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Abstract

The efficacy of cognitive training is controversial, and research progress in the field requires an 

understanding of factors that promote transfer of training gains and their relationship to changes in 

brain activity. One such factor may be adaptive task difficulty, as adaptivity is predicted to 

facilitate more efficient processing by creating a prolonged mismatch between the supply of, and 

the demand upon, neural resources. To test this hypothesis, we measured behavioral and neural 

plasticity in fMRI sessions before and after 10 sessions of working memory updating (WMU) 

training, in which the difficulty of practiced tasks either adaptively increased in response to 

performance or was fixed. Adaptive training resulted in transfer to an untrained episodic memory 

task and activation decreases in striatum and hippocampus on a trained WMU task, and the 

amount of training task improvement was associated with near transfer to other WMU tasks and 

with hippocampal activation changes on both near and far transfer tasks. These findings suggest 

that cognitive training programs should incorporate adaptive task difficulty to broaden transfer of 

training gains and maximize efficiency of task-related brain activity.
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Introduction

Training cognitive processes such as memory and executive function can improve behavioral 

performance and drive changes on neural measures (Klingberg, 2010; Morrison and Chein, 

2011; Hsu et al., 2014). However, a common criticism is that effects are often limited to the 

trained tasks, whereas transfer to untrained tasks is inconsistent. Some studies show “near 

transfer” within the same cognitive domain as trained tasks, but evidence of “far transfer”, or 

generalization across cognitive domains, is reported less frequently—and regarded more 

skeptically (Moody, 2009; Shipstead et al., 2012; Melby-Lervåg et al., 2016). Although the 

literature on training-induced plasticity has stimulated a great deal of interest in developing 

interventions to improve cognition (Ranganath et al., 2011; Vinogradov et al., 2012; Mishra 

and Gazzaley, 2014), a lack of understanding of the factors that mediate transfer effects has 

hindered translation of laboratory research into demonstrably effective programs. Given the 

wide variability in methodology across training studies, breadth of transfer may depend on 

how training is conducted. Here, we investigated the possibility that effective transfer 

depends, at least in part, on adapting the difficulty of training tasks to an individual’s current 

level of proficiency (i.e., adaptive training). That is, do successful cognitive training 

outcomes require an intervention that dynamically increases task demands? Previous studies 

have speculated that adaptivity may be a key to effective transfer (Holmes et al., 2009; 

Jaeggi et al., 2010b; Brehmer et al., 2012; Anguera et al., 2013), but systematic 

investigations are lacking. We sought to address this controversy by directly testing whether 

adaptive, relative to individualized but non-adaptive, difficulty mediates behavioral and 

neural effects of cognitive training.

According to a recent theoretical framework (Lövdén et al., 2010), effective transfer depends 

on how cognitive processes are trained—whereas transient cognitive challenges are only 

sufficient to promote task-specific learning, sustained cognitive challenges are required to 

elicit lasting neural changes that underlie enhancement of a general cognitive function. 

Specifically, if environmental demand (e.g., the processing load of a working memory task) 

briefly approaches the upper limit of functional supply (e.g., working memory processing 

efficiency), then all available resources will be flexibly brought to bear, but actually raising 

the level of maximum function (e.g., improved processing efficiency) requires a prolonged 

mismatch in which environmental demand exceeds functional supply. Based on this model, 

we predicted that adaptively increasing training task difficulty would provide the necessary 

prolonged mismatch, thereby inducing plasticity that is associated with broader transfer and 

greater changes in task-related brain activity than non-adaptive training. If adaptive training 

successfully improves processing efficiency, then training gains should generalize beyond 

superficially similar tasks to untrained tasks that rely on the same processing components 

(Jonides, 2004; Dahlin et al., 2008b; 2009), resulting in far transfer. Additionally, improved 

processing efficiency should be reflected in decreased neural recruitment in task-related 

brain areas (Kelly and Garavan, 2005). A few studies have used functional magnetic 

resonance imaging (fMRI) to assess the neural effects of training and transfer by scanning 

untrained tasks as well as trained (criterion) tasks at pre- and post-training sessions (Dahlin 

et al., 2008b; Schneiders et al., 2012; Schweizer et al., 2013; Heinzel et al., 2016), 

establishing that training-induced plasticity generalizes across tasks that engage overlapping 
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brain areas, but adaptivity-related effects on fMRI outcome measures have never been 

studied.

In the present study, we manipulated adaptivity in a training regimen targeting the core 

cognitive process of working memory updating (WMU), an executive function that controls 

updating of information that is active in working memory (Morris and Jones, 1990; Miyake 

et al., 2000). We assessed behavioral change and neural plasticity in fMRI sessions before 

and after 10 sessions of computerized training with visuospatial and verbal WMU tasks. 

Participants were randomly assigned to either an adaptive training (AT) group or a non-

adaptive (NA) active control group. Training procedures were identical across the two 

groups, except for one critical difference. For AT participants, as task performance increased 

the number of updating operations (i.e., update level) was consequently increased, in order 

to adaptively and selectively increase the environmental demands on WMU processes. For 

NA participants, however, task difficulty was fixed at a relatively low level across all training 

days. Update level was individually set for each NA participant, in an effort to equate 

subjective difficulty across the active control group, as any single level of objective difficulty 

could produce higher or lower environmental demands based on participants’ pre-existing 

ability differences.

Pre- and post-training MRI scanning sessions evaluated functional brain activity during a 

WMU criterion task modified from the visuospatial training task, an untrained spatial n-back 

task, and an untrained object-location association episodic memory task (Fig. 1). On the 

basis of previous studies reporting that WMU and episodic memory processing components 

of interest involve activation of striatum and hippocampus—subcortical structures long 

understood to contribute to learning and memory processes (Packard & Knowlton, 2002; 

Squire, 2004)—fMRI analyses in the present study focused on these structures as a priori 
regions of interest (ROIs). In particular, fMRI studies of WMU training have identified 

striatum as a specific site of training-induced activity changes (Dahlin et al., 2008b; Kühn et 

al., 2012). Additionally, we examined hippocampus because it is known to show increased 

activation during the Object-Location Association task (Gould, 2005; de Rover et al., 2011), 

and it has also been implicated in visuospatial working memory tasks (Piekema et al., 2006; 

Hannula & Ranganath, 2008; see Nee & Jonides, 2013 for review) similar to the scanned 

WMU tasks in the present study. Thus, guided by our hypothesis that adaptively increasing 

training task difficulty will broaden transfer of training gains across tasks that engage 

overlapping processing components and brain areas, we selected striatal and hippocampal 

ROIs to examine adaptivity-related effects of WMU training and to test the prediction that 

improved WMU processes would facilitate episodic memory encoding to induce far transfer 

of training gains.

Materials and Methods

Participants

63 healthy young adults (18-29 years old; M = 20.8, SD = 2.4) were recruited from the 

University of California at Davis (UCD) community. Participants were right-handed, native 

English speakers, with normal or correct-to-normal vision, no reported history of 

neurological or psychiatric illness, no current use of psychoactive medication, and no known 
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MRI contraindications. 48 females and 15 males participated. The research protocol was 

approved by the UCD Institutional Review Board, and all participants provided written 

informed consent and were paid for their participation. Compensation was $10 for each of 

nine behavioral-only sessions, $20 for each of three sessions with MRI scanning, plus a $50 

bonus for completing all 12 of the study sessions.

In the initial enrollment phase, 26 participants were assigned to the adaptive training (AT) 

group and 19 participants were assigned to the non-adaptive (NA) active control group. 

Assignment was random and single-blind, with the restriction that the groups did not run 

simultaneously (due to the delivery of at-home training sessions that differed by group 

assignment), so recruitment occurred in blocks alternating between the two groups. In a later 

enrollment phase, 18 additional participants were recruited into a no-contact control (NCC) 

group.

Two participants (both from the AT group) withdrew prior to study completion; one due to 

claustrophobia at the first scanning session and one due to personal reasons after completing 

five study sessions. Five other participants assigned to the AT group failed to meet inclusion 

criteria due to a lack of improvement within the training protocol itself, defined by a 

measure of training gain (linear slope calculated from the maximum level of performance 

achieved at each training session) that was negative for one or both of the training tasks. 

Notably, negative training slopes indicate that these participants’ training task performance 

declined to, and never recovered from, a floor level of difficulty even lower than the fixed 

levels performed by non-adaptive active control participants. Because the adaptivity 

manipulation in this study is operationalized by increasing task difficulty in response to 

performance improvements, and this defining feature was not experienced by AT 

participants who failed to improve on the trained tasks, their data were excluded from the 

present analysis (they are to be reported in a separate paper investigating predictors of 

responsiveness to training). Thus, the final sample included in the results reported below 

consists of 19 AT participants, 19 NA participants, and 18 NCC participants. Mean age and 

gender ratio were equated across conditions (Fs < 1).

Materials

Training Tasks—The training protocol consisted of two tasks designed to target working 

memory updating (WMU) processes, using different modalities in order to discourage task-

specific strategies and to promote transfer. Example trials from both tasks are depicted in 

Fig. 2, below graphs of their respective training trajectories for AT participants. The training 

tasks were administered, and responses were collected, using Presentation software (Version 

14.9, www.neurobs.com).

Matrix Updating (MU) is a visuospatial working memory task that requires updating the 

location of multiple dots within a 4×4 matrix (Chen and Li, 2007). On MU trials, a matrix 

with colored dots (red, orange, green, and blue) in four of its cells was first displayed for 

5000 ms, then in the center of the empty matrix, colored arrows (pointing up, down, left, or 

right) were presented sequentially for 1750 ms each with a 250 ms interstimulus interval. 

Participants were instructed to follow each arrow by mentally moving the dot of the same 

color one cell in that direction. After a variable number of arrows, a colored pointer 
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appeared in the center of the empty matrix, prompting the participant to respond by using 

the mouse to move the pointer and click on the current location of the dot of the same color. 

The MU task was divided into blocks of five trials each, with feedback (number of correct 

and incorrect responses) presented at the end of each block. Within each task block, stimuli 

(location of dots; color and direction of arrows) were randomized on a trial-by-trial basis 

with the constraint that each arrow must point its corresponding dot in a valid direction: 

always within the matrix boundaries and never into a cell currently occupied by another dot. 

MU task duration was approximately 25-30 min.

Keep Track (KT) is a verbal working memory task that requires updating the identity of the 

most recently studied words in multiple semantic categories (Yntema, 1963). On KT trials, 

the names of four categories were displayed in boxes at the bottom of the screen, while in 

the center of the screen, exemplar words from the categories were presented sequentially for 

2000 ms each with a 1000 ms interstimulus interval. Participants were instructed to mentally 

place each presented word into the box for its corresponding category. After a variable 

number of words, the box belonging to one of the four categories was highlighted, 

prompting the participant to respond by using the keyboard to type the last word that was 

placed into that box. Four novel categories (and their respective word lists) were used at 

each of the 10 training sessions. In order to create a total of 40 categorized word lists of 

sufficient length, stimuli were collected from multiple published word pools (Murdock, 

1976; Howard, 1979; van Overschelde et al., 2004). At each training session, the KT task 

began with a screen listing all of the words in the lists to be used in that session, in order to 

familiarize participants with the correct category assignments. Within each task block, 

stimuli were randomized with the constraint that all four categories were sampled (in any 

order) before any category was sampled again. In addition, trials contained occasional 

“distractor” words that did not belong to any of the given categories, which participants were 

instructed to ignore. KT task duration was approximately 20-25 min.

For both training tasks, level of difficulty can be modulated by increasing or decreasing the 

update level, i.e., the number of updates on each trial. At each update level, to minimize the 

predictability of when in a trial the response would be required, the exact number of updates 

was randomly selected from the update level +/− 1. For example, at the 7-update level of the 

MU task, the number of arrows on a given trial could be 6, 7, or 8. Importantly, in both 

training tasks, the working memory load was constant (always four colored dots or four 

categories) while the adaptivity manipulation was achieved solely by varying the update 

level, allowing the training protocol to specifically target WMU processes.

Scanned Tasks—Matrix Updating was modified from the training task version to an 

event-related fMRI design, serving as a criterion task performed at all study sessions (see 

also Dahlin et al., 2008b). The structure and timing of the criterion task trials were the same 

as the training task version, except the response phase was changed to yes/no recognition: 

instead of freely moving a pointer to identify the updated location of a particular dot, one of 

the four colored dots reappeared in the matrix after the updating phase and the task was to 

respond by pressing one button if it was the correct, current location of that dot and pressing 

a second button if it was not (see Fig. 1A). Additionally, the Matrix Updating criterion task 

was not adaptive but instead consisted of three trial types: 7-Updates, with a high updating 
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demand of seven colored arrows presented during the delay period; 4-Updates, with a lower 

updating demand of four colored arrows; and 0-Updates, a maintenance-only baseline 

condition in which four gray arrows are presented and thus the recognition probe after the 

delay period simply referred to the original location of the colored dots on that trial. The task 

was divided into four runs of 11 trials each, for a total of 16 trials in each of the two active 

updating conditions and 12 trials in the baseline condition. For each trial type, the dependent 

variable was the proportion of correct trials. Trial order was unique across runs and 

optimized using optseq2 (Dale, 1999), with the intertrial interval varying between 2 and 10 s 

(M = 4 s). Total duration of the four runs was approximately 20 min.

Spatial N-Back was selected as a scanned task representing near transfer, based on the 

prediction that it and the WMU training tasks engage overlapping processing components 

and brain areas. Based on an n-back paradigm used by Jaeggi and colleagues (2010a), 

stimuli were blue squares that appeared in one of eight locations (the perimeter of an unseen 

3×3 matrix) for 500 ms each with a 2500 ms interstimulus interval, and the task was to 

respond by pressing one button when the current location matched the location presented n 
trials earlier and pressing a second button when there was not a match (see Fig. 1B). Each 

block consisted of 12 trials, of which three were targets. The N-Back (NB) task was divided 

into two runs of nine blocks each, in a counterbalanced order alternating among three trial 

types determined by the value of n: 3-Back, which presents a high updating demand; 2-

Back, which presents a lower updating demand; and 0-Back, a baseline condition in which 

the target location was always the upper left corner of the screen. For each trial type, the 

dependent variable was overall accuracy. Total duration of the two NB runs was 

approximately 13 min.

Object-Location Association is a measure of visual episodic memory, selected as a scanned 

task representing far transfer. Based on a paired associate learning paradigm adapted for 

fMRI testing (Gould, 2005; de Rover et al., 2011), the task consisted of blocks of trials 

arranged into an encoding phase followed by a retrieval phase (see Fig. 1C). Stimuli were 

unique kaleidoscope images (“objects”) from Voss and colleagues (2008) that were 

presented sequentially for 3 s each at random locations within a 4×4 matrix during the 

encoding phase, and participants were instructed to remember which object appeared in 

which cell, for the subsequent retrieval phase (separated from the last encoding trial by a 4 s 

delay). On each retrieval trial, one of the cells in which an object had appeared was 

highlighted for 5 s, and the task was to make a button press response to select the object 

associated with that location from among three options displayed at the bottom of the screen 

(one target and two foils that also appeared during the encoding phase). Every object-

location pair presented during an encoding phase was probed during the subsequent retrieval 

phase. The Object-Location (OL) task consisted of two trial types: 8-Associates, with a high 

memory load of eight object-location pairs (i.e., eight encoding trials followed by eight 

retrieval trials); and 6-Associates, with a lower memory load of six pairs. There were also 

baseline task blocks, to control for perceptual and motor processing in the absence of 

memory load. In the control “encoding” phase of the baseline condition, six gray squares 

were presented sequentially within the matrix and participants were instructed to rest with 

their eyes open but not try to remember anything about the squares. In the control “retrieval” 

phase, another six gray squares were presented sequentially and participants were instructed 
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to make a button press response for each square to report the row of the matrix in which it 

appeared. The OL task was divided into two runs of six blocks each, in a counterbalanced 

order alternating among the two active trial types and the baseline condition. For each trial 

type, the dependent variable was the proportion of correct retrieval trials. Total duration of 

the two OL runs was approximately 14 min.

Order of the three scanned tasks was counterbalanced across participants, but task order was 

held constant across the scanning sessions for each participant.

Other Transfer Tasks—To more broadly assess transfer and test for nonspecific effects of 

the training protocols, a battery of untrained tasks was administered outside of the scanner 

after both pre- and posttraining sessions. The executive functions of Updating, Inhibition, 

and Shifting (Miyake et al., 2000) were measured, respectively, with a Letter Running 

Memory task (Pollack et al., 1959; Morris and Jones, 1990), a Counting Stroop task (Bush et 

al., 1998), and a Global/Local task (Navon, 1977). Working memory capacity was measured 

for verbal stimuli with the Automated Operation Span task (Unsworth et al., 2005), and for 

visual stimuli with a change localization (Gold et al., 2006) version of the Change Detection 

task (Luck and Vogel, 1997). Verbal episodic memory was measured with the Hopkins 

Verbal Learning Test-Revised (Benedict et al., 1998), fluid intelligence with Raven’s 

Advanced Progressive Matrices (Raven et al., 1998), sustained attention with the Paced 

Auditory Serial Addition Test (Gronwall, 1977; Fischer et al., 1999), and processing speed 

with the WAIS-III Digit-Symbol Substitution test (Wechsler, 1997). Additionally, to measure 

individual differences in implicit beliefs about the malleability of intelligence (see also 

Jaeggi et al., 2014), the 3-item Theories of Intelligence Scale (Dweck and Henderson, 1988) 

was administered before the task battery at the first study visit only.

Alternate versions of the standard neuropsychological measures were used for pre- and post-

training assessments, with order of the two versions counterbalanced across participants. For 

the computerized tasks, validated alternate versions were not available, but stimuli were 

randomized at each assessment to minimize practice effects. Comparing AT, NA, and NCC 

groups, and controlling for pre-training performance, there was no significant effect of group 

on post-training scores for any tasks in the battery.

Design and Procedure

The study consisted of a total of 12 visits scheduled over the course of three weeks. The first 

and last study visits involved MRI scanning sessions and other transfer tasks administered 

outside of the scanner, and the remaining 10 visits were training sessions. In addition, an 

early-training MRI scanning session was included in the third study visit; data from the 

scanned tasks at that session are to be reported in a separate paper. Four study visits were 

scheduled per week, and, across participants, pre- and post-training scanning sessions (i.e., 

the first and last study visits) were separated by 16-18 calendar days. The scanning sessions 

were conducted at the UCD MRI Facility for Integrative Neurosciences, using a 3T Siemens 

Skyra scanner (imaging parameters are detailed below). Any participant who had no 

previous experience in an MRI environment completed a brief mock scanning session prior 

to the first study visit. Practice trials were provided before each task, and Presentation 
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(www.neurobs.com) and E-Prime (Psychology Software Tools, Pittsburgh, PA) software was 

used to collect behavioral data from the computerized tasks.

The first training session (Visit 2) was completed in the laboratory under experimenter 

supervision, as was the second training session because it coincided with the early-training 

scanning session which required a laboratory visit. Thereafter, the remaining eight training 

sessions (Visits 4-11) were completed on participants’ home computers according to the 

study schedule. Task performance was monitored from encrypted data files transmitted to 

study staff via e-mail at the end of each at-home training session. To monitor compliance 

remotely, a secure website logged each time the training program was run, and participants 

were contacted promptly by an experimenter if a scheduled session was missed. Every 

participant who completed the study performed all 10 training sessions.

Participants assigned to the AT group started their first training session at the 4-update level 

for MU and the 5-update level for KT. For each subsequent session, each task was started at 

the level determined by the final block of the previous session. Adaptive difficulty was 

implemented in both tasks with an algorithm that applied an 80% accuracy criterion after 

every five trials. If at least four of the preceding trials were answered correctly, the update 

level was increased by one for the next five trials. Otherwise, the update level was decreased 

by one for the next five trials (down to a minimum 3-update level for MU and 4-update level 

for KT). Across training sessions, as the number of updates progressively increased with 

increasing levels of difficulty, the algorithm reduced the total number of task blocks in order 

to preserve a relatively constant duration for each training session (e.g., it takes 

approximately the same amount of time to complete eight blocks of MU trials at an average 

of the 10-update level as it does six blocks of MU trials at an average of the 16-update level).

Participants assigned to the NA group started their first training session—and remained for 

that and all subsequent sessions—at an individualized level of difficulty between the 5- and 

9-update level for MU and between the 6- and 8-update level for KT. Participants were 

assigned to levels approximating the number of updates they would be predicted to achieve 

by the end of a first training session under adaptive conditions, on the basis of a pre-training 

measure of working memory capacity (Operation Span), calculated using a regression 

equation derived from pilot data. Consequently, although all NA participants completed the 

training tasks at a fixed and relatively low level of difficulty, the cognitive demand was 

deliberately set not so low as to induce boredom and disengagement (which has been a 

complaint rightly levied against less-active non-adaptive control conditions in previous 

training studies; e.g., as discussed in Morrison and Chein, 2011). Furthermore, for NA 

participants as well as AT participants, the exact number of updates was unpredictable on 

each trial because it was randomly selected from the update level +/− 1.

The NCC group was included to assess practice effects in the transfer task behavioral data. 

Participants in this group performed the same battery of scanned tasks and other transfer 

tasks, in three sessions scheduled at the same intervals (pre-, early-, and post-training) as 

participants in the active updating conditions, but were not scanned and completed no 

training sessions between their study visits. To control for environmental influences on 

performance, NCC participants completed the three “scanned” tasks in a mock scanner, 
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using the same display and response collection equipment as at the UCD MRI Facility, while 

listening to an EPI pulse sequence recording through headphones during the task runs.

MRI Acquisition and Processing

At each scanning session, a multi-band gradient-echo EPI sequence (repetition time [TR] = 

1220 ms; echo time [TE] = 24 ms; multi-band factor = 2; flip angle = 67°; field of view 

[FOV] = 192 mm; 64 × 64 matrix; 38 slices; 3.0 mm isotropic voxels) was used to obtain 

functional images sensitive to BOLD contrast. In each functional run, the first four volumes 

were discarded to allow for signal equilibration. The total number of volumes collected was 

248 in each Matrix Updating criterion task run, 320 in each Spatial N-Back run, and 331 in 

each Object-Location Association run. An MP-RAGE sequence (TR = 1800 ms; TE = 2.96 

ms; flip angle = 7°; FOV = 256 mm; 256 × 256 matrix) was used to obtain high-resolution 

T1-weighted anatomical images at the end of each scanning session.

For each participant, anatomical images acquired at each session were averaged using the 

mri_robust_template program (Reuter et al., 2012) and the average image was used as an 

unbiased template for spatial coregistration across sessions. Data were preprocessed using 

SPM8 (www.fil.ion.ucl.ac.uk/spm). Each participant’s functional images were realigned 

using a six-parameter rigid body transformation, coregistered to their average anatomical 

image, normalized to MNI (Montreal Neurological Institute) space using affine and 

nonlinear transformations, and spatially smoothed using a 6-mm isotropic FWHM Gaussian 

kernel. Each participant’s average anatomical image was segmented, and the conjunction of 

their normalized, spatially smoothed gray and white matter images was used to calculate a 

brain-only explicit mask used in functional analyses.

Analysis

For each task, at each scanning session, BOLD responses were analyzed using the general 

linear model implemented in SPM8. Covariates of interest were constructed by convolving 

vectors of predicted neural activity with a canonical hemodynamic response function. To 

account for residual variance because of head movement, motion parameters estimated at the 

realignment stage of preprocessing and motion spikes identified using the ArtRepair toolbox 

(cibsr.stanford.edu/tools/human-brain-project/artrepair-software.html) were included in each 

model as covariates of no interest.

The Matrix Updating criterion task was analyzed in an event-related design, with separate 

regressors modeling matrix, updating, and probe period activation as a function of trial type 

(7-Updates/4-Updates/0-Updates) and response accuracy (correct/incorrect). First-level 

analysis was performed using the general linear model and applying a high-pass filter with a 

200-sec cutoff period. The primary contrast of interest for high vs. low demand on WMU 

processes evaluated probe-period activation on correct 7-update trials vs. correct 4-update 

trials.

The other scanned tasks were analyzed in block designs, with first-level analysis performed 

using the general linear model and applying a high-pass filter with a 128-sec cutoff period. 

Spatial N-Back had separate regressors for trial type (3-Back/2-Back/0-Back), and the 

primary contrast of interest evaluated 2- and 3-Back blocks vs. 0-Back blocks. Object-
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Location Association had separate regressors modeling encoding and retrieval phase 

activation as a function of trial type (8-Associates/6-Associates/baseline), and the primary 

contrast of interest evaluated encoding-phase activation in 6- and 8-Associate blocks vs. 

baseline blocks.

To examine task- and adaptivity-related effects in brain areas associated with the putative 

processing components—WMU and episodic memory—involved in the scanned tasks, a 
priori ROIs were defined by computing the intersections between bilateral caudate, putamen, 

and hippocampus anatomical ROIs from the LONI Probabilistic Brain Atlas (Shattuck et al., 

2008) and each participant’s normalized, spatially smoothed gray matter image from their 

segmented average anatomical image. For the primary contrast of interest from each task, for 

each participant at each scanning session, mean parameter estimates were extracted from the 

mask images of each ROI. Thereafter, for each ROI analysis, post-training activation was 

entered as the dependent variable in an ANCOVA with group (AT/NA) as a fixed factor and 

pre-training activation as a covariate (reported in Table 2). An exploratory whole-brain 

analysis subsequently investigated adaptivity-related activation changes not restricted to a 
priori ROIs, in a mixed design ANOVA with group (AT/NA) as the between-subjects factor 

and session (pretraining/post-training) as a repeated measure (reported in Table 3).

To analyze behavioral data from the scanned tasks, post-training performance for each 

measure was entered as the dependent variable in an ANCOVA with group (AT/NA/NCC) as 

a fixed factor and pre-training performance as a covariate (reported in Table 1). For AT 

participants, training gains were analyzed using repeated-measures ANOVA on the 

maximum update level achieved in each training session, for each task. Amount of 

improvement on the trained tasks (i.e., Training Slope) was indexed by averaging the linear 

slopes calculated from the maximum update level achieved in each training session, for each 

task.

Results

As expected, AT participants showed significant improvements over the course of training – 

as indicated by a significant effect of training day on the maximum update level achieved in 

each session – for both training tasks (Fs > 36.98; ps < .001). Training trajectories are shown 

in Fig. 2. On average, by the last training day, AT participants were performing visuospatial 

trials at the 24-update level and verbal trials at the 22-update level. While such gains in 

WMU performance from the first training day are notable, transfer effects are of greater 

interest. That is, did training task improvements transfer to untrained tasks? Data in pre- and 

post-training fMRI sessions were obtained from a WMU criterion task (Matrix Updating), 

which was the visuospatial training task modified for scanning, an untrained WMU task 

(Spatial N-Back) to assess near transfer, and an untrained episodic memory task for which 

improved WMU processes may support more effective encoding (Object-Location 

Association) to assess far transfer. Each of the three scanned tasks included high-difficulty, 

low-difficulty, and baseline trial types. Because the plasticity induced through sustained 

neurocognitive challenge is proposed to raise the level of maximum function (Lövdén et al., 

2010), we predicted that the largest performance increases and changes in brain activity 

related to adaptive training would be found on high-difficulty trials. Behavioral data from 
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the AT and NA groups were compared to a no-contact control (NCC) group that completed 

the same criterion and transfer tasks (without fMRI) but with no intervening WMU training 

(see Table 1). For post-training performance, controlling for pre-training performance, there 

was a significant effect of group on high-difficulty Matrix Updating trials (F(2,52) = 4.50, p 
< .05, ηp

2 = .15), and high-difficulty Object-Location Association trials (F(2,52) = 3.75, p 
< .05, ηp

2 = .13). As shown in Fig. 3, performance increases were largest for AT 

participants, those predicted to benefit from a prolonged mismatch between functional 

supply and environmental demand. The Spatial N-Back task showed no significant effect of 

group on any trial type (Fs < 1), reflecting near-ceiling performance1.

Our next analyses investigated individual differences in responsiveness to training and 

transfer to untrained tasks. Because progressively higher levels of environmental demand are 

proposed to induce proportionally larger increases in functional supply (Lövdén et al., 

2010), we predicted that greater amounts of adaptive training task improvement would be 

associated with larger transfer effects. To index relative training gains among AT 

participants, linear slopes were calculated for each training task from the maximum level of 

difficulty achieved in each session, and averaged to create a Training Slope variable. 

Controlling for pre-training performance, partial correlations showed that Training Slope 

was significantly predictive of post-training performance for high-difficulty Spatial N-Back 

trials (rp = .50, p < .05), with a marginal effect for high-difficulty Matrix Updating trials (rp 

= .42, p < .10). For both tasks, greater post-training performance was associated with greater 

improvement on the trained tasks.

Having established that adaptive WMU training increased transfer to untrained tasks, we 

next analyzed fMRI data in order to determine the neural mechanisms of these behavioral 

effects. Region of interest (ROI) analyses were performed for brain areas associated with the 

putative processing components—WMU and episodic memory—involved in the scanned 

tasks. For each task, at each scanning session, a primary contrast of interest was computed 

for high vs. low demand on WMU processes, and mean parameter estimates were extracted 

from anatomically-defined a priori ROIs in bilateral striatum (caudate and putamen) and 

bilateral hippocampus. For the Matrix Updating criterion task, controlling for pre-training 

activation, there was a significant effect of group on post-training activation in all ROIs (see 

Table 2). As shown in Fig. 4, activation decreases were greater for AT than NA participants. 

To verify the selectivity of this adaptivity-related change in brain activity, we also 

investigated activation changes in the bilateral occipital pole, which was not predicted to be 

sensitive to the adaptive training manipulation. No significant effect of group was found in 

this control region (F < 1). Within the AT group, partial correlations showed that Training 

Slope significantly predicted post-training activation, controlling for pre-training activation, 

in bilateral hippocampus ROIs for both the Spatial N-Back task and the Object-Location 

Association task (|rp|s > .49; ps < .05). For both tasks, in both hippocampus ROIs, greater 

post-training deactivation was associated with greater improvement on the trained tasks.

1The same null result is found if the proportion of hits minus false alarms (Pr) is used as the dependent variable for Spatial N-Back 
instead of overall accuracy.
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As working memory and episodic memory tasks can be expected to recruit brain regions in 

addition to striatum and hippocampus (Wager & Smith, 2003; Spaniol et al., 2009; 

Ranganath & Ritchey, 2012; Nee et al., 2013), we supplemented the ROI analyses with an 

exploratory whole-brain analysis to identify all significant regions of adaptivity-related 

activation changes in the primary contrast of interest from each scanned task, using a cluster-

corrected FWE threshold of p < 0.05. In the Matrix Updating criterion task, as shown in Fig. 

5, the group by session interaction revealed greater activation decreases for AT than NA 

participants in bilateral striatum, consistent with ROI analysis, and also bilateral prefrontal, 

bilateral temporal, and left parietal regions. This analysis did not identify significant 

hippocampal clusters. The equivalent whole-brain group by session interaction analyses 

performed for the Spatial N-Back task and the Object-Location Association task yielded no 

suprathreshold clusters in either case (see Table 3 for the results summary of exploratory 

whole-brain interaction effects).

Discussion

The goal of the present study was to determine whether cognitive training outcomes depend 

on how processes are trained. Our results demonstrate that adaptive task difficulty is one key 

factor that can influence breadth of transfer and efficiency of brain activity. Adaptive WMU 

training resulted in transfer to an episodic memory task supported by WMU processes, and 

activation decreases in striatum and hippocampus ROIs on the scanned WMU criterion task. 

Notably, the detected transfer effects were reliably larger in the adaptive training group than 

in a closely matched non-adaptive active control group that performed the same training 

tasks for the same number of sessions. Furthermore, the amount of adaptive training task 

improvement was associated with near transfer to other WMU tasks, and with hippocampal 

activation changes on untrained tasks measuring both near and far transfer. Additionally, 

adaptivity-related transfer effects appeared at high levels of task difficulty. These findings 

are consistent with the proposal that sustained neurocognitive challenge is a mediator of 

behavioral and neural plasticity (Lövdén et al., 2010).

By demonstrating an important role for adaptive task difficulty in inducing plasticity, our 

fMRI data reveal novel information about the neural effects of adaptive training, with 

adaptivity-related activation decreases implicating increased neural efficiency (Kelly and 

Garavan, 2005; Lövdén et al., 2010) during task performance. The post-training activation 

decreases observed in the present study contribute to a literature in which training-induced 

changes in fMRI outcome measures are inconsistent, with activation increases, functional 

reorganization, and more complex dynamics of brain activity changes also found over the 

course of cognitive training (Klingberg, 2010; Morrison and Chein, 2011; Hsu et al., 2014). 

Specifically regarding WMU training, previous studies have reported striatal activation 

increases after 15 training sessions (Dahlin et al., 2008b) and striatal activation increases 

after about 5 training sessions followed by decreases after more than 50 training sessions 

(Kühn et al., 2012), indicating that the temporal dynamics of changes in brain activity 

induced by WMU training can be nonmonotonic. For evaluating these past findings in light 

of the present study, an important difference is that both previous studies used training tasks 

in which the level of difficulty increased according to a predetermined schedule, or was 

capped within a restricted range, and thus was not continuously adaptive. In the present 
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study, training task difficulty was individually adapted within sessions in response to 

performance in the AT group, or individually assigned on the basis of pre-training working 

memory capacity in the NA group, so that the group comparison would isolate the effects of 

improved processing efficiency realized through continuously adaptive WMU training.

A recent study in older adults examined fMRI data before and after an n-back training 

program which was continuously adaptive, and found training-related activation decreases in 

lateral prefrontal cortex on an n-back task and also on an untrained WMU task (Heinzel et 

al., 2016). No striatal activation changes were reported, however a number of 

methodological differences between this study and ours limit comparability of fMRI results, 

including the age group studied, the tasks scanned, the use of a no-contact rather than active 

control group for comparison, and the use of a whole brain voxelwise analysis approach 

rather than a focus on a priori ROIs. Nevertheless, the findings of Heinzel and colleagues 

(2016) associating adaptive training with decreased recruitment of task-related brain areas, 

and with transfer to untrained tasks, are consistent with our primary results. Moreover, our 

own exploratory whole-brain group by session interaction analysis also detected activation 

decreases after adaptive training in prefrontal regions which have been previously associated 

with WMU processes (Wager & Smith, 2003; Nee et al., 2013).

Although an exploratory whole-brain approach identified adaptivity-related activation 

changes on the scanned WMU criterion task in prefrontal as well as temporal, parietal, and 

striatal regions (as shown in Fig. 5), a priori ROIs for our analyses specifically focused on 

striatum—where previous fMRI studies of WMU training have reported activation changes

—and hippocampus—which is associated with episodic memory tasks and also visuospatial 

working memory tasks—in order to test the prediction that adaptive difficulty would 

broaden transfer of training gains across tasks that engage overlapping processing 

components and brain areas. As shown in Fig. 4, greater criterion task activation decreases 

in these subcortical areas were observed after 10 sessions of adaptive, relative to 

individualized but non-adaptive, WMU training. Furthermore, greater amounts of adaptive 

training task improvement were associated with greater activation decreases in bilateral 

hippocampus on untrained visuospatial working memory and episodic memory tasks. 

Evidence that interactions between striatal and hippocampal regions support episodic 

memory (Sadeh et al., 2011; Nyberg et al., 2016) along with computational models of 

working memory incorporating striatal and hippocampal connectivity (Hazy et al., 2006) 

offer a potential neural mechanism for our findings that adaptive WMU training resulted in 

transfer to episodic memory task performance and activation changes in caudate, putamen, 

and hippocampus ROIs.

The present study stands out from much of the cognitive training literature by showing what 

is conventionally accepted as far transfer, with training-related improvements in working 

memory generalizing to an untrained episodic memory task. Although there are some 

previous reports of transfer to episodic memory from working memory training (Rudebeck 

et al., 2012) and from multi-domain training (Schmiedek et al., 2010; Toril et al., 2016), 

many studies have failed to find far transfer effects across cognitive domains, including other 

training regimens specifically targeting WMU (Dahlin et al., 2008a). As with interpreting 

differences in brain activity changes between the present study and previous fMRI studies of 
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WMU training, methodological variations may partly account for why our training protocol 

was associated with far transfer while others were not. Continuously adaptive training task 

difficulty with no upper limit is a feature which our study has in common with a previous 

study that showed transfer to episodic memory was predicted by amount of improvement on 

an adaptive spatial working memory task (Rudebeck et al., 2012), and which is different 

from a previous WMU training study where all participants achieved the highest available 

level of training task difficulty and minimal evidence was found for far transfer (Dahlin et 

al., 2008a). The theoretical framework of Lövdén and colleagues (2010) proposes that 

cognitive challenges must be sustained (e.g., continuously increasing environmental 

demands) rather than transient in order to increase functional supply, therefore an adaptive 

training protocol in which the level of difficulty is capped within a restricted range may be 

insufficient to induce plasticity that is associated with far transfer. Additionally, adaptivity-

related transfer effects in our study were captured by high-difficulty trials, consistent with 

the prediction that raising the level of maximum function through the manifestation of 

plasticity would enable previously unattainable high levels of task difficulty to be met. This 

interpretation is consistent with results from a recent study showing that transfer to a delayed 

matching-to-sample task was predicted by amount of improvement in high-difficulty blocks 

of a non-adaptive n-back training program (Beatty et al., 2015). It is possible that near 

transfer was not found on the Spatial N-Back task in our study because the 3-Back trial type 

was not sufficiently difficult for healthy young adult participants, as their pre-training scores 

suggest.

Notably, the far transfer observed in the present study was restricted to the scanned visual 

episodic memory task and not found within a battery of untrained tasks administered outside 

of the scanner including measures of verbal episodic memory and also fluid intelligence, the 

cognitive domain which has been the focus of much controversy regarding far transfer 

effects from working memory training (Redick et al., 2013; Au et al., 2015; Melby-Lervåg et 

al., 2016; Greenwood & Parasuraman, 2016). A measure of fluid intelligence also may be 

considered to represent transfer “farther” from the training tasks in the present study than a 

measure of visual episodic memory such as the Object-Location Association task. In this 

respect, although generalization of training gains from working memory to episodic memory 

is a standard for far transfer in the cognitive training literature (Ranganath et al., 2011; 

Rudebeck et al., 2012), breadth of transfer can be classified along a continuum (Barnett & 

Ceci, 2002) and thus skeptics may question whether far transfer to an episodic memory task 

supported by WMU processes is “far enough” to substantiate the efficacy of cognitive 

training. The Object-Location Association task used as the scanned task representing far 

transfer in this study shares features with the visuospatial WMU training task such as the 

binding of items and spatial context, in addition to demands on executive function. Although 

conventional models of memory assign the two tasks to different cognitive domains, 

previous studies demonstrating that processing components involved in working memory 

and episodic memory are not cleanly dissociable (Ranganath & Blumenfeld, 2005; Nee & 

Jonides, 2013) suggest that these putatively separate memory domains likewise can be 

conceptualized along a continuum, with some components—such as the executive function 

of updating—contributing to processing under both subspan and supraspan conditions. 

Indeed, shared core cognitive processes appear to account for the transfer from working 
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memory training to improved episodic memory task performance that was predicted and 

subsequently observed in this study.

The present study was designed to selectively manipulate the factor of adaptive difficulty 

between two groups otherwise performing the same WMU training tasks. An alternative 

interpretation of our results is that the group difference was driven by variable task difficulty, 

rather than adaptive difficulty per se. A recent behavioral study (Bastian and Eschen, 2016) 

compared conditions in which the difficulty of working memory training tasks was adaptive, 

self-selected, or randomly varied, and found that all three procedures for varying the level of 

difficulty produced equivalent improvement on trained tasks, relative to an active control 

group. However, they also found that transfer effects on untrained working memory tasks 

and far transfer (reasoning) tasks did not significantly differ among the training groups and 

the active control group, and thus could not draw conclusions about whether transfer effects 

such as those observed in the present study are likely to be driven by adaptivity or variability 

of task difficulty. This is an important issue for future studies to further explore. Another 

study examining mechanisms of training-induced plasticity compared a group that received 

adaptive working memory training with an active control group in which task difficulty was 

yoked to the performance of participants in the adaptive group, and was thus variable but not 

individually adaptive (McKendrick et al., 2014). The yoked group appeared to reach a 

performance limit towards the end of the course of training as their performance 

improvements attenuated relative to the adaptive group, and differential effects were also 

found in near infrared spectroscopy (NIRS) hemodynamic response measurements across 

sessions, refuting the hypothesis that adaptive task difficulty and variable task difficulty are 

similarly effective.

Progress in cognitive training research requires systematic investigations of the factors that 

influence transfer of training gains, and the neural mechanisms involved. Comparisons 

across studies are difficult to draw when training protocols differ not only in adaptivity but 

also frequency and intensity of training, and outcome measurement. In response to recent 

critiques of the wide variability in training study methodology emphasizing the need for 

greater experimental rigor and protocol standardization (Shipstead et al., 2012; Green et al., 

2014; Noack et al., 2014), our findings support the use of adaptive training as a best practice, 

at least for targeting WMU processes. Although mixed findings in the cognitive training 

literature suggest that adaptively increasing training task difficulty is neither necessary nor 

sufficient to promote transfer, our data show that an optimal design should use adaptive, 

rather than non-adaptive, training when possible. The present results have important 

implications for development of cognitive training programs, by demonstrating that adaptive 

task difficulty influences neural plasticity and transfer of training.
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Appendix:

Pearson’s correlation coefficients for pre-training performance on all untrained tasks (n=56)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Matrix Updating criterion 
task (proportion correct)

  1 7-Updates

  2 4-Updates .56

  3 0-Updates .35 .24

Spatial N-Back (accuracy)

  4 3-Back .42 .30 .20

  5 2-Back .45 .48 .48 .66

  6 0-Back .53 .30 .41 .43 .52

Object-Location 
Association (proportion 
correct)

  7 8-Associates .10 .13 .06 .25 .19 .18

  8 6-Associates .35 .46 −.01 .41 .34 .22 .56

Tasks administered 
outside of tde scanner

  9 Letter Running 
Memory (accuracy) .26 .08 .11 .20 .22 .14 .05 −.01

10 Counting Stroop 
(interference effect) −.14 −.13 .01 −.13 −.21 −.29 −.27 −.22 −.36

11 Global/Local (switch 
cost) −.05 −.17 −.04 −.17 −.11 −.21 .06 −.01 .07 .02

12 Operation Span 
(partial score) −.01 .13 −.03 .28 .11 .09 −.11 .08 .35 −.32 −.10

13 Change Detection (K) .17 .16 .18 .30 .28 .23 .28 .24 .13 −.34 .16 .29

14 HVLT-R (percentage 
retention) .05 .02 .01 .14 .17 .06 .31 .15 .27 −.30 .13 .15 .06

15 Raven’s APM (number 
correct) .27 .09 .05 .29 .31 .07 .09 .20 .45 −.36 .05 .33 .26 .21

16 PASAT (proportion 
correct) .29 .18 .10 .41 .22 .27 .12 .21 .22 −.27 −.12 .58 .31 .12 .35

17 Digit-Symbol 
Substitution (number 
correct)

.33 .10 .13 .25 .17 .29 .01 .19 .01 −.10 −.10 .15 .19 .03 .09 .32

Note: Significant correlations indicated in bold (*p < .05; 2-tailed).
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Fig. 1: 
Scanned tasks. A. Matrix Updating was modified from the training task version for scanning 

as a working memory updating (WMU) criterion task; a 4-Updates trial type is depicted. B. 

Near transfer was assessed with Spatial N-Back, an untrained WMU task. C. Far transfer 

was assessed with Object-Location Association, an untrained episodic memory task; a 6-

Associates trial type is depicted, including a full encoding phase and the first trial of a 

retrieval phase.
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Fig. 2: 
Training trajectories for adaptive training participants on visuospatial and verbal working 

memory updating (WMU) tasks. Error bars denote standard error of the mean. See Materials 
and Methods for task descriptions. Non-adaptive active control participants performed same 

training tasks for the same number of sessions but at a fixed and relatively low, 

individualized level of difficulty.
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Fig. 3: 
Adaptive training enhances working memory updating (left) and results in far transfer to an 

episodic memory task (right). Pre- to post-training performance change is plotted separately 

for the adaptive training (AT; green), non-adaptive active control (NA; blue), and no-contact 

control (NCC; red) groups. Error bars denote standard error of the mean.
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Fig. 4: 
Adaptive training decreases activation in task-related brain areas. Estimates of load-

dependent activation changes (correct 7-update trials vs. correct 4-update trials) during the 

probe period of the Matrix Updating criterion task are shown for a priori striatal and 

hippocampal regions of interest. Pre-training (dark shading) and post-training (light shading) 

activation estimates are plotted separately for the adaptive training (AT; green) and non-

adaptive active control (NA; blue) groups. Error bars denote standard error of the mean.
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Fig. 5: 
Exploratory whole-brain analysis of group (AT/NA) by session (pre-training/post-training) 

interaction for primary contrast of interest in the Matrix Updating criterion task (probe-

period activation on correct 7-update trials vs. correct 4-update trials). Activation decreases 

are greater for AT than NA participants in bilateral prefrontal, bilateral temporal, and left 

parietal clusters, in addition to bilateral striatum.

Flegal et al. Page 25

Neuroimage. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Flegal et al. Page 26

Table 1:

Pre- and post-training scanned task behavioral data by group

Adaptive Training (AT) Non-Adaptive (NA) No-Contact Control (NCC)

ANCOVA on 
post-training 
performance, 
controlling for 
pre-training 
performance

Pre Post Pre Post Pre Post

M (SD) M (SD) M (SD) M (SD) M (SD) M (SD) Effect of group

Matrix Updating criterion task

 7-Updates proportion correct 0.80 (0.13) 0.93 (0.07) 0.81 (0.14) 0.88 (0.15) 0.77 (0.17) 0.79 (0.22)
F(2,52) = 4.50, 
p < .05, ηp

2 = .
15

 4-Updates proportion correct 0.91 (0.08) 0.95 (0.07) 0.89 (0.11) 0.92 (0.08) 0.85 (0.15) 0.88 (0.16)
F(2,52) = 1.49, 
p = .24, ηp

2 = .
05

 0-Updates (maintenance only) 
proportion correct 0.93 (0.08) 0.97 (0.06) 0.93 (0.08) 0.92 (0.11) 0.91 (0.11) 0.89 (0.14)

F(2,52) = 2.22, 
p = .12, ηp

2 = .
08

Spatial N-Back

 3-Back accuracy 0.89 (0.07) 0.93 (0.08) 0.91 (0.07) 0.94 (0.03) 0.89 (0.08) 0.94 (0.06)
F(2,51) = 0.11, 
p = .90, ηp

2 < .
01

 2-Back accuracy 0.94 (0.05) 0.96 (0.05) 0.93 (0.05) 0.97 (0.02) 0.92 (0.08) 0.96 (0.04)
F(2,51) = 0.34, 
p = .71, ηp

2 = .
01

 0-Back accuracy 0.98 (0.03) 0.98 (0.03) 0.98 (0.02) 0.98 (0.04) 0.98 (0.04) 0.98 (0.03)
F(2,51) = 0.25, 
p = .78, ηp

2 = .
01

Object-Location Association

 8-Associates proportion correct 0.56 (0.13) 0.72 (0.15) 0.58 (0.15) 0.64 (0.18) 0.55 (0.18) 0.61 (0.18)
F(2,52) = 3.75, 
p < .05, ηp

2 = .
13

 6-Associates proportion correct 0.62 (0.17) 0.75 (0.17) 0.62 (0.16) 0.74 (0.16) 0.61 (0.18) 0.74 (0.20)
F(2,52) = 0.05, 
p = .95, ηp

2 < .
01
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Table 2:

Pre- and post-training Matrix Updating criterion task fMRI data by group (as shown in Fig. 4): Parameter 

estimates extracted from anatomically-defined ROIs for the primary contrast of interest (probe-period 

activation on correct 7-update trials vs. correct 4-update trials)

Adaptive Training (AT) Non-Adaptive (NA) ANCOVA on post-training activation, controlling for 
pre-training activation

Pre Post Pre Post

Region of interest M (SD) M (SD) M (SD) M (SD) Effect of group

L caudate 0.43 (0.53) −0.39 (0.50) 0.18 (0.44) 0.27 (0.67) F(1,35) = 13.13, p < .001, ηp
2 = .27

R caudate 0.37 (0.47) −0.35 (0.52) 0.15 (0.55) 0.22 (0.52) F(1,35) = 10.88, p < .01, ηp
2 = .24

L putamen 0.49 (0.50) −0.29 (0.58) 0.30 (0.47) 0.18 (0.42) F(1,35) = 10.17, p < .01, ηp
2 = .23

R putamen 0.44 (0.58) −0.33 (0.66) 0.30 (0.52) 0.23 (0.43) F(1,35) = 11.09, p < .01, ηp
2 = .24

L hippocampus −0.01 (0.63) −0.19 (0.35) 0.08 (0.45) 0.08 (0.40) F(1,35) = 4.66, p < .05, ηp
2 = .12

R hippocampus 0.02 (0.73) −0.21 (0.32) 0.06 (0.35) 0.08 (0.40) F(1,35) = 6.05, p < .05, ηp
2 = .15
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Table 3:

Significant regions of activation from group by session interaction for primary contrast of interest in 

exploratory whole-brain analysis of the Matrix Updating criterion task fMRI data (as shown in Fig. 5). No 

suprathreshold clusters were identified in exploratory whole-brain interaction analysis for the Spatial N-Back 

task or the Object-Location Association task.

MNI coordinates

cluster size (voxels) x y z t

L IPL 295 −57 −55 37 4.96

R striatum 119 12 17 4 4.87

R MTG 114 54 −19 −14 4.78

L striatum 162 −9 8 13 4.64

L MTG 61 −69 −46 −2 4.40

L SFG/FEF 53 −15 32 52 4.38

L postcentral gyrus 79 −51 −19 52 4.34

R MFG 79 42 23 40 4.33

R STG 109 69 −40 19 4.21

Neuroimage. Author manuscript; available in PMC 2020 March 01.


	Abstract
	Introduction
	Materials and Methods
	Participants
	Materials
	Training Tasks
	Scanned Tasks
	Other Transfer Tasks

	Design and Procedure
	MRI Acquisition and Processing
	Analysis

	Results
	Discussion
	Appendix:
	Table T4
	References
	Fig. 1:
	Fig. 2:
	Fig. 3:
	Fig. 4:
	Fig. 5:
	Table 1:
	Table 2:
	Table 3:



