin polarized

electrons travel through a conducting channel, internal scattering events which flip

spin tend to randomize the signal. The spin lifetime is the characteristic timescale over

which this signal will survive, and thus it determines the length scale for a realistic

device. Finding a material with suitably long spin lifetimes is critical for realizing any

spin transport device. While theoretical predictions for graphene suggest microsecond

lifetimes, experimental measurements report lifetimes six orders of magnitude less.

Chapter 2 of this thesis concerns the discrepancy between the theoretically pre-

dicted spin lifetimes in graphene and the significantly longer experimentally measured

ones. We present an analytical solution to the drift-diffusion equation modeling a

canonical nonlocal spin value experiment which includes the effects of the ferromag-

netic contacts. The device, shown in figure 1.1, is subject to a varying magnetic

field, and the resulting Hanle curve generated by measuring the spin signal is used

to extract the effective spin lifetime. Using real data, we then analyze the reliability

of fitting this model over critical parameter regimes, particularly in the case of large

lifetimes.

Another excellent candidate for spintronic devices, TMDs are materials with

strong spin-orbit coupling that break spin degeneracy and provide an intrinsic means

to control the spin signal. In particular, TMDs show a strong coupling between polar-

ized light and their valley degree of freedom. Since each band is spin-split, controlled

optical excitations may selectively activate carriers of a single valley and spin popula-

tion. Additionally, each valley has opposite Berry curvature, so electrons in different

valleys drift in opposite directions transverse to an applied in-plane electric field.

Chapter 3 of this thesis characterizes the possible superconducting phases for
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monolayer TMDs in a regime where the spin and valley degrees of freedom are locked.

We consider phases arising from proximity to a normal superconductor or effective

attractive electron-electron interactions. The valley selective optical excitation rules

and topological character are reproduced in the context of the superconducting state.

Figure 1.1: Isometric representation of a nonlocal spin valve in a magnetic field. Cur-
rent is injected into the semiconductor through the left ferromagnetic contact. The
strength of the diffusive spin signal is measured as a voltage at the right ferromagnetic
contact.
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Figure 1.2: Top and side views of the crystal structure of monolayer MoS2.
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Chapter 2

Spin Lifetime

2.1 Introduction

Spintronic devices rely on the ability to inject, transport, manipulate, and detect

spins [6, 7]. The typical architecture involves ferromagnetic electrodes deposited on a

conducting medium [8, 9]. Driving a current across the junction of a magnetic element

and a nonmagnetic metal leads to spin injection (also called spin accumulation) [9–

12]. The injected spins either diffuse in nonlocal spin valve geometry, or are driven

by applied fields across the conducting channel. The former has the advantage that

the observed spin signal is not corrupted by accompanying charge current. During

this transit, scattering processes dephase the spins and thus degrade the chemical

potential imbalance between spins of opposite orientation. The residual difference is

detected by a ferromagnetic electrode whose magnetization can be flipped by applying

external fields.

The performance of devices is determined by a number of parameters associated

with the basic processes described above. The efficiency of spin injection, the dif-
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fusion length (or equivalently the diffusion constant and spin relaxation time), the

distance between the injector and detector, and resistivities of various components

such as the electrodes, the junction, and the conducting channel, are some of the in-

gredients that contribute to the measured magnetoresistance. As such, having good

injection efficiency coupled with long spin lifetimes is crucial for the viability of spin-

tronic applications. The discovery of graphene [13] has been of particular interest

in this regard because of its tunable conductivity, high mobility, and low spin-orbit

coupling. Moreover, the two dimensional nature allows for efficient device design and

spin manipulation. Theoretical estimates for spin lifetimes of a few microseconds [14,

15] are leading to a concerted effort in realizing spin based transistors and spin valves

[16–23].

Unfortunately, the best measured spin lifetimes via the Hanle spin precession

technique are in the 50 ps to 200 ps range [16, 23–25]. The large discrepancy is yet to

be explained. The linear scaling of spin and transport lifetimes [23] suggested that the

dominant scattering mechanism in the conducting channeling is of the Elliot-Yafet

type [26]. Surprisingly, in the regime of small spin lifetimes (∼ 100 ps), Coulomb

scattering was shown not to be the dominant mechanism [25]. The more important

determining factor of the lifetime was found to be the nature of the interface between

the magnetic electrode and the conducting channel. Tunneling contacts suppress spin

relaxation, and lifetimes of 771 ps were reported at room temperature, increasing to

1.2 ns at 4 K [27]. On the other hand, low resistance barriers lead to considerable

uncertainty in the determination of the lifetimes.

Over the last few years, characterizing the nature of the spin dynamics at the

interface has garnered much attention. A key contribution in this effort is the gen-

eralization of the standard theoretical approach of calculating the nonlocal magne-
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toresistance with and without the magnetic field. Recent efforts study the effect of

including the contact resistance [24, 28], and alternatively relaxing the normally infi-

nite boundary conditions in favor of a finite channel size [29]. The approach relies on

numerically solving the Bloch equation to generate Hanle precession curves and then

fitting observed data.

In this chapter, we present the closed form expression for the precession curves

with finite contact resistance, and analytically discuss the various parameters regimes

that show qualitatively different behaviors. The fits to data reproduce the results in

the literature and provide a means to understand the effect of the contacts which

were previously obtained by numerical simulations.

This chapter is organized as follows. In section 2.2 we provide the basic model,

define the relevant parameters, and present an expression for the nonlocal resistance

𝑅NL. The primary result is given by equation (2.4). In section 2.3 the solution

for 𝑅NL is fitted to data. In section 2.4 we analyze the various regimes which are

determined by the diffusion length, length of the device, and the contact resistance.

2.2 Model

The assumed device geometry is shown in figure 2.1. Two ferromagnetic contacts (𝐹 )

are deposited on the normal semiconductor (𝑁). A spin-polarized current 𝐼 is injected

through the contact at 𝑥 = 0 and flows in the 𝑥 ≤ 0 region of the semiconductor. The

voltage difference 𝑉 is measured at 𝑥 = 𝐿 between the contact and the semiconductor.

The nonlocal resistance is 𝑅NL = 𝑉 /𝐼 [28].

Spin transport is modeled by identifying two spin channels and their associated

three-component spin electrochemical potentials 𝜇↑↓. The majority channel is labeled
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𝑁

𝑊

𝐹 𝐹

𝑊𝐹

𝐼

𝐼

𝑉

𝑥 = 0 𝑥 = 𝐿
𝑧, −𝑧′

𝑦

Figure 2.1: The geometry of the nonlocal spin valve analyzed in this chapter is shown.
There are two ferromagnetic electrodes placed on a conducting channel. Current 𝐼
flows into the left electrode, while the potential 𝑉 is measured at the right electrode.
The nonlocal resistance is defined as the ratio 𝑉 /𝐼 . For spin dependent phenomena,
the relevant quantity of interest is the difference between the nonlocal resistance for
the parallel and antiparallel orientations of magnetization of the two electrodes.

as up, while the minority channel is labeled as down. The voltage difference is propor-

tional to the spin accumulation 𝜇𝑠 = (𝜇↑ − 𝜇↓) /2 at 𝑥 = 𝐿. The spin accumulation

in the semiconductor is assumed to satisfy the steady-state Bloch diffusion equation

𝐷∇2𝜇𝑁
𝑠 − 𝜇𝑁

𝑠
𝜏 + 𝜔 × 𝜇𝑁

𝑠 = 0. (2.1)

The key parameters are the contact spacing 𝐿, the diffusion constant 𝐷, the spin life-

time 𝜏 , the spin diffusion length 𝜆 =
√

𝐷𝜏 , and 𝜔 = (𝑔𝜇𝐵/ℏ) 𝐵 which is proportional

to the applied magnetic field 𝐵 and the gyromagnetic ratio 𝑔 = 2.

For contacts which cover the width of the channel, the transport is uniform along

𝑦. Since the channel is two-dimensional, 𝜇𝑁
𝑠 will only vary along 𝑥. We enforce the

boundary condition 𝜇𝑁
𝑠 → 0 at 𝑥 → ±∞ and the continuity of the current and spin
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current. A detailed derivation is given in appendix A and reveals

𝑅±
NL = ±𝑝1𝑝2𝑅𝑁𝑓. (2.2)

The overall sign corresponds to parallel and antiparallel ferromagnetic alignments.

Specifically, we find a resistance scale

𝑅𝑁 = 𝜆
𝑊𝐿

1
𝜎𝑁 , (2.3)

and the function

𝑓 = Re ({2 [
√

1 + 𝑖𝜔𝜏 + 𝜆
2 ( 1

𝑟0
+ 1

𝑟𝐿
)] 𝑒(𝐿/𝜆)√1+𝑖𝜔𝜏

+ 𝜆2

𝑟0𝑟𝐿

sinh [(𝐿/𝜆) √1 + 𝑖𝜔𝜏]√1 + 𝑖𝜔𝜏 }
−1

⎞⎟
⎠

. (2.4)

Note that 𝑓 is unitless and depends only on the scales 𝐿/𝜆, 𝜔𝜏 , and 𝜆/𝑟𝑖. The

parameters 𝑟𝑖, with 𝑖 either 0 for the left contact or 𝐿 for the right, are

𝑟𝑖 = 𝑅𝐹 + 𝑅𝑖
𝐶

𝑅SQ
𝑊, (2.5)

where 𝑅𝐹 is the resistance of the ferromagnet and 𝑅𝑖
𝐶 are the individual contact

resistances, 𝑊 is the graphene flake width, and

𝑅SQ = 𝑊/𝜎𝑁 , (2.6)

is the graphene square (sheet) resistance given in terms of the semiconductor con-

ductivity 𝜎𝑁 . The resistances 𝑅𝐹 and 𝑅𝑖
𝐶 are the effective resistances of a unit

cross sectional area. They are defined in equations (A.10) and (A.15). To obtain

an expression in terms of the ohmic resistances, one must make the substitutions

𝑅𝐹 → 𝑊𝐹 𝑊𝑅𝐹 and 𝑅𝑖
𝐶 → 𝑊𝐹 𝑊𝑅𝑖

𝐶, where 𝑊𝐹 is the contact width, i.e., 𝑊𝐹 𝑊 is

9



the contact area. We will use the same symbols for either resistance type when the

meaning is clear. The polarizations 𝑝1 and 𝑝2, defined in equation (A.36), model the

effective current injection. They depend on the resistances and the spin polarizations

of the semiconductor and the individual contacts.

The expression Δ𝑅NL = ∣𝑅+
NL − 𝑅−

NL∣ measures the difference in signal between

parallel and antiparallel field alignments. We combine 𝑃 2 = |𝑝1𝑝2|,1 and write

Δ𝑅NL = 2𝑃 2𝑅𝑁 |𝑓|, (2.7)

with

𝑅𝑁 = 𝜆
𝑊

1
𝜎𝐺

, (2.8)

where 𝜎𝐺 = 𝜎𝑁𝐿 is the graphene conductance normally given in units of mS =
(mΩ)−1.

2.3 Fits

Data presented in figure 4 from [30] was fit to the model presented here. Fits were done

using Python and matplotlib [3]. Links to the source code along with instructions on

how to create similar fits and figures are available online.2

We assume similar contacts, 𝑅𝐶 = 𝑅0
𝐶 = 𝑅𝐿

𝐶. The resistance of the ferromagnet

Co is computed as 𝑅𝐹 = 𝜌𝐹 𝜆𝐹 /𝐴𝐽 , where 𝜌𝐹 is the Co resistivity, 𝜆𝐹 is the spin

diffusion length of Co, and 𝐴𝐽 is the junction area estimated at 𝐴𝐽 = 𝑊𝑑, with 𝑑
between 0.5 nm and 50 nm [30]. Hanle fits were done using a simple least squares

1Assuming the polarizations 𝑃 𝐹
𝜎 and 𝑃 𝐿

Σ have the same sign bounds 𝑃 ≤ 1.
2An online portal with links to the code used to prepare this work is located at

evansosenko.com/spin-lifetime.
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Figure 2.2: Data in figure 4 from [30] fit to equation (2.7) or equation (2.2) with
the following values: 𝑊 = 2.2 μm, 𝑊𝐹 = 1.0 μm, 𝜎𝐺 = 0.5 mS, 𝜌𝐹 = 60 Ω nm, and
𝑅𝐹 = 3.27 Ω (𝑑 = 0.5 nm and 𝜆𝐹 = 0.06 μm). The contact type (tunneling, pinhole,
or transparent) and the contact separation 𝐿 varies.

algorithm with nonnegative parameters 𝜏 , 𝐷, 𝑅𝐶, and 𝑃 . The polarization 𝑃 was

constrained between zero and one.

Figure 2.2 shows fits of Δ𝑅NL given by equation (2.7) for devices with tunneling

and transparent contacts, and 𝑅+
NL given by equation (2.2) for a device with pinhole

contacts.3 Fits (a), (b), and (c) with tunneling and pinhole contacts give large 𝑅𝐶 ∼
3Parallel and antiparallel data for this device was only available at dissimilar field
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107 kΩ and lifetimes equivalent to fitting with 𝑅𝐶 → ∞, while (d) with transparent

contacts gives a reduced 𝑅𝐶 ∼ 3 kΩ and a lifetime increased by at most a factor

of two (compare to 78 ps for 𝑅𝐶 → ∞). For tunneling contacts, the polarization

𝑃 is 25 % to 60 % smaller than the lower bound given in [30], while for transparent

contacts, 𝑃 is reduced by an order of magnitude.

Note that we have used 𝑅𝐶 as a fitting parameter. In most devices, this quantity

can be experimentally determined, thus further constraining the fitting algorithm. As

we will discuss further in the next section, a fact that becomes apparent from our

analytic result is that the relevant scale is 𝜆/𝑟. Once 𝑟 becomes larger than 𝜆, all of

the corrections to the 𝑅𝐶 → ∞ limit Hanle curves become very small. In other words,

once 𝑟 ≫ 𝜆, the fit is insensitive to the actual value of the contact resistance. The

fact that we quote a resistance of order 107 kΩ in fits (a), (b), and (c) in figure 2.2

results from the built-in accuracy we demand of the fitting algorithm. A good fit can

be obtained for any 𝑟 as long as it is larger than 𝜆.

2.4 Regimes

In this section we discuss the various limits of the expression describing the Hanle

precession curve. First, we show that the commonly used results for zero magnetic

field and tunneling contacts are correctly reproduced. Next, we discuss regimes where

appropriate scaling will give non-unique Hanle fits. In the following, we consider the

case 𝑟 = 𝑟0 = 𝑟𝐿 of similar contacts.

In the limit of tunneling contacts, 𝑅0
𝐶, 𝑅𝐿

𝐶 ≫ 𝑅𝐹 . Putting 𝑟0, 𝑟𝐿 → ∞ gives
values, thus Δ𝑅NL could not be fit.
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𝑝1𝑝2 → (𝑃 𝐿
Σ )2 and

𝑓∞ = Re 𝑒−(𝐿/𝜆)√1+𝑖𝜔𝜏

2√1 + 𝑖𝜔𝜏 , (2.9)

which is of the same form as found in appendix B of [31] (we will denote this limit with

the superscript ∞). Fitting with this expression was found to give results equivalent

to fitting with the Hanle equation

𝑅±
NL = ±𝑆NL ∫

∞

0

𝑒−𝑡/𝜏
√

4𝜋𝐷𝑡
exp [− 𝐿2

4𝐷𝑡] cos 𝜔𝑡 𝑑𝑡. (2.10)

The agreement is expected as an explicit integration of equation (2.10) yields the same

analytic expression with the identification 𝑆NL = 𝑝1𝑝2𝐷/𝑊𝜎𝐺. In the additional

limit of zero magnetic field,

Δ𝑅NL = (𝑃 𝐿
Σ )2𝑅𝑁𝑒−𝐿/𝜆, (2.11)

which agrees with equation (6) in [28].

Let 𝑓0 denote 𝑓 at zero magnetic field,

𝑓0 = [2 (1 + 𝜆/𝑟) 𝑒𝐿/𝜆 + (𝜆/𝑟)2 sinh 𝐿/𝜆]−1, (2.12)

which agrees with equation (3) in [24].

To further explore the nature of the Hanle curves, we exploit the fact that it only

depends on the dimensionless ratios 𝜆/𝑟, 𝐿/𝜆, and 𝜔𝜏 . The only other parameter of

the conducting channel that enters the expression is the overall scale 𝜆 in 𝑅𝑁 . The

expression 𝑓 contains three terms which are of zeroth, first, and second order in 𝜆/𝑟.

Thus, as the contact resistance decreases, one goes from a device dominated by the

first term to one dominated by the last. But precisely how this comes about depends

on the value of 𝜔𝜏 .
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For infinite contact resistance, it was pointed out that any rescaling of 𝑔, 𝜏 and

𝐷 that leaves 𝜆 and 𝜔𝜏 unchanged leads to the same Hanle precession curves [32].

Our result shows that the same is also true when the contact resistance is taken into

account. In numerical simulations, interesting features were observed when 𝐿/𝜆 ≪ 1
and 𝑟/𝜆 ≪ 1 [33].

To compare across regimes, we first normalize the data to its value at zero mag-

netic field. In devices where 𝜆/𝑟 ≫ 1, the normalization factor is

𝑓0 = 2𝑒−𝐿/𝜆

(𝜆/𝑟)2 . (2.13)

In this regime, if 𝐷 is not very different from the infinite contact resistance value, then

the lifetime can be large, i.e., 𝜏 ≫ 1 ns. As one tunes the magnetic field
√𝜔𝜏 ≫ 1, for

small values of the field, and for much of the curve, we can approximate 1+𝑖𝜔𝜏 ≈ 𝑖𝜔𝜏 .

An interesting consequence of this is that the zero of the Hanle precession curve

becomes independent of the scattering time. Note that the product

𝐿
𝜆

√𝜔𝜏 = 𝐿√𝐷
𝜔 , (2.14)

which appears in the exponential and oscillating factors below, is independent of the

lifetime. As one further tunes the magnetic field, the Hanle curve is given by

𝑓 =
√𝜔𝜏

(𝜆/𝑟)2 𝑒−(𝐿/𝜆)√𝜔𝜏/2 sin [𝐿
𝜆 √𝜔𝜏

2 + 𝜋
4 ], (2.15)

as long as 𝜆/𝑟 ≫ √𝜔𝜏 ≫ 1. In this limit, the nonlocal resistance scales as

Δ𝑅NL ∝ 𝜆√𝜔𝜏
(𝜆/𝑟)2 = 𝑟2√ 𝜔

𝐷, (2.16)

and the normalized nonlocal resistance as

𝑓/𝑓0 ∝ √𝜔𝜏. (2.17)
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On further increasing the field,
√𝜔𝜏 ≫ 𝜆/𝑟 ≫ 1, we get

𝑓 = 1
2√𝜔𝜏 𝑒−(𝐿/𝜆)√𝜔𝜏/2 cos [𝐿

𝜆 √𝜔𝜏
2 + 𝜋

4 ]. (2.18)

In this limit, the nonlocal resistance scales as

Δ𝑅NL ∝ 𝜆√𝜔𝜏 = √𝐷
𝜔 , (2.19)

and the normalized nonlocal resistance as

𝑓/𝑓0 ∝ (𝜆/𝑟)2
√𝜔𝜏 = 𝐷√ 𝜏

𝜔𝑟4 . (2.20)

In the limits of equations (2.15) and (2.18), the zeros of the Hanle fit are indepen-

dent of the lifetime and are determined by 𝐷 though the condition

𝐿√ 𝐷
2𝜔 + 𝜋

4 = 𝑛𝜋
2 , (2.21)

where 𝑛 = 0 for equation (2.15) and 𝑛 = 1 for equation (2.18).

Note that fitting is insensitive to 𝜏 in the limit of equation (2.16) or equation (2.19).

As an example of this, figure 2.3 shows nearly identical fits with lifetimes that differ

by four orders of magnitude. These fits were obtained by choosing large starting

values for 𝜏 . For figure 2.2 (d) and figure 2.3, 𝜒2 ∼ 7 × 10−8, but the 𝜒2 for figure 2.2

(d) is 2 % less than the 𝜒2 for figure 2.3. In figure 2.2 (d), 𝜆/𝑟 ≫ √𝜔𝜏 and 𝜔𝜏 ∼ 1
for most of the curve, so the approximation 1 + 𝑖𝜔𝜏 ≈ 𝑖𝜔𝜏 does not hold. However,

figure 2.3 is in the limit of equation (2.16) for all points (save the origin). Thus, in

limit of small 𝑟, the fitted value of 𝜏 is unreliable unless one carefully controls the

fitting procedure.

The evolution of the expression for the Hanle curve is an interesting insight into

the behavior of the device. Fitting data on devices with small contact resistances

15



0.0

0.5

1.0

1.5

2.0

2.5

∆
R

N
L
(m

Ω
)

(d.1) L = 3.0µm, transparent contacts

P = 0.02

RC = 0.27 kΩ

τ = 9.97× 109 ps

D = 0.02m2 s−1

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10 0.15 0.20

B (T)

0.0

0.5

1.0

1.5

2.0

2.5

∆
R

N
L
(m

Ω
)

(d.2) L = 3.0µm, transparent contacts

P = 0.02

RC = 0.28 kΩ

τ = 9.95× 1013 ps

D = 0.02m2 s−1

Figure 2.3: Data in figure 4 (d) from [30] fit to equation (2.2) with the same val-
ues as in figure 2.2 (d). Fits with lifetimes that differ by four orders of magnitude
were obtained by using different starting values for 𝜏 . These fits are otherwise sim-
ilar with the exception of the lifetime, demonstrating the 𝜏 -independent scaling in
equation (2.16). The 𝜒2 for figure 2.2 (d) is 2 % less than the 𝜒2 for figure 2.3.
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with the functional form applicable to infinite contact resistance yields unreliable

parameters. In particular, they were numerically shown to severely underestimate

the spin lifetime [33].

Further analytic progress can be made if one assumes that lifetimes as estimated

with infinite contact resistance are long enough that the approximation of
√𝜔𝜏 ≫

𝜆/𝑟 ≫ 1 is still valid for much of the data being analyzed. For this case, at infinite

contact resistance, the normalized nonlocal resistance is given by

𝑓∞

𝑓∞
0

= 1√𝜔𝜏 𝑒−(𝐿/𝜆)√𝜔𝜏/2 cos [𝐿
𝜆 √𝜔𝜏

2 + 𝜋
4 ]. (2.22)

Provided 𝐷 remains constant, this will yield the same curve with finite contact resis-

tance if
1

𝜏∞ = 𝐷2 𝜏
𝑟4 . (2.23)

In other words, if we fix 𝜏 and ask what happens to the fitted value assuming infinite

contact resistance as a function of decreasing 𝑟, equation (2.23) shows that it will

decrease as well. For 𝐷 fixed, 𝜏∞ ∝ 𝑟4. While the general trend is consistent with

[33], the quantitative agreement is limited by the approximations made for analytic

convenience.
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Chapter 3

TMD Superconductivity

3.1 Introduction

The interplay of spin-orbit interaction and electron-electron interaction is a fertile

area of research where new phases of matter and novel phenomena have been theoret-

ically conjectured and experimentally realized [34–40]. Single-layer transition metal

group-VI dichalcogenides (TMDs), MX2 (M = Mo, W and X = S, Se, Te), are direct

band gap semiconductors that have all the necessary ingredients to explore these

phenomena [41–51]. While sharing the hexagonal crystal structure of graphene, they

differ in three important aspects: (1) inversion symmetry is broken, resulting in a gap

as opposed to Dirac nodes; (2) spin is coupled to momenta, yielding a large splitting

of the valence bands; and (3) the bands near the chemical potential predominantly

have the transition metal 𝑑-orbital character [52–57].

The nontrivial Berry curvature associated with the bands near the valleys is a

consequence of strong spin-orbit coupling enabled by inversion symmetry breaking

and heavy elements such as Mo and W. The Berry curvature engenders an effective
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intrinsic angular momentum associated with the Bloch wave functions. Remarkably,

spin-preserving optical transitions between valence and conduction bands are possible,

even though the atomic orbitals involved all have a 𝑑-character. Furthermore, the

valley-dependent sign of the Berry curvature leads to selective photoexcitation: right

circular polarization couples to one valley, and left circular polarization to the other.

Consequently, this enables a number of valleytronic and spintronic applications that

have attracted a lot of attention over the last few years [58–60].

We are primarily interested in exploiting the band structure and valley-contrasting

probe afforded by the nontrivial topology in order to study and manipulate correlated

phenomena in these systems. In particular, we focus on hole-doped systems, where

an experimentally accessible window in energy is characterized by two disconnected

pieces of spin non-degenerate Fermi surfaces. One can preferentially excite electrons

from either Fermi surface. Since the spins are locked to their valley index, these

excitations have specific 𝑠𝑧 (where the 𝑧-axis is perpendicular to the two-dimensional

crystal). We focus on the possible superconducting states and their properties.

Spin-valley locking and its consequence for superconductivity, dubbed Ising super-

conductivity, has been previously studied for heavily doped 𝑝-type and 𝑛-type TMDs

[61–65], where Fermi surfaces of each spin are present in each valley. Our focus is

the regime of maximal loss of spin degeneracy where the effects are most striking [66].

The two valleys in the energy landscape generically allow two classes of superconduct-

ing phases: intervalley pairing with zero center of mass momentum, and intravalley

pairing with finite Cooper pair center of mass. Since center-of-symmetry is broken

and spin degeneracy is lost, classifications of superconducting states by parity, i.e.,

singlet vs. triplet, is no longer possible. In this chapter, we study both extrinsic and

intrinsic superconductivity by projecting the interactions and pairing potential to the
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topmost valence band. We identify the possible phases, and analyze the nature of

the optoelectronic coupling. Our main conclusions are as follows:

(1) For both proximity to an 𝑠-wave superconductor, and due to local attractive

density-density interactions, the leading instability is due to an intervalley paired

state, where the Cooper pair is an equal mixture of a spin singlet and the 𝑚 = 0 spin

triplet [67].

(2) While the valley selectivity of the optical transition is suppressed, it remains

finite. Consequently, the two quasiparticles generated by pair-breaking circularly

polarized light are correlated such that one is in the valence band of one valley and

the conduction band of the other. The valley and bands are determined by the

polarity of incident light.

(3) The quasiparticles generated in (2) both have the same charge and Berry

curvature. Thus an anomalous Hall effect is anticipated as the two travel in the same

direction transverse to an applied electric field.

3.2 Model

The TMD system is described by the effective tight-biding, low-energy, two-valley

Hamiltonian [59],

𝐻0
𝜏 (𝐤) = 𝑎𝑡 (𝜏𝑘𝑥𝜎𝑥 + 𝑘𝑦𝜎𝑦) ⊗ 𝐼2 + Δ

2 𝜎𝑧 ⊗ 𝐼2 − 𝜆𝜏 (𝜎𝑧 − 1) ⊗ 𝑆𝑧. (3.1)

The (periodic) Bloch orbital states (see appendix B) are

|𝑣𝜈
𝜏𝑠 (𝐤)⟩ = 𝑇𝐤+𝜏𝐊√

𝑁
𝑁

∑
𝑛=1

𝑒𝑖(𝐤+𝜏𝐊)⋅𝐑0
𝑛𝑇 (𝐑0

𝑛) |𝜑𝜈
𝜏𝑠⟩ , (3.2)
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where 𝑁 is the number of M-type atoms in the system,

|𝜑+
𝜏𝑠⟩ = |𝑑𝑧2⟩ ⊗ |𝑠⟩ , (3.3a)

|𝜑−
𝜏𝑠⟩ = 1√

2
(∣𝑑𝑥2−𝑦2⟩ + 𝑖𝜏 ∣𝑑𝑥𝑦⟩) ⊗ |𝑠⟩ , (3.3b)

and ∣𝑑𝑥𝑦⟩ and ∣𝑑𝑥2−𝑦2⟩ refer to the angular momentum orbitals in the symmetry

group 𝐸 (𝑑𝑥𝑦, 𝑑𝑥2−𝑦2). The operators 𝜎𝑖 are Pauli operators acting on the two Bloch

orbital states (indexed by 𝜈 = ±) such that 𝜎𝑧 |𝑣±
𝜏𝑠 (𝐤)⟩ = ± |𝑣±

𝜏𝑠 (𝐤)⟩. The valley

index 𝜏 = ±, corresponding to the ±𝐊 points, and the spin index 𝑠 = ± (or 𝑠 = ↑↓),

corresponding to the 𝑧-component of the spin through 𝑠𝑧 = 𝑠/2, are good quantum

numbers.1 The momentum 𝐤 is measured from the valley center, i.e., for a given

valley, the total momentum relative to the center of the Brillouin zone is 𝐤 + 𝜏𝐊.

The energy gap is Δ, the spin splitting in the valence band is 2𝜆, the lattice constant

is 𝑎, and 𝑡 is the effective hopping integral. Equation (3.1) can be written in matrix

form in the Bloch orbital basis,

[𝐻0
𝜏𝑠 (𝐤)] = ⎡

⎢
⎣

Δ
2 𝑎𝑡 (𝜏𝑘𝑥 − 𝑖𝑘𝑦)

𝑎𝑡 (𝜏𝑘𝑥 + 𝑖𝑘𝑦) 𝜆𝜏𝑠 − Δ
2

⎤
⎥
⎦

. (3.4)

The energy spectrum,

𝐸𝑛
𝜏𝑠 (𝑘) = 1

2 (𝜆𝜏𝑠 + 𝑛√(2𝑎𝑡𝑘)2 + (Δ − 𝜆𝜏𝑠)2) , (3.5)

with 𝑘 = |𝐤| and 𝑛 = 1 (𝑛 = −1) indexing the conduction (valence) band is shown

in figure 3.1. For a fixed band, we have the inverse relation,

( 𝑎𝑡𝑘
Δ/2)

2
= (2𝐸

Δ )
2

+ 2𝜏𝑠 ( 𝜆
Δ) (1 − 2𝐸

Δ ) − 1, (3.6)

1Only in this chapter do we use 𝑠 to denote spin. In the appendices, we adopt the
more traditional symbol 𝜎.
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Figure 3.1: Energy bands for WSe2 as given by equation (3.5) with 𝑎𝑡 = 3.939 eV Å−1,
Δ = 1.60 eV, and 𝜆 = 0.23 eV. Each valley is centered at ±𝐊 relative to the center
of the Brillouin zone. The energy for a given band depends only on the distance 𝑘
measured from the valley center.

where 𝐸 > Δ/2 for 𝑛 = 1 and 𝐸 < − (Δ/2 − 𝜆𝜏𝑠) for 𝑛 = −1. Note the relations

𝜃𝑛
−↓ (𝑘) + 𝜃𝑛

+↑ (𝑘) = 2𝜋, (3.7a)

𝜃+
𝜏𝑠 (𝑘) − 𝜃−

𝜏𝑠 (𝑘) = −𝜏𝜋, (3.7b)

𝜙−𝐤 − 𝜙𝐤 = 𝜋. (3.7c)

We focus on doped systems such that the chemical potential 𝜇 lies in the upper

valence bands. Within each band, the Bloch basis eigenstates are written in terms of
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the orbital states as elements on the Block sphere,

|𝑢𝑛
𝜏𝑠 (𝑘, 𝜙)⟩ = cos 𝜃𝑛

𝜏𝑠 (𝑘)
2 |𝑣+

𝜏𝑠 (𝑘, 𝜙)⟩ + 𝑒−𝑖𝜏𝜙 sin 𝜃𝑛
𝜏𝑠 (𝑘)

2 |𝑣−
𝜏𝑠 (𝑘, 𝜙)⟩ , (3.8)

where 𝑘𝑥 + 𝑖𝜏𝑘𝑦 = 𝑘𝑒𝑖𝜏𝜙 and

tan 𝜃𝑛
𝜏𝑠 (𝑘)

2 = 𝑎𝑡𝜏𝑘
Δ
2 − 𝐸−𝑛𝜏𝑠 (𝑘)

= 𝑎𝑡𝜏𝑘
𝐸𝑛𝜏𝑠 (𝑘) − 𝐸−𝜏𝑠 (0). (3.9)

The polar angle on the Bloch sphere of the conduction and valence bands are related

by 𝜃−
𝜏𝑠 (𝑘) − 𝜃+

𝜏𝑠 (𝑘) = 𝜏𝜋. The mapping of the energy band to the Bloch sphere,

parametrized by (𝜃, 𝜙), encodes the topological character: as one moves from the

node out to infinity, the states sweep either the northern or southern hemisphere

with a chirality determined by the Berry curvature.

3.3 Superconductivity

We consider two approaches to realizing a superconducting state. First, we assume a

proximity induced state obtained by layering a TMD on an 𝑠-wave superconductor.

Second, we study an intrinsic correlated phase arising from density-density interac-

tions.

We use 𝑑𝜈
𝜏𝑠 (𝐤) as the annihilation operator for tight-binding 𝑑-orbital states,2

and 𝑐𝑛
𝜏𝑠 (𝐤) for the eigenstates of the non-interacting Hamiltonian, 𝜆𝐤 for the energy

dispersion for Bogoliubov quasiparticles, and Δ𝐤 for the superconducting gap func-

tion. A review of interaction theory may be found in appendix C, and additional

computational detail for the intrinsic case is given in appendix D.
2In this chapter we use 𝑑 for these operators, however in the appendices, we use

𝑎 to match the tight-binding notation.
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Induced State

A proximity 𝑠-wave superconductor will inject Cooper pairs according to

𝐻𝑉 = ∑
𝐤,𝜈,𝜏

�̄�𝜈𝑑𝜈
−𝜏↓ (−𝐤) 𝑑𝜈

𝜏↑ (𝐤) + 𝜀
2 + h.c. (3.10)

The coupling constants 𝐵𝜈 and the overall constant 𝜀 depend on the material inter-

face.3 Using the abbreviated notation 𝑐𝐤𝛼 = 𝑐−
𝜏𝑠 (𝐤), with 𝛼 = ↑↓ for 𝜏 = 𝑠 = ±,

projecting onto the upper valence bands yields,

𝑃 𝑛=−
𝜏=𝑠 (𝐻0 + 𝐻𝑉 − 𝜇𝑁)

= ∑
𝐤,𝛼

𝜉𝐤𝑐†
𝐤𝛼𝑐𝐤𝛼 − ∑

𝐤
(Δ̄𝐤𝑐−𝐤↓𝑐𝐤↑ + Δ𝐤𝑐†

𝐤↑𝑐†
−𝐤↓) + 𝜀, (3.11)

where 𝜉𝐤 = 𝐸−
+↑ (|𝐤|) − 𝜇 and the effective BCS gap function is

Δ𝐤 = 1
2 (𝐵+ + 𝐵−) + 1

2 (𝐵+ − 𝐵−) cos 𝜃𝐤, (3.12)

with 𝜃𝐤 = 𝜃−
+↑ (|𝐤|).4 This form is identical to the standard BCS Hamiltonian with

an effective spin index 𝛼. However, the spin state of the Cooper pair is an equal

superposition of the singlet and the 𝑚 = 0 component of spin triplet. The cor-

responding quasiparticle eigenstates are 𝛾𝐤𝛼 = 𝛼 cos 𝛽𝐤𝑐𝐤𝛼 + sin 𝛽𝐤𝑐†
−𝐤,−𝛼, 5 with

energies 𝜆𝐤 = ±√𝜉2
𝐤 + Δ2

𝐤, where cos 2𝛽𝐤 = 𝜉𝐤/𝜆𝐤. Note that if 𝐵+ = 𝐵−, then Δ𝐤

is a constant and independent of 𝐤. Even when 𝐵+ and 𝐵− are different, the con-

stant term dominates. Before exploring the nature of this state, we analyze the case

of intrinsic superconductivity, and show that the same state is energetically preferred.
3Note that all sums over 𝐤 are restricted to |𝐤| less than some cutoff that restricts

the momentum to a single valley.
4We may take Δ𝐤 to be real. Otherwise, if Δ𝐤 = |Δ𝐤|𝑒𝑖 arg ∆𝐤 , then make the

unitary transformation 𝑐𝐤𝛼 → 𝑒𝑖 arg ∆𝐤/2𝑐𝐤𝛼.
5In this chapter we use 𝛾 for these operators, however in the appendices, we use

𝑏 to avoid other notational conflicts.
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Intrinsic Phase

For a local attractive density-density interaction (e.g. one mediated by phonons),

the potential is 𝑉 ⋍ 1
2 ∑𝐑,𝐑′ 𝑣𝐑𝐑′∶𝑛𝐑𝑛𝐑′ ∶, with 𝑣𝐑𝐑′ = 𝑣0𝛿𝐑𝐑′ and 𝑛𝐑 the total

Wannier electron density at lattice vector 𝐑. Projecting onto states near the chemical

potential gives

𝑃 𝑛=−
𝜏=𝑠 (𝐻𝑉 ) = ∑

𝐤,𝐤′
𝑣 (𝐤′ − 𝐤) (2|𝐴𝐤𝐤′|2𝑐†

𝐤′↑𝑐
†
−𝐤′↓𝑐−𝐤↓𝑐𝐤↑

+𝐴2
𝐤𝐤′𝑐†

𝐤′↑𝑐
†
−𝐤′↑𝑐−𝐤↑𝑐𝐤↑ + 𝐴2

𝐤′𝐤𝑐†
𝐤′↓𝑐

†
−𝐤′↓𝑐−𝐤↓𝑐𝐤↓) , (3.13)

where

𝐴𝐤𝐤′ = 𝑒𝑖(𝜙𝐤′−𝜙𝐤) sin 𝜃𝐤′

2 sin 𝜃𝐤
2 + cos 𝜃𝐤′

2 cos 𝜃𝐤
2 . (3.14)

The first term in equation (3.13) leads to intervalley pairing, and last two lead to

intravalley pairing. We analyze the possible states within mean field theory. The

BCS order parameter is

𝜒 = 𝑣0 ∑
𝐤

̄𝑔𝐤 ⟨𝑐−𝐤𝛼′𝑐𝐤𝛼⟩ , (3.15)

where the form of 𝑔𝐤 depends on the particular pairing channel. The resulting Hamil-

tonian has the same form as the BCS Hamiltonian in equation (3.11) but with an

effective Δ𝐤 = 𝑔𝐤 · 𝜒. The intravalley pairing has three symmetry channels, with the

couplings given by 2𝑔𝐤 = 1 + cos 𝜃𝐤,
√

2𝑒−𝑖𝜙𝐤𝑔𝐤 = sin 𝜃𝐤, and 2𝑒−2𝑖𝜙𝐤𝑔𝐤 = 1 − cos 𝜃𝐤.

For these channels, since ⟨𝑐−𝐤𝛼𝑐𝐤𝛼⟩ = − ⟨𝑐𝐤𝛼𝑐−𝐤𝛼⟩, relabeling 𝐤 → −𝐤 in the sum

gives 𝜒 = 0.6 The intervalley pairing also has three symmetry channels: 𝑔𝐤 =
√

2,

𝑔𝐤 =
√

2 cos 𝜃𝐤, and 𝑔𝐤 =
√

2 sin 𝜃𝐤�̂�. Of the three, the constant valued channel is
6For odd parity interactions, where 𝑣 (−𝐤) = −𝑣 (𝐤), the intravalley pairing is

not excluded by symmetry. Specifically, repeating the calculation with this assump-
tion, the intervalley terms fully cancel, and one obtains equation (3.13) without the
intervalley term on the first line.
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dominant.7 This is to be expected, as the local density-density interaction leads to

the largest pairing for electrons of opposite spins. Since the intravalley processes have

the same spin, they are disfavored as compared to the intervalley pairing.

The key features of the intrinsic superconducting state are identical to the prox-

imally induced case when density-density interactions dominate. We restrict further

analysis to that case, and turn to the question of optically induced pair-breaking

phenomena.

3.4 Optoelectronic coupling

The non-interacting system displays valley selective optical excitations. Light of a

particular polarization only couples to one valley. Since the superconducting state is

a coherent condensate admixing the two valleys, we address whether pair-breaking

displays similar valley selectivity. In particular, we explore whether or not the two

quasiparticles generated by circularly polarized light, with total energy larger than

Δ + Δ𝐤, occupy opposite valleys, with one in the conduction band and the other in

the valence band.

The optical excitations arise from the Berry curvature, which acts as an effective

angular momentum. The electromagnetic potential 𝐀, with polarization vector 𝝐, is

introduced using minimal coupling, 𝐻𝜈𝜈′
𝜏𝑠 (𝐤) → 𝐻𝜈𝜈′

𝜏𝑠 (𝐤 + 𝑒𝐀), where, in the dipole

approximation, 𝐀 = 2 Re 𝝐𝐴0𝑒−𝑖𝜔𝑡. This yields a perturbed Hamiltonian 𝐻 →
𝐻 + 𝐻𝐴, where 𝐻𝐴 = 𝐻′𝑒−𝑖𝜔𝑡 + 𝐻′†𝑒𝑖𝜔𝑡, with

𝐻′ = ∑
𝐤,𝜏,𝑠

𝐻′
𝜏𝑑−

𝜏𝑠
† (𝐤) 𝑑+

𝜏𝑠 (𝐤) − ∑
𝐤,𝜏,𝑠

𝐻′
−𝜏𝑑+

𝜏𝑠
† (𝐤) 𝑑−

𝜏𝑠 (𝐤) , (3.16)

7For example, using the values for WSe2, sin2 𝜃𝐤 = 0.44 and cos2 𝜃𝐤 = 0.56 at the
chemical potential.
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and 𝐻′
𝜏 = 𝑎𝑡𝑒𝐴0 (𝜏�̂� + 𝑖�̂�) · 𝝐. The transition rate is proportional to the modulus-

squared of the optical matrix elements, 𝐏𝑛𝑛′
𝜏𝑠 (𝐤), defined by

𝐻𝐴 = ∑
𝐤,𝜏,𝑠
𝑛,𝑛′

𝑒𝐴0
𝑚0

𝝐 · 𝐏𝑛𝑛′
𝜏𝑠 (𝐤) 𝑐𝑛

𝜏𝑠
† (𝐤) 𝑐𝑛′

𝜏𝑠 (𝐤) . (3.17)

For circularly polarized light, in the absence of superconductivity, 𝝐± = (�̂� ± 𝑖�̂�) /
√

2
and

𝝐± · 𝐏+−
𝜏𝑠 (𝐤) = ∓𝜏

√
2𝑎𝑡𝑚0𝑒±𝑖𝜙 sin2 𝜃∓𝜏

𝜏𝑠 (𝑘)
2 . (3.18)

See appendix E for a full derivation.

The transition rate matrix elements for optical excitations from the BCS ground

state are given by equation (3.18) multiplied by a coherence factor sin 𝛽𝐤. Since

𝜃−
𝜏𝑠 (𝑘)−𝜃+

𝜏𝑠 (𝑘) = 𝜏𝜋, switching either the valley or polarization transforms sin → cos
in equation (3.18), giving matrix elements ∣𝑃±∣ = ∣𝝐± · 𝐏+−

++ (𝐤) sin 𝛽𝐤∣ corresponding

to matching (𝑃+) or mismatching (𝑃−) polarization-valley indexes. For a given valley,

a chosen polarization of light couples more strongly than the other, as is evident

comparing |𝑃+|2 to |𝑃−|2 and shown in figure 3.2. For incident light with energy

Δ + |𝜆𝐤|, right circularly polarized light (+) has a higher probability of promoting a

quasiparticle to the right conduction band, as reflected in the larger matrix element

|𝑃+|2 ≫ |𝑃−|2. As depicted in figure 3.3, the partner of the Cooper pair is in the

valence band in the opposite valley. The other valley has the opposite dependence on

polarization.

This key new result opens the door for valley control of excitations from a coherent

ground state. For example, the two quasiparticles have the same charge and Berry

curvature (see below). In the presence of an electric filed, they both acquire the same
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transverse anomalous velocity. Thus, in contrast to the response in the normal state,

an anomalous Hall effect is anticipated with no accompanying spin current.

3.5 Berry curvature

The Berry curvature in the non-interacting crystal for left and right circularly polar-

ized (𝝐±) optical excitations for a given 𝐤 is ±2Ω+
+↑ (𝑘), where

Ω𝑛
𝜏𝑠 (𝑘) = ̂𝐳 · 𝛀𝑛

𝜏𝑠 (𝐤) , (3.19a)

= −𝑛𝜏 [ 1
2𝑘

𝜕
𝜕𝑘𝜃𝑛

𝜏𝑠 (𝑘)] sin 𝜃𝑛
𝜏𝑠 (𝑘), (3.19b)

= −𝑛𝜏 2(𝑎𝑡)2 (Δ − 𝜆𝜏𝑠)
[(2𝑎𝑡𝑘)2 + (Δ − 𝜆𝜏𝑠)2]3/2 . (3.19c)

The BCS ground state is8

|Ω⟩ = ∏
𝐤

csc 𝛽𝐤𝛾𝐤↑𝛾−𝐤↓ |0⟩ , (3.20a)

= ∏
𝐤

(cos 𝛽𝐤 − sin 𝛽𝐤𝑐†
𝐤↑𝑐†

−𝐤↓) |0⟩ . (3.20b)

This superconducting state is built up from the quasiparticle eigenstates, |𝐤⟩ =
csc 𝛽𝐤𝛾𝐤↑𝛾−𝐤↓ |0⟩, of the 𝐤-dependent Hamiltonian 𝜆𝐤 (𝛾†

𝐤↑𝛾𝐤↑ + 𝛾†
−𝐤↓𝛾−𝐤↓). The 𝑧-

component of the Berry curvature of the correlated state is zero,

̂𝐳 · 𝑖∇𝐤 ⨯ ⟨𝐤 | ∇𝐤 | 𝐤⟩ = Ω−
+↑ (𝑘) + Ω−

−↓ (−𝑘) = 0. (3.21)

A single optically excited state in the left valley for a given 𝐤 is 𝑐+
+↑

† (𝐤) 𝑐−
+↑ |𝐤⟩, which

has a Berry curvature +2 sin6 𝛽𝐤Ω+
+↑ (𝑘). The corresponding excitation in the right

valley has a Berry curvature of the same magnitude but opposite sign. See section D.4

for explicit computation of the above results.
8Note that the full ground state also contains the two lower filled bands, but those

contribute zero net Berry curvature and may be ignored in this section and the next.
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Figure 3.2: Optical transition rate matrix elements ∣𝑃±∣2 in the superconducting
phase as a function of the ratio of the quasiparticle energy 𝜆𝐤 to the superconducting
gap Δ𝐤. Material parameters for MoSe2, WS2, and WSe2 are given in [59] and a gap
of Δ𝐤 = 7.5 meV is chosen for illustrative purposes. The order-of-magnitude contrast
between |𝑃+|2 and |𝑃−|2 causes the optical-valley selectivity.
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E(k)−Ωz +Ωz

ǫ+

Figure 3.3: Pair-breaking by right circularly polarized light leads to an electron in
the conduction band of the right valley and a partner in the valence band of the left
valley. The valleys interchange for left circularly polarized light.
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Chapter 4

Conclusion

In chapter 2 we have analyzed the effect of contact resistance on spin lifetimes deter-

mined via the Hanle spin precession technique in nonlocal spin valves. The general

expression for the precession curves given in equation (2.4) is the main new result.

While aspects of the discussed phenomena have been addressed numerically before,

an analytic solution is obtained here which allows for detailed characterization of the

device. In particular, general features of scaling as well as various limits and regimes

can be analyzed. In addition, the solution allows for fitting data using standard curve

fitting algorithms.

In chapter 3, we have reported on the nature of the superconducting state of hole-

doped TMDs. Remarkably, the correlated state inherits the valley contrasting phe-

nomena of the non-interacting state. While the magnitude is smaller, pair-breaking

produces quasiparticles that have the same Berry curvature, and hence the same

anomalous velocity. Thus one predicts an anomalous Hall response unlike the valley

Hall response observed in MoSe2. While systematic synthesis and characterization of

hole-doped systems is still in its early stages, the fact that other two-dimensional com-
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pounds and their bulk counterparts are known to be superconducting [68] provides

impetus to explore this novel phenomena.
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Appendix A

Nonlocal Resistance Derivation

In this appendix we derive an expression for the nonlocal resistance for finite contact

resistance. We first present the key definitions and critical boundary conditions.

We then derive the relation between the nonlocal resistance and the spin chemical

potential at the far contact, 𝜇𝑁
𝑠 (𝐿). Finally, we solve the diffusion equation inside

the semiconductor to find 𝜇𝑁
𝑠 (𝐿).

A.1 Definitions

Many of the definitions and results in this section are taken from [69]. The chemical

potential and spin chemical potential are defined in terms of the spin-up and spin-

down chemical potentials,

𝜇 = 1
2 (𝜇↑ + 𝜇↓) , (A.1a)

𝜇𝑠 = 1
2 (𝜇↑ − 𝜇↓) . (A.1b)

33



The material conductances and polarization are defined in terms of the spin-up and

spin-down conductances,

𝜎 = 𝜎↑ + 𝜎↓, (A.2a)

𝜎𝑠 = 𝜎↑ − 𝜎↓, (A.2b)

𝑃𝜎 = 𝜎𝑠
𝜎 . (A.2c)

The gradient of the chemical potentials drives a current and spin current,

𝐽↑↓ = 𝜎↑↓∇𝜇↑↓, (A.3a)

𝐽 = 𝐽↑ + 𝐽↓ = 𝜎∇𝜇 + 𝜎𝑠∇𝜇𝑠, (A.3b)

𝐽𝑠 = 𝐽↑ − 𝐽↓ = 𝜎𝑠∇𝜇 + 𝜎∇𝜇𝑠. (A.3c)

To indicate the material, any of the above can have a superscript 𝑁 (normal semi-

conductor) or 𝐹 (ferromagnet).

The contact conductances and polarization are defined in terms of the spin-up

and spin-down contact conductances,

Σ = Σ↑ + Σ↓, (A.4a)

Σ𝑠 = Σ↑ − Σ↓, (A.4b)

𝑃Σ = Σ𝑠
Σ . (A.4c)

The mismatch of the chemical potentials across the contact drives a current and spin

current,

𝐽𝐶
↑↓ = Σ↑↓(𝜇𝑁

↑↓ − 𝜇𝐹
↑↓)𝑐

, (A.5a)

𝐽𝐶 = 𝐽𝐶
↑ + 𝐽𝐶

↓ , (A.5b)

𝐽𝐶
𝑠 = 𝐽𝐶

↑ − 𝐽𝐶
↓ . (A.5c)
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The subscript 𝑐 will always denote the function evaluated at the contact.

We will use the term current to refer to 𝐽 , when in fact this is a particle current

density. For constant 𝐽 , the physical charge current 𝐼 will be related to 𝐽 by a

relation 𝐼 = −𝐴𝐽/𝑒 for some characteristic area 𝐴.

To reduce the number of subscripts and superscripts in the following, we adopt

the notation for the potentials,

𝑢 = 𝜇𝑁
𝑠 ,

𝑣 = 𝜇𝑁 ,

𝜑 = 𝜇𝐹
𝑠 ,

𝜓 = 𝜇𝐹 ,
(A.6a)

and currents,
𝚥 = 𝐽𝑠,

𝐽𝑐 = 𝐽𝐶,

𝚥𝑐 = 𝐽𝐶
𝑠 .

(A.6b)

We rewrite equation (A.5) as

𝐽𝑐 = Σ (𝑣𝑐 − 𝜓𝑐) + Σ𝑠 (𝑢𝑐 − 𝜑𝑐) , (A.7a)

𝚥𝑐 = Σ𝑠 (𝑣𝑐 − 𝜓𝑐) + Σ (𝑢𝑐 − 𝜑𝑐) , (A.7b)

and equations (A.2) and (A.3) as

𝚥 = 𝑃𝜎𝐽 + 4𝜎↑𝜎↓
𝜎 ∇𝜇𝑠. (A.8)

Using equations (A.4) and (A.7),

𝚥𝑐 = 𝑃 𝑖
Σ𝐽𝑐 + 𝑅𝑖

𝐶
−1 (𝑢𝑐 − 𝜑𝑐) , (A.9)

where the contact resistance is

𝑅𝑖
𝐶 = Σ𝑖

4Σ𝑖
↑Σ𝑖

↓
. (A.10)

The superscript 𝑖 allows for contacts with difference conductances.
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A.2 Boundary conditions

In this section we derive the relations between the potentials and the currents. This

corresponds to the needed boundary conditions.

Semiconductor

For the semiconductor, 𝜎𝑁
↑ = 𝜎𝑁

↓ = 𝜎𝑁/2, so 𝑃 𝑁
𝜎 = 0. Evaluating equation (A.8) at

the contact gives

𝚥𝑁
𝑐 = 𝜎𝑁(∇𝑢)𝑐. (A.11)

Ferromagnet

For the ferromagnet, one assumes 𝜇𝐹
𝑠 satisfies the one dimensional diffusion equation.

We choose the 𝑧′ coordinate antiparallel to 𝑧 with origin at the contact. The equation

𝜑″ (𝑧′) − 𝑘2
𝐹 𝜑 (𝑧′) = 0, (A.12)

with the boundary condition lim𝑧′→−∞ 𝜑(𝑧′) = 0 has solution

𝜑(𝑧′) = 𝜑𝑐𝑒𝑘𝐹 𝑧′, (A.13)

where 𝜑𝑐 = 𝜑(0) is a yet undetermined constant. Putting this into equation (A.8)

and evaluating it at the contact gives

𝚥𝐹
𝑐 = 𝑃 𝐹

𝜎 𝐽𝐹
𝑐 + 𝑅−1

𝐹 𝜑𝑐, (A.14)

where the ferromagnet resistance is

𝑅𝐹 = 𝜎𝐹

4𝜎𝐹
↑ 𝜎𝐹

↓ 𝑘𝐹
. (A.15)

Here, 𝜆𝐹 = 1/𝑘𝐹 is the spin diffusion length in the ferromagnet.
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Continuity assumptions

At the contact, the current and spin current are assumed continuous,

𝐽𝑐 = 𝐽𝐹
𝑐 = 𝐽𝑁

𝑐 , (A.16a)

𝚥𝑐 = 𝚥𝐹
𝑐 = 𝚥𝑁

𝑐 . (A.16b)

Using equations (A.9), (A.14), and (A.16) we find the relation

(𝑃 𝐹
𝜎 𝑅𝐹 + 𝑃 𝑖

Σ𝑅𝑖
𝐶) 𝐽𝑐 = (𝑅𝐹 + 𝑅𝑖

𝐶) 𝚥𝑐 − 𝑢𝑐, (A.17a)

and that 𝜑𝑐 is determined by

𝑅−1
𝐹 𝜑𝑐 = (𝑃 𝑖

Σ − 𝑃 𝐹
𝜎 ) 𝑅𝑖

𝐶𝚥𝑐 + 𝑃 𝐹
𝜎 𝑢𝑐

𝑃 𝐹𝜎 𝑅𝐹 + 𝑃 𝑖
Σ𝑅𝑖

𝐶
. (A.17b)

In the special case of zero current at the contact (𝐽𝑐 = 0), equation (A.17) reduces

to

𝚥𝑐 = 1
𝑅𝐹 + 𝑅𝑖

𝐶
𝑢𝑐, (A.18a)

𝜑𝑐 = 𝑅𝐹
𝑅𝐹 + 𝑅𝑖

𝐶
𝑢𝑐. (A.18b)

A.3 Nonlocal resistance

In this section we derive the precise relation between 𝑅NL and 𝜇𝑁
𝑠 (𝐿). Note that we

may write in general, for some ̄𝜇,

𝜇 = ̄𝜇 + 𝑃𝜎𝜇𝑠, (A.19)

and, following [28], define the voltage due to the difference in the chemical potentials

across the contacts by

𝑉𝑐 = ( ̄𝜇𝑁
𝑐 − ̄𝜇𝐹

𝑐 ) /𝑒. (A.20)
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We assume a fixed current 𝐽0 = |𝐽0| > 0 flows down through the contact at 𝑥 = 0
and to the left in the semiconductor for 𝑥 ≤ 0, and no current flows for 𝑥 > 0. The

experimentally measured quantity is the nonlocal resistance 𝑅NL = 𝑉𝐿/𝐼0, where

𝐼0 = −𝑊𝐿𝐽0/𝑒 is the current through the contact at 𝑥 = 0. It is convenient to

introduce the effective nonlocal resistance 𝑅SQ
NL defined by

𝑅SQ
NL = 𝑊𝐿𝑅NL = −𝑒𝑉𝐿/𝐽0 = ̄𝜇𝐹

𝑐 − ̄𝜇𝑁
𝑐

𝐽0
. (A.21)

To determine 𝑅NL, we must express the difference of these chemical potentials in

terms of 𝜇𝑁
𝑠 (𝐿).

Since there are two ferromagnetic contacts, we have separate functions 𝜓 and 𝜑
for each contact which we will denote by 𝜓0, 𝜑0, and 𝜓𝐿, 𝜑𝐿. From equation (A.13),

we have

𝜑0 (𝑧′) = 𝜑0𝑒𝑘𝐹 𝑧′, (A.22a)

𝜑𝐿 (𝑧′) = 𝜑𝐿𝑒𝑘𝐹 𝑧′. (A.22b)

The physical restriction on the current flow in the semiconductor is imposed by noting

that since 𝜎𝑁
𝑠 = 0, equation (A.3b) gives 𝐽𝑁 = 𝜎𝑁∇𝑣, so we must have

𝑣𝑥(𝑥) =
⎧{
⎨{⎩

𝑣𝑥(0) − (𝐽0/𝜎𝑁) 𝑥 for 𝑥 ≤ 0,

𝑣𝑥(0) for 𝑥 > 0,
(A.23)

𝑣𝑦(𝑥) = 𝑣𝑦(0), and 𝑣𝑧(𝑥) = 𝑣𝑧(0). Using equation (A.3b), the restriction on the

current flow in each ferromagnet gives

∇𝜓0 = (𝐽0/𝜎𝐹 ) − 𝑃 𝐹
𝜎 ∇𝜑0, (A.24a)

∇𝜓𝐿 = −𝑃 𝐹
𝜎 ∇𝜑𝐿. (A.24b)
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Integrating and enforcing 𝑒𝑉𝑐 = 𝑣𝑥(0) − (𝜓𝑐 − 𝑃 𝐹
𝜎 𝜑𝑐),

𝜓0 (𝑧′) = −𝑒𝑉0 + 𝑃 𝐹
𝜎 𝜑0 (2 − 𝑒𝑘𝐹 𝑧′) + 𝑣𝑥(0) + (𝐽0/𝜎𝐹 ) 𝑧′, (A.25a)

𝜓𝐿 (𝑧′) = −𝑒𝑉𝐿 + 𝑃 𝐹
𝜎 𝜑𝐿 (2 − 𝑒𝑘𝐹 𝑧′) + 𝑣𝑥(0). (A.25b)

There is no current at the contact at 𝑥 = 0, thus equation (A.7a) gives

𝜓𝐿 − 𝑣𝐿 = 𝑃 𝐿
Σ (𝑢𝐿 − 𝜑𝐿) , (A.26)

and with equation (A.18b), we find

𝑅SQ
NL = (𝜓𝐿 − 𝑣𝐿) − 𝑃 𝐹

𝜎 𝜑𝐿 = [𝑃 𝐿
Σ (1 − 𝑅𝐹

𝑅𝐹 + 𝑅𝐿
𝐶

) − 𝑃 𝐹
𝜎 𝑅𝐹

𝑅𝐹 + 𝑅𝐿
𝐶

] 𝑢𝑥(𝐿)
𝐽0

. (A.27)

A.4 Diffusion equation

In this section we show how to solve for 𝜇𝑁
𝑠 (𝐿). This method is based on the one

described in [24]. Inside the semiconductor, 𝑢 satisfies the diffusion equation,

𝐷∇2𝑢 − 𝑢
𝜏 + 𝜔 × 𝑢 = 0. (A.28)

Here, 𝐷 is the diffusion constant, 𝜏 the spin lifetime, and 𝜔 = (𝑔𝜇𝐵/ℏ) 𝐵 is propor-

tional to the applied magnetic field (with 𝑔 the gyromagnetic ratio and 𝜇𝐵 the Bohr

magneton). The spin diffusion length in the semiconductor is 𝜆 = 1/𝑘 =
√

𝐷𝜏 .

The function 𝑢 = 𝑢(𝑥) only varies along 𝑥, and we introduce the notation

𝑢𝑥(𝑥) =

⎧{{{
⎨{{{⎩

𝑢𝑥−(𝑥) for 𝑥 < 0,

𝑢𝑥0(𝑥) for 0 ≤ 𝑥 ≤ 𝐿,

𝑢𝑥+(𝑥) for 𝐿 < 𝑥,

(A.29)
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with similar expressions for 𝑢𝑦 and 𝑢𝑧. The most general solution to equation (A.28)

decouples 𝑢𝑧 from 𝑢𝑥 and 𝑢𝑦. The requirement lim𝑥→±∞ 𝑢(𝑥) = 0 yields

𝑢𝑧±(𝑥) = 𝐴∓𝑒∓𝑘𝑥, (A.30a)

𝑢𝑧0(𝑥) = 𝐴+
0 𝑒𝑘𝑥 + 𝐴−

0 𝑒−𝑘𝑥, (A.30b)

and

𝑢𝑥±(𝑥) = 𝐵∓𝑒∓𝜅𝑥 + 𝐶∓𝑒∓�̄�𝑥, (A.31a)

𝑢𝑦±(𝑥) = 𝑖𝐵∓𝑒∓𝜅𝑥 − 𝑖𝐶∓𝑒∓�̄�𝑥, (A.31b)

𝑢𝑥0(𝑥) = 𝐵+
0 𝑒𝜅𝑥 + 𝐵−

0 𝑒−𝜅𝑥 + 𝐶+
0 𝑒�̄�𝑥 + 𝐶−

0 𝑒−�̄�𝑥, (A.31c)

𝑢𝑦0(𝑥) = 𝑖𝐵+
0 𝑒𝜅𝑥 + 𝑖𝐵−

0 𝑒−𝜅𝑥 − 𝑖𝐶+
0 𝑒�̄�𝑥 − 𝑖𝐶−

0 𝑒−�̄�𝑥, (A.31d)

where 𝜅 = 𝑘√1 + 𝑖𝜔𝜏 . The twelve constants 𝐴, 𝐵 and 𝐶 (with their various sub-

scripts and superscripts) must be determined by imposing the appropriate boundary

conditions.

We first require 𝑢 be continuous at 𝑥 = 0 and 𝑥 = 𝐿; this gives six equations. We

now require a boundary condition on ∇𝑢, but ∇𝑢 cannot be assumed continuous at

the contact. We make the assumption that the total spin current at the contact is

the sum of the spin currents on either side, i.e.,

𝚥0 = 𝜎𝑁 [−𝑢′
−(0) + 𝑢′

0(0)] , (A.32a)

𝚥𝐿 = 𝜎𝑁 [−𝑢′
0(𝐿) + 𝑢′

+(𝐿)] . (A.32b)

The signs have been chosen to be consistent with the physical geometry. The only

nonzero component of the current at the contacts inside the semiconductor is the 𝑥
component at 𝑥 = 0, so we use equation (A.17a). For all other components there
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is zero current at the contact, and we use equation (A.18a). Together with equa-

tion (A.32), this gives the other six equations,

−𝑢′
𝑧−(0) + 𝑢′

𝑧0(0) + 𝜂0𝑢𝑧(0) = 0, (A.33a)

𝑢′
𝑧+(𝐿) − 𝑢′

𝑧0(𝐿) + 𝜂𝐿𝑢𝑧(𝐿) = 0, (A.33b)

−𝑢′
𝑥−(0) + 𝑢′

𝑥0(0) + 𝜂0𝑢𝑥(0) = Δ, (A.33c)

𝑢′
𝑥+(𝐿) − 𝑢′

𝑥0(𝐿) + 𝜂𝐿𝑢𝑥(𝐿) = 0, (A.33d)

−𝑢′
𝑦−(0) + 𝑢′

𝑦0(0) + 𝜂0𝑢𝑦(0) = 0, (A.33e)

𝑢′
𝑦+(𝐿) − 𝑢′

𝑦0(𝐿) + 𝜂𝐿𝑢𝑦(𝐿) = 0, (A.33f)

where

𝜂−1
𝑖 = −𝜎𝑁 (𝑅𝐹 + 𝑅𝑖

𝐶) , (A.34a)

Δ = −(−𝐽0) (𝑃 𝐹
𝜎 𝑅𝐹 + 𝑃 0

Σ𝑅0
𝐶) 𝜂0. (A.34b)

We define the 𝑟-parameter, 𝑟𝑖 = −𝜂−1
𝑖 , introduced in equation (2.5).

These equations can be organized into a matrix equation and solved algebraically.

A solution for 𝑢𝑧 corresponds to a condition of vanishing determinant,

𝑒−2𝐿/𝜆 = (1 + 2𝑟0
𝜆 ) (1 + 2𝑟𝐿

𝜆 ) , (A.35)

which can never be satisfied,1 thus 𝑢𝑧 = 0 is the only allowed solution. The other two

components form an eight dimensional linear system. Solving this gives the remaining

constants, and thus 𝑢𝑥(𝐿) = 𝑒−𝜅𝐿𝐵− + 𝑒−�̄�𝐿𝐶−.
1Except at the nonphysical point 𝐿/𝜆 = 𝑟𝑖/𝜆 = 0.
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Finally, by using 𝑝1 = −𝜎𝑁Δ/𝐽0 along with equation (A.27), we can introduce

𝑅SQ from equation (2.6) and the polarizations

𝑝1 = 𝑃 𝐹
𝜎 𝑅𝐹 + 𝑃 𝐿

Σ 𝑅𝐿
𝐶

𝑅𝐹 + 𝑅𝐿
𝐶

, (A.36a)

𝑝2/𝑝1 = (1 − 𝑃 𝐹
𝜎 𝑅𝐹

𝑃 𝐿
Σ 𝑅𝐿

𝐶
)/(1 + 𝑃 𝐹

𝜎 𝑅𝐹
𝑃 𝐿

Σ 𝑅𝐿
𝐶

) , (A.36b)

to write
𝑅SQ

NL
𝑅SQ

= 𝑝1𝑝2
𝑊/𝜆 [−𝑘𝑢𝑥(𝐿)

Δ ] . (A.37)

The factor in brackets is the function 𝑓 given in equation (2.4).
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Appendix B

Tight-Binding Model

In this appendix, we review the assumptions of the tight-binding model as derived

from Bloch’s theorem. We denote the position and momentum operators respectively

by 𝐐 and 𝐏.

B.1 Transition operators

We first define the position-space translation operator, 𝑇 (𝐫) = 𝑒−𝑖𝐫·𝐏, and the

momentum-space translation operator, 𝑇𝐤 = 𝑒−𝑖𝐤·𝐐. We assume zero magnetic field.1

Each has a simple inverse: 𝑇 −1 (𝐫) = 𝑇 (−𝐫) and 𝑇 −1
𝐤 = 𝑇−𝐤. We also note the deriva-

tives: ∇𝐤𝑇𝐤 = −𝑖𝐐𝑇𝐤 and ∇𝐤𝑇 −1
𝐤 = 𝑖𝐐𝑇 −1

𝐤 .

We can compute a useful commutation relation of these translations operators.
1For nonzero field, much of the following can be recast in terms of the magnetic

translation operators [70].
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Application of the Baker–Campbell–Hausdorff formula gives

𝑇 (𝐫) 𝑇𝐤 = 𝑒−𝑖(𝐫·𝐏+𝐤·𝐐)− 1
2 [𝐫·𝐏,𝐤·𝐐], (B.1a)

𝑇𝐤𝑇 (𝐫) = 𝑒−𝑖(𝐫·𝐏+𝐤·𝐐)+ 1
2 [𝐫·𝐏,𝐤·𝐐]. (B.1b)

Only a single commutator appears above since [𝐫 · 𝐏, 𝐤 · 𝐐] = −𝑖𝐫 · 𝐤. Substituting

this gives

𝑇 (𝐫) 𝑇𝐤 = 𝑒−𝑖𝐫·𝐤𝑇𝐤𝑇 (𝐫) . (B.2)

B.2 Bloch Hamiltonian

Given a Hamiltonian 𝐻 and a set of 𝑁 lattice vectors {𝐑0
𝑛} such that the Hamiltonian

commutes with each 𝑇 (𝐑0
𝑛), we may choose a set of common eigenvectors according

to Bloch’s theorem,

𝐻 |𝜓𝑛𝐤⟩ = 𝐸𝑛𝐤 |𝜓𝑛𝐤⟩ , (B.3a)

𝑇 (𝐑0
𝑚) |𝜓𝑛𝐤⟩ = 𝑒−𝑖𝐤·𝐑0

𝑚 |𝜓𝑛𝐤⟩ . (B.3b)

Given periodic boundary conditions, the set of allowed 𝐤 becomes countable and may

be restricted to the first Brillouin zone due to the periodicity of the eigenvalues with

respect to translation by a reciprocal lattice vector 𝐆. For each 𝐤, the transformation

|𝑢𝑛𝐤⟩ = 𝑇𝐤 |𝜓𝑛𝐤⟩ gives a set of states which are invariant under lattice translations,

i.e., using equation (B.2), 𝑇 (𝐑0
𝑚) |𝑢𝑛𝐤⟩ = |𝑢𝑛𝐤⟩. A general operator then transforms

according to 𝐴𝐤 = 𝑇𝐤𝐴𝑇 −1
𝐤 . Note that the derivative of a transformed operator may

be computed as

∇𝐤𝐴𝐤 = ∇𝐤 (𝑇𝐤𝐴𝑇 −1
𝐤 ) = 𝑖 [𝐴𝐤, 𝐐] . (B.4)
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B.3 Tight-binding approximation

In the tight biding model, one assumes there exists a finite set {|𝜑𝜈⟩} of relevant

atomic orbitals. The corresponding Bloch orbital states,

|𝜙𝜈𝐤⟩ = 1√
𝑁

𝑁
∑
𝑛=1

𝑒𝑖𝐤⋅𝐑0
𝑛𝑇 (𝐑0

𝑛) |𝜑𝜈⟩ , (B.5)

provide a complete bases for the space of Bloch eigenstates {|𝜓𝑛𝐤⟩}, i.e.,

|𝜓𝑛𝐤⟩ = ∑
𝜈

𝑀𝜈𝑛
𝐤 |𝜙𝜈𝐤⟩ , (B.6a)

|𝜙𝜈𝐤⟩ = ∑
𝑛

𝑊 𝑛𝜈
𝐤 |𝜓𝑛𝐤⟩ , (B.6b)

with 𝑀𝜈𝑛
𝐤 = �̄� 𝜈𝑛

𝐤 . The second overlap term in

⟨𝜙𝜈′𝐤 | 𝜙𝜈𝐤⟩ = ⟨𝜑𝜈′ | 𝜑𝜈⟩ +
𝑁

∑
𝐑0𝑛≠0

𝑒𝑖𝐤⋅𝐑0
𝑛 ⟨𝜑𝜈′ ∣ 𝑇 (𝐑0

𝑛) ∣ 𝜑𝜈⟩ (B.7)

is small, thus the states {|𝜑𝜈⟩} are assumed formally orthonormal.

Since each |𝜙𝑛𝑘⟩ satisfies

𝑇 (𝐑0
𝑚) |𝜙𝜈𝐤⟩ = 𝑒−𝑖𝐤·𝐑0

𝑚 |𝜙𝜈𝐤⟩ , (B.8)

the transformed orbital states |𝑣𝑛𝐤⟩ = 𝑇𝐤 |𝜙𝑛𝑘⟩ are invariant under lattice translations.

One typically knows the matrix elements of an effective Hamiltonian in the bases of

these periodic Bloch orbitals,

𝐻𝜈𝜈′
𝐤 = ⟨𝑣𝜈𝐤 | 𝐻𝐤 | 𝑣𝜈′𝐤⟩ = ∑

𝑛
�̄� 𝑛𝜈

𝐤 𝐸𝑛𝐤𝑊 𝑛𝜈′
𝐤 , (B.9)

which determines the coefficients 𝑀𝜈𝑛
𝐤 .
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Appendix C

Many-Body Interaction

The BCS theory of superconductivity is often introduced as a consequence of the

effective electron-electron interaction arising from the underlying electron-phonon

interaction. In this appendix, we review general two-particle interactions, and derive

the form of the electron-electron interaction when applied to the tight-binding model.

These results are the foundation for deriving the intrinsic TMD superconducting

state.

C.1 Electron-electron interaction

Consider a general spin-independent interaction potential 𝑣 (𝐱, 𝐱′) which depends

on the positions 𝐱 and 𝐱′ of a pair of particles [71]. In a multiparticle system of

dimension 𝑑 with no self-interaction, the interaction 𝑉 may be written as an additive
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pair operator in a given bases, 𝐶†
𝛼 |0⟩ = |𝛼⟩ = |𝑓𝛼⟩⊗|𝜎𝛼⟩, of fermionic Fock operators,

𝑉 = 1
2 ∑

𝑖≠𝑗
𝑣 (𝐐𝑖, 𝐐𝑗) ,

= 1
4 ∑

𝛼,𝛽,𝛿,𝛾
⟨𝛼𝛽 | 𝑣 | 𝛾𝛿⟩ 𝐶†

𝛼𝐶†
𝛽𝐶𝛿𝐶𝛾,

= 1
2 ∑

𝛼,𝛽,𝛿,𝛾
𝑣𝛼𝛽,𝛾𝛿𝐶†

𝛼𝐶†
𝛽𝐶𝛿𝐶𝛾.

(C.1)

Here, |𝛼𝛽⟩ = (|𝛼⟩ |𝛽⟩ − |𝛽⟩ |𝛼⟩) /
√

2, and we introduce the symbol

𝑣𝛼𝛽,𝛾𝛿 = (⟨𝑓𝛼| ⟨𝑓𝛽∣) 𝑣 (∣𝑓𝛾⟩ |𝑓𝛿⟩) ⟨𝜎𝛼 ∣ 𝜎𝛾⟩ ⟨𝜎𝛽 ∣ 𝜎𝛿⟩ ,

= 𝛿𝜎𝛼𝜎𝛾
𝛿𝜎𝛽𝜎𝛿

∫ ̄𝑓𝛼 (𝐱) ̄𝑓𝛽 (𝐱′) 𝑣 (𝐱, 𝐱′) 𝑓𝛾 (𝐱) 𝑓𝛿 (𝐱′) d𝑑𝐱 d𝑑𝐱′,
(C.2)

so that ⟨𝛼𝛽 | 𝑣 | 𝛾𝛿⟩ = 𝑣𝛼𝛽,𝛾𝛿 − 𝑣𝛼𝛽,𝛿𝛾. For a given interaction, the explicit form of 𝑉
depends on the choice of basis states. For illustration, we consider the position and

momentum space descriptions below.

If one chooses the continuous basis of position eigenstates, Ψ†
𝜎 (𝐱) |0⟩ = |𝐱⟩ ⊗ |𝜎⟩,

then equation (C.1) takes the form of an integral over density-density interactions,

𝑉 = 1
2 ∫ 𝑣 (𝐱, 𝐱′) ∶𝜌 (𝐱) 𝜌 (𝐱′) ∶ d𝑑𝐱 d𝑑𝐱′, (C.3)

where the colon denotes normal ordering and

𝜌 (𝐱) = ∑
𝜎

Ψ†
𝜎 (𝐱) Ψ𝜎 (𝐱) . (C.4)

For interactions 𝑣 (𝐫) which depend only on the relative separation, 𝐫 = 𝐱′ − 𝐱, if

one chooses the countable basis of box normalized momentum eigenstates in a volume

Ω with periodic boundary conditions, 𝑐†
𝐩𝜎 |0⟩ = |𝐩⟩ ⊗ |𝜎⟩, with ⟨𝐱 | 𝐩⟩ = Ω−1/2𝑒𝑖𝐩·𝐱,

then

𝑉 = 1
2 ∑

𝐩,𝐩′,𝐪
∑
𝜎,𝜎′

̃𝑣𝐪𝑐†
𝐩+𝐪𝜎𝑐†

𝐩′−𝐪𝜎′𝑐𝐩′𝜎′𝑐𝐩𝜎, (C.5)
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where

̃𝑣𝐪 = 1
Ω ∫ 𝑣 (𝐫) 𝑒−𝑖𝐪·𝐫 d𝑑𝐫. (C.6)

Interaction in the tight-binding model

We now apply the above to the basis introduced in the tight-binding model. Introduce

a Wannier representation,

|𝜙𝜈𝐤⟩ = 1√
𝑁

∑
𝐑

𝑒𝑖𝐤⋅𝐑 |𝜙𝜈𝐑⟩ , (C.7)

where for convenience we write 𝐑 for 𝐑0
𝑛. We adopt the following section-specific

notation for the Fock operators,

𝑎†
𝐤𝜈𝜎 |0⟩ = |𝜙𝜈𝐤𝜎⟩ = |𝜙𝜈𝐤⟩ ⊗ |𝜎⟩ , (C.8a)

𝑎†
𝐑𝜈𝜎 |0⟩ = |𝜙𝜈𝐑𝜎⟩ = |𝜙𝜈𝐑⟩ ⊗ |𝜎⟩ , (C.8b)

which explicitly separates out the spin index. Since

⟨𝐱 | 𝜙𝜈𝐑⟩ = ⟨𝐱 − 𝐑 | 𝜑𝜈⟩ = 𝜑𝜈 (𝐱 − 𝐑) , (C.9)

by keeping only on-center, like-orbital terms, the interaction may by simplified to the

approximate form

𝑉 ⋍ 1
2 ∑

𝐑,𝐑′
∑
𝜈,𝜈′

𝑣𝜈𝜈′
𝐑𝐑′∶𝑛𝐑𝜈𝑛𝐑′𝜈′ ∶, (C.10)

with the number operators,

𝑛𝜈𝐑 = ∑
𝜎

𝑎†
𝐑𝜈𝜎𝑎𝐑𝜈𝜎, (C.11)

and interaction integral,

𝑣𝜈𝜈′
𝐑𝐑′ = ∫ 𝑣 (𝐱, 𝐱′) |𝜑𝜈 (𝐱 − 𝐑)|2|𝜑𝜈′ (𝐱′ − 𝐑′)|2 d𝑑𝐱 d𝑑𝐱′. (C.12)
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This sum over density-density interactions mimics equation (C.3).

