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Abstract

First-Principles Modeling of Thin-Film Ferroelectrics

by

Thomas Henry Angsten

Doctor of Philosophy in Engineering - Materials Science and Engineering

University of California, Berkeley

Professor Mark Asta, Chair

The goal of this dissertation is to explore the properties of thin-film ferroelectrics using first-
principles computational methods. Achieving this goal requires both the development of
efficient methods for computing thin-film properties as well as the application of these meth-
ods to a variety of thin-film materials of interest. The research included in this dissertation
is thus composed of a mix of these two efforts.

First, the structural properties, energetics, and polarizations of perovskite-based thin-film
oxide systems are computed as a function of biaxial strain state and epitaxial orientation,
employing an automated computational workflow based on density functional theory (DFT).
A total of 14 compositions are considered, of the form ABO3, with A=Ba, K, Na, Pb, and
Sr and non-magnetic B=Hf, Sn, Ti, Zr, Nb, Ta, and V site cations chosen to yield tolerance
factors with values ranging between 0.95 and 1.1. Three biaxial strain states corresponding
to epitaxial growth of (100)-, (110)-, and (111)-oriented films are considered, with misfit
strains ranging between -4% to 4%. Results are presented for the series of perovskite-
derived phases, and their corresponding symmetries, which are energetically favorable as
a function of misfit strain, along with their corresponding equilibrium atomic positions,
lattice parameters, and electric polarizations. The results demonstrate robust trends of
in-plane polarization enhancement under tensile strain for all epitaxial orientations, and
out-of-plane polarization enhancement with compression for the (100)- and (110)-oriented
films. Strains corresponding to the (111)-growth orientation lead to a wider variety of out-
of-plane polarization behavior, with BaTiO3 showing anomalous diminishing polarization
with compression. Epitaxial orientation is shown to have a strong effect on the nature
of strain-induced phase transitions, with (100)-oriented systems tending to have smooth,
second-order transitions and (110)- and (111)-oriented systems more commonly exhibiting
first-order transitions. The significance of this effect for device applications is discussed,
and a number of systems are identified as potentially interesting for ferroelectric thin-film
applications based on energetic stability and polarization behavior. Analysis of polarization
behavior across different orientations reveals distinct groups into which compositions can be
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organized, some of which having polarization dependencies on misfit strain that have not
been predicted previously.

Following the work described above, ground-state epitaxial phase diagrams are calculated
by DFT for SrTiO3, CaTiO3, and SrHfO3 perovskite-based compounds, accounting for effects
of antiferrodistortive and A-site displacement modes. Biaxial strain states corresponding to
epitaxial growth of (001)-oriented films are considered, with misfit strains ranging between
-4% and 4%. Ground-state structures are determined using a computational procedure in
which input structures for DFT optimizations are identified as local minima in expansions of
the total energy with respect to strain and soft-mode degrees of freedom. Comparison to re-
sults of previous DFT studies demonstrates the effectiveness of the computational approach
in predicting ground-state phases. The calculated results show that antiferrodistortive oc-
tahedral rotations and associated A-site displacement modes act to suppress polarization
and reduce epitaxial strain energy. A projection of calculated atomic displacements in the
ground-state epitaxial structures onto soft-mode eigenvectors shows that three ferroelectric
and six antiferrodistortive displacement modes are dominant at all misfit strains considered,
with the relative contributions from each varying systematically with strain. Additional
A-site displacement modes contribute to the atomic displacements in CaTiO3 and SrHfO3,
which serve to optimize the coordination of the undersized A-site cation.

Further, an effort is made to identify alternative vanadate perovskite-derivative systems
similar to the well-studied pressure-stabilized PVO structure. To achieve this, the stability
of perovskite-derivative thin-film structures of KVO3 and NaVO3 are studied under com-
pressive biaxial strain. The electronic structure and polar properties of these compounds
are computed as a function of biaxial strain, and the results are compared to those obtained
for experimentally-observed PbVO3 structures. It is demonstrated that the substitution of
Pb with monovalent K or Na cations increases the strength of the vanadyl bond due to the
removal of the spatially extended Pb 6p states. Both KVO3 and NaVO3 exhibit epitaxially
stabilized perovskite-derivative phases having large polarizations and low misfit strain ener-
gies. The calculated epitaxial phase diagram for KVO3 predicts a strain-induced phase sepa-
ration from -4% to 1.5% misfit strain into a ferroelectric Cm phase, having square-pyramidal
coordination of the B -site, and a paraelectric Pbcm phase, having tetrahedral coordination
of the B -site. The results show that strain-stabilized polar vanadate compounds may occur
for other compositions in addition to PVO, and that changes in the A-site species can be
used to tune bonding, structure, and functional properties in these systems.
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CHAPTER 1

Introduction

For many decades, ferroelectric materials have provided functionalities crucial to a wide
variety of technological applications. The discovery of barium titanate in the 1940s kick-
started the rapid proliferation of novel electronic devices based on the ferroelectric effect, and
many of these devices are still used in modern-day technologies [1]. Demand in the electronics
industry for smaller components have motivated the recent focus on integrating the func-
tionality of the ferroelectric effect into microelectronic devices. To achieve this, ferroelectric
materials can be grown as epitaxial thin films having constrained dimensions ammenable to
device miniaturization. More than just a change in shape accompanies this tranformation,
as ferroelectrics in thin film form genrally have properties that can differ significantly from
those in the bulk. In particular, the strain conditions imposed on the film during growth
have a large impact on properties, and subsequent control of these conditions comprises the
field of epitaxial strain engineering. Understanding how epitaxial boundary conditions in-
fluence the properties of ferroelectric thin films is therefore fundamental to discovering and
designing improved materials for microelectronic applications.

1.1 Epitaxial Growth of Thin Films

Growth of thin films can be accomplished using a variety of deposition processes, but
the most relevant to strain-engineered ferroelectrics are those leading to epitaxial growth.
Epitaxy is the process of film growth in which the presence of a substrate significantly
influences the crystallographic structure of the deposited film. Homoepitaxy is the process
of depositing a material onto a substrate of the same composition, while heteroepitaxy is the
growth of one material onto another of distinct composition. Heteroepitaxy is useful in the
context of strain engineering ferroelectric thin films, as it can lead to biaxial strains in the
film. In heteroepitaxy, the extent to which the substrate controls structural ordering in the
material growing on top of it, termed the epilayer, is controlled by the degree of matching
between the crystal structures of the substrate and film along the interface [2].
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1.1.1 Accommodation of the Epilayer

Figure 1.1 shows a schematic of the different interactions a deposited film (black circles)
can have with the underlying substrate (white circles) under heteroepitaxy. In the simplest
case illustrated in Fig. 1.1a, the deposited material and substrate have crystal structures
with the same periodicities. Matching at the interface is exact, and no strain in the epilayer
results. This is termed coherent growth. More often, the crystal structure of the epilayer has
different spacings compared to the substrate. In this case, three different cases of growth can
occur. In Fig. 1.1b, the structures of the substrate and film have different symmetries and
lattice spacings and the interfaces formed are not well matched. This situation is referred
to as incoherent growth and is common when the atoms in the film and substrate phases
interact weakly, e.g., through van der Waals forces [3]. Figure 1.1c shows an example of when
the film material’s natural lattice parameter in the bulk is larger than that of the substrate,
but matching at the interface still persists. As a result, the epilayer is strained in order to
match with the substrate below. This is the growth case most useful to strain engineering of
ferroelectric films, as it results in a film with homogeneous biaxial strain. Finally, Fig. 1.1d
shows the case in which the elastic energy that would result from the formation of a strained
epitaxially matched film leads to the formation of misfit dislocations to accommodate the
difference between the film and substrate lattice constants. In this case, the epilayer is still
strained, but with some of the stress relieved by the formation of dislocations. The cases
shown in Figs. 1.1c and d are discussed in more detail below.

Parts a, c, and d of Fig. 1.1 show a film which exhibits some degree of matching between
the deposited material and the underlying substrate. Under the appropriate conditions,
film growth often displays this behavior. The basic driving force for films to match with a
substrate is the minimization of potential energy at the atomic sites. Ordered crystalline
structures commonly appear in nature because their highly symmetric sites tend to provide
low-energy bonding environments for atoms, and flaws in crystals interrupt symmetry and
thus tend to increase the potential energy of atomic sites. In this manner, crystal surfaces
and interfaces give way to excess energies per unit area. A film material that is being
deposited on a crystalline substrate will attempt to merge symmetries of the two crystals
by maximizing the density of bonds across the interface, thereby retaining the preferred
bonding environment for each atomic site. The successful epitaxial growth of a film is
dependent on a number of factors, including the ability of the film crystal structure to match
with the substrate, density of defects and imperfections at the substrate interface, chemical
compatibility between the film and substrate materials, and sufficiently high temperature to
allow for depositing atoms to rearrange before being buried by the next layer [4].

When a deposited material has a high degree of matching with the underlying substrate,
and few defects disrupt the periodicity of this matching, the result is a coherently strained
epitaxial thin film. In addition, if epitaxial growth is precisely controlled, the resulting inter-
face can be atomically abrupt [2]. If the atomic periodicity of the substrate and coherently
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Figure 1.1: Ways in which the epilayer lattice (solid circles) can be accommodated by the substrate
lattice (white circles).

strained film materials are not quite aligned, a biaxial strain in the deposited film results.
The fractional mismatch between two crystal structures is defined as:

η̄ =
ae − as
ae

, (1.1)

where ae and as are relevant atomic spacings along the interfacial film and substrate surface
directions, respectively. If the thermal-expansion coefficients of the film and substrate ma-
terials are different, η̄ is also a function of temperature. A general rule [3] for epitaxy is that
|η̄| < 0.1 to obtain a coherently strained thin film. If the mismatch is any greater than this
threshold, not enough bonds at the interface are aligned to make coherent matching ener-
getically favorable. The exact threshold is dependent on film and substrate composition, as
well as film thickness, as discussed below. Figure 1.2 shows an example coherently strained
perovskite film on a perovskite substrate with a slightly larger in-plane lattice constant. The
epilayer is subsequently subjected to tensile biaxial strain in the interface plane, with an
associated Poisson contraction in the [001] direction. The interface is shown to be atomicly
abrupt with no defects.
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Figure 1.2: Schematic of a coherently strained epitaxial thin film for perovskite heteroepitaxy.
The largest spheres indicate the perovskite A-cation, commonly a mono- or divalent metal, the
small pink spheres indicate the anion, commonly oxygen, and the center of the anion octahedra are
occupied by the B -cation, commonly a tetra- or pentavalent transition metal. Redrawn, based on
Fig. 1 of Ref. [2].

Under commensurate growth, unique mechanical boundary conditions persist within the
epilayer. An assumption that is commonly made is that, due to the much greater thickness
of the substrate as compared to the epilayer, the substrate is considered to be completely
rigid. The resulting biaxial strain from epitaxy is thus isolated in the epilayer, and, in the
case of a substrate with four-fold symmetry, it is simply equal to the opposite of the degree
of mismatch:

εxx = εyy = −η̄. (1.2)

The imposition of a strain in the epilayer has an associated biaxial stress and corresponding
tetragonal strain. For an elastically isotropic material, the stress and strain are given by:

σxx = σyy =
Y

1− ν
εxx, (1.3)

and

εT = εzz − εxx = −1 + ν

1− ν
εxx, (1.4)
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where Y and ν are the Young’s modulus and Poisson’s ratio of the film, respectively. Equa-
tion 1.4 shows that, under biaxial compression (substrate lattice periodicity is smaller than
film’s), a typical film expands out-of-plane, while under biaxial tension (substrate lattice
periodicity is larger than film’s), the film contracts in the out-of-plane direction.

1.1.2 Strain Relaxation through Dislocation Formation

In discussing Fig. 1.1d above, it was mentioned that, in cases where mismatch is larger
than a critical threshold, defects form in order to relieve the elastic energy. These defects
are often undesirable in the context of strain engineering ferroelectric thin films, as they lead
to inhomogenous strain in the film and often degraded properties. Dislocations in biaxially
strained thin films release energy due to reduction in the biaxial strain, but their formation
also increases the interfacial energy. By quantifying these two competing energetic terms,
the conditions under which strain relaxation occurs through dislocation formation can be
specified. The treatment given here follows that found in Ref. [3]. The scope of this treatment
is limited to giving a broad overview of the underlying physics of dislocation formation in
thin films, and thus a number of simplifying assumptions are made. In particular, isotropic
and homogenous elasticity of the film and substrate is assumed throughout.

The strain energy as a function of parameters of the film and degree of mismatch is given
by:

Uε(J/m
2) =

Y

1− ν
ε2xxh, (1.5)

where h is the film thickness. This expression is obtained by integrating the force applied as
the film is compressed from the relaxed state to the contrained commensurate epilayer state.
When compression or tension is applied, shear stresses along certain crystallographic planes
in the film develop. If these stresses become great enough, planes will begin to slip, in a way
similar to when bulk materials reach a critical applied shear stress. The slipping is facilitated
by the breaking and reforming of bonds, and the result is the formation of misfit dislocations.
A grid of such dislocations will form in the interface of the substrate-epilayer bicrystal, with
the density of the grid depending on various conditions and materials properties.

The energy of a dislocation can be partly attributed to its core, and partly to the strain
field generated around this core. For a mixed dilocation with Burgers vector b and shear
modulus of elasticity Gs, the strain energy per unit length is:

U ′d(J/m) ≈ Gsb
2

4π(1− ν)
ln

(
4h

b

)
. (1.6)

Here, b is the magnitude of the Burgers vector, and the factor of 4π in Eq. 1.6 comes from
the radial symmetry of the strain field. This expression is derived from a continuum model,
wherein the outer radius of the strain field is assumed to be equal to the film thickness, h,
and the inner radius, which accounts for the energy of the dislocation core, is arbitrarily set
to 1

4
b. The generation of dislocations affects the degree of biaxial strain in the epilayer:
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εx,y = ±ρlbsin(β)cos(γ)− η̄. (1.7)

Here, ρl (lines/m) is the linear density of the array of dislocations, the angle β measures the
degree of partial screw character (β = 90o for pure edge and β = 0o for pure screw), and γ
is the angle the glide plane makes with the substrate interface.

The balance between dislocation excess energy and strain energy release results in an
equilibrium degree of misfit strain in the epilayer. Figure 1.3 gives an example schematic
of possible energy curves of a film calculated at two different film thicknesses. This figure
illustrates that, for a sufficiently thin film (h in this example), the amount of strain energy
relieved does not compensate the dislocation excess energy, and a film having no dislocations
results. However, for a sufficiently thick film (3h in this example), forming dislocations
relieves strain energy faster than the dislocation excess energy increases, and an equilibrium
degree of strain relaxation occurs. In this latter case, over half of the original misfit strain is
relieved by dislocations. On the top axis, β measures the degree of partial screw character,
and γ is the angle the glide plane makes with the substrate interface. For purposes of
visualization, Ud is shown to be independent of film thickness, h, even though it has a
logarithmic dependence, as in Eq. 1.6.

1.1.3 Critical Film Thickness

Under conditions of isotropic and homogenous elasticity, an analytical solution exists
mapping the critical misfit strains, η̄c, at which dislocation formation is favorable as a func-
tion of film thickness [3]:

η̄c =
1

h

(
± b

(8π(1 + ν)sin(β)cos(γ)

)
ln

(
4h

b

)
. (1.8)

The relationship in Eq. 1.8 shows that there is a nearly inverse relationship between the
critical misfit strain and film thickness. If a film’s thickness doubles, the misfit strains that
can be sustained in the film decreases by approximately half, assuming the film thickness is
large enough so that the logarithmic term varies slowly. Figure 1.4 gives an example state
diagram for this relationship for the case of Si(001) epitaxy, with the white area denoting
regions where no dislocations exist in the epilayer, and the gray area denoting regions where
strain relaxation has occurred through formation of misfit dislocations.

1.1.4 Consequences for Ferroelectric Thin Films

The phenomena of epitaxy and strain relaxation have important consequences for the
properties of ferroelectric thin films. The properties of these ferroelectrics are often strongly
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Figure 1.3: Film internal energy as a function of misfit strain. In this plot, U = Uε + Ud is the
total energy, as shown by the black solid line, Ud is the dislocation energy, as shown by the red
dashed line, and Uε is the film strain energy, as shown by the blue dashed line. Points of equilibrium
strains for the two different film thicknesses are shown as filled circles. Redrawn, based on Fig.
6.25 from [3]

coupled to misfit strain. If this strain is reduced through strain relaxation, the polarization
of the film will change as well. Thus, properties of the film can be very sensitive to the
thickness at which the film is grown.

Epitaxial ferroelectric thin films offer a number of advantages compared to their bulk
counterparts. As will be discussed in the next section in greater detail, the polar properties
of a ferroelectric crystal couple strongly to its strain state. Often times, application of large
amounts of non-hydrostatic strain can enhance polarization and lower the curie temperature
compared to the bulk. Epitaxy provides the means by which strain conditions in a system
may be tuned. Compared to bulk, in which cracking occurs for very small strains, thin films
can withstand non-hydrostatic strains of several percent. Further, the growth orientation
of a ferroelectric film can be controlled based on the preparation of the substrate. This is
important when the property of interest is anisotropic, and a rotation of the film leads to
a larger response in the direction of interest. The degree of strain and orientation can be
precisely tuned in modern heteroepitaxy, leading to additional means by which properties of
ferroelectrics can be improved. Lastly, epitaxial films can be grown atomically smooth and
eliminate any grain boundaries. These properties lead to materials with desirably homoge-
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Figure 1.4: Relationship between critical thickness and degree of misfit strain for Si(001) epitaxy,
with ν = 0.22, b = 0.38 nm, γ = 55o, and β = 60o. Redrawn, based on Fig. 6.26 of Ref. [3].

neous properties.

1.2 Physics of Ferroelectrics

While the above section discussed the mechanical factors that determine a film’s strain
state under various epitaxial boundary conditions, it is the coupling of the mechanical strain
with electro-static interactions in thin-film ferroelectrics that enable tuning of their functional
properties. The following section provides a brief overview of the physics driving these polar
response properties.

1.2.1 Macroscopic Polarization

Materials are composed of substituent particles having positive and negative charges.
Charged particles generate electric fields in their vicinities, which results in electrostatic
forces given by the Coulombic interaction. In insulators, the negatively charged electrons
are strongly bound to the atomic nuclei, and the influence of a uniform electric field will
displace positively charged particles in the direction of the field and negatively charged
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particles in the opposing direction. This separation of charge results in an electric dipole
moment, given by:

p =
∑

qnrn, (1.9)

where the summation is taken over all particles in the system, qn gives the charge on the nth
particle, and rn is the position of the nth particle.

Each dipole moment formed within a material emits its own electric field given by:

E(r) =
3(p · r)r− r2p

4πε0r5
, (1.10)

where ε0 is the permittivity of free space. The macroscropic polarization, P, is defined
as the dipole moment per unit volume of a system. Whenever an electric field is applied
to electrical insulators, or dielectrics, a macroscopic polarization develops. The connection
between polarization, P, and an applied electric field, E, is characterized in the simplest
cases by the constant of dielectric susceptibility, χ, such that:

P = ε0χE. (1.11)

In more complicated cases in which the developing polarization is not always aligned with
the direction of the applied electric field, the dielectric susceptibility becomes a rank three
tensor.

1.2.2 Response Properties

In general, the various mechanical, thermal, electric, and magnetic properties of materials
are dependent on each other. Some commonly coupled material properties are illustrated in
the Heckman diagram [5] shown in Fig. 1.5. As an example, when a stress, σ, is applied to a
material, this material will deform, giving way to a distribution of strain, ε. This distribution
will depend on the mechancial response properties of the material, such as the stiffness tensor
in the case of a linear response, that mathematically relate stresses and strains.

Couplings between properties do not have to remain within one property group. For
example, mechanically compressing a gas can affect its temperature (thermodynamic cou-
pling), applying a stress to a material can generate a polarization through the piezoelectric
effect (electro-mechanical), and applying an electric field to a material can cause that mate-
rial to evolve or absorb heat (thermo-electric). These less common couplings are critical to
some of the most important technological devices created in recent decades, such as sensors,
memory storage devices, and micro-electro-mechanical devices [1].
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Figure 1.5: A Heckman diagram illustrating some of the commonly coupled properties within
materials. The red lines illustrate some of the most important electric couplings for ferroelectric
materials used in technological applications, as well as schematics showing the physical processes
associated with the couplings.

1.2.3 Ferroelectrics and Switching

Ferroelectric materials are characterized by the unique nature of their couplings between
the macroscopic electric field and polarization. For a subset of dielectrics, a macroscopic
polarization is present within the material even when no electric field has been applied. In
these cases, the materials retain spontaneous polarizations, the presence of which is one of the
requirements of ferroelectrics. An additional requirement for a material to be a ferroelectric
is that application of a sufficiently strong electric field must be able to “switch” the material
between two or more stable atomic arrangements, each having a spontaneous polarization [6].
As a result of this property, ferroelectrics exhibit a hysteresis loop when the applied electric
field is cycled back and forth between opposing directions. Figure 1.6 shows a schematic of
this process.

Within the simplified schematic of Fig. 1.6, the material begins in state A with zero
applied field, a spontaneous polarization of Ps, and positively ions shifted slightly upward
relative to negatively charged ions. In state A, the majority of ferroelectric domains within
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Figure 1.6: A schematic of ferroelectric switching and the hysteresis loop. The middle shows the
relation between polarization and electric field, the top left and top right schematics show example
atomic arrangements in the poled-up and poled-down states, and the bottom left and bottom right
schematics show examples of domains forming of opposite polarization within the material.

the material are aligned upward (red arrows), with a small number of minority domains
aligned downward (black arrows). Ferroelectric domains are defined as regions of crystal in
which the spontaneous polarization is oriented in the same direction, which are separated
from differently oriented domains by domain walls. As an electric field (E) is applied in
the direction of the spontaneous polarization (positive values of the x-axis), the polarization
increases slightly until it saturates, as the domains of the material have all aligned their
polarization. If the electric field is then directed opposite to the direction of Ps and is
sufficiently strong, domains will begin to nucleate having polariziations aligned opposite to
the original direction of Ps, or downward in this case. At a critical value of E, the majority
of domains have their polariziations aligned with E, and the material rapidly undergoes
ferroelectric switching. If the electric field is then lowered back to zero, the material is in
state B shown in Fig. 1.6. In this state, the majority of domains are now aligned downward,
with a small minority of domains aligned upward.

1.3 Applications of Thin-Film Ferroelectrics

The ability to tune the polar properties of thin-film ferroelectrics through the strain
state of the system has many promising technological applications, some of which are al-
ready used in modern devices. There are many examples in the literature of interesting
phenomena that can result from misfit-strain control of ferroelectrics. Because of the ex-
panded tunable parameter space created when the extra degree of freedom of strain tuning
is added, computational methods for materials design become increasingly important due to
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their low cost compared to experiments.

1.3.1 Misfit-Strain Controlled Phenomena

There exist many examples in the literature of how the coupling of misfit strain and po-
lar properties in thin-film ferroelectric can be exploited for device applications. The general
theme of these applications is that thin-films enable property control unachievable in bulk
systems, and the constrained dimensions of thin films offer the additional advantage of am-
menability to microelectronic devices. The effect of misfit strain on the response properties
of SrTiO3 offers a clear example.

Systems having a ferroelectric to paralectric transition near room temperature can be
very useful for high-frequency microelectronic devices. This is because of the high degree of
dielectric tunability these materials can provide, with small changes in a bias volatage applied
across the material resulting in large shifts in dielectric constant. The traditional method of
tuning the ferroelectric transition temperature to be near room temperature is by chemical
substitional. An example of this is the solid solution of BaTiO3 with SrTiO3. However,
it is desirable to find alternatives to this approach, as compositional heterogeneity in the
solution can significantly broaden the phase transition temperature range and degrade device
performance [7]. One such alternative is through strain tuning, as Haeni et al. demonstrate
for the case of SrTiO3 thin films. In bulk form, SrTiO3 is a paraelectric material at all
temperatures. However, thin films of SrTiO3 epitaxially grown at 1% tensile misfit strain
allow this material to exhibit room-temperature ferroelectricity and a high degree of dielectric
tunability [7]. The application of misfit strain drives a polar instability in SrTiO3, rendering
the cubic centro-symmetric Pm3̄m phase unstable. The misfit phase diagram schematic in
Fig. 1.7 illustrates the significant impact biaxial strain can have on the phases of SrTiO3. The
modest application of half a percent tensile strain at room temperature drives a transition
to a ferroelectric phase.

Another area in which strain-controlled phenomena are of special technological interest is
multiferroic materials. These are materials in which magnetism and ferroelectricity coexist,
with the potential for magnetic states to strongly couple to electric fields. This coupling
allows for the potential to manipulate the magnetic state of a system through application of
an electric field, which would be very useful in the context of computer memory devices. In
Ref. [8], Martin et al. show that a perovskite-derivative phase of PbVO3, which is unstable
under ambient conditions, can be stabilized when grown under epitaxy on an LaAlO3 (001)
substrate. This phase is strongly polar, and has a single occupied d-state, making it a
candidate multiferroic system. This work illustrates the important phenomenon of phase
stabilization through application of particular epitaxial boundary conditions. Further, the
phase stabilized has promising properties unachievable in its bulk form. The existence of a
polar PbVO3 multiferroic-candidate system under biaxial strain is just one example of the
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Figure 1.7: A schematic of the phase diagram of SrTiO3 as a function of misfit strain. At room
temperature, SrTiO3 is paraelectric, but application of moderate biaxial compression or tension
drives a transition to a ferroelectric phase. Redrawn based on Fig. 1 in [7].

potentially vast collection of unexplored systems exhibiting novel properties under conditions
of epitaxy.

1.3.2 Role of First-Principles Methods

The overarching goal of the present work is to develop and apply first-principles-based
workflows for determining the properties of thin-film ferroelectric materials as a function
of applied misfit strain. The combined parameter space of composition and misfit strain is
difficult to systematically explore through experimental methods, and many yet-unexplored
thin-film systems could exhibit interesting phenomena similar to those described in the
previous section. By calculating and making available the properties of a large number of
thin-film systems, insights into the physics driving thin-film ferroelectrics can be attained,
and materials discovery can be facilitated.
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A significant body of literature has laid the groundwork for calculating the properties
of thin-film ferroelectrics as a function of misfit strain. In the earliest studies, King-Smith
and Vanderbilt developed the KSV method for mapping the energy landscape and ground-
state phases of ferroelectric perovskite oxides using expansions of the total energy with
respect to the amplitudes of unstable phonon modes and strain [9]. Dieguez et al. [10]
later expanded this approach to include the misfit strain as a degree of freedom, and were
thereby able to calculate the ground-state phases of eight perovskite oxides as a function
of misfit strain. Additional studies have produced similar misfit-strain phase diagrams for
a broader range of compositions [11–15] by means of direct DFT calculations. These phase
diagrams are a useful guide for thin-film growth experiments of coherently-strained perovskite
oxides on substrates, as they indicate the degree of polarization and phases to be expected.
However, these studies only treat a small range of compositions, only consider the (001)
growth orientation, and neglect the potential impact of antiferrodistortive distortions that
can strongly affect the polarization of perovskite oxides [16]. The work in this dissertation
aims to expand on these limitations by developing automated methods for computing thin-
film properties, considering a more complex range of competing thin-film phases, and by
studying unexplored compositions.

1.4 Dissertation Outline

The remainder of this dissertation is organized as follows. Chapter 2 provides an overview
of the computational methodology that underlies all of the work in this thesis, i.e., the first-
principles framework of electronic density functional theory (DFT). Chapter 3 presents an
automated computational approach for determining the polar and energetic properties of
the ground-state structures of ferreoelectric perovskite oxide thin-films. This approach is
applied to 42 perovskite oxide thin-film systems, and results for representative individual
thin-film systems are discussed. Major trends in the polarization and energetic data across
the various compositions are presented and the causes of these trends are discussed.

In chapter 4, an automated approach for treating thin-film ferroelectrics with non-zone-
centered distortions is presented. This approach is based on expansions of the total energy
as a function of strain and displacement-mode degrees of freedom. The approach is applied
to three systems, SrTiO3, CaTiO3, and SrHfO3, in a demonstration of its effectiveness.
The effect of non-zone-center distortions, such as octahedral rotations and A-site anti-polar
distortions are discussed in detail.

Chapter 5 describes a computational effort to discover perovskite-based vanadate thin-
films alternative to the previously studied PVO system. Properties of the perovskite-based
epitaxial structures of KVO3 and NaVO3 are calculated as a function of biaxial strain applied
in the (100) plane. Electronic structures of the minimum energy epitaxial phases for these
two systems are calculated and compared to that of PVO. Finally, chapter 6 gives a summary
highlighting the major results and conclusions from chapters 3, 4, and 5, and directions for
future work related to these research efforts are suggested.
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CHAPTER 2

Theoretical Framework

2.1 First-Principles Methods

Computational modeling plays an important role in modern materials research. Results
computed from theory can often supplement those from experiment in useful ways, and the
precise control offered by theoretical methods can provide data that can be highly challenging
to obtain directly by experimental measurements. Computational simulations of materials
systems can take many forms, each categorized broadly by the characteristic length scale con-
sidered by the model, as well as whether or not empirical data must be used to fit the model.
Those which do not rely on input from experimental observations are termed first-principles
computational modeling methods, as they are built starting with the fundamental quantum
mechanical equations that describe the fundamental atomic interactions in a material.

In the study of epitaxial ferroelectric thin-films, the properties of interest are sensitively
dependent on the interactions amongst the system’s electrons and atomic nuclei. Because of
this, accurate descriptions of the structures, polarizations, and energies of these systems
requires the use of quantum-mechanical theory, as practically implemented through the
formalism of density functional theory (DFT). The approaches used in chapters 3-5 make
extensive use of DFT in order to calculate various properties of ferroelectric thin-films. In
the following subsections, a brief introduction to DFT and its quantum mechanical basis is
provided.

2.1.1 Schrödinger Equation for a Solid

A key quantity that must be accurately determined when modeling solids is the lowest, or
ground-state energy of a collection of atoms as a function of their positions. This quantity is
called the adiabatic potential energy surface of the atoms, and it depends on both electronic
and nuclear interactions and is described through the formalism of quantum mechanics. The
ground-state energy of an arbitrary system of multiple nuclei interacting with N electrons
is given (neglecting electron spin) by the lowest eigenvalue of the general time-independent
Schrödinger equation:



16

[
− h̄2

2m

N∑
i=1

∇2
i +

N∑
i=1

V (ri) +
N∑
i=1

∑
j<i

U(ri, rj)

]
ψ = Eψ, (2.1)

Here, m is the mass of an electron, V is the potential energy surface created by the atomic
nuclei, U is the energetic interaction term between two electrons, and ψ is the electron wave
function. This wave function is a function of the positions of the N electrons in the system,
i.e. ψ(r1, ..., rN). The first term on the left side of Eq. 2.1 accounts for the kinetic energy of
the electrons, the second for the interaction energy between the electrons and atomic nuclei,
and the third for the interaction energy between electrons. Due to the many-body nature of
the problem, Eq. 2.1 is largely insoluble. DFT reformulates this problem in a way that the
ground-state energy can be computed for complex systems, given certain approximations, as
described in the next section.

2.1.2 Density Functional Theory

Density functional theory is a first-principles computational modeling technique that
allows for efficient and accurate calculation of the ground state electronic structure of con-
densed matter. Its formalism provides a practical means of computing the energy for a
many-electron system with the Schrödinger equation given mathematically by Eq. 2.1 [17].
The usefulness of DFT has been demonstrated extensively in recent decades. For instance,
DFT has been used to predict crystal structures, calculate band structures, explore diffusion
properties, and determine surface energies [18]. In the realm of materials discovery, DFT
is increasingly being used for the computational design of lithium-ion batteries, hydrogen
production and storage materials, thermoelectric materials, and various other important
materials technologies, as discussed in Ref. [19] and references therein.

Within the DFT formalism, matter is modeled under a few very fundamental atomistic
principles; namely, atomic nuclei can be (usually) treated as classical particles with a pos-
itive charge and set mass, electrons are spin-one-half particles obeying the Pauli Exclusion
Principle and described kinetically by quantum mechanics, and interactions are governed by
Coulombs law [18]. DFT is general to all elements and can be used to describe materials
with metallic, covalent, or ionic bonding character.

Density funcitonal theory calculations are based upon the theorem of Hohenberg and
Kohn (1961), stating that, for a given external potential, such as the Coulomb potential
of atomic nuclei, the energy of the corresponding electronic system is a functional of the
electron density within a solid. Deviations of this density from that associated with the
ground state lead to positive definite changes in the total energy of the system. Thus, the
ground-state energy can be found by searching through possible densities, n(rrr), until Etotal
is minimized [18]. The energy functional of a solid can be written as:

E [n(rrr)] = T0 [n(rrr)] + EH [n(rrr)] + Uext [n(rrr)] + EXC [n(rrr)] + Eion, (2.2)

where
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n(rrr) =
∑
occ

|φi(rrr)|2 (2.3)

is the electron density, and φi (rrr) are the occupied Kohn-Sham states. The kinetic energy
term is defined as:

T0 [n(rrr)] = −
(
h̄2

2m

)∑
occ

∫
φ∗i (rrr)∇2φi (rrr) drrr. (2.4)

The Hartree expression for the Coulomb interaction energy between the electrons is given
by:

EH [n(rrr)] =

(
e2

2

)∫∫
n(rrr)n(rrr′)

|rrr − rrr′|
drrrdrrr′, (2.5)

and

Uext [n(rrr)] = −e
∫
n(rrr)Vext(rrr)drrr (2.6)

corresponds to the interaction of the electrons with the potential field of the nuclei.
The term EXC [n(rrr)] that appears in the total energy functional includes the exchange

energy, which is the energy obtained because the electrons obey the Pauli principle, and the
correlation energy, which accounts for the fact that the energy due to electron interactions
is not accurately described by the Hartree energy. This functional cannot be precisely deter-
mined, but many useful approximations have been applied. A few examples of functionals
commonly used are given in Section 2.1.3.

By substituting the various separate terms of Eqs. (2.3)-(2.6) back into the expression
for the total energy given in Eq. (2.2), and upon minimizing the energy, it is found that the
wave functions satisfy Schrodinger-like equations called the Kohn-Sham equations:

−
(
h̄2

2m

)
∇2φi (rrr) + vKS(rrr)φi(rrr) = εiφi(rrr). (2.7)

Density funcitonal theory is put into practice using an iterative four-step approach [17]:

1. Define a trial density n(rrr).

2. Solve the Kohn-Sham equations (2.7) using this guessed n(rrr) to find the Kohn-Sham
wave functions φi(rrr).

3. Calculate a new n′(rrr) from these wave functions.

4. If n′(rrr) and n(rrr) are equal within a defined tolerance, n(rrr) is that of the ground state,
and n(rrr) is used to determine Etotal. If not, update trial n(rrr) and reiterate starting
with step two.
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It is noted that DFT calculations cannot give exact solutions to the Schrodinger equation
because EXC [n(rrr)] is not known exactly. Thus, comparisons to experiment or higher levels
of theory must be used to determine the degree of accuracy of DFT for a given class of
materials.

2.1.3 Common Exchange-Correlation Functionals

Because the exchange correlation functional, EXC [n(rrr)], cannot be determined exactly,
one must choose the level of approximation used for this term. In choosing how to approxi-
mate the exchange correlation functional, a balance must be maintained between how much
computational complexity the term requires and how much physical information it carries.
The most basic approach is to use the Local Density Approximation (LDA), which assumes
that the local contribution to the exchange-correlation energy is identical to that of a uni-
form electron gas of the same density [18]. Under the LDA, the local exchange-correlation
potential takes the form of:

V LDA
XC (rrr) = V electron gas

XC (rrr) [n(rrr)] . (2.8)

This approximation is astonishingly accurate for inhomogeneous systems such as crystals,
and it is thus practically applied in many studies. Beyond the LDA, the generalized gradi-
ent approximation (GGA) includes information related to the spatial inhomogeneity of the
electron density through its local gradient, as follows:

V GGA
XC (rrr) = VXC(rrr) [n(rrr),∇n(rrr)] . (2.9)

Although GGA includes more physical information about the system than LDA, it is not
necessarily more accurate, as discussed in more detail below in the case of perovskite-based
oxide compounds. There are many ways to fit the information carried in the GGA functional,
but one of the most common is the Perdew-Burke-Ernzerhof (PBE) functional, due to its
high accuracy and computational efficiency. Finally, inclusion of the Laplacian of the electron
density, ∇2n(rrr) leads to meta-GGA functionals. One recently developed example is the
strongly constrained and appropriately normed (SCAN) functional, which has been shown
to systematically improve over LDA/PBE for a variety of systems [20].

When calculating the properties of perovskite oxides, such as lattice parameters and
spontaneous polarization, LDA tends to show better agreement with experimental results
[20]. GGA tends to underperform LDA in predictive accuracy for these properties in this
class of compounds, because of the so-called ‘supertetragonality’ problem, whereby the c/a
ratio is signficantly overestimated [21]. SCAN meta-GGA functionals tend to perform the
best for perovskite-structured oxides, usally representing modest improvement over LDA [20],
but with an associated increase in computational resources required. For most of the work
in this dissertation, LDA is used. In a few cases in the work presented in this dissertation,
SCAN is applied to ensure the results are not highly sensitive to choice of functional.
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2.1.4 Density Functional Perturbation Theory

While density functional theory can provide information about the groundstate electron
density and total energy, it is formally unable to describe excited states of a system. For
small perturbations of the system, one can apply density functional perturbation theory
(DFPT) in order to predict various response properties [22]. The types of properties that
can be computed include first order responses, such as forces or stresses, second order, such
as phonon dynamical matrices, elastic constants, or piezoelectric tensors, and third order
responses, such as non-linear dielectric susceptibilities. Within this dissertation, DFPT is
primarily used to calculate the force-constant matrix of systems in order to verify their
dynamic stability with respect to atomic displacements. For a comprehensive treatment of
DFPT, see Ref. [22].

2.2 Modern Theory of Polarization

For non-periodic systems with no net charge, such as molecules or nano-particles, Eq. 1.9
can be easily evaluated in order to determine the electric dipole moment, and thus the
polarization of the system. The summation is simply taken over the collection of charges at
the respective positions of each. However, for bulk solids, such as the crystals dealt with in
the present work, Eq. 1.9 can no longer be simply applied to evaluate the net dipole moment
of the system. Intuitively, one would start by evaluating this expression over some periodic
unit cell describing the crystal. However, if this method is performed, one will end up with
different values of dipole moment per unit cell depending on choice of the unit cell [23]. For
an example of this inconsistency in the simple case of a one-dimensional chain of atoms, see
Ref. [23].

To rectify this problem, the Modern theory of polarization [24] was developed. In this
theory, rather than probing the absolute value of polarization in a system, changes in po-
larization are considered. These changes are well-defined, and can be compared to experi-
mentally measurable observables. The Berry phase approach is used in this work whenever
polarization of ferroelectric thin films is performed. The corresponding calculation results
in a lattice of polarization vectors, rather than a single vector, with repeat units defined
modulo a polarization quantum given by eRi/Ω, where e is the fundamental unit of charge
on an electron, Ri is one of three lattice vectors of the crystal, and Ω is the unit cell volume.
As a result, care must be taken to select the appropriate vector from the polarization lat-
tice. The simplest approach, which is applied in this work, is to repeat the calculation for a
nearby non-polar reference state, and to find the shortest branch connecting the two values.
The difference between these two polarization vectors is then taken to be the polarization of
the system, as long as the actual polarization is not larger than the polarization quantum,
which tends to be large compared to values of observed polarization. For a comprehensive
treatment of this approach, see Ref. [24].
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2.3 High-Throughput Computing

One of the most powerful aspects of first-principles methods is that many calculations
can be automated and applied to a large number of materials with relative ease as compared
to experimental approaches. The ability to calculate properties over a large number of
materials is appealing for the purposes of screening the collection of candidate systems,
thereby reducing the search space significantly and accelerating design and optimization
of new materials [25]. Many tools have been developed in order to facilitate these high-
throughput approaches, such as the Python Materials Genomics (pymatgen) library [25], a
robust open-source Python library for materials analysis. In recent years, multiple initiatives
have been developed with the aim to use high-throughput first-principles calculations to aid
material design through generation of large databases of materials properties. For example,
the Materials Project [26] strives to calculate the properties of all known inorganic materials
and make this data publicly available to the scientific community. To date, this project
has screened over 100,000 compounds, with properties including ground-state phases, elastic
constants, and piezoelectric tensors [27,28].

The work presented in this dissertation is intended to provide similar workflows for the
high-throughput calculation of properties relevant to the design of ferroelectric thin-films.
The goal of producing this data is to guide the discovery and design of this technologically
important class of materials. Although application of the workflows described in this work
are only applied to a handful of systems, the methods are created with scaling in mind,
having the potential to be applied to a vast number of compositions with minimal alteration
of the underlying calculation framework.
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CHAPTER 3

Orientation-Dependent Properties of Epitaxially

Strained Perovskite Oxide Thin Films

3.1 Motivation and Overview

The discovery of new functional materials (e.g., ferroelectrics, ferromagnets, and ferroe-
lastics) has periodically led to paradigm shifts in technological applications. For example, the
technological value of the ferroelectric effect was not realized until the discovery of BaTiO3,
a robust and stable ceramic ferroelectric [1]. This led to a rapid proliferation of new devices
that are pervasive in many modern technologies [29]. Subsequent searches for other ferro-
electrics focused primarily on tuning composition, leading to the discovery of a number of
other useful materials, such as PbZr1-xTixO3 [30]. Despite the immense impact of finding
next generation functional materials, the search effort has relied extensively on serendipitous
discoveries, rather than being based on a systematic exploration over the relevant structural
and compositional spaces available.

In recent decades, focus has been placed on the integration of ferroelectric thin films into
electronic devices [1]. The constrained dimensions of these films make them amenable to
device miniaturization. Furthermore, compared to bulk ceramics or single crystals, ferroelec-
tric thin films offer novel routes to property tuning [31]. One such route is applied strain.
Ferroelectrics grown as coherently strained thin films can withstand non-hydrostatic strains
of several percent [2]. This biaxial strain is provided by the lattice mismatch between the
film and the single-crystal substrate, on which the film is grown. Recent improvements in
thin-film growth techniques have enabled the direct exploitation of misfit strain in order to
finely tune the properties of oxide films [32]. As one example, Haeni et al. demonstrated that
SrTiO3, normally a paraelectric at all temperatures, exhibits room temperature ferroelec-
tricity and dielectric properties that are promising for device applications when epitaxially
grown at 1% tensile misfit strain [7]. Another route to property tuning is the control of film
orientation [33–36]. By changing the orientation of the substrate, the thin film is subjected to

The work in this chapter was published by T. Angsten, L. W. Martin, and M. Asta in Physical Review
B 95, 174110 (2017), and is reproduced here with permission of the co-authors.
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different mechanical boundary conditions that can result in the stabilization of entirely dif-
ferent crystal symmetries [37]. For example, Wu et al. showed, using a Landau-Devonshire
based thermodynamic model, that the strain-temperature phase diagram of BaTiO3 ex-
hibits significantly different phases and physical properties when subjected to (100), (110),
and (111) epitaxial mechanical boundary conditions [38]. More comprehensive reviews of the
observed effects of strain and orientation on the phases and properties of thin films, along
with a wide range of relevant examples, can be found in Refs. [2, 4, 31,39].

The advent of integrated complex-oxide thin films has created a demand for new mate-
rials with properties well-suited to the wide array of potential applications [40]. However,
just as with bulk ferroelectrics, the search for improved ferroelectric thin-film materials has
relied upon chance discovery or incremental improvement of well-known materials. Further-
more, the majority of experimental thin-film growth has focused on (100)-oriented films of
well-known perovskite oxides over a small range of strain [2, 31, 40]. Given the recent ex-
perimental work demonstrating the unique properties of coherently strained films grown on
(110) and (111) substrates [34–36], as well as the possibility of observing novel phases at
large misfit strains [41], it is clear that the search for new ferroelectric thin-film materials
would benefit from a systematic exploration of the expanded parameter space associated
with these materials. One route to a more thorough exploration is provided by automated
first-principles computational approaches.

Automated workflows based on density-functional-theory methods have been developed
and applied in high-throughput searches for new materials, in applications spanning energy,
structural, and functional materials (e.g., Refs. [42–46], and references therein). Further-
more, previous theoretical work has developed and applied first-principles methods for de-
termining how the structural and polar properties of perovskite thin films depend on epitaxial
strain [9–15,24]. In these methods, epitaxial constraints are imposed on the in-plane lattice
vectors of a bulk periodic crystal, thereby isolating the effect of strain from other factors
associated with the substrate/film interface and film surface [4]. The result is a mapping of
the minimum energy phase and corresponding polarization as a function of misfit strain.

Despite the existence of a first-principles methodology for modeling ferroelectric thin
films, high-throughput approaches based on this methodology have not been systematically
applied to aid in their design by screening over a large number of epitaxial systems. Similar
to the situation in experimental studies summarized above, the focus of prior theoretical
studies has been primarily on a small set of commonly grown perovskites on substrates
with square-lattice symmetry, i.e., (100)-growth orientations. Of the first-principles studies
that have looked at the effects of epitaxial strain applied under (110)- and (111)-oriented
growth, only very commonly studied perovskites, such as BaTiO3 and PbTiO3, have been
treated [47–49]. A systematic application of current first-principles computational methods
to a wide range of systems would provide a preliminary map of ferroelectric polar properties
over the thin-film parameter space, which could prove useful to experimentalists attempting
to discover new and improved ferroelectric thin-film materials. This map would ideally screen
over a large range of the parameter space, weeding out systems unlikely to have interesting
properties, and identifying a subset of systems worth more comprehensive study.
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In this work, a first step is taken toward generating such results by applying an automated
first-principles computational workflow, based on a methodology similar to that employed by
Diéguez et al. [15], to study the structure and polarization of non-magnetic ferroelectric oxide
films with perovskite-derived structures. This work extends previous related studies [9–15]
by considering an expanded range of compositions and by modeling the effects of epitaxial
strain in the (110)- and (111)-oriented films (Sections 3.3.2 and 3.3.3), in addition to the
commonly studied (100)-oriented films. In all, 14 perovskite oxides are considered with
epitaxial constraints imposed on the (100), (110), and (111) planes of the cubic perovskite
structure. Each of these 42 (14 × 3) thin-film systems are modeled over an 8% (-4 to 4%)
misfit strain range.

3.2 Approach

An automated density functional theory (DFT)-based workflow has been developed and
used to investigate a broad composition-strain-orientation parameter space in order to eluci-
date fundamental physical trends, as well as search for previously undiscovered polar phases
that have the potential to be realized in thin-film growth experiments. To achieve this,
the procedure described in Section 3.2.2 is used to predict the minimum energy phases and
corresponding structural, energetic, and polarization properties for a number of thin-film
systems subjected to various misfit strains and growth orientations. In order to make the
search over such a broad parameter space computationally feasible, this workflow employs
simplifying assumptions related to the types of crystal structures considered.

Specifically, consideration is given only to structures that can be derived from the prim-
itive cell of the cubic perovskite compound through application of homogeneous strains and
atomic displacements, as illustrated in Fig. 3.1. Thus, this work neglects the consideration of
effects such as octahedral rotations and anti-ferroelectric ordering. These symmetry-lowering
effects are expected to suppress polarization rather than enhance it [16], allowing for results
in this work to effectively provide upper bounds to the polarization behaviors of the sys-
tems considered. Those systems found to be interesting from this initial level of screening
can be studied in further detail by applying more rigorous approaches, such as supercell,
phonon [50], and molecular dynamics calculations [51], as well as global structure searching
algorithms [52–54]. The goal of this effort is to demonstrate a method for such a first level
of screening, as well as to identify fundamental trends of thin-film polarization behavior re-
sulting from variations in composition, misfit strain, and orientation, without the additional
effects associated with the structural complexities listed above.
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Figure 3.1: a) Perfect cubic perovskite structure with the A cation at the corners (black), the
B-cation in the body-center (white), and the oxygen atoms at the face centers (gray). b) A possible
perovskite-based five-atom unit cell relaxed under (100)-growth orientation constraints. Relative
to the cubic structure, this cell has undergone a compressive biaxial misfit strain of η̄, tensile out-
of-plane strain, out-of-plane shear strain, and various (exaggerated) atomic displacements. For
(100)-orientated systems, ~a = ~b = ~a0 ∗ η̄, and ~c is free to relax. This figure was created using
vesta [55].

3.2.1 Selection of Compositions

ABO3 compositions in which the B cations have d0 electronic configurations in their
formal charge state are considered. This subset enables a simplification of the workflow due
to the absence of spin-polarized states and the need to consider magnetic-ordering degrees of
freedom. Furthermore, only compositions having Goldschmidt tolerance factors [56] ranging
between 0.95 and 1.1 are considered. The tolerance factor t is defined as follows:

t =
RA−O√
2RB−O

,

where RA−O and RB−O are the ideal A-O and B -O perovskite structure bond lengths cal-
culated from the bond valence model [57, 58]. For t > 1, the B -cation is too small for its
octahedral cage, favoring a polar distortion. For t < 1, octahedral rotations are likely to
optimize the A-cation bonding with its 12 neighboring oxygen atoms [59]. For deviations of
t far from unity, the perovskite-based structure is likely to become energetically unfavorable
relative to other polymorphs. By considering systems with tolerance factors in a constrained
range, the chance of a non-perovskite based polymorph competing with the thin-film phases
considered in this work is reduced.

3.2.2 Calculation Procedure

For each composition considered, the DFT-optimized perfect cubic perovskite structure
(space group Pm3̄m) is the reference used for reporting misfit strain. To calculate the
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ground-state phase under particular epitaxial conditions, misfit strain is applied to the appro-
priate plane [one of (100), (110), or (111)] of the reference cubic structure, and the symmetry
is broken by displacing the B -cation and oxygen atoms (see next paragraph for details). The
positions of all atoms and the lattice vectors are then relaxed until the Hellmann-Feynman
forces and out-of-plane stress tensor components converge to magnitudes within 0.001 eV/Å
and 0.005 eV/f.u., respectively, where eV/f.u. is per five-atom formula unit. These relax-
ation criteria give energies converged to within at least 0.05 meV/f.u., although in almost
all cases the forces and stresses are much less than these thresholds, and better convergence
is achieved.

In performing the structural relaxations, the mechanical boundary conditions associated
with epitaxial growth for a prescribed orientation are enforced. To clearly define these
constraints, a convention is used wherein the x, y, and z components of the strain and stress
tensors correspond to the choice of axes illustrated in Fig. 3.2. In terms of these coordinate
systems, the mechanical boundary conditions are defined as:

εxx = εyy = η̄, εxy = 0

σzz = σyz = σxz = 0

where ε and σ are the rotated strain and stress tensors, respectively. Thus, the mechanical
boundary conditions are different for each of the three orientations considered in this work.
All predicted phases resulting from the structural relaxations correspond to the minimum
energy perovskite-based, single-domain, homogeneously-strained, periodic structures under
epitaxial mechanical boundary conditions and at zero temperature. For all substrate orien-
tations, the misfit strain is calculated as η̄ = a/a0− 1, where a0 is the lattice constant of the
cubic reference structure, and a is the necessary lattice constant of a cubic substrate that
would impart the given misfit strain. To clarify, an epitaxial lattice constant with a given
value a of 4.0 Å refers to the same cubic substrate for the (100), (110), and (111)-growth
orientations, the difference being the preparatory cut of such a substrate crystal.

In the structural relaxations, there are often multiple metastable perovskite-based phases
that are very close in energy, especially for misfit strains near a phase transition. The
following strategies are employed to ensure the minimum energy perovskite-based phase is
found. For each value of misfit strain, at least three of the structural optimizations described
above are performed, and the lowest energy of these is taken. For each repetition, the atomic
coordinates of the starting structure are randomly seeded with displacements of the atomic
positions from the ideal strained perovskite structure having magnitudes up to 0.015 Å for
each cartesian component of each atom position. These displacements generally remove
all symmetry for each initial structure, making the space group P1. After an initial pass,
inspection of the energy curve as a function of strain can still reveal discontinuities where
calculations must be re-run. This process of searching for the true ground state at each misfit
strain is continued until the energy curve and polarization properties are smooth functions of
misfit strain away from first-order phase transitions. For more discussion of the calculation
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Figure 3.2: Orientations of measurement axes for the a) (100)-, b) (110)-, and c) (111)-growth
orientations. Cubic crystallographic directions are indicated in square brackets. This figure was
created using vesta [55].

procedure and the details that enable it to be highly automated, see Section A.1 of the
appendix.

3.2.3 Calculation Methods

All DFT calculations make use of the Vienna ab initio simulation package (vasp) [60–
63] version 5.4.1. A conjugate-gradient algorithm is used to relax ionic positions to their
ground state. As the standard vasp software package does not allow for arbitrary constraints
to be placed on the strain tensor during relaxation, custom modification of the code was
required. These modifications set certain components of the stress gradient tensor to zero
during conjugate-gradient minimization, allowing for the mechanical boundary constraints
(see above) of the three different growth orientations to be simulated.

All calculations use the Ceperley-Alder form of the local density approximation (LDA)
exchange-correlation functional as parameterized by Perdew and Zunger [64], and the electron-
ion interaction is described using the projector augmented wave method [65,66]. In multiple
cases, metastable phases are only a fraction of an meV higher in energy compared to the
lowest energy phase. Consequently, highly-converged calculation parameters are required. A
900 eV plane-wave cutoff energy, 6x6x6 Monkhorst-Pack sampling of the Brillouin zone [67],
and tetrahedron method with Blöchl corrections [68] are used. The Berry phase approach, as
described in the modern theory of polarization [24], is used to calculate the electric polariza-
tion vector at each misfit strain. All calculations assume a fixed (vanishing) external electric
field corresponding to thin-films surrounded by perfectly charge-compensating electrodes.
The relevance of this “short-circuit” boundary condition to thin-film growth is discussed in
Refs. [69, 70].

It should be noted that use of the LDA in the present work leads to well-known errors
in the calculated lattice constants, which amount to an underestimation of their values on
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Table 3.1: Listing of the 14 compositions considered, along with their cubic lattice constants and
Goldschmidt tolerance factors.

Formula a0 (Å) Tolerance Factor t

BaHfO3 4.13 1.007

BaSnO3 4.10 1.016

BaTiO3 3.95 1.063

BaZrO3 4.16 1.000

KNbO3 3.96 1.090

KTaO3 3.96 1.085

NaNbO3 3.91 0.972

NaTaO3 3.92 0.968

NaVO3 3.68 1.028

PbSnO3 4.04 0.955

PbTiO3 3.89 0.999

SrHfO3 4.07 0.949

SrSnO3 4.03 0.957

SrTiO3 3.86 1.001

the order of a percent. Previous calculations for perovskite oxide compounds have shown
that these errors tend to be systematic across a broad range of chemistries [4, 10], and that
quantitative values predicted by the LDA are generally in better agreement with experiment
relative to those obtained by the generalized gradient approximation [21]. The LDA errors
are mentioned explicitly below in those cases where they are relevant in the presentation of
the results.

3.3 Results and Discussion

Table 3.1 lists the chemical formulas, calculated cubic reference lattice constants, and
tolerance factors of the 14 compositions considered. The measurement axes used for reporting
direction-dependent properties are different for each of the three growth orientations, as
illustrated in Fig. 3.2.

Figure 3.3 shows, for all compositions and growth orientations considered, the calculated

in-plane (
√
P 2
x + P 2

y ) and out-of-plane (|Pz|) polarizations of the thin-film systems plotted

against the lattice constant of a corresponding cubic substrate. The x-axis has been curtailed
to the experimentally relevant range of available in-plane lattice constants, and calculated
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data may extend beyond this range for some systems. It should be noted that the epitaxial
lattice constants presented in the horizontal axis of Fig. 3.3, as well as in Figs. 3.4–3.6 below,
correspond to misfit-strain values based on the LDA calculations, and are thus expected to
be on the order of a percent smaller than true experimental values.

The results plotted in Fig. 3.3 display several trends, which can be analyzed in relation
to previously published observations. For a smaller set of (100)-oriented perovskite oxide
compounds, previous works [4, 12] have demonstrated trends of out-of-plane and in-plane
polarization enhancement under compressive and tensile misfit strain, respectively. The top
two plots in Fig. 3.3 reveal the generality of these two trends across the wider compositional
range considered in this work; all (100)-oriented systems show increasing out-of-plane po-
larization under compression (moving to smaller in-plane lattice parameters) and increasing
in-plane polarization under tension (moving to larger in-plane lattice parameters). Interest-
ingly, the trend of in-plane polarization enhancement under tension applies rather generally
to all orientations (top-, middle- and bottom-left plots). The out-of-plane polarization for
(110)-oriented systems (middle-right) is largely enhanced by compression, but less so than
for the (100)-oriented systems. The out-of-plane polarization for the (111)-oriented systems
shows a variety of behaviors, in addition to enhancement with compression. In the case
of only one system, BaTiO3, there is a significantly diminishing out-of-plane polarization
with increasing biaxial compression. Many other (111)-oriented systems have large regions
of nearly unchanging out-of-plane polarization.

Previous calculations have shown, for bulk ferroelectric perovskites, that c-axis elongation
stabilizes polar distortions with atomic displacements in the out-of-plane direction [71]. The
above-discussed polarization trends with misfit strain imply that polar distortions can be
described in terms of a simple Poisson effect. That is, distortions tend to occur in the
general direction of tension, whether it be out of plane or in plane, while distortions tend to
be suppressed in compressed directions. In-plane misfit compression causes lattice expansion
out of the plane, generally stabilizing out-of-plane polar displacements. Conversely, in-plane
misfit tension causes a contraction of the lattice in the out-of-plane direction, disfavoring
out-of-plane displacements and stabilizing in-plane polar distortions. Interestingly, this effect
occurs irrespective of orientation of the applied misfit strain, as shown by the generality of
the trend for the (110) and (111) orientations. Furthermore, the anomalously diminishing
out-of-plane polarization witnessed in (111)-oriented BaTiO3 correlates with this system’s
relatively small out-of-plane lattice elongation when subjected to in-plane compression. This
case is discussed in more detail in Section 3.3.3.

Another trend apparent in Fig. 3.3 regards the nature of phase transitions between
the various orientations. The (100)-oriented systems are largely characterized by smooth
curves, featuring second-order transitions between the different phases with changing misfit
strain. By contrast, the (110)- and (111)-oriented variants more commonly show first-order
transitions, characterized by discontinuities in the polarization (and associated atomic dis-
placements) with changing misfit strain. As sudden switches between polarization states are
often intriguing for device applications (e.g., ferroelectric random access memories [4]), film
orientation could be a means by which this beneficial behavior is promoted.
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Figure 3.3: In-plane (left column) and out-of-plane (right column) polarization magnitudes versus
cubic substrate lattice constant for the (100)- (top row), (110)- (middle row), and (111)- (bottom
row) oriented systems. The same colors correspond to the same compositions for all six panels.
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Analysis of the full data set produced in this work leads to clear relations between the
energetic and polarization properties of various compositions. For a given orientation, there
exists a small number of distinct energetic and polarization behaviors by which composi-
tions can be categorized. In fact, each of the 14 compositions can be associated with one of
four distinct behavioral groups, and, across different orientations, these groups tend not to
change. For example, for the (100)-oriented systems, BaTiO3, KNbO3, PbSnO3, and NaVO3

show similar phase transition behavior and polarization curves. These four compositions fur-
thermore show similar behavior relative to each other under the (110) and (111) orientations,
even though the general behavior of this group is significantly different between these three
orientations. The organization of these behavioral groups can be clearly visualized in Figs.
A.1–A.3 in the appendix, and an in-depth analysis of these groups is given in Section 3.3.4.

The remainder of this section is divided into three subsections corresponding to high-
lighted results for the (100)-, (110)-, and (111)-oriented systems. Only a subset of the data
produced in this work is presented in these sections, and, for analogous plots for all of the
calculated data, the reader is referred to Figs. A.4–A.10 in the appendix. In each sub-
section, a subset of four representative systems for each orientation is discussed in detail in
order to demonstrate the variety of phases and phase-transition behaviors that are observed
in the full data set. These four systems are most representative of the four different behavior
groups described above.

3.3.1 (100)-Oriented Systems

Table 3.2 summarizes the different (100)-oriented phases predicted along with their space
group symmetries and a description of the polarization and homogeneous strain state (rel-
ative to a cubic reference structure). The (100)-oriented phases predicted in this work are
consistent with those found previously in related phenomenological and first-principles com-
putational studies [10, 11,72].

Figure 3.4 presents representative results illustrating the calculated misfit strain depen-
dence of the energy and polarization for four different compositions. For each, the energy
versus misfit strain is plotted in the upper panel, and the values for the magnitude (dashed
line) and out-of-plane (blue diamonds) and in-plane (green triangles and red squares) com-
ponents of the polarization are plotted in the bottom panel. The horizontal scale on the
top of each figure gives the corresponding lattice constant a of a cubic substrate required to
produce the given value of misfit: a = a0(η̄ + 1), in terms of the reference lattice constant
for the given compound a0. Energies, unless noted otherwise, are referenced to the value
corresponding to the equilibrium (likely non-cubic) bulk perovskite-based structure for the
given composition, and their values can thus be interpreted as representing the strain energy
of the epitaxially constrained phase. The more positive the energy, the higher the driving
force for strain relaxation, e.g., through formation of misfit dislocations. In the top panel,
the space groups for the epitaxial phase with the lowest energy are indicated, and the dashed
vertical lines indicate values of the misfit strain corresponding to phase transitions.
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Table 3.2: Summary of the observed (100) epitaxial phases, including the commonly used phase
name, space group, polarization vector, and Voigt-notated strain tensor. Strains are relative to a
cubic Pm3̄m reference structure. pi and si are arbitrary non-zero constants, while η̄ is the misfit
strain. The polarization vector and strain tensor components correspond to the coordinate system
shown in Fig. 3.2a.

Phase Space Group (Px, Py, Pz) (εxx, εyy, εzz, εyz, εxz, εxy)

p P4/mmm (123) (0, 0, 0) (η̄, η̄, s1, 0, 0, 0)

c P4mm (99) (0, 0, p1) (η̄, η̄, s1, 0, 0, 0)

aa Amm2 (38) (p1, p1, 0) (η̄, η̄, s1, 0, 0, 0)

a Pmm2 (25) (p1, 0, 0) (η̄, η̄, s1, 0, 0, 0)

ac Pm (6) (p1, 0, p2) (η̄, η̄, s1, s2, 0, 0)

r Cm (8) (p1, p1, p2) (η̄, η̄, s1, s2, s2, 0)

Figure 3.4a presents calculated results for BaTiO3, where the reference bulk structure for
the energy calculations is a rhombohedral phase with space group R3m, and a=3.96 Å and
α=89.93o. Since this energetic reference structure is not cubic, while the structure used to
define the reference for misfit strain is, the epitaxial strain with the lowest energy does not
occur at η̄=0 in Fig. 4a, but rather at a slightly positive value of η̄=0.3%. Starting from
the highest compressive strains and increasing η̄ to more tensile values, Fig. 4a shows that
the predicted sequence of phases for BaTiO3 is c− r− aa (corresponding to space groups of
P4mm, Cm, and Amm2, respectively, as indicated in Table 3.2). This result is consistent
with previous first-principles computed results [10,11]. The predicted misfit strain at which
the c-r transition occurs is very close to that of Ref. [11], but the r-aa phase transition is
predicted in this work to be at around 1% strain, whereas Ref. [11] predicts this transition
to occur at just under 0.7%. This difference is likely attributable to minor variations in
calculation parameters, as the energies of the r and aa phases are calculated, in the present
work, to be within 0.1 meV/f.u. of each other at 0.7% misfit strain.

The calculated polarizations plotted in the lower panel show the onset of an in-plane
polarization at the c − r transition, which grows in magnitude with increasing values of η̄.
The out-of-plane polarization decreases in magnitude with increasing tensile misfit strain,
vanishing for values of η̄ beyond the r−aa transition. Three other systems, including KNbO3,
PbSnO3, and NaVO3, have phase sequences and qualitative polarization dependences on
misfit strain that are very similar to that shown in Fig. 3.4a for BaTiO3. KNbO3 (Fig. A.6
in the appendix) is the most similar to BaTiO3, having the same phase sequence and nearly
the same transition misfit strains, but with a slightly higher average polarization magnitude.
PbSnO3 (Fig. A.8) and NaVO3 (Fig. A.8) also have the same qualitative polarization
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behavior, but with much broader r (Cm) phase regions. For PbSnO3, this r phase region
is so broad that the Amm2 phase does not appear in the strain range considered, with
the out-of-plane polarization remaining non-zero under the largest tensile strain considered,
4%. Likewise, for NaVO3, the P4mm phase never appears in the range considered, with
in-plane polarization remaining non-zero throughout. Such extended r phase regions and
gradual phase transitions have not been predicted for (100)-oriented systems in previous
studies [10, 11, 13, 15]. Finally, compared to BaTiO3, PbSnO3 and NaVO3 have average
polarization magnitudes more than twice as large, around 1 C/m2 in the case of NaVO3.

Figure 3.4b illustrates a second type of phase behavior observed in the calculations,
represented by the specific case of SrTiO3. At zero misfit strain, SrTiO3 is predicted to
assume the paraelectric p (P4/mmm) phase. Under sufficient compression (< −0.4%), a
non-zero out-of-plane polarization develops and the c (P4mm) phase is predicted. Under
> 0.3% misfit tension, a non-zero in-plane polarization with equal x and y components
appears, corresponding to the aa (Amm2) phase. The predicted phase order and polarization
magnitudes are consistent with Ref. [13], although the paraelectric region in the present work
is narrower by about 0.5% misfit strain (again, this discrepancy is likely due to differences
in calculation parameters). Five other systems exhibit qualitative behavior similar to that
illustrated in Fig. 3.4b for SrTiO3, including KTaO3 (Fig. A.6), BaZrO3 (Fig. A.5), SrSnO3

(Fig. A.10), BaHfO3 (Fig. A.4), and BaSnO3 (Fig. A.4). These systems all have in common
a paraelectric p phase region of varying width around 0% misfit strain surrounded by a c
phase region to the left and a phase with all in-plane polarization on the right (aa or a). In
some cases the paraelectric phase region is very large, and for BaSnO3, it extends across the
entire range considered.

In previous studies of (100)-epitaxially strained systems [10,11,13,15], the phase sequences
observed follow the pattern of c - (r, p, or phase separation) - (a or aa) with smooth, second-
order transitions between different phases. With the expanded compositions treated in this
work, an additional behavior is predicted having a direct transition from out-of-plane to in-
plane polarization. Figure 3.4c illustrates this behavior for the specific case of SrHfO3. For
this system, there is a direct transition from c (P4mm) to a (Pmm2) at 0.2% misfit strain.
To the limit of the resolution of this work’s calculations, a direct transition between these
two phases occurs without the region of intervening r (Cm) phase found for BaTiO3 and
related systems. The other system demonstrating this behavior is NaTaO3 (Fig. A.7), which
has a c (P4mm) to aa (Amm2) transition at just above 0% strain. This type of behavior
is intriguing from the standpoint of the design of a memory device, since the calculations
predict that, at around zero misfit strain, the application of a modest in-plane electric field
could bias the c phase to transition to a metastable a or aa phase, leading to an extinction
of the out-of-plane component of the polarization.

Figure 3.4d shows the polarization and energetic behavior of PbTiO3. Like BaTiO3, the
phase sequence is predicted to follow the sequence of c-r-aa with increasing tensile strain.
However, due to the presence of a region of strain with concave curvature in the energy,
there is a finite range of η̄ values for which the lowest-energy state is a two-phase mixture of
phases having lower and higher values of misfit strain. This strain-induced phase coexistence
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is similar to phase segregation in alloys of immiscible components, but with strain playing the
analogue of composition [73]. A visual indicator of this behavior is the existence of a common
tangent line that falls below the total energy curve. In the case of PbTiO3, the monodomain
r-phase is higher in energy than a mixture of c and aa phases between misfit strains of -0.3
and 1.7%, as indicated by the red dashed line in Fig. 3.4d. This phase-separation behavior
for epitaxially strained PbTiO3 has also been predicted in Ref. [10].

Other (100)-oriented systems predicted to exhibit strain-induced phase separation behav-
ior are NaNbO3 and NaVO3. NaNbO3 has a similar phase ordering to PbTiO3 but with a
broader predicted range of strains corresponding to the two-phase state, and less pronounced
energetic driving force for phase separation (Fig. A.7 in the appendix). NaVO3 is predicted
to have a mixture of the r and aa phases between 2% and 4% misfit strain (Fig. A.8).
The upper bound of this region is verified by calculations extending beyond 4% strain (Fig.
A.11). In a real system, these regions of phase coexistence could be narrower than predicted
due to factors not accounted for in the present study, such as interface coherency [73].

Of the three systems predicted to display phase coexistence, PbTiO3 is the only one for
which there is a significant driving force for this effect to take place. This could be due to
the unique bonding characteristics of this system. Previous electronic structure calculations
have outlined the pronounced covalency between Pb and O due to the hybridization of the
Pb 6s electronic states with the O 2p states [74]. This is contrasted with a system such
as BaTiO3, in which the A cation acts as a spherical, nearly completely ionized Ba2+ ion.
The resulting effect for PbTiO3 is a stronger energetic dependence on atomic displacements,
larger ferroelectric distortions, and increased sensitivity of the energy to non-hydrostatic
strains [74]. The effect of strain-induced phase coexistence in PbTiO3 is potentially useful
for device applications, as has been appreciated in recent experimental and computational
work [6, 73].

Interestingly, the three systems displaying phase coexistence feature soft biaxial elastic
responses (i.e., increases in strain energy with increasing misfit strain magnitude) compared
to the other (100)-oriented films, as can be appreciated from a comparison of the associated
calculated energy curves. This could have important practical applications, as the lower
strain energies, for a given misfit strain, should lead to larger values for the critical thickness
for misfit-dislocation formation.

3.3.2 (110)-Oriented Systems

Table 3.3 summarizes the different (110)-oriented phases observed in the present calcu-
lations, along with their space group symmetries and a description of the polarization and
homogeneous strain state (relative to a cubic reference structure). Unlike the situation for
(100)-oriented films, the authors are unaware of a standard nomenclature for the different
phases that can be derived from the perovskite structure for (110)- and (111)-oriented films,
and, in what follows, these are referred to by their space group symbols.

Figure 3.5a plots the polarization and energy versus misfit strain for BaTiO3 with the
(110)-growth orientation. The polarization behavior for (110)-oriented BaTiO3 is predicted
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Figure 3.4: Energy and polarization as a function of misfit strain for a) BaTiO3, b) SrTiO3, c)
SrHfO3, and d) PbTiO3 on (100). Energies are given in the top panel of each sub-figure and are
referenced to the corresponding relaxed bulk perovskite-based structure. Regions of phase stability
are labeled with the space group symbol and separated by vertical dashed lines. Absolute values of
the polarization components have been taken for the purpose of visualization. Polarization vectors
are relative to the axes given in Fig. 3.2a.
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Table 3.3: Summary of the observed (110) epitaxial phases, including the space group, polarization
vector, and strain tensor given in Voigt notation. Strains are relative to a cubic Pm3̄m reference
structure. pi and si are arbitrary non-zero constants, while η̄ is misfit strain. The polarization
vector and strain tensor components correspond to the coordinate system shown in Fig. 3.2b.

Space Group (Px, Py, Pz) (εxx, εyy, εzz, εyz, εxz, εxy)

Cmmm (65) (0, 0, 0) (η̄, η̄, s1, 0, 0, 0)

Amm2 (38)1 (0, 0, p1) (η̄, η̄, s1, 0, 0, 0)

Cmm2 (35) (0, p1, 0) (η̄, η̄, s1, 0, 0, 0)

Cm (8) (p1, p2, 0) (η̄, η̄, s1, 0, 0, 0)

Cm∗ (8)2 (0, p1, p2) (η̄, η̄, s1, s2, 0, 0)

Pm (6) (p1, 0, p2) (η̄, η̄, s1, 0, s2, 0)

P1 (1) (p1, p2, p3) (η̄, η̄, s1, s2, s3, 0)

to be significantly different from the (100)-oriented case. Under large compression, a broad
region of the Amm2 phase is observed, with a polarization that is oriented out of plane
and nearly constant in magnitude versus strain. At small compressive strain, a non-zero
Py component develops and a transition to the Cm∗ phase occurs. Finally, at around η̄ =
0.4%, there is a sudden disappearance of out-of-plane polarization paired with a jump in
Px, signifying a first-order transition to a distinct Cm phase. (110)-oriented BaTiO3 has
been studied in Ref. [47], using a first-principles effective Hamiltonian approach with Monte
Carlo simulations. The present work predicts the same order of phases versus strain as
found in Ref. [47] at the lowest temperature considered (5 K), although the exact values of
the strains where the phase transitions occur show slight differences, presumably because of
the different computational approaches employed. Three other systems, KNbO3 (Fig. A.6),
PbSnO3 (Fig. A.8), and NaVO3 (Fig. A.8) have the same phase sequences and very similar
qualitative behavior as BaTiO3. In the case of NaVO3, a P1 phase appears at very large
tensile misfit strains, with the out-of-plane polarization re-emerging. NaVO3 furthermore
has the largest average polarization at nearly 1 C/m2.

Figure 3.5b gives the polarization and energy dependence on misfit strain for SrTiO3

with the (110)-growth orientation. The qualitative polarization behavior is similar to that
for the (100)-oriented case, with a paraelectric region (Cmmm phase) surrounded by phases
with out-of-plane polarization under compression (Amm2) and in-plane polarization under
tension (Cmm2 - Cm). However, the width of this paraelectric region is larger for (110)-
oriented SrTiO3 and is shifted toward the compressive regime compared to the (100)-oriented
case. Once again, five other systems exhibit qualitative behavior similar to that illustrated
in Fig. 3.5b for SrTiO3, including KTaO3 (Fig. A.6), BaZrO3 (Fig. A.5), SrSnO3 (Fig.
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A.10), BaHfO3 (Fig. A.4), and BaSnO3 (Fig. A.4). In the (110)-oriented case, both BaSnO3

and BaHfO3 have paraelectric Cmmm phase regions that extend across the entire range
considered.

Figure 3.5c shows the polarization and energetic behavior of SrHfO3 with the (110)-
growth orientation. The general behavior is similar to (100)-oriented SrHfO3 shown in Fig.
3.4c, both having a first-order transition at 0.2% misfit strain that takes the system from
primarily out-of-plane polarization to primarily in-plane polarization. For (110)-oriented
SrHfO3, the predicted phase sequence is Pm, with non-zero Px and Pz polarization com-
ponents, to Amm2, with exclusively non-zero Pz, back to Pm, and finally to Cmm2, with
exclusively non-zero Py. NaTaO3 (Fig. A.7) has a very similar polarization behavior, with
slightly higher polarization magnitudes and an additional intermediate P1 phase.

Figure 3.5d shows the polarization and energetic behavior of PbTiO3 with the (110)-
growth orientation. A comparison of the results with those for the (100) orientation in Fig.
3.4d, illustrates the pronounced effect that film orientation can have on the polarization
and energetic behavior. Unlike (100)-oriented PbTiO3, strain-induced phase separation is
not predicted in any strain regime for the (110) orientation. Instead, four phases appear in
roughly evenly spaced strain regimes, with a phase ordering of Amm2 - Pm - P1 - Cmm2.
The P1 to Cmm2 phase transition is first order, with a sudden drop in Px and Pz, which is
replaced by the appearance of a Py component. Furthermore, the average total polarization
magnitude is slightly diminished and much more consistent with changing strain as compared
to the (100)-oriented case. Overall, the polarization behavior is much more nuanced for the
(110) orientation, with all three components of the polarization growing or diminishing at
various strain regimes. Finally, the effective strain energy versus misfit strain rises much
more rapidly in the (110)-oriented case compared to the (100)-oriented structure. NaNbO3

(Fig. A.7) shows similar polarization behavior to that shown in 3.5d for PbTiO3, having
an Amm2 - Pm - P1 phase sequence. The first-order transition from P1 to Cmm2 seen for
PbTiO3 is, in this case, replaced by an extended P1 phase region with smoothly increasing in-
plane polarization and smoothly decreasing out-of-plane polarization. The total polarization
magnitude in this region remains roughly constant at around 0.5 C/m2.

3.3.3 (111)-Oriented Systems

Table 3.4 summarizes the different (111) phases observed in the present calculations, along
with their space group symmetries and a description of the polarization and homogeneous
strain state (relative to a cubic reference structure). It is interesting to compare the observed
phases with the list of all symmetry-allowed perovskite phases consistent with (111) epitaxy
determined in Ref. [49] (see Table I of Ref. [49] for the list of phases and their symmetries).
In the present calculations, only a subset of the possible symmetries listed in Ref. [49] are
observed. Specifically, the non-polar phases with R32, and C2/m symmetry as well as the
polar phase with the C2 symmetry are not observed as stable among the systems considered.
In Ref. [49], it is argued that the lowest-symmetry P1 phase is unlikely to form in (111)-
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Figure 3.5: Energy and polarization as a function of misfit strain for a) BaTiO3, b) SrTiO3,
c) SrHfO3, and d) PbTiO3 on (110). Energies are given in the top panel of each plot and are
referenced to the corresponding relaxed bulk perovskite-based structure. Regions of phase stability
are labeled with the space group symbol and separated by vertical dashed lines. Absolute values of
the polarization components have been taken for the purpose of visualization. Polarization vectors
are given relative to the axes given in Fig. 3.2b.
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Table 3.4: Summary of the observed (111) epitaxial phases, including the space group, polarization
vector, and strain tensor given in Voigt notation. Strains are relative to a cubic Pm3̄m reference
structure. pi and si are arbitrary non-zero constants, while η̄ is misfit strain. The polarization
vector and strain tensor components correspond to the coordinate system shown in Fig. 3.2c

Space Group (Px, Py, Pz) (εxx, εyy, εzz, εyz, εxz, εxy)

R3̄m (166) (0, 0, 0) (η̄, η̄, s1, 0, 0, 0)

R3 (146) (0, 0, p1) (η̄, η̄, s1, 0, 0, 0)

R3m (160) (0, 0, p1) (η̄, η̄, s1, 0, 0, 0)

Cm (8) (p1, 0, p2) (η̄, η̄, s1, 0, s2, 0)

Cm (8)3 (p1,
√

3p1, p2) (η̄, η̄, s1,
√

3s2, s2, 0)

P1 (1) (p1, p2, p3) (η̄, η̄, s1, s2, s3, 0)

oriented perovskite films, while this phase is observed in the present calculations for the
SrSnO3 and SrTiO3 systems over small strain regimes.

Before turning to a discussion of the observed results for the (111) orientation, it is noted
that the R3 phase in Table IV has a space group that is a subgroup of that for the R3m phase;
these two phases share the same polarization direction, but additional atomic displacements
in the former case break the mirror symmetry in the latter. Also, the two Cm phases listed
in Table IV are energetically equivalent and differ only by an in-plane rotation of the cell by
60◦. This difference is equivalent to an in-plane rotation of the measurement axes and is not
physically significant.

Figure 3.6a plots the polarization and energy versus misfit strain for BaTiO3 with the
(111)-growth orientation. Under very large compressive misfit strains, the paraelectric R3̄m
phase is predicted to be energetically stable. With decreasing compressive strain, this phase
undergoes a second-order transition to the R3m phase with polarization directed normal to
the epitaxial plane. At η̄=0.2%, the R3m phase undergoes a first-order transition to the Cm
phase with mixed Px and Pz components. Most striking for this system is the anomalous out-
of-plane polarization behavior, which is diminished under compression. This behavior has
been predicted previously [48, 49], although the paraelectric regions in these works occur at
smaller compressive strains. This difference in phase boundary position is again likely to be
associated with the details of the calculation methods, due to the near energetic degeneracy
of the paraelectric R3̄m phase with the R3m phase for less than -1% compressive strains.

No other (111)-oriented systems considered in this work show this anomalous out-of-plane
polarization decrease with increasing compressive strains to any significant extent. KNbO3

(Fig. A.6), PbSnO3 (Fig. A.8), and NaVO3 (Fig. 3.6c) have similar first-order R3m to Cm
transitions under tension, but due to the lack of diminishing Pz under compression, these
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three systems, which have been grouped with BaTiO3 in the (100)- and (110)-oriented cases,
are separately discussed below with NaVO3 as the representative system (Fig. 3.6c). The
unique behavior of BaTiO3 can be explained in terms of elastic arguments. At -4% misfit
strain, the out-of-plane tensile strains of BaTiO3, KNbO3, PbSnO3, and NaVO3 are 2.5%,
3.8%, 5.0%, and 6.2%, respectively, showing that BaTiO3 has a significantly smaller out-of-
plane strain than the other three systems. This relatively small Poisson ratio for BaTiO3 is
not present in the (100)- and (110)-growth orientations. It is suggested in Ref. [48] that the
anomalous paraelectric transition of BaTiO3 is the result of compression forcing the oxygen
spacing to contract the hollow space above and below the Ti cation, pushing this atom
back to its central position. This description, however, does not generalize to the other three
similar systems in this work, because they are able to significantly expand in the out-of-plane
direction, thereby creating space for the B-cation to remain off-center.

Figure 3.6b shows the polarization and energetic behavior of SrTiO3 with the (111)-
growth orientation. From large compressive until modest tensile strain, the R3̄m paraelectric
phase is stable. From 0.7% to 1.2% misfit strain, a small region of P1 phase is stable, followed
by a transition to Cm. Both of these SrTiO3 polar phases have predominantly in-plane
polarization. As was the case for the (100) and (110) orientations, five other systems exhibit
qualitative behavior similar to that illustrated in Fig. 3.6b for SrTiO3, including KTaO3

(Fig. A.6), BaZrO3 (Fig. A.5), SrSnO3 (Fig. A.10), BaHfO3 (Fig. A.4), and BaSnO3 (Fig.
A.4). In the (111)-oriented case, BaSnO3, BaZrO3, and BaHfO3 all have paraelectric R3̄m
phase regions that extend across the entire misfit strain range considered. This polarization
behavior group is similar to the paraelectric group in the (100)- and (110)-oriented cases,
except with the absence of a phase with predominantly out-of-plane polarization, even under
very large compression.

Figure 3.6c shows the polarization and energetic behavior of NaVO3 with the (111)-
growth orientation. This system has a very large and consistent polarization magnitude of
around 1 C/m2 in all strain regimes. Under compression, the R3m phase with large out-of-
plane polarization is predicted, while the Cm phase with mixed polarization contributions
is predicted under tension. A first-order phase transition between R3m and Cm occurs
at just over 1% misfit strain (3.71 Å) and coincides with the point of lowest predicted
elastic energy. Given the relative stability and large, sudden change in polarization at this
point, moderately tensile-strained NaVO3 could provide interesting properties for device
applications. Furthermore, the region of stability is predicted to be broad, showing less than
25 meV metastability relative to the fully-relaxed bulk phase throughout -1% to 3% misfit
strain (3.64-3.79 Å). This stability is, in part, due to the pronounced asymmetry of the
energy curve. For NaVO3, the maximum metastability under 4% compression is over 250
meV, while the maximum under 4% tension is only 50 meV. Two other systems, KNbO3 (Fig.
A.6) and PbSnO3 (Fig. A.8), fall into the same polarization behavior group as NaVO3, both
having smaller average polarization magnitudes. Note that the Cm phases are the same
for these three systems, as discussed above. These three systems follow the same phase
transition sequence as BaTiO3 (Fig. 3.6a), but have been separately grouped due to their
nearly constant (and non-vanishing) out-of-plane polarizations under compression.
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Figure 3.6d gives the polarization and energy dependence on misfit strain for PbTiO3

with the (111)-growth orientation. Compared to the (100)- (Fig. 3.4d) and (110)-oriented
(Fig. 3.5d) cases, (111)-oriented PbTiO3 shows very broad phase regions connected by
smooth, second-order transitions and a slightly diminished average polarization magnitude.
This system exhibits a single second-order phase transition between an R3m phase having
all out-of-plane polarization, and a Cm phase having an additional in-plane polarization
component. With increasing tension in the Cm phase, the out-of-plane polarization gradually
gives way to predominantly in-plane polarization. As for the (100)- and (110)-oriented cases,
NaNbO3 (Fig. A.7) shows polarization behavior very similar to PbTiO3 for the (111)-growth
orientation. Two additional systems, SrHfO3 (Fig. A.9) and NaTaO3 (Fig. A.7), display
the same qualitative behavior. NaNbO3, SrHfO3, and NaTaO3 have additional R3 - R3m
phase transitions under large compression, which have no effect on the polarization direction
(see R3 symmetry discussion above). It is interesting to note that, SrHfO3 (Fig. A.9) and
NaTaO3 (Fig. A.7), comprising a distinct polarization behavior group in the (100)- and
(110)-oriented cases, show behavior similar to PbTiO3 and NaNbO3 under the (111)-growth
orientation.

3.3.4 Analysis of Polarization Behaviors

There exists a small number of distinct energetic and polarization behaviors by which
compositions considered in this work can be categorized. Six of the 14 systems considered
exhibit non-polar phases over significant ranges of misfit strain. Another four systems,
BaTiO3, KNbO3, PbSnO3, and NaVO3 have very similar phase orderings and polarization
behaviors in all three orientations. The remaining four systems, SrHfO3, NaTaO3, PbTiO3,
and NaNbO3 only loosely group together, having a more diverse set of behaviors and less
consistency in their internal groupings across the three orientations. These behavioral groups
can be visualized in Figs. A.1-A.3 in the appendix.

These groupings can be partially explained from geometric considerations. From this
perspective, a polar distortion develops to optimize bond lengths, as determined by ionic
radii. The Goldschmidt tolerance factor (t) characterizes the propensity of a given perovskite
chemistry to distort. Values near unity favor cubic, non-polar structures, while values far
from unity favor distortions. Given the five-atom restriction of the model presented in this
work, these distortions must always be polar. The six compositions (tolerance factors) for
the behavior group having large non-polar phase regions are SrTiO3 (t = 1.001), KTaO3

(1.085), BaZrO3 (1.000), SrSnO3 (0.957), BaHfO3 (1.007), and BaSnO3 (1.016). Four of
the six systems have tolerance factors very near unity. However, it is unusual that KTaO3

and SrSnO3 should maintain any regions of paraelectricity given the ratios of their ionic
radii. Furthermore, it is unclear why BaSnO3 does not undergo a polar distortion under any
amount of misfit strain given that its tolerance factor deviates from unity by a non-negligible
amount. The four compositions (tolerance factors) composing the second behavior group are
BaTiO3 (t = 1.063), KNbO3 (1.090), PbSnO3 (0.955), and NaVO3 (1.028). Three of the four
systems have B cations that are relatively too small in the cubic perovskite structure, while
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Figure 3.6: Energy and polarization as a function of misfit strain for a) BaTiO3, b) SrTiO3,
c) NaVO3, and d) PbTiO3 on (111). Energies are given in the top panel of each plot and are
referenced to the corresponding relaxed bulk perovskite-based structure. Regions of phase stability
are labeled with the space group symbol and separated by vertical dashed lines. Absolute values of
the polarization components have been taken for the purpose of visualization. Polarization vectors
are relative to the axes given in Fig. 3.2c.
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PbSnO3 is seemingly anomalous, having an A cation that is too large and is thus expected
to have differing polarization behavior from the other three. The final group of compositions
(tolerance factors) are SrHfO3 (t = 0.949) NaTaO3 (0.968), PbTiO3 (0.999), and NaNbO3

(0.972). The seemingly anomalous system in this case is PbTiO3, which, based on ionic radii,
should group with the six non-polar compositions. To reconcile the exceptional systems, we
consider additional features of the bonding.

From an electronic standpoint, ferroelectricity is not favored in a perovskite system that
features purely ionic bonding. Rather, polar distortions are understood to be stabilized by
the development of covalent character in the bonding of one or more cations with oxygen
[75]. Two ways in which this mixed ionic-covalent bonding appears are through lone-pair
s electronic states on the A cation (e.g., Pb2+) as well as energetically low-lying empty d
orbitals on the B cation (e.g., Ti4+, Nb5+). In both cases, these electronic states hybridize
with occupied oxygen 2p orbitals to stabilize a polar distortion [76]. These considerations
help explain some of the anomalies described above. For example, SrSnO3 and BaSnO3 have
A cations that lack lone-pair electrons and B cations that lack empty d orbitals. These two
systems are expected to exhibit more ionic character in their bonding, which in turn could
explain the tendency of these two systems to remain non-polar over a larger misfit strain
regime than expected. Furthermore, PbSnO3 has an A cation with lone-pair electrons but a
B cation lacking empty d orbitals. Thus, for this system, the A cation is expected to feature
enhanced covalent character in its bonding with oxygen, while the B cation will be primarily
ionic. This is the reverse of the behavior of the other three systems sharing a behavior
group with PbSnO3. Under these circumstances, it is possible that a system with tolerance
factor less than one can behave similarly to those with tolerance factors greater than one
if the electronic character of the cation species is swapped. Finally, PbTiO3 (t = 0.999), is
highly susceptible to covalency, having both A and B cations capable of hybridizing with
oxygen. This could possibly explain why a non-polar phase is never predicted, despite this
system’s geometric amenity to a non-polar structure. The qualitative considerations above
serve to highlight the geometrical and bonding factors that underlie the main trends in the
computed results. However, more work is required to develop quantitative theories for the
strain dependencies of polarization. This is highlighted by the case of KTaO3. Based on
geometric and electronic considerations, this system should behave most similarly to systems
in the BaTiO3 group, but instead KTaO3 exhibits a non-polar phase over a large range of
misfit strain.

3.4 Summary

The effects of epitaxial misfit strain on the structure, polarization, and energetic behavior
of 42 non-magnetic perovskite thin-film systems have been investigated using an automated
first-principles computational approach. These 42 systems are comprised of 14 compositions
modeled for the (100)-, (110)-, and (111)-growth orientations. The results indicate robust
trends of in-plane polarization enhancement under tension for all growth orientations and
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out-of-plane polarization enhancement with compression for the (100)- and (110)-oriented
systems. For the (111)-growth orientation, a wider variety of out-of-plane polarization be-
haviors is seen, with BaTiO3 exhibiting an anomalously diminishing out-of-plane polarization
with compression.

The computational results further reveal a clear tendency for compounds with different
compositions to form behavior groups, characterized by their phase sequences and polariza-
tions versus misfit strain. Two (100)-oriented systems, SrHfO3 and NaTaO3, exhibit unique
polarization dependencies on misfit strain, having phase transitions near 0% misfit strain
whereby a phase with all out-of-plane polarization gives way to a phase with all in-plane
polarization. The three (100)-oriented systems showing strain-induced phase coexistence,
PbTiO3, NaNbO3, and NaVO3, have relatively soft biaxial elastic responses compared to
the other compounds where this phenomenon is absent. This suggests that softness of the
in-plane biaxial elastic response is an important factor in predicting whether or not strain-
induced phase coexistence will occur in a film.

This work demonstrates the profound effect of growth orientation on the polarization
behavior of thin films. For example, the smooth, second-order phase transitions and strain-
induced phase coexistence exhibited by (100)-oriented PbTiO3 are replaced by a complex
interplay of the three polarization components and a first-order transition in (110)-oriented
PbTiO3. While most of the other compounds show similar sensitivity to growth orientation,
the six compositions, SrTiO3, KTaO3, BaZrO3, SrSnO3, BaHfO3, and BaSnO3, show similar
paraelectric behavior between the (100), (110), and (111) orientations. Further, the (110)-
and (111)-oriented films more commonly feature first-order phase transitions as a function
of misfit strain, relative to the (100) case. An example is (111)-oriented NaVO3, having
a first-order phase transition at small misfit tension with a very large shift in polarization
direction. As sudden changes in polarization state are often useful for device applications,
the relatively unexplored realm of (110)- and (111)-oriented films could provide a fruitful
domain for materials discovery.
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CHAPTER 4

Epitaxial Phase Diagrams Including the Role of

Antiferrodistortive and A-Site Displacement Modes

4.1 Motivation and Overview

Ferroelectric thin films based on perovskite-structured oxide compounds are widely re-
searched for a variety of microelectronic device applications [1]. Thin-film forms of these
ferroelectric materials are of interest due to their reduced dimensionality, as well as the novel
properties that arise from epitaxial constraints [4]. In particular, epitaxial strain has been
shown to have a strong effect on the polarization and domain behavior of ferroelectrics [31],
and it thus provides a means of tuning properties for device applications.

To exploit such epitaxial effects, predictive first-principles computational models based
on density-functional theory (DFT) have been developed and applied to predict the struc-
ture and polarization of oxide ferroelectrics as a function of biaxial strain. In such modeling
efforts, a few different approaches have been employed. In early studies [9,10], expansions of
the total energy with respect to the amplitudes of unstable phonon modes and strain were de-
termined and used to compute stable structures and associated energetics and polarizations
as a function of misfit strain. Although effective for prototypical perovskites like BaTiO3, a
limitation in the approach was the consideration of only zone-centered soft-phonon modes,
and the associated neglect of octahedral rotations, which have been shown to suppress polar-
ization in many perovskites [16]. In more recent studies that have considered a broader range
of compositions [11–15,77], direct DFT relaxations of candidate perovskite-based structures
were undertaken as a function of biaxial strain. In some of these studies, candidate struc-
tures were limited to those that could be derived only from distortions and zone-center
displacements in the primitive five-atom unit cell, again neglecting structural distortions
associated with octahedral rotations. In other first-principles computational studies, more
complex structures have been considered, derived from experimental measurements [78,79].
These latter studies have accounted for important effects of non-zone-centered displacement

The work in this chapter was published by T. Angsten and M. Asta in Physical Review B 97, 134103
(2018), and is reproduced here with permission of the co-author.
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modes, such as antiferrodistortive (AFD) octahedral rotations or A-site displacement modes,
but they have been limited to the relatively few compositions where experimentally measured
crystallographic data for strained thin films are available.

In the present work, a methodology is presented extending previous efforts to account
for non-zone-centered modes in the calculation of ground-state structures and associated
polarizations in epitaxially-strained perovskite thin films. The approach makes use of direct
DFT optimizations of candidate structures corresponding to local minima in expansions of
the energy with respect to strain and the amplitudes of the nine most unstable phonon
modes of reference high-symmetry perovskite structures. The expansions are carried out at
several strain states, and the full set of structures corresponding to the minima identified
in the energy expansions are used as input to DFT energy minimizations as a function of
biaxial strain. From the lowest-energy structures identified, epitaxial phase diagrams and
polarization plots similar to those presented in Ref. [11] are constructed, but accounting for
more complex polymorphs that feature non-zone-centered displacement modes.

This approach is employed in the present work in a DFT-based study of the ground-state
phase diagrams of epitaxially-strained SrTiO3, CaTiO3, and SrHfO3 compounds. While
SrTiO3 and CaTiO3 are more commonly studied perovskite oxides and thus serve as good
reference compounds for comparisons to other methods, SrHfO3 is a lesser-studied system
in the context of thin films. SrHfO3 was chosen due to its similarity to CaTiO3 with respect
to ratios of ionic radii, thus facilitating an analysis of the effect of composition on thin-
film properties, but also because of its promising polar response properties. In Ref. [27], a
metastable P4mm phase of SrHfO3 was selected out of a first-principles screening of nearly
a thousand piezoelectric tensors due to its large piezoelectric response, having a maximal
longitudinal modulus of ||eij||max ≈ 10 C/m2. It is thus worthwhile to determine in the
present work whether this P4mm SrHfO3 phase can be epitaxially stabilized by measuring
its degree of metastability, and also to see if this system retains a large polarization under
epitaxy.

Ground-state structures and associated energetics and polarization properties are calcu-
lated for SrTiO3, CaTiO3, and SrHfO3 as a function of epitaxial strain state, corresponding
to biaxial tension and compression in the (001) plane. In the remainder of this chapter,
the computational approach is described in detail in Section 4.2, and results obtained are
presented in Section 4.3. Insights derived from these results, as they relate to the role of
non-zone-centered phonons on the stability and polarization properties of epitaxially-strained
perovskite thin films are discussed in Section 4.4, and the main conclusions are summarized
in Section 4.5.

4.2 Method

In the present computational approach, epitaxial thin films are modeled as bulk com-
pounds subjected to biaxial strain in the (001) plane, neglecting explicit surface and interface
effects. In discussing crystallographic structures and strain states, we employ throughout a



46

coordinate system in which the x and y directions are along [100] and [010] directions of a
reference tetragonal perovskite unit cell, and z is the direction normal to the plane of biaxial
strain. In what follows, a description is given for the nature of the energy expansions used
to identify candidate structures for DFT optimizations (Section 4.2.1), the way in which
resulting optimized structures are used to construct epitaxial ground-state phase diagrams
(Section 4.2.2), and the associated details of the DFT calculations (Section 3.2.3).

4.2.1 Total Energy Expansions

For each composition, the lattice constant of an ideal cubic perovskite structure (space
group Pm3̄m) is calculated. Tensile strains are then applied to the x and y directions by a
misfit strain η̄, considering values of -2, -1, 0, 1, and 2%. For each biaxial strain state, the
out-of-plane (c-axis) lattice constant is relaxed, and 40-atom (2× 2× 2) supercells are then
constructed from these structures to serve as reference states for subsequent expansions of
the total energy.

The total energy expansions consider both homogeneous strain and atomic displacement
degrees of freedom. Regarding strain, the mechanical boundary conditions for a coherently
strained epitaxial thin film are defined as:

εxx = εyy = η̄, εxy = 0;σzz = σyz = σxz = 0, (4.1)

where ε and σ are the strain and stress tensors, respectively, and η̄ is the misfit strain,
calculated as η̄ = a/a0 − 1, where a0 is the lattice constant of the reference cubic perovskite
(with zero misfit strain), and a corresponds to the lattice constant of a cubic substrate. At
fixed misfit strain, εzz, εxz, and εyz constitute the three strain degrees of freedom. For the
following total energy expansions, the two out-of-plane shear strains εxz and εyz are assumed
to be relatively unimportant in dictating candidate energy minima in the potential-energy
landscape, and only εzz is considered explicitly.

Regarding atomic positional degrees of freedom, the most basic approach is to include all
x-, y-, and z-displacements of each atom in the reference structure. However, this leads to
(40×3)−3 = 117 additional degrees of freedom and a prohibitive number of coefficients that
must be evaluated. A more efficient technique is to choose a set of displacement variables
that still forms a complete basis but can be prioritized by relative importance for the energy
landscape. This is accomplished most simply by considering unstable and soft modes of the
force-constant matrix [9].

The force-constant matrix, Dτ,τ ′

α,β , is defined as:

Dτ,τ ′

α,β =
∂2E

∂υτα∂υ
τ ′
β

∣∣∣∣∣
0

. (4.2)

In this work, Dτ,τ ′

α,β is always a 120× 120 matrix, with ~υ denoting the 120-component atomic
displacement vector in Cartesian coordinates, τ and τ ′ denoting atom indices (1 through 40),
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and α and β denoting Cartesian indices (x, y, or z). For each composition, a force-constant
matrix is calculated at each of the five biaxially strained reference structures defined above.

For each force-constant matrix, the eigenvectors and eigenvalues are determined by the
eigenequation: ∑

βτ ′

Dτ,τ ′

α,β ξ
τ ′

β (j) = λ(j)ξτα(j). (4.3)

Here, j is a mode index running from 1 to 120, λ(j) is the jth real-valued eigenvalue, and
ξ(j) is the jth 120-component real-valued eigen-displacement vector.

The eigenvectors ξ(j) form a complete orthonormal basis capable of describing any pat-
tern of displacement having wavelengths commensurate with the supercell dimensions. This
basis is more convenient than Cartesian coordinates under the assumption that the ξ(j) cor-
responding to lower λ(j) eigenvalues dominate in the lowest-energy structures. Because the
eigenvalues λ(j) track the curvature of the energy with respect to that displacement mode,
very positive curvatures will tend to prohibit the appearance of these displacement modes
in low energy structures.

The vector corresponding to the displacements within the 40-atom supercell can be writ-
ten in terms of these eigenvectors ξ(j) as:

~υ =
∑
j

ujξ(j). (4.4)

Here, uj is the jth eigenmode coordinate, a real-valued scalar whose absolute value, the
eigenmode amplitude, represents the degree to which the jth eigenmode displacement pat-
tern, ξ(j), contributes to the atomic displacements. For any arbitrary structure considered
in this study, the eigenmode coordinate is determined by a projection of the Cartesian dis-
placement vector onto the eigenbasis:

uj =
∑
τα

ξτα(j)υτα. (4.5)

An expansion of the total energy about the reference state is separated into four terms:
[10]

E(εzz, uj; η̄) = E0 + Eelas(εzz) + Edisp(uj) + Eint(εzz, uj). (4.6)

The misfit strain, η̄, is a parameter that defines the reference state in the expansion and
is not an expansion variable. Thus, E0 is the energy of the tetragonally relaxed reference
structure, and εzz is the out-of-plane strain relative to this reference.

As σzz, σyz, σxz, and atomic forces in the reference structures are zero, no first-order
terms persist in the expansions. The pure elastic contributions to the total energy are thus
described as:

Eelas(εzz) = B2ε
2
zz +B3ε

3
zz +B4ε

4
zz. (4.7)
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For pure displacement terms, second-order cross terms (uiuj) also cannot persist due to
the choice of eigenbasis, and third-order terms vanish due to centrosymmetry of the cho-
sen reference structures under arbitrary homogeneous strain, ensuring that E(εzz, υ

τ
α) =

E(εzz,−υτα). The resulting fourth-order expansion for the pure displacement energy contri-
bution is:

Edisp(uj) =
∑
j

1

2
λju

2
j + Cju

4
j , (4.8)

where j is chosen in this work to include the nine most unstable (or soft) modes. For the
interaction terms describing strain-displacement couplings, all second-order terms (εzzuj)
vanish due to centrosymmetry, and the lowest-order term in the expansion, which is the only
one retained in the current work, has the form:

Eint(εzz, uj) =
∑
j

Ajεzzu
2
j . (4.9)

It is noted that there is a unique expansion for each composition at each misfit strain,
resulting in 3 × 5 = 15 sets of expansion coefficients. There are many options for deciding
the number of terms to keep in the above expansions. Although (40× 3)− 3 = 117 different
eigenmode degrees of freedom exist, only up to nine are explicitly included in this work.
By considering up to the nine softest eigenmodes, it is ensured that the three ferroelectric
(FE) modes and the six octahedral rotational modes can always be considered if they are
the most unstable. As these modes are commonly observed among perovskite oxides, they
are essential in capturing common complex ground-state structures [80]. Further, although
the above expansions can be taken to arbitrary order, this work truncates Eelas and Edisp to
fourth order, truncates Eint to third order, and does not include cross-coupling displacement
mode terms (i.e., u2iu

2
j -type terms). These truncations result in the smallest number of

terms that still give rise to an expression that is guaranteed to have a bounded minimum.
Higher-order terms could be included and would improve the accuracy, but the expansions
of the present workflow are used only to find candidate metastable structures for subsequent
input into DFT geometry optimizations, and thus the truncation to low order still provides
sufficient accuracy for the purposes of the present work. Further, the present workflow’s
use of a distinct energy expansion at each misfit strain greatly helps to reduce the role that
higher-order terms play in dictating the local minima of the potential energy landscape.

Validation of the assumptions underlying this approach are undertaken through compar-
isons to previous work (see Section 4.4.2), and for the compounds considered, the approach
is found to be effective in identifying ground-state structures. For other systems requiring
a more refined approximation to the energy landscape, the present approach can be ex-
tended straightforwardly by including more degrees of freedom and/or including additional
higher-order terms.

The expansion coefficients defined in this section are determined through fitting to re-
sults of DFT calculations that consider different finite displacements and distortions of the
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reference structures [15]. Details are discussed in Section A.2 of the appendix, which gives
an example for the case of SrTiO3.

4.2.2 Construction of Epitaxial Phase Diagrams

For each of the three compositions, and at each of five misfit strains, a set of candidate
structures is generated by analytically solving for all minima of the total energy expansion
defined in Section 4.2.1. These candidate structures are subsequently used as the starting
configuration for a DFT calculation in which the structure is relaxed, keeping the in-plane
strains fixed at the relevant value of η̄. After all of the candidate structures have been
relaxed, the DFT energies are compared to identify the most energetically stable (i.e., the
lowest energy) state. The result is a set of five low-energy structures, one for each value of
the misfit strain (η̄ = -2, -1, 0, 1 and 2 %). For each of these five structures, an energy
versus misfit strain curve is generated by re-relaxing the structures, with the in-plane strain
fixed at several values of η̄ on a finer grid spanning values between -4 to 4 %. Prior to these
structural relaxations, the atom positions are given small random displacements in order
to reduce the symmetry to P1, guaranteeing the final structures are stable with respect to
distortions of the forty-atom cells. It is emphasized that out-of-plane shear strain degrees of
freedom are not constrained during these structural optimizations, and the resulting lattice
need not be tetragonal. The lowest energy phase at each misfit strain comprises the set
of ground-state structures based on the 40-atom supercells, and from these structures the
zero-temperature phase diagram versus misfit strain is thus produced.

4.2.3 Calculation Methods

All ab initio DFT calculations made use of the Vienna ab initio simulation package (vasp)
[60–63] version 5.4.1. A conjugate-gradient algorithm was used for all structural relaxations.
As the standard vasp software package does not allow for arbitrary mechanical boundary
conditions, the relaxations under fixed in-plane strain made use of a custom modified version
of the software in which certain components of the stress tensor are constrained to zero.

Calculations used the Ceperley-Alder form of the local density approximation (LDA)
exchange-correlation functional, as parameterized by Perdew and Zunger [64], with the
electron-ion interaction described by the projector augmented wave method [65, 66]. Force-
constant matrices were calculated by Density Functional Perturbation Theory (DFPT) [22]
at the zone center for each of the reference 2×2×2 supercells. For all calculations required to
compute expansion coefficients, and for the subsequent relaxations of candidate structures,
use was made of a 600 eV plane-wave cutoff energy, 3× 3× 3 Monkhorst-Pack sampling of
the Brillouin zone [67], and Gaussian smearing of 0.01 eV.

More refined computational parameters were used in the final relaxations and polarization
calculations in the construction of the ground-state phase diagrams. In these more refined
calculations, an 800 eV plane-wave cutoff energy and a 4×4×4 Monkhorst-Pack sampling of
the Brillouin zone were used. All relaxations of the structures were continued until the forces
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and out-of-plane stresses converged to magnitudes within 0.001 eV/Å and 0.005 eV/f.u.,
respectively, where eV/f.u. is per five-atom formula unit. The resulting level of convergence
in energy differences is to within 0.1 meV/f.u.

The Berry phase approach, as described in the modern theory of polarization [24], was
used to calculate the electric polarization vector at each misfit strain. All calculations assume
a fixed (vanishing) external electric field corresponding to thin-films surrounded by perfectly
charge-compensating electrodes, as discussed in Refs. [69, 70]. Further, use of the LDA in
the present work leads to well-known systematic errors in the calculated lattice constants,
amounting to an underestimation of their values on the order of a percent [4, 10]. Further
discussion of the effect of the exchange correlation functional is given in Section A.3 of the
appendix, in which the phase diagram for CaTiO3 is recalculated using the SCAN meta-
GGA functional [20]. A comparison between the LDA and SCAN results suggests that the
predicted phases and their order with respect to misfit strain are equivalent, with the phase
boundaries of SCAN shifted to epitaxial lattice constants that are approximately 1% larger
in magnitude compared to LDA.

4.3 Results

4.3.1 Properties of Bulk Systems

The ground-state structures of bulk, unstrained SrTiO3, CaTiO3, and SrHfO3 were cal-
culated for use as energetic references, and their properties are listed in Table 4.1. SrTiO3

adopts the tetragonal I4/mcm structure, obtained by condensing an out-of-phase rotational
instability (R+

4 in the irreducible representation notation of Ref. [81]) about the direction
of elongation. CaTiO3 and SrHfO3 adopt the orthorhombic Pnma structure, obtained by
condensing equal amplitudes of the R+

4 mode about two axes and a unique amplitude of
an in-phase rotational instability (M+

3 ) about a third axis. Additional A-site displacement
modes further contribute to these latter two structures, and these modes are discussed in
more detail in the context of epitaxial structures in Section 4.4.4. None of the three bulk
structures exhibits a macroscopic polarization.

4.3.2 Eigenmode Properties and Expansion Coefficients

Table 4.2 gives the properties of the nine most unstable or softest stable displacement
eigenmodes at five misfit strains for SrTiO3, CaTiO3, and SrHfO3. Properties listed include
the Glazer system (detailed in Ref. [80]), eigenvalue, and mode polarization vector, ~Z, which
is defined as the dot product of the Born effective charge tensor [76] of the reference structure
with the associated eigenvector:

~Zi =
∑
τα

ξτα(i)Z∗τα . (4.10)



51

Table 4.1: Bulk properties of the three compositions considered, including calculated cubic lattice
constants, Goldschmidt tolerance factors [56], and spacegroups and Glazer systems [80] of the bulk
ground-state phase.

Formula a0 (Å) Tolerance Factor t Spacegroup Glazer System

SrTiO3 3.86 1.001 I4/mcm a00a
0
0c
−
0

CaTiO3 3.81 0.946 Pnma a−0 a
−
0 c

+
0

SrHfO3 4.07 0.949 Pnma a−0 a
−
0 c

+
0

This vector represents the macroscopic polarization that develops per small increase in the
ith eigenmode coordinate. For plots of the eigenvalues of many of the eigenmodes listed in
Table 4.2, see the bottom panels of Fig. 4.1. Table A.1 of the appendix lists the expansion
coefficients defined in Section 4.2.1 for five values of the misfit strain for SrTiO3, CaTiO3,
and SrHfO3.

4.3.3 Epitaxial Phase Diagrams

Figure 4.1 plots the energies, polarization components, eigenmode amplitudes of the
epitaxial ground-state structures, and the force-constant matrix eigenvalues of the tetragonal
reference structures versus misfit strain for SrTiO3, CaTiO3, and SrHfO3. The top panel
of each plot corresponds to the energy and polarization of the ground-state structure as a
function of misfit strain. The reference energy for each compound is that of the corresponding
bulk, fully relaxed structure listed in Table 4.1. The energy values plotted in Fig. 4.1 can thus
be interpreted as the elastic energy of the epitaxially constrained phase, and the more positive
this energy is, the higher the driving force for strain relaxation, e.g., through formation of
misfit dislocations. Misfit strains corresponding to phase transitions are indicated by dashed
vertical lines, and the spacegroups of the epitaxial phases in each misfit strain regime are
indicated in the top panels. The horizontal scale given at the top of each figure indicates
the cubic substrate lattice constant, a, required to produce the given degree of misfit strain,
with a = a0(η̄ + 1).

The eigenmode amplitudes shown in the middle panels are determined by Eq. 4.5. These
measure the degree to which the three FE eigenmodes at Γ (Fig. 4.2a) and six rotational
displacement eigenmodes at the M (Fig. 4.2b) and R (Fig. 4.2c) boundary points of the
Brillouin zone of the cubic perovskite compound have condensed in the ground-state epi-
taxial structures. The eigenvalues corresponding to these nine modes are plotted in the
bottom panels and are determined from diagonalization of the force-constant matrices of the
tetragonal reference structures.

Figure 4.1a plots the ground-state epitaxial properties for SrTiO3. Under strong biaxial
compression, a polar I4cm phase is predicted having two displacement modes activated,
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Table 4.2: Properties of the nine softest eigen-displacement modes at various misfit strains for SrTiO3, CaTiO3,
and SrHfO3. Properties listed include the tilt system of each eigenmode, as denoted by the modified Glazer notation,

the eigenvalue, λi (eV/Å2), of the ith displacement mode, and the mode polarization vector, ~Zi (C/m2), as defined
in Eq. 4.10 of Section 4.3.2. A ‘*’ denotes a trivial translational eigenmode which must have an eigenvalue of zero
and vanishing polarization vector, while ‘N/A’ denotes a displacement mode that cannot be described by the Glazer
notation.

SrTiO3 Eigenmode Index
Misfit Strain 1 2 3 4 5 6 7 8 9

Glazer a00a
0
0c

0
+ a00a

0
0c
−
0 a00a

0
0c

+
0 a−0 b

0
0b

0
0 a00b

−
0 a

0
0 a+0 b

0
0b

0
0

-2% λi -2.06 -1.1 -0.69 -0.46 -0.46 * * * 0.07
~Zi (0 0 0.9) 0 0 0 0 0

Glazer a00a
0
0c

0
+ a00a

0
0c
−
0 a−0 b

0
0b

0
0 a00b

−
0 a

0
0 a00a

0
0c

+
0 a+0 b

0
0b

0
0 a00b

+
0 a

0
0

-1% λi -0.81 -0.76 -0.49 -0.49 -0.33 -0.01 -0.01 * *
~Zi (0 0 0.9) 0 0 0 0 0 0

Glazer a−0 b
0
0b

0
0 a00b

−
0 a

0
0 a00a

0
0c
−
0 a+0 b

0
0b

0
0 a00b

+
0 a

0
0 a00a

0
0c

+
0

0% λi -0.49 -0.49 -0.48 -0.05 -0.05 -0.04 * * *
~Zi 0 0 0 0 0 0

Glazer a0+b
0
0b

0
0 a00b

0
+a

0
0 a−0 b

0
0b

0
0 a00b

−
0 a

0
0 a00a

0
0c
−
0 a+0 b

0
0b

0
0 a00b

+
0 a

0
0

1% λi -1.18 -1.18 -0.52 -0.52 -0.27 -0.12 -0.12 * *
~Zi (0.9 0 0) (0 0.9 0) 0 0 0 0 0

Glazer a0+b
0
0b

0
0 a00b

0
+a

0
0 N/A N/A a−0 b

0
0b

0
0 a00b

−
0 a

0
0 a+0 b

0
0b

0
0 a00b

+
0 a

0
0 a00a

0
0c
−
0

2% λi -2.81 -2.81 -1.4 -1.4 -0.52 -0.52 -0.14 -0.14 -0.11
~Zi (0.9 0 0) (0 0.9 0) 0 0 0 0 0 0 0

CaTiO3 1 2 3 4 5 6 7 8 9
Glazer a00a

0
0c
−
0 a00a

0
0c

0
+ a00a

0
0c

+
0 a−0 b

0
0b

0
0 a00b

−
0 a

0
0 a+0 b

0
0b

0
0 a00b

+
0 a

0
0 a0+b

0
0b

0
0 a00b

0
+a

0
0

-2% λi -3.53 -3.27 -3.23 -3.05 -3.05 -2.69 -2.69 -1.2 -1.2
~Zi 0 (0 0 0.8) 0 0 0 0 0 (0.67 0 0) (0 0.67 0)

Glazer a00a
0
0c
−
0 a−0 b

0
0b

0
0 a00b

−
0 a

0
0 a00a

0
0c

+
0 a+0 b

0
0b

0
0 a00b

+
0 a

0
0 a00a

0
0c

0
+ a0+b

0
0b

0
0 a00b

0
+a

0
0

-1% λi -3.15 -2.94 -2.94 -2.84 -2.61 -2.61 -2.35 -1.47 -1.47
~Zi 0 0 0 0 0 0 (0 0 0.76) (0.69 0 0) (0 0.69 0)

Glazer a−0 b
0
0b

0
0 a00b

−
0 a

0
0 a00a

0
0c
−
0 a+0 b

0
0b

0
0 a00b

+
0 a

0
0 a00a

0
0c

+
0 a0+b

0
0b

0
0 a00b

0
+a

0
0 a00a

0
0c

0
+

0% λi -2.83 -2.83 -2.8 -2.53 -2.53 -2.5 -1.91 -1.91 -1.77
~Zi 0 0 0 0 0 0 (0.72 0 0) (0 0.72 0) (0 0 0.71)

Glazer a−0 b
0
0b

0
0 a00b

−
0 a

0
0 a00a

0
0c
−
0 a0+b

0
0b

0
0 a00b

0
+a

0
0 a+0 b

0
0b

0
0 a00b

+
0 a

0
0 a00a

0
0c

+
0 a00a

0
0c

0
+

1% λi -2.73 -2.73 -2.53 -2.5 -2.5 -2.45 -2.45 -2.22 -1.4
~Zi 0 0 0 (0.75 0 0) (0 0.75 0) 0 0 0 (0 0 0.66)

Glazer a0+b
0
0b

0
0 a00b

0
+a

0
0 a−0 b

0
0b

0
0 a00b

−
0 a

0
0 a+0 b

0
0b

0
0 a00b

+
0 a

0
0 a00a

0
0c
−
0 a00a

0
0c

+
0 a00a

0
0c

0
+

2% λi -3.24 -3.24 -2.61 -2.61 -2.35 -2.35 -2.29 -1.98 -1.21
~Zi (0.78 0 0) (0 0.78 0) 0 0 0 0 0 0 (0 0 0.61)

SrHfO3 1 2 3 4 5 6 7 8 9
Glazer a00a

0
0c
−
0 a00a

0
0c

+
0 a−0 b

0
0b

0
0 a00b

−
0 a

0
0 a+0 b

0
0b

0
0 a00b

+
0 a

0
0 a00a

0
0c

0
+ N/A N/A

-2% λi -2.74 -2.46 -2.27 -2.27 -1.91 -1.91 -1.31 -0.48 -0.45
~Zi 0 0 0 0 0 0 (0 0 -0.45) 0 0

Glazer a00a
0
0c
−
0 a−0 b

0
0b

0
0 a00b

−
0 a

0
0 a00a

0
0c

+
0 a+0 b

0
0b

0
0 a00b

+
0 a

0
0 a00a

0
0c

0
+ a0+b

0
0b

0
0 a00b

0
+a

0
0

-1% λi -2.33 -2.11 -2.11 -2.04 -1.8 -1.8 -0.72 -0.21 -0.21
~Zi 0 0 0 0 0 0 (0 0 -0.42) (0.38 0 0) (0 0.38 0)

Glazer a−0 b
0
0b

0
0 a00b

−
0 a

0
0 a00a

0
0c
−
0 a+0 b

0
0b

0
0 a00b

+
0 a

0
0 a00a

0
0c

+
0 a0+b

0
0b

0
0 a00b

0
+a

0
0 a00a

0
0c

0
+

0% λi -1.98 -1.98 -1.97 -1.69 -1.69 -1.68 -0.41 -0.41 -0.39
~Zi 0 0 0 0 0 0 (0.39 0 0) (0 0.39 0) (0 0 0.39)

Glazer a−0 b
0
0b

0
0 a00b

−
0 a

0
0 a00a

0
0c
−
0 a+0 b

0
0b

0
0 a00b

+
0 a

0
0 a00a

0
0c

+
0 a0+b

0
0b

0
0 a00b

0
+a

0
0 N/A

1% λi -1.88 -1.88 -1.67 -1.61 -1.61 -1.38 -0.74 -0.74 -0.41
~Zi 0 0 0 0 0 0 (0.39 0 0) (0 0.39 0) 0

Glazer a−0 b
0
0b

0
0 a00b

−
0 a

0
0 a+0 b

0
0b

0
0 a00b

+
0 a

0
0 a00a

0
0c
−
0 a00a

0
0c

+
0 a0+b

0
0b

0
0 a00b

0
+a

0
0 N/A

2% λi -1.78 -1.78 -1.53 -1.53 -1.41 -1.12 -1.11 -1.11 -0.77
~Zi 0 0 0 0 0 0 (0.39 0 0) (0 0.39 0) 0
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an out-of-plane octahedral rotation R+
4 mode (orange diamonds in the middle and bottom

panels) and an out-of-plane zone-centered FE mode (blue diamonds). These are also the
two most unstable modes of the reference tetragonal structures in the compressive regime, as
indicated in the bottom panel. As the strain becomes less compressive, both modes gradually
diminish until the FE mode entirely vanishes, giving way to the paraelectric I4/mcm phase
beginning at -1% misfit strain. In this region, only the R+

4 mode persists, and its amplitude
continues to diminish until 0.25% misfit strain, at which point the polar Ima2 phase sets in
through a first-order transition. The Ima2 phase consists of four active displacement modes,
including two in-plane octahedral rotation R+

4 modes (gray squares and purple triangles)
and two in-plane zone-centered FE modes (red squares and green triangles). These are also
the four most unstable modes of the reference tetragonal structures in the tensile strain
regime, as shown in the bottom panel. With increasing tensile strain, the two in-plane
octahedral rotation R+

4 modes in the Ima2 phase tend to remain approximately constant in
their eigenmode amplitudes, while the in-plane FE modes gradually increase in eigenmode
amplitude. The elastic energy curve for SrTiO3 is symmetric with respect to misfit strain,
having a minimum at 0% misfit strain and approximately 150 meV/f.u. of elastic energy at
the extremes of compressive and tensile misfit strain considered.

Figure 4.1b plots the ground-state epitaxial properties for CaTiO3. Compared to SrTiO3,
the predicted phases of CaTiO3 involve a more complicated interplay of a larger number of
displacement modes. From -4% to -2.5% misfit strain, the polar Pm phase is predicted as
a ground-state structure, for which the atomic displacements involve a combination of an
out-of-plane FE, in-plane R+

4 rotation, in-plane M+
3 rotation, and out-of-plane R+

4 rotation
mode. As the magnitude of biaxial compressive strain is reduced, the two in-plane rotational
modes slightly increase in amplitude, while the two out-of-plane modes diminish. At -2.5%
misfit strain, the amplitude of the out-of-plane FE mode vanishes, and the non-polar P21/m
parent phase becomes stable in a smooth second-order transition. This phase persists from
-2.5% to 0% misfit strain, over which the in-plane rotation modes continue to slowly increase
in amplitude while the out-of-plane rotation mode continues to diminish. At zero misfit
strain, the three octahedral modes are discontinuously replaced by two in-plane FE, one
out-of-plane M+

3 rotation, and two in-plane R+
4 rotation modes in a first-order transition

to the polar Pmn21 phase. This phase persists to the extreme of tensile strain considered,
with the in-plane FE modes gradually growing and the octahedral modes remaining roughly
constant in amplitude. The elastic energy curve of CaTiO3 has its minimum shifted to -
1% misfit strain. This shift is possible because the energy curve is referenced to the fully
relaxed bulk CaTiO3 structure, while the misfit strain is referenced to the equilibrium lattice
constant of a bulk cubic structure. The energy curve reflects this with 100 meV/f.u. of elastic
energy at -4% misfit strain and 250 meV/f.u. at 4% misfit strain.

Figure 4.1c plots the calculated properties for SrHfO3. Like CaTiO3, this system exhibits
a complicated interplay of many displacement modes. Under large compressive strain, a
paraelectric I4/mcm phase is predicted, having only an out-of-plane R+

4 rotation mode
active. At -3% misfit strain, there is a first-order transition to a paraelectric P21/m phase.
Continuing to -1% misfit strain, there is another first-order phase transition to a paraelectric
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Figure 4.1: Plots of ground-state epitaxial structure energies, polarization components, eigenmode
amplitudes, and tetragonal reference structure eigenvalues versus misfit strain for a) SrTiO3, b)
CaTiO3, and c) SrHfO3. Absolute values of polarization components are taken for visualization
purposes. The in-plane lattice constant of the epitaxial structure at each misfit strain is indicated
by the top axis. The lower legend corresponds to the eigenmodes shown in Fig. 4.2 realized down
the x, y, or z axes.

Pnma phase that is like the bulk Pnma phase, but with a tetragonal lattice instead of
orthorhombic. An orthorhombic rather than tetragonal space group is adopted in this case
due to symmetry-lowering atomic displacements in the epitaxial ground-state structure. This
Pnma phase remains stable to the extreme of tensile strain considered, with the in-plane
R+

4 rotation mode amplitudes remaining nearly constant, and the out-of-plane M+
3 mode

amplitude diminishing. The elastic energy curve for SrHfO3 is asymmetric, having a -1%
shift in the minimum, 100 meV/f.u. elastic energy at -4% misfit strain, and over 300 meV/f.u.
elastic energy at 4% misfit strain.
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Figure 4.2: The three most dominant unstable eigenmodes for epitaxial SrTiO3, CaTiO3, and
SrHfO3. a) The zone-centered FE mode, often transforming like the irrep Γ−4 , b) the in-phase
AFD octahedral rotation, transforming like the irrep M+

3 , and c) the out-of-phase AFD octahedral
rotation, transforming like the irrep R+

4 . All three can be independently realized down each of the
three unit-cell axes. This figure was created using vesta [55].

4.4 Discussion

4.4.1 Comparison to Previous Calculations

In order to validate the accuracy of the present computational approach, results are com-
pared in this section to previous DFT calculations that include some form of input from
experimental observations or phenomenological theory. As discussed below, the present
work correctly leads to the identification of stable phases reported previously for epitaxially
strained SrTiO3 and CaTiO3. Quantitative discrepancies with these previous computational
investigations, that do not relate to the efficacy of the present structure optimization ap-
proach, are found and attributed to differences in the numerical parameters in the underlying
DFT calculations.

Lin et al. [79] use DFT to calculate the epitaxial phase diagram of SrTiO3 by considering
all phases predicted by phenomenological Landau theory [82]. The general polarization
behavior and stable phases at the extremes of misfit strain compare very well to that of the
present work. Specifically, the results from both studies feature the stability of an I4cm
phase with enhanced out-of-plane polarization under compression and an Ima2 phase with
enhanced in-plane polarization under tension. Near 0% misfit strain, the two works differ in
their predicted phases. While the present work predicts a paraelectric I4/mcm phase near
0% misfit strain, Ref. [79] predicts a total of three phases in this same region of strains,
including, in addition to the I4/mcm phase, two other polar phases with Ima2 and Fmm2
symmetries. These differences arise due to the near energetic degeneracy of the competing
phases, such that differences in the parameters underlying the DFT calculations can influence
conclusions about relative stability. To ensure this is the case, rather than being due to the
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underlying structural optimization procedure of the present workflow, the energy of the Ima2
and Fmm2 phases were computed using the computational parameters given in Section 4.2.3,
featuring a plane wave cutoff nearly twice as large as that employed in Ref. [79]. Consistent
with the results shown in Fig. 4.1, with the DFT parameters employed in the present work,
it was verified that the lowest energy structure was the one with I4/mcm symmetry, with
the Ima2 and Fmm2 polymorphs being higher in energy and therefore metastable.

For CaTiO3, Eklund et al. [78] computed epitaxial phase diagrams using DFT by consid-
ering the relative stability of a number of candidate phases derived from the experimentally
observed bulk phase. There is good agreement between the present results and the work in
Ref. [78] in terms of the stable phases predicted, with both studies determining the P21/m
phase to be stable under moderate compression and the Pmn21 phase to be stable under
tension. The strain corresponding to the transition between these two phases is quantita-
tively different in the two studies, however: Eklund et al. find a value of η̄ = 0% while in
the present work this value is approximately 2%. As above, these quantitative differences
are likely a consequence of the different DFT parameters employed in the two studies.

4.4.2 Role of Non-Zone-Center Displacement Modes

In previous work by the authors [77], epitaxial phase diagrams were calculated using a
similar approach as described here, but disallowing relaxations associated with non-zone-
center displacement modes. In other words, the work in Ref. [77] considered only phases
that could be derived from the perovskite structure through homogeneous strains and zone-
centered FE displacement modes. A comparison of the results obtained in Ref. [77] with those
obtained in the present work is therefore of interest, as it highlights the role of non-zone-
centered distortions, such as octahedral rotations, in determining the structural, energetic,
and polarization dependences on epitaxial strain. Such information is of interest because non-
zone-centered distortions may be frozen out in very thin films if they increase the interfacial
energy, while they may be present in thicker films if they reduce strain energy.

For SrTiO3, the effect of non-zone-centered distortions is to widen the range of stability
of the paraelectric phase by nearly 0.5% misfit strain. Specifically, octahedral rotations
reduce the strain energy by 147 meV/f.u. at -4% misfit strain, and by 86 meV/f.u. at 4%
misfit strain. This implies that rotational modes reduce elastic energy and should allow
for larger critical thicknesses for epitaxial growth. Under compressive epitaxial strain, the
out-of-plane polarization is nearly halved when the out-of-plane rotation is allowed, implying
an unfavorable coupling with the out-of-plane FE mode. In contrast, under tensile misfit
strain, the presence of the two in-plane R+

4 octahedral rotation modes does not significantly
change the polarization compared to the results obtained from disallowing non-zone-center
distortions.

For SrHfO3, much larger effects of non-zone-center modes are found. The elastic energy
is reduced by 343 meV/f.u. at -4% misfit strain and 109 meV/f.u. at 4% misfit strain when
the non-zone-centered modes are allowed. Also, in the calculations where non-zone-center
distortions are disallowed, large polarizations are computed, up to 0.56 C/m2, and a direct
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transition from a P4mm phase with purely out-of-plane polarization to a Pmm2 phase with
purely in-plane polarization is predicted around 0% misfit strain. The presence of non-zone-
centered distortions in SrHfO3 strongly suppresses these two phenomena, giving way to a
paraelectric film over the entire range of epitaxial strain between -4% and 4%.

4.4.3 Predominant Displacement Modes

The atomic displacements calculated in the present work for the epitaxial ground-state
structures of SrTiO3, CaTiO3, and SrHfO3 can be predominantly decomposed into a small set
of displacement eigenmodes. Figure 4.2 shows the displacement patterns of the most dom-
inant unstable eigenmodes, including a zone-centered FE distortion wherein the B -cations
shift against the other sublattices (Fig. 4.2a, irreducible representation Γ−4 ), and two types
of AFD octahedral rotations wherein the oxygen octahedra rotate either out of phase (Fig.
4.2b, R+

4 ) or in phase (Fig. 4.2c, M+
3 ) along an axis. Note that the irreducible representation

of the FE mode can vary with composition and misfit strain and need not be Γ−4 , although
this is the most common, whereas the octahedral rotation modes are uniquely determined by
symmetry. Each of these three displacement patterns can be independently realized along
each of the three orthogonal unit cell axes, leading to nine dominating displacement eigen-
modes. Linear combinations of these nine eigenmodes account for 95.8% of the total atomic
displacement predicted in the ground-state epitaxial phases of SrTiO3, 70.1% of the total
displacement in CaTiO3 and 77.2% in SrHfO3.

Even in cases where other displacement modes are more unstable in the reference tetrago-
nal structures, combinations of the nine modes described in the previous paragraph still dom-
inate in their contribution to the atomic displacements of the relaxed epitaxial ground-state
structures. Table 4.2 gives the sets of nine eigenmodes with the most unstable eigenvalues for
each of the reference tetragonal structures at various misfit strains. In some cases, denoted
by an ‘N/A’ in the Glazer system entry in Table 4.2, these sets include modes other than the
nine dominant modes described in the previous paragraph. However, even when these other
modes are more unstable, the nine modes described in the previous paragraph still dominate
in contributions to calculated displacement patterns in the relaxed ground-state structures.
This tendency implies that the displacement modes illustrated in 4.4.3 have a more optimal
balance of strong instability and favorable coupling with each other than other subsets of
displacement modes.

For example, when η̄ ≥ 2% for SrTiO3, two symmetry-equivalent in-plane AFD modes
have more negative eigenvalues in the reference tetragonal structures than all six of the R+

4

andM+
3 rotational modes. Yet, these two in-plane AFD modes do not contribute significantly

to the calculated displacements in the relaxed ground-state structures of SrTiO3 for strains
ranging between 2% to 4%, while three of the six R+

4 and M+
3 rotational modes make large

contributions to these displacements. Likewise, under large biaxial compressive or tensile
strains, SrHfO3 also has other unstable eigenmodes in the tetragonal reference structures
that ultimately do not contribute significantly to the atomic displacements in the relaxed
ground-state structures.
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4.4.4 Role of A-Site Bonding

Although the nine dominant displacement modes illustrated in Fig. 4.2 largely describe
the atomic displacements calculated for SrTiO3, the ground-state epitaxial structures of
CaTiO3 and SrHfO3 also have non-negligible atomic displacement contributions from a few
additional stable or weakly unstable displacement eigenmodes. Of these, the most relevant is
an antipolar A-site mode transforming like the irreducible representation X+

5 , shown in Fig.
4.3a. As described in detail in Ref. [16], the X+

5 mode is energetically favorable when both
the R+

4 and M+
3 rotational modes are present. Thus, most epitaxial ground-state structures

for CaTiO3 and SrHfO3 predicted in this work show a significant antipolar shift in the A-
sublattice with some dependence on misfit strain. Although these modes contribute less
than 30% of the total atomic displacement in the relaxed structures, their impact on energy
is still significant.

In order to determine the energetic influence of these eigenmodes having predominantly
A-site displacements, the energies of the ground-state structures for CaTiO3 and SrHfO3 are
re-calculated for modified structures in which only the contributions to the displacements
associated with the nine dominant eigenmodes illustrated in Fig. 4.2 are kept, all other
amplitudes being set to zero. The primary effect of this constraint is to disallow the structure
to shift the A-site sublattices. Figure 4.3b shows the resulting energy curves versus misfit
strain for CaTiO3 and SrHfO3. For CaTiO3, removing all but the nine dominant modes from
the structures increases the energy by up to 250 meV/f.u., with the most pronounced effects
at the extremes of misfit strain. For SrHfO3, the energetic influence is smaller, but still
significant, with a maximum increase in energy of 80 meV/f.u at η̄ = −2%. At η̄ = −4%,
contributions of modes other than the dominant nine vanish in SrHfO3.

The reason these A-site displacement modes are important in CaTiO3 and SrHfO3, but
not in SrTiO3, can be explained by simple geometrical considerations. The relative ratios
of the A- and B -cation radii, as characterized by the Goldschmidt tolerance factor (t) [56],
are very different in these two cases. While SrTiO3 (t = 1.001) has a tolerance factor that is
close to unity, implying the A and B cations have radii nearly perfectly suited to the ideal
perovskite structure, CaTiO3 (t = 0.946) and SrHfO3 (t = 0.949) have A cations that are
relatively too small. As a result, the A-site coordination environment is unfavorable in the
latter two systems, which explains why the eigenvalues of the CaTiO3 and SrHfO3 tetragonal
reference structures are consistently 2-3 eV/Å2 lower in value than those of SrTiO3 for both
the FE and AFD rotational eigenmodes (see bottom panels of Fig. 4.1). Both FE and
AFD eigenmodes can optimize the A-site bonding, although octahedral rotations tend to
do so more effectively and, thus, contribute more significantly to atomic displacements in
the ground-state structures of CaTiO3 and SrHfO3 [16]. These rotations alone, however, are
not enough to satisfy the A-site bonding preferences, which is why additional displacement
modes, such as the antipolar A-site X+

5 eigenmode shown in Fig. 4.3a, also condense in
the structure. These modes further serve to minimize A-O repulsion and optimize the
undersized A-site’s coordination [16]. This can be visualized in the displacement pattern
of the X+

5 mode, which brings the A-cations closer the square oxygen interstice, while also
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Figure 4.3: a) Antipolar A-site displacement mode (irreducible representation X+
5 ). This mode

can be independently realized down each of the three unit-cell axes. b) Metastability relative to
the ground-state structures of CaTiO3 and SrHfO3 resulting from the eigenmode amplitudes of all
modes other than the nine mentioned in Section 4.4.3 being set to zero. Part a) of this figure was
created using vesta [55].

drawing some of the equatorial oxygen atoms toward the A-cations. Figure 4.3b illustrates
that these A-site bond-optimizing modes can be important in lowering strain energy, and
that the degree to which these modes are needed to optimize the A-site bonding are highly
sensitive to both the misfit strain and composition of the system.

4.4.5 Behavioral Trends

Irrespective of differences in cation bonding preferences between SrTiO3, CaTiO3, and
SrHfO3, the results of this work demonstrate many shared features among the behavior of
the three compositions under epitaxy. In all three systems, application of misfit strain con-
sistently destabilizes the B -site coordination environment, leading to growing FE eigenmode
instabilities under both compression and tension. Increasing biaxial compressive strains lead
to the out-of-plane FE displacement mode becoming more unstable, while increasing biaxial
tensile strains always leads to the two in-plane FE modes becoming more unstable. The
bottom panels in Fig. 4.1 indicate for all three systems that the FE modes of the tetragonal
reference structures couple much more strongly to misfit strain than any of the octahedral
rotation modes. The next strongest couplings occur in the two out-of-plane rotation modes,
which are both strongly destabilized by increasing compressive strains, while the in-plane
rotation modes have the weakest coupling to misfit strain.
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4.5 Summary

Presented in this work is a computational framework for the calculation of ground-state
epitaxial phase diagrams of ferroelectric perovskite oxides. This framework employs expan-
sions of the total energy at various misfit strains with respect to soft-mode displacements
and homogeneous deformations, in order to locate candidate ground-state structures, which
are then further optimized through DFT calculations. Competing phases are predicted en-
tirely from first-principles, with no assumptions made regarding which set of displacement
modes to consider and no requirement of input information from experimental measure-
ments. This method also considers the important effects of AFD and A-site displacement
modes in ground-state epitaxial phases. The approach outlined in this work for identifying
ground-state phases under epitaxial strain can be used in future work to treat a larger range
of perovskite systems in order to explore compositional trends more broadly. This approach
is demonstrated in the present work in an application to three perovskite oxides, SrTiO3,
CaTiO3, and SrHfO3, over a range of epitaxial strains applied parallel to the (001) plane.
The main conclusions can be summarized as follows.

Compared to calculations in which relaxations associated with non-zone-centered dis-
placement modes are disallowed, the present results show that inclusion of non-zone-centered
displacement modes significantly affects the dependence of energy and polarization on misfit
strain. Namely, AFD octahedral rotations and associated A-site displacement modes tend
to strongly suppress polarization and also reduce the epitaxial strain energy. This informa-
tion has important consequences for the stability of competing phases as a function of film
thickness. Non-zone-centered distortions can be frozen out in very thin films if they increase
interfacial energy with the underlying substrate lattice, while these distortions are likely to
appear in thicker films because they reduce strain energy. In this way, competing phases
with very different polar properties have the potential to be accessed as a function of film
thickness.

A set of nine displacement modes, three zone-centered FE distortions often transforming
like Γ−4 , and six AFD octahedral rotations, three transforming like R+

4 and three like M+
3 ,

comprise the largest contributors to the atomic displacements found in the calculated ground-
state structures across all of the compositions and misfit strains considered. Combinations
of these modes dominate atomic displacements in stable epitaxial phases even when other
modes show more unstable eigenvalues in the high-symmetry reference structures. While
the atomic displacements of SrTiO3 can almost entirely be decomposed into contributions
from these nine dominant displacement modes, those obtained for CaTiO3 and SrHfO3 also
contain significant contributions from additional predominantly A-site displacement modes.
This difference between SrTiO3 and the other two compounds is driven by A-site bonding
preference. The main effect of these additional modes is an antipolar A-site shift that
significantly lowers strain energies of the epitaxial phases by optimizing the coordination
geometry of the A-site cation.
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CHAPTER 5

Electronic and Polar Properties of Vanadate

Compounds Stabilