Title
Networked Sensing of Nitrate in Support of Groundwater Quality Protection

Permalink
https://escholarship.org/uc/item/4948t1w4

Authors
Juyoul Kim
Jose Saez
Naim Busek
et al.

Publication Date
2004
Networked Sensing of Nitrate in Support of Groundwater Quality Protection

Juyoul Kim1, Jose Saez2, Naim Busek3, Yeonjeong Park2, J. Eric Haux4, Deborah Estrin3 and Thomas C. Harmon4

1Loyola Marymount University Civil & Environmental Engineering, 2UCLA Civil & Environmental Engineering, 3UCLA Computer Science, 4UC Merced School of Engineering

Introduction: Soil Sensor networks in a real-world application: wastewater irrigation

Municipal wastewater flows in a megapolis like Los Angeles exceed 100s of millions of gallons per day. In land-locked areas, prudent watershed management demands that we monitor and control the release of treated wastewater, and the associated contaminants and nutrients, into the environment. If the release is into the soil, such as for irrigation or artificial recharge of aquifers, monitoring well networks are currently sparse due to costs of deployment (well drilling and construction).

The objective of this project is to systematically develop sensor networks and design a control system to monitor and respond to nitrate propagation in soil being irrigated with reclaimed wastewater.

Problem Description: How to adequately monitor nitrate in soils using sensor networks

Model Development and Calibration

- The fate and transport of nitrate in the unsaturated zone is described by flow, temperature, and nitrate simulation models.
- Due to the spatial variability of soil properties, parameter estimation for the simulation models requires geostatistical treatment (e.g., semivariogram and kriging).

Sensor Network System

- Novel multi-level sensing stations (pylons) for temperature, moisture and nitrate to be deployed at varying spatial densities over a portion of a 30 acre test plot in Palmdale, CA.
- Each pylon monitors conditions (temperature, moisture and nitrate distributions) in its own 1-D setting.
- Pylons communicate with other nearby pylons to delineate dissolved nitrate distribution in time and space.

Proposed Solution: System identification and optimization of irrigation scheduling

- Soil samples have been collected to observe spatial variability throughout the research site.
- Each pylon provides real-time sensor data for local network node calibration.
- Deterministic and geostatistical algorithms for scaling up toward sensor network error resiliency will then be tested.

Geostatistical Analysis

- Spatial distribution of hydraulic conductivity is visualized in contour maps created by kriging methods.
- We can then estimate soil properties at unsampled locations with geostatistical realizations.

Irrigation Control

- The objective of irrigation control is to determine the application rate such that wastewater usage is maximized and the nitrate regulatory level is not violated.
- The control scheme (measurement, decision, and action) is executed by using the on-line data feedback from the pylons and providing control to the watering pivot.

Funding from UCLA’s Center for Embedded Networked Sensing (CENS) made this cooperation agreement (CCR-0120778) with the National Science Foundation gratefully acknowledged.