Further, assuming that the interaction depends only on the relative separation,

𝑣𝜈𝜈′
𝐑𝐑′ = 𝑣𝜈𝜈′ (𝐑′ − 𝐑), we may introduce the Fourier expansion

̃𝑣𝜈𝜈′
𝐪 = ∑

𝐑
𝑣𝜈𝜈′ (𝐑) 𝑒𝑖𝐪·𝐑, (C.13)

and switch back to the Bloch representation,

𝑉 = 1
2( Ω

𝑁 )
2

∑
𝜈,𝜈′

∑
𝜎,𝜎′

∑
𝐤′,�̄�

∑
𝐤,�̄�′

∑
𝐪

̃𝑣𝜈𝜈′
𝐪

𝛿 [𝐪 − (𝐤 − �̄�)] 𝛿 [𝐪 − (�̄�′ − 𝐤′)] 𝑎†
�̄�𝜈𝜎𝑎†

�̄�′𝜈′𝜎′𝑎𝐤′𝜈′𝜎′𝑎𝐤𝜈𝜎. (C.14)

As a convenience, we have written this as a sum over a countable set of momentum

states, however any sum over momentum may be converted to an integral according

to the substitution ∑𝐤 → (𝑁/Ω) ∫ d𝑑𝐤. Using this, we may integrate out the 𝛿-

functions and obtain a form that mimics equation (C.5),

𝑉 = 1
2 ∑

𝐤,𝐤′,𝐪
∑
𝜈,𝜈′

∑
𝜎,𝜎′

̃𝑣𝜈𝜈′
𝐪 𝑎†

𝐤+𝐪𝜈𝜎𝑎†
𝐤′−𝐪𝜈′𝜎′𝑎𝐤′𝜈′𝜎′𝑎𝐤𝜈𝜎. (C.15)
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Appendix D

Intrinsic Superconducting Phases

D.1 Interaction in the effective model

Note that for the effective low-energy, dual-valley model, equation (C.15) is oversim-

plified. We must first split up each integral into a region about each valley center.

The allowed transitions are still constrained by global conservation of momentum.

Starting with equation (C.14), the integral over 𝐪 is unchanged,

𝑉 = 1
2

Ω
𝑁 ∑

𝜈,𝜈′

𝜎,𝜎′

∑
𝐤′,�̄�

∑
𝐤,�̄�′

̃𝑣𝜈𝜈′

𝐤−�̄�𝛿 [(�̄�′ − 𝐤′) − (𝐤 − �̄�)] 𝑎†
�̄�𝜈𝜎𝑎†

�̄�′𝜈′𝜎′𝑎𝐤′𝜈′𝜎′𝑎𝐤𝜈𝜎. (D.1)

We now split up the integral over the global momentum coordinates into integrals

over relative coordinates centered about each valley; this introduces an additional

overall factor of 2−4 (two valley centers per momentum integral with four independent

momentum-space coordinates). We then restrict each integral to a suitable region

about each valley (indicated by a prime on the summation). The relative coordinates

are thus introduced by the substitution 𝐤 → 𝐤 + 𝜏𝐊.
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Global conservation of momentum, represented by the 𝛿-function, now requires

𝐤 − �̄� + (𝜏 − ̄𝜏) 𝐊 = �̄�′ − 𝐤′ + ( ̄𝜏 ′ − 𝜏 ′) 𝐊. (D.2)

Since |𝐤| ≪ |𝐊|, the above is actually the two independent conditions,

𝐤 − �̄� = �̄�′ − 𝐤′, (D.3a)

𝜏 − ̄𝜏 = ̄𝜏 ′ − 𝜏 ′. (D.3b)

There are three allowed cases for the sum over the valley indexes: intravalley scatter-

ing with 𝜏 = ̄𝜏 and 𝜏 ′ = ̄𝜏 ′; intervalley scattering with 𝜏 = −𝜏 ′ and ̄𝜏 = − ̄𝜏 ′; and

exchange with 𝜏 = ̄𝜏 ′ and ̄𝜏 = 𝜏 ′. We indicate summation over the allowed cases by

adding a prime to the sum. Thus, we obtain

𝑉 = 1
25 ∑′

𝐤,𝐤′,𝐪
∑
𝜈,𝜈′

𝜎,𝜎′

∑′

𝜏, ̄𝜏,
𝜏′, ̄𝜏′

̃𝑣𝜈′𝜈
𝐪+( ̄𝜏−𝜏)𝐊𝑎𝜈

̄𝜏𝜎
† (𝐤 + 𝐪) 𝑎𝜈′

̄𝜏′𝜎′
† (𝐤′ − 𝐪) 𝑎𝜈′

𝜏′𝜎′ (𝐤′) 𝑎𝜈
𝜏𝜎 (𝐤) . (D.4)

The expected BCS instability is strongest for scattering with 𝐤 = −𝐤′. Restricting

the sum over 𝐤′ to this condition, relabeling the momentum indexes, and defining

𝑣𝜈𝜈′
𝐪 = 2−4 ̃𝑣𝜈′𝜈

𝐪 gives

𝑉 = 1
2 ∑′

𝐤,𝐤′
∑
𝜈,𝜈′

𝜎,𝜎′

∑′

𝜏, ̄𝜏,
𝜏′, ̄𝜏′

𝑣𝜈𝜈′
𝐤′−𝐤+( ̄𝜏−𝜏)𝐊𝑎𝜈

̄𝜏𝜎
† (𝐤′) 𝑎𝜈′

̄𝜏′𝜎′
† (−𝐤′) 𝑎𝜈′

𝜏′𝜎′ (−𝐤) 𝑎𝜈
𝜏𝜎 (𝐤) . (D.5)

Expanding the sum over the valley indexes gives

𝑉 = 1
2 ∑′

𝐤,𝐤′
∑
𝜏,𝜏′,

∑
𝜈,𝜈′

∑
𝜎,𝜎′

[𝑣𝜈𝜈′
𝐤′−𝐤𝑎𝜈

𝜏𝜎
† (𝐤′) 𝑎𝜈′

𝜏′𝜎′
† (−𝐤′) 𝑎𝜈′

𝜏′𝜎′ (−𝐤) 𝑎𝜈
𝜏𝜎 (𝐤) (D.6a)

+ 𝑣𝜈𝜈′
𝐤′−𝐤+(𝜏′−𝜏)𝐊𝑎𝜈

𝜏′𝜎
† (𝐤′) 𝑎𝜈′

−𝜏′𝜎′
† (−𝐤′) 𝑎𝜈′

−𝜏𝜎′ (−𝐤) 𝑎𝜈
𝜏𝜎 (𝐤) (D.6b)

+ 𝑣𝜈𝜈′
𝐤′−𝐤+(𝜏′−𝜏)𝐊𝑎𝜈

𝜏′𝜎
† (𝐤′) 𝑎𝜈′

𝜏𝜎′
† (−𝐤′) 𝑎𝜈′

𝜏′𝜎′ (−𝐤) 𝑎𝜈
𝜏𝜎 (𝐤) ]. (D.6c)
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Projecting to bands with 𝛼 = 𝜏 = 𝜎,

𝑉 = 1
2 ∑′

𝐤,𝐤′
∑
𝜈,𝜈′

∑
𝛼

𝑣𝜈𝜈′
𝐤′−𝐤[𝑎𝜈

𝛼
† (𝐤′) 𝑎𝜈′

𝛼
† (−𝐤′) 𝑎𝜈′

𝛼 (−𝐤) 𝑎𝜈
𝛼 (𝐤) (D.7a)

+ 𝑎𝜈
𝛼

† (𝐤′) 𝑎𝜈′
−𝛼

† (−𝐤′) 𝑎𝜈′
−𝛼 (−𝐤) 𝑎𝜈

𝛼 (𝐤) (D.7b)

+ ∑
𝛼′

𝑎𝜈
𝛼

† (𝐤′) 𝑎𝜈′
𝛼′

† (−𝐤′) 𝑎𝜈′
𝛼′ (−𝐤) 𝑎𝜈

𝛼 (𝐤) ]. (D.7c)

This simplifies into explicit intervalley and intravalley terms,

𝑉 = ∑′

𝐤,𝐤′
∑
𝜈,𝜈′

∑
𝛼

𝑣𝜈𝜈′
𝐤′−𝐤[𝑎𝜈

𝛼
† (𝐤′) 𝑎𝜈′

𝛼
† (−𝐤′) 𝑎𝜈′

𝛼 (−𝐤) 𝑎𝜈
𝛼 (𝐤)

+ 𝑎𝜈
𝛼

† (𝐤′) 𝑎𝜈′
−𝛼

† (−𝐤′) 𝑎𝜈′
−𝛼 (−𝐤) 𝑎𝜈

𝛼 (𝐤) ]. (D.8)

D.2 Superconducting channels

Assuming the interaction is real-valued and orbital-independent,1

𝑣𝜈𝜈′
𝐤′−𝐤 = 𝑣 (𝐤′ − 𝐤) = 𝑣 (𝐤 − 𝐤′) , (D.9)

equation (D.8) projected to the upper 𝑛 = −1 bands with 𝜏 = 𝜎 is

𝑃 𝑛=−
𝜏=𝜎 (𝐻𝑉 ) = ∑

𝐤,𝐤′
𝑣 (𝐤′ − 𝐤) (2|𝐴𝐤𝐤′|2𝑐†

𝐤′↑𝑐
†
−𝐤′↓𝑐−𝐤↓𝑐𝐤↑

+𝐴2
𝐤𝐤′𝑐†

𝐤′↑𝑐
†
−𝐤′↑𝑐−𝐤↑𝑐𝐤↑ + 𝐴2

𝐤′𝐤𝑐†
𝐤′↓𝑐

†
−𝐤′↓𝑐−𝐤↓𝑐𝐤↓) , (D.10)

where

𝐴𝐤𝐤′ = 𝑒𝑖(𝜙𝐤′−𝜙𝐤) sin 𝜃𝐤′

2 sin 𝜃𝐤
2 + cos 𝜃𝐤′

2 cos 𝜃𝐤
2 . (D.11)

1As noted in section 3.3, this choice forbids the intravalley pairing. However, for
the complex-valued case, only the intravalley pairing term survives. For completeness,
we still consider the intravalley terms in this appendix.
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For the intravalley channels, the coefficient can be expanded as

𝐴2
𝐤𝐤′ =

2
∑
𝑚=0

̄𝑓𝑚
𝐤 · 𝑔𝑚

𝐤′, (D.12)

with 𝑓𝑚
𝐤 = 𝑔𝑚

𝐤′ and

𝑓0
𝐤 = cos2 𝜃𝐤

2 = 1
2𝑃0 (cos 𝜃𝐤) + 1

2𝑃1 (cos 𝜃𝐤) , (D.13a)

𝑒−𝑖𝜙𝐤𝑓1
𝐤 =

√
2 sin 𝜃𝐤

2 cos 𝜃𝐤
2 = 1√

2
𝑃1 (sin 𝜃𝐤) , (D.13b)

𝑒−2𝑖𝜙𝐤𝑓2
𝐤 = sin2 𝜃𝐤

2 = 1
2𝑃0 (cos 𝜃𝐤) − 1

2𝑃1 (cos 𝜃𝐤) . (D.13c)

Here, 𝑃𝑙 are the Legendre polynomials: 𝑃0 (𝑥) = 1 and 𝑃1 (𝑥) = 𝑥.

For the intervalley channels, the coefficient can be expanded as

2|𝐴𝐤𝐤′|2 =
1

∑
𝑙=0

̄𝑓 𝑙
𝐤 · 𝑔𝑙

𝐤′ + ̄𝑓𝐤 · 𝑔𝐤′, (D.14)

with 𝑓 𝑙
𝐤 = 𝑔𝑙

𝐤′ , 𝑓𝐤 = 𝑔𝐤′ , and

𝑓0
𝐤 =

√
2𝑃0 (cos 𝜃𝐤) , (D.15a)

𝑓1
𝐤 =

√
2𝑃1 (cos 𝜃𝐤) , (D.15b)

𝑓𝐤 =
√

2𝑃1 (sin 𝜃𝐤) �̂�. (D.15c)

Mean field approximation

Using the mean field approximation, we make replacements of the form 𝐴𝐵 =
𝐴 ⟨𝐵⟩ + ⟨𝐴⟩ 𝐵 − ⟨𝐴⟩ ⟨𝐵⟩, where 𝐴 (𝐵) is the product of two creation (annihila-

tion) operators. The expectation value is taken in the superconducting ground state.

We assume 𝑣 (𝐤 − 𝐤′) = −𝑣0 is a constant attractive interaction, possibly with some

effective interaction range which further restricts the summation. Equation (D.10)
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thus reduces to a sum of terms of the form

− ∑
𝐤

(Δ̄𝛾𝛾′

𝐤 𝑐−𝐤𝛾′𝑐𝐤𝛾 + 𝜀𝛾𝛾′

2 ) + h.c., (D.16)

where 𝛾 = 𝛾′ = ±1 (𝛾 = −𝛾′ = 1) corresponds to the intravalley (intervalley)

scattering channels,

Δ𝛾𝛾′

𝐤 = − ∑′

𝐤′
̄𝑣𝛾𝛾′

𝐤𝐤′ ⟨𝑐−𝐤′𝛾′𝑐𝐤′𝛾⟩ , (D.17)

and

𝜀𝛾𝛾′ = − ∑
𝐤,𝐤′

𝑣𝛾𝛾′

𝐤𝐤′ ⟨𝑐†
𝐤′𝛾𝑐†

−𝐤′𝛾′⟩ ⟨𝑐−𝐤𝛾′𝑐𝐤𝛾⟩ = ∑
𝐤

Δ𝛾𝛾′

𝐤 ⟨𝑐†
𝐤𝛾𝑐†

−𝐤𝛾′⟩ . (D.18)

Projected to a single superconducting channel, the Hamiltonian is

𝑃 −
𝛾𝛾′ (𝐻0 + 𝐻𝑉 − 𝜇𝑁) = 𝜀𝛾𝛾′ + ∑

𝐤
(𝜉𝐤𝑐†

𝐤𝛾𝑐𝐤𝛾 + 𝛿𝛾,−𝛾′𝜉𝐤𝑐†
𝐤𝛾′𝑐𝐤𝛾′)

− ∑
𝐤

(Δ̄𝛾𝛾′

𝐤 𝑐−𝐤𝛾′𝑐𝐤𝛾 + Δ𝛾𝛾′

𝐤 𝑐†
𝐤𝛾𝑐†

−𝐤𝛾′) .
(D.19)

Channel solutions

An interaction for a given channel may be written as

𝑣𝐤𝐤′ = ̄𝑣𝐤′𝐤 = −𝑣0 ̄𝑓𝐤 · 𝑔𝐤′, (D.20)

where we suppress the channel and band indexes here and in the following when there

is no ambiguity. The channels are further split according to angular momentum, and

the individual channels and their weights are summarized below. The order parameter

is

𝜒0 = 𝑣0 ∑
𝐤

̄𝑔𝐤 ⟨𝑐−𝐤𝛾′𝑐𝐤𝛾⟩ , (D.21)

thus Δ𝐤 = 𝑓𝐤 · 𝜒0. Note that we allow 𝑓𝐤, 𝑔𝐤, and 𝜒0 to be either scalar or vector

quantities.
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The Hamiltonian in equation (D.19) is again identical in structure to the BCS

Hamiltonian, however the parameter Δ𝐤 must be allowed complex as multiple chan-

nels may differ by relative phases which cannot be removed by a global unitary

transformation. The solutions for each channel all share an identical form; however,

for the intravalley channels, the expression for the eigenvalues 𝜆𝐤 and other associ-

ated expressions is modified according to 𝜉 → 𝜉/2, since the kinetic energy is split

between each valley. To keep track of the two cases, we will write 𝜉′, where 𝜉′ = 𝜉
for intervalley channels and 𝜉′ = 𝜉/2 for intravalley channels.

The diagonalized form is

𝑃 (𝐻0 + 𝐻𝑉 − 𝜇𝑁) = ∑
𝐤

∑
𝛼=𝛾,𝛾′

𝜆𝐤𝑏†
𝐤𝛼𝑏𝐤𝛼 + ∑

𝐤
(𝜉′

𝐤 − 𝜆𝐤) + 𝜀, (D.22)

with eigenvalues

𝜆𝐤 = √𝜉′2
𝐤 + |Δ𝐤|2. (D.23)

The Bogoliubov transformation for complex Δ𝐤 is

𝑐𝐤𝛾 = 𝑒−𝑖𝛿𝐤 cos 𝛽𝐤𝑏𝐤𝛾 + 𝑒𝑖𝛿′
𝐤 sin 𝛽𝐤𝑏†

−𝐤𝛾′, (D.24a)

𝑐−𝐤𝛾′ = 𝑒𝑖𝛿′
𝐤 sin 𝛽𝐤𝑏†

𝐤𝛾 − 𝑒−𝑖𝛿𝐤 cos 𝛽𝐤𝑏−𝐤𝛾′, (D.24b)

where 𝛿′
𝐤 − 𝛿𝐤 = arg Δ𝐤 and

sin 2𝛽𝐤 = − |Δ𝐤|/𝜆𝐤, (D.25a)

cos 2𝛽𝐤 = 𝜉′
𝐤/𝜆𝐤. (D.25b)

Note also the inverse,

𝑏𝐤𝛾 = 𝑒𝑖𝛿𝐤 cos 𝛽𝐤𝑐𝐤𝛾 + 𝑒𝑖𝛿′
𝐤 sin 𝛽𝐤𝑐†

−𝐤𝛾′, (D.26a)

𝑏−𝐤𝛾′ = 𝑒𝑖𝛿′
𝐤 sin 𝛽𝐤𝑐†

𝐤𝛾 − 𝑒𝑖𝛿𝐤 cos 𝛽𝐤𝑐−𝐤𝛾′. (D.26b)
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With this, Equation (D.21) becomes

𝜒0 = 𝑣0 ∑
𝐤

̄𝑔𝐤 (−1
2𝑒𝑖 arg ∆𝐤 sin 2𝛽𝐤) ,

= 𝑣0
2 ∑

𝐤
̄𝑔𝐤
|Δ𝐤|𝑒𝑖 arg ∆𝐤

𝜆𝐤
,

= 𝑣0
2 ∑

𝐤
̄𝑔𝐤
Δ𝐤
𝜆𝐤

,

= 𝑣0
2 ∑

𝐤
̄𝑔𝐤
𝑓𝐤 · 𝜒0

𝜆𝐤
.

(D.27)

Gap equation

We now derive the gap equation for each symmetry channel. These are reduced to

an integral which may be solved numerically.

Scalar channels

For scalar channels, 𝑓𝐤 = 𝑔𝐤. We replace the sum by an integral, and since |𝑓𝐤|2

and 𝜆𝐤 depend only on |𝐤|, the integral over 𝜙 is trivial and yields a factor of 2𝜋.

Equation (D.27) becomes

1 = 𝜋𝑣0 ∫
𝜔

−𝜔

|𝑓 (𝜉)|2|𝜌 (𝜉)| d𝜉
√𝜉′2 + |𝑓 (𝜉)|2|𝜒0|2

, (D.28)

where 𝜔 < 𝜆 is the energy cutoff around the chemical potential and the density of

states is

𝜌 (𝜉) = 𝑘𝜕𝑘
𝜕𝜉 = 2 (𝜉 + 𝜇) − 𝜆

(𝑎𝑡)2 . (D.29)
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Vector channels

For the intervalley vector channels,

𝑓𝐤 = 𝑔𝐤 =
√

2 sin 𝜃𝐤�̂�, (D.30a)

𝜒0 = (|𝜒0|/
√

2) ( ̂𝑒1 + 𝑖 ̂𝑒2) , (D.30b)

for some fixed unit vectors ̂𝑒1 and ̂𝑒2. We consider two cases: ̂𝑒1 ∥ ̂𝑒2 or ̂𝑒1⊥ ̂𝑒2.

When ̂𝑒1 ∥ ̂𝑒2, write 𝜒0 = |𝜒0| ̂𝑒𝑒𝑖𝜙0 and �̂� · ̂𝑒 = cos (𝜙𝐤 − 𝜙𝑒), so equation (D.27)

reads

̂𝑒 = 𝑣0
2 ∑

𝐤

|𝑓𝐤|2
𝜆𝐤

( ̂𝑒 · �̂�) �̂�. (D.31)

Dotting both sides with ̂𝑒 and converting to integral form,

1 = 𝑣0
2 ∫

𝜔

−𝜔
∫

2𝜋

0

|𝑓 (𝜉)|2 cos2 𝜙|𝜌 (𝜉)| d𝜙 d𝜉
√𝜉2 + |𝑓 (𝜉)|2|𝜒0|2 cos2 𝜙

, (D.32)

where as expected by symmetry, the integral has been made independent of the

direction of ̂𝑒 through the substitution 𝜙 → 𝜙 + 𝜙𝑒. The integral over 𝜙 can be

written in terms of elliptical functions using the identity

𝑎2

2 ∫
2𝜋

0

cos2 𝜙 d𝜙
√1 + 𝑎2 cos2 𝜙

= 𝐸 (−𝑎2) − 𝐾 (−𝑎2)

+ √1 + 𝑎2𝐸 ( 𝑎2

1 + 𝑎2 ) − 1√
1 + 𝑎2 𝐾 ( 𝑎2

1 + 𝑎2 ) . (D.33)

When ̂𝑒1⊥ ̂𝑒2, then we may write ̂𝑒1 · �̂� = cos (𝜙𝐤 − 𝜙1) and ̂𝑒2 · �̂� = sin (𝜙𝐤 − 𝜙1),
thus

̂𝑒1 + 𝑖 ̂𝑒2 = 𝑣0
2 ∑

𝐤

|𝑓𝐤|2
𝜆𝐤

[( ̂𝑒1 + 𝑖 ̂𝑒2) · �̂�] �̂�, (D.34)

and dotting both sides by ̂𝑒1 − 𝑖 ̂𝑒2 gives

2 = 𝑣0
2 ∑

𝐤

|𝑓𝐤|2

√𝜉2
𝐤 + (1/2) |𝑓𝐤|2|𝜒0|2

. (D.35)
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Converting to integral form,

1 = 𝜋𝑣0
2 ∫

𝜔

−𝜔

|𝑓 (𝜉)|2|𝜌 (𝜉)| d𝜉
√𝜉2 + (1/2) |𝑓 (𝜉)|2|𝜒0|2

. (D.36)

D.3 Spin expectation values

The full ground state in the superconducting system is

∏
𝐤

𝑐†
𝐤 ̄↑𝑐

†
𝐤 ̄↓ |Ω⟩ , (D.37)

where the bar notation denotes states in the lower valance band, i.e., if 𝛼 = (𝜏, 𝜎)
then ̄𝛼 = (−𝜏, 𝜎). The total spin operator is

𝐒 = ∑
𝐤

𝐬 (𝐤) = 1
2 ∑

𝐤
[𝐬 (𝐤) + 𝐬 (−𝐤)] , (D.38)

where

𝐬 (𝐤) = 1
2 ∑

𝑛,𝜏
𝜎,𝜎′

𝝈𝜎𝜎′𝑐𝑛
𝜏𝜎

† (𝐤) 𝑐𝑛
𝜏𝜎′ (𝐤) (D.39)

is the spin operator for a given 𝐤, with 𝝈𝜎𝜎′ = (𝜎𝑥
𝜎𝜎′, 𝜎𝑦

𝜎𝜎′, 𝜎𝑧
𝜎𝜎′).

We wish to compute ⟨𝐒⟩ and ⟨𝐒2⟩ in the intervalley pairing state. The for-

mer follows from the value of ⟨𝐬 (𝐤)⟩, and the latter from the spin of Cooper pairs,

⟨[𝐬 (𝐤) + 𝐬 (−𝐤)]2⟩. To see this, note that only cross terms with the same or opposite

𝐤 contribute, so that

⟨𝐒2⟩ = 1
2 ∑

𝐤
⟨[𝐬 (𝐤) + 𝐬 (−𝐤)]2⟩ . (D.40)

Thus, we must compute ⟨𝐬 (𝐤)⟩, ⟨[𝐬 (𝐤)]2⟩, and ⟨𝐬 (𝐤) ⋅ 𝐬 (−𝐤)⟩. In the remainder of

this section, equality for the operator 𝐬 (𝐤) will denote equality of operators which

have equivalent values on all three of these expectation values.
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Only terms with 𝑛 = −1 will contribute to the expectation value, thus we write

𝐬 (𝐤) = 1
2 ∑

𝛼
𝝈𝛼𝛼𝑐†

𝐤𝛼𝑐𝐤𝛼 + 𝝈𝛼𝛼𝑐†
𝐤�̄�𝑐𝐤�̄� + 𝝈𝛼,−𝛼𝑐†

𝐤𝛼𝑐𝐤,−�̄� + 𝝈𝛼,−𝛼𝑐†
𝐤�̄�𝑐𝐤,−𝛼, (D.41)

and obtain

⟨𝐬 (𝐤)⟩ = 1
2 (1 + sin2 𝛽𝐤) Tr 𝝈 = 𝟎. (D.42)

Next, we compute

⟨𝐬 (𝐤) · 𝐬 (𝐤′)⟩ = 1
4 ∑

𝛼𝛼′
𝝈𝛼𝛼 · 𝝈𝛼′𝛼′ (1 + sin2 𝛽𝐤 + sin2 𝛽𝐤′)

+ 1
4 ∑

𝛼𝛼′
𝝈𝛼𝛼 · 𝝈𝛼′𝛼′ ⟨𝑐†

𝐤𝛼𝑐𝐤𝛼𝑐†
𝐤′𝛼′𝑐𝐤′𝛼′⟩

+ 1
4 ∑

𝛼𝛼′
𝝈𝛼,−𝛼 · 𝝈𝛼′,−𝛼′ ⟨𝑐†

𝐤�̄�𝑐𝐤,−𝛼𝑐†
𝐤′𝛼′𝑐𝐤′,−�̄�′⟩ .

(D.43)

The above expectation values are readily simplified using Wick’s theorem,

⟨𝐬 (𝐤) · 𝐬 (𝐤′)⟩ = 1
4 ∑

𝛼𝛼′
𝝈𝛼𝛼 · 𝝈𝛼′𝛼′

1
4 sin2 2𝛽𝐤 (𝛿𝐤,𝐤′𝛿𝛼,𝛼′ + 𝛿𝐤,−𝐤′𝛿𝛼,−𝛼′)

+ 1
4 ∑

𝛼
𝝈𝛼,−𝛼 · 𝝈−𝛼,𝛼𝛿𝐤,𝐤′ cos2 𝛽𝐤.

(D.44)

Evaluating the sum gives,

⟨𝐬 (𝐤) · 𝐬 (𝐤′)⟩ = 1
8 sin2 2𝛽𝐤 (𝛿𝐤,𝐤′ − 𝛿𝐤,−𝐤′) + 𝛿𝐤,𝐤′ cos2 𝛽𝐤, (D.45)

which shows

⟨[𝐬 (𝐤) + 𝐬 (−𝐤)]2⟩ = 2 ⟨𝐬 (𝐤) · 𝐬 (−𝐤)⟩ + 2 ⟨𝐬 (𝐤)2⟩ , (D.46a)

= 2 cos2 𝛽𝐤 − 𝛿𝐤,𝟎
4 sin2 2𝛽𝐤. (D.46b)

Far from the chemical potential (where 𝐤 = 0), sin2 2𝛽𝐤 approaches zero while cos2 𝛽𝐤

approaches unity. Thus, we neglect the second term above and obtain

⟨𝐒2⟩ = ∑
𝐤

cos2 𝛽𝐤. (D.47)
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D.4 Berry curvature

Normal states

In the non-interacting system, the band resolved Berry curvature is

𝛀𝑛
𝜏𝜎 (𝐤) = 𝑖∇𝐤 ⨯ ⟨𝑢𝑛

𝜏𝜎 (𝐤) | ∇𝐤 | 𝑢𝑛
𝜏𝜎 (𝐤)⟩ . (D.48)

This can be computed directly by first considering

⟨𝑢𝑛
𝜏𝜎 (𝐤) | ∇𝐤 | 𝑢𝑛

𝜏𝜎 (𝐤)⟩ = ∑
𝜈

�̄�𝜈𝑛
𝜏𝜎 (𝐤) ∇𝐤𝑀𝜈𝑛

𝜏𝜎 (𝐤)

+ ∑
𝜈,𝜈′

�̄�𝜈𝑛
𝜏𝜎 (𝐤) 𝑀𝜈′𝑛

𝜏𝜎 (𝐤) ⟨𝑣𝜈
𝜏𝜎 (𝐤) ∣ ∇𝐤 ∣ 𝑣𝜈′

𝜏𝜎 (𝐤)⟩ .
(D.49)

The second term is effectively zero by an argument similar to the one given below in

section E.1. Using the identities

𝜕
𝜕𝑘𝑀𝜈𝑛

𝜏𝜎 (𝐤) = 𝑛𝜏 𝜕
𝜕𝑘𝜃𝑛

𝜏𝜎 (𝑘) , (D.50a)

𝜕
𝜕𝜙𝑀𝜈𝑛

𝜏𝜎 (𝐤) = 𝑖𝜏𝑀𝜈𝑛
𝜏𝜎 (𝐤) 𝛿𝜈,−1, (D.50b)

gives the 𝑧-component of the curvature,

Ω𝑛
𝜏𝜎 (𝑘) = ̂𝐳 · 𝛀𝑛

𝜏𝜎 (𝐤) (D.51a)

= −𝑛𝜏 [ 1
2𝑘

𝜕
𝜕𝑘𝜃𝑛

𝜏𝜎 (𝑘)] sin 𝜃𝑛
𝜏𝜎 (𝑘), (D.51b)

= −𝑛𝜏 2(𝑎𝑡)2(Δ − 𝜆𝜏𝜎)
[(2𝑎𝑡𝑘)2 + (Δ − 𝜆𝜏𝜎)2]3/2 . (D.51c)

The Berry curvature of left and right circularly polarized (𝝐±) optical excitations for

a given 𝐤 then follows to be ±2Ω+
+↑ (𝑘).
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BCS States

We again consider the intervalley pairing state. The BCS ground state is2

|Ω⟩ = ∏
𝐤

csc 𝛽𝐤𝑏𝐤↑𝑏−𝐤↓ |0⟩ , (D.52a)

= ∏
𝐤

(cos 𝛽𝐤 − sin 𝛽𝐤𝑐†
𝐤↑𝑐†

−𝐤↓) |0⟩ . (D.52b)

This may be viewed as built up from the single-quasiparticle eigenstates,

|𝐤⟩ = csc 𝛽𝐤𝑏𝐤↑𝑏−𝐤↓ |0⟩ , (D.53)

of the 𝐤 dependent Hamiltonian 𝜆𝐤𝑏†
𝐤↑𝑏𝐤↑−𝜆𝐤𝑏−𝐤↓𝑏†

−𝐤↓. Thus, consider the 𝑧-component

of the Berry curvature of this state,

Ω𝐤 = ̂𝐳 · 𝑖∇𝐤 ⨯ ⟨𝐤 | ∇𝐤 | 𝐤⟩ , (D.54a)

= ̂𝐳 · 𝑖∇𝐤 ⨯ ⟨0 ∣ 𝑐−𝐤↓𝑐𝐤↑∇𝐤 (𝑐†
𝐤↑𝑐†

−𝐤↓) ∣ 0⟩ , (D.54b)

= Ω−
+↑ (𝑘) + Ω−

−↓ (−𝑘) = 0. (D.54c)

To see why equation (D.54b) follows from equation (D.54a), write |𝐤⟩ = cos 𝛽𝐤 −
sin 𝛽𝐤𝑐†

𝐤↑𝑐†
−𝐤↓ and consider each of the resulting four cross terms: one contains no

operators, will be proportional to 𝐤, independent of 𝜙𝐤, and thus have vanishing curl;

the two terms with a pair of either creation or annihilation operators have zero expec-

tation value; this leaves only the term given in equation (D.54b). Equation (D.54c)

now follows since |0⟩ is independent of 𝐤 and the Berry curvature is additive over

non-interacting states.
2Note that the full ground state also contains the lower two filled bands, but those

contribute zero net Berry curvature and may be ignored.
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Optical excitations

A single optically excited state in the left valley for a given 𝐤 is

𝑐+
+↑

† (𝐤) 𝑐𝐤↑ |𝐤⟩ , (D.55a)

= 𝑐+
+↑

† (𝐤) (cos 𝛽𝐤𝑏𝐤↑ + sin 𝛽𝐤𝑏†
−𝐤↓) |𝐤⟩ , (D.55b)

= sin 𝛽𝐤𝑐+
+↑

† (𝐤) 𝑏†
−𝐤↓ |𝐤⟩ , (D.55c)

= 𝑐+
+↑

† (𝐤) 𝑏†
−𝐤↓𝑏𝐤↑𝑏−𝐤↓ |0⟩ , (D.55d)

= − sin2 𝛽𝐤𝑐+
+↑

† (𝐤) 𝑏𝐤↑ |0⟩ , (D.55e)

= − sin3 𝛽𝐤𝑐+
+↑

† (𝐤) 𝑐−
−↓

† (−𝐤) |0⟩ , (D.55f)

which has corresponding Berry Curvature

Ω𝐿
𝐤 = sin6 𝛽𝐤 [Ω+

+↑ (𝑘) + Ω−
−↓ (−𝑘)] , (D.56a)

= 2 sin6 𝛽𝐤Ω+
+↑ (𝑘) . (D.56b)

A single optically excited state in the right valley for a given 𝐤 is

𝑐+
−↓

† (−𝐤) 𝑐−𝐤↓ |𝐤⟩ , (D.57a)

= 𝑐+
−↓

† (𝐤) (− cos 𝛽𝐤𝑏−𝐤↓ + sin 𝛽𝐤𝑏†
𝐤↑) |𝐤⟩ , (D.57b)

= sin 𝛽𝐤𝑐+
−↓

† (𝐤) 𝑏†
𝐤↑ |𝐤⟩ , (D.57c)

= 𝑐+
−↓

† (𝐤) 𝑏†
𝐤↑𝑏𝐤↑𝑏−𝐤↓ |0⟩ , (D.57d)

= sin2 𝛽𝐤𝑐+
−↓

† (𝐤) 𝑏−𝐤↓ |0⟩ , (D.57e)

= sin3 𝛽𝐤𝑐+
−↓

† (𝐤) 𝑐−
+↑

† (𝐤) |0⟩ , (D.57f)
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which has corresponding Berry Curvature

Ω𝑅
𝐤 = sin6 𝛽𝐤 [Ω+

−↓ (𝑘) + Ω−
+↑ (𝑘)] , (D.58a)

= −2 sin6 𝛽𝐤Ω+
+↑ (𝑘) , (D.58b)

= −Ω𝐿
𝐤 . (D.58c)

63



Appendix E

Optical Transitions

E.1 Single electron transitions

Consider the spin-orbit Hamiltonian for a single non-interacting electron which in-

cludes a position dependent potential 𝑊 (𝐐) and an electromagnetic potential 𝐀 (𝐐),

𝐻 = (𝐏 + 𝑒𝐀)2

2𝑀 + 𝜆𝐋 · 𝐒 + 𝑊. (E.1)

Given 𝐋 = 𝐐 × 𝐏, one can show, either via the commutation relations or formal

differentiation, that the velocity operator is

𝐕 = 𝑖 [𝐻, 𝐐] = 𝜕𝐻
𝜕𝐏 = 𝐏 + 𝑒𝐀

𝑀 + 𝜆𝐐 × 𝐒. (E.2)

In a gauge with ∇ · 𝐀 = 0,

𝐻 = 𝐏2

2𝑀 + 𝑒
𝑀 𝐀 · 𝐏 + 𝑒2𝐀2. (E.3)

For monochromatic optical perturbations with amplitude 𝐴0, wave vector 𝐪, fre-

quency 𝜔, and polarization vector 𝝐, the electromagnetic potential is of the form

𝐀 = 2 Re 𝝐𝐴0𝑒𝑖(𝐪·𝐐−𝜔𝑡). (E.4)
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For linear perturbations, we neglect the term of order 𝐀2 to write the Hamiltonian

in the form

𝐻 = 𝐻0 + 𝐻′𝑒−𝑖𝜔𝑡 + 𝐻′†𝑒𝑖𝜔𝑡. (E.5)

Here, 𝐻′ = 𝑒𝐴0𝑒𝑖𝐪·𝐐 (𝝐 · 𝐕) appears as a standard harmonic perturbation where

𝐕 = 𝑖[𝐻0, 𝐐] is the velocity operator for the unperturbed system. Thus, according

to Fermi’s golden rule, the optical transition probability per unit time is

Γ𝑓←𝑖 = 2𝜋𝑒2𝐴2
0∣⟨𝑓 ∣ 𝑒𝑖𝐪·𝐐𝝐 · 𝐕 ∣ 𝑖⟩∣2𝛿 (𝐸𝑓 + 𝐸𝑖 − 𝜔) . (E.6)

Typically, the dipole approximation is used in which 𝑒𝑖𝐪·𝐐 → 1.

Tight-binding 𝑑-orbital transitions

In a noninteracting system of Bloch electrons, ∇𝐤𝐻𝐤 = 𝐕𝐤. Thus, for each 𝐤, the

matrix element appearing in the optical transition rate (in the dipole approximation)

may be computed as

⟨𝜓𝑛′𝐤 | 𝐕 | 𝜓𝑛𝐤⟩ = ⟨𝑢𝑛′𝐤 | 𝐕𝐤 | 𝑢𝑛𝐤⟩ = ⟨𝑢𝑛′𝐤 | ∇𝐤𝐻𝐤 | 𝑢𝑛𝐤⟩ . (E.7)

The matrix elements of the derivative, ⟨𝑢𝑛𝐤 | ∇𝐤𝐻𝐤 | 𝑢𝑛′𝐤⟩, appearing in the op-

tical translation rate may be cumbersome to compute. We show that in the tight-

binding approximation with only 𝑑-type orbitals, it is sufficient to compute the deriva-

tive of the orbital matrix elements, ∇𝐤𝐻𝜈𝜈′
𝐤 = ∇𝐤 ⟨𝑣𝜈𝐤 | 𝐻𝐤 | 𝑣𝜈′𝐤⟩.

We have

𝐻𝐤 = ∑
𝑛𝐤′

𝐸𝑛𝐤′𝑇𝐤 |𝜓𝑛𝐤′⟩ ⟨𝜓𝑛𝐤′| 𝑇 −1
𝐤 = 𝐻0

𝐤 + 𝐻1
𝐤, (E.8)
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where

𝐻0
𝐤 = ∑

𝜈,𝜈′
𝐻𝜈𝜈′

𝐤 |𝑣𝜈𝐤⟩ ⟨𝑣𝜈′𝐤| , (E.9a)

𝐻1
𝐤 = ∑

𝜈,𝜈′
∑
𝐤′≠𝐤

𝐻𝜈𝜈′
𝐤′ 𝑇𝐤−𝐤′ |𝑣𝜈𝐤′⟩ ⟨𝑣𝜈′𝐤′| 𝑇 −1

𝐤−𝐤′. (E.9b)

First, using ∇𝐤𝐻1
𝐤 = 𝑖 [𝐻1

𝐤, 𝐐], we obtain a sum over 𝐤′ ≠ 𝐤 of terms proportional

to 𝛿𝐤,𝐤′ , thus all matrix elements for ∇𝐤𝐻1
𝐤 vanish. Next, we have

∇𝐤𝐻0
𝐤 = ∑

𝜈,𝜈′
∇𝐤𝐻𝜈𝜈′

𝐤 |𝑣𝜈𝐤⟩ ⟨𝑣𝜈′𝐤| (E.10a)

+ ∑
𝜈,𝜈′

𝐻𝜈𝜈′
𝐤 (∇𝐤 |𝑣𝜈𝐤⟩) ⟨𝑣𝜈′𝐤| (E.10b)

+ ∑
𝜈,𝜈′

𝐻𝜈𝜈′
𝐤 |𝑣𝜈𝐤⟩ (∇𝐤 ⟨𝑣𝜈′𝐤|) . (E.10c)

Using

∇𝐤 |𝑣𝜈𝐤⟩ = 𝑇𝐤
𝑖
√

𝑁
𝑁

∑
𝑛=1

𝑒𝑖𝐤⋅𝐑0
𝑛𝑇 (𝐑0

𝑛) 𝐐 |𝜑𝜈⟩ , (E.11)

we find the sum in equation (E.10b) contains terms proportional to the local opti-

cal matrix elements ⟨𝜑𝜈′ ∣ 𝑇 (𝐑0
𝑛) 𝐐 ∣ 𝜑𝜈⟩. For finite 𝐑0

𝑛, these off-center integrals

are small, and for 𝐑0
𝑛 = 0, optical transitions between 𝑑-orbitals are forbidden by

symmetry. Similar logic applies to the sum in equation (E.10a), thus

⟨𝑢𝑛𝐤 | ∇𝐤𝐻𝐤 | 𝑢𝑛′𝐤⟩ ⋍ ∑
𝜈,𝜈′

�̄�𝜈𝑛
𝐤 (∇𝐤𝐻𝜈𝜈′

𝐤 ) 𝑀𝜈′𝑛′
𝐤 . (E.12)

In the case where 𝐻𝜈𝜈′
𝐤 is linear in 𝐤, computing this derivative is equivalent to using

minimal substitution, i.e., 𝐻𝜈𝜈′
𝐤+𝑒𝐀 = 𝐻𝜈𝜈′

𝐤 + 𝑒𝐴∇𝐤𝐻𝜈𝜈′
𝐤 .
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E.2 Transitions in the TMD model

As remarked above, we may consider a perturbation of 𝐻𝜈𝜈′
𝜏𝜎 (𝐤) arising from minimal

coupling,

𝐻𝜈𝜈′
𝜏𝜎 (𝐤) → 𝐻𝜈𝜈′

𝜏𝜎 (𝐤 + 𝑒𝐀) = 𝐻𝜈𝜈′
𝜏𝜎 (𝐤) + ℎ𝜈𝜈′

𝜏 , (E.13)

where in the dipole approximation, 𝐀 = 2 Re 𝝐𝐴0𝑒−𝑖𝜔𝑡, ℎ𝑣𝑣
𝜏 = ℎ𝑐𝑐

𝜏 = 0, and

ℎ𝑣𝑐
𝜏 = ℎ̄𝑐𝑣

𝜏 = 2𝑎𝑡𝑒𝐴0 (𝜏�̂� + 𝑖�̂�) · Re (𝝐𝑒−𝑖𝜔𝑡). (E.14)

Thus the optical perturbation operator is

𝐻𝐴 = ∑
𝐤

∑
𝜏,𝜎

ℎ𝑣𝑐
𝜏 𝑎𝑣

𝜏𝜎
† (𝐤) 𝑎𝑐

𝜏𝜎 (𝐤) + h.c. (E.15)

Separating out the time dependence, we may write this in the standard form 𝐻𝐴 =
𝐻′𝑒−𝑖𝜔𝑡 + 𝐻′†𝑒𝑖𝜔𝑡, where

𝐻′ = ∑
𝐤

∑
𝜏,𝜎

𝐻′
𝜏𝑎𝑣

𝜏𝜎
† (𝐤) 𝑎𝑐

𝜏𝜎 (𝐤) − ∑
𝐤

∑
𝜏,𝜎

𝐻′
−𝜏𝑎𝑐

𝜏𝜎
† (𝐤) 𝑎𝑣

𝜏𝜎 (𝐤) , (E.16)

and

𝐻′
𝜏 = 𝑎𝑡𝑒𝐴0 (𝜏�̂� + 𝑖�̂�) · 𝝐. (E.17)

Chancing basis, we recover the optical matrix element, 𝑃 𝑛𝑛′
𝜏𝜎 (𝐤, 𝝐), now explicitly a

function of the polarization vector,

𝐻𝐴 = ∑
𝐤

∑
𝜏,𝜎

∑
𝑛,𝑛′

𝑒𝐴0
𝑚0

𝑃 𝑛𝑛′
𝜏𝜎 (𝐤, 𝝐) 𝑐𝑛

𝜏𝜎
† (𝐤) 𝑐𝑛′

𝜏𝜎 (𝐤) . (E.18)

For circularly polarized light, 𝝐± = (�̂� ± 𝑖�̂�) /
√

2 and

𝑃 +−
𝜏𝜎 (𝐤, 𝝐±) = ∓𝜏

√
2𝑎𝑡𝑚0𝑒±𝑖𝜙 sin2 𝜃∓𝜏

𝜏𝜎 (𝑘)
2 . (E.19)

A brief note about the units of 𝑃 above. To conveniently express 𝑃 in units of

energy, multiply by 𝑐/ℏ. Typically, 𝑎𝑡 is given in Å eV, the electron mass is given in
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units of MeV/𝑐2, ℏ in eV s, and 𝑐 in Å s−1. Thus when written as (𝑐/ℏ)𝑃 = 𝑝𝐸𝑃 ,

where 𝑝 is a unitless function of the energy, the important overall energy scale is

𝐸𝑃 = 𝑎𝑡𝑚0/(𝑐ℏ) × 103GeV, where the symbols in 𝐸𝑃 are the numerical magni-

tudes of the quantities when expressed in the assumed units above. In particu-

lar, 𝐸𝑃 = 𝑎𝑡 · 0.259 GeV, and for 𝑎𝑡 = 3.2, 𝐸𝑃 = 0.83 GeV. Alternatively, one

may write this in terms of fundamental constants: using 𝑎𝑡 = 3.2 again gives

𝑃 = (1.624 × 103𝑐ℏ𝑚0) 𝑝.
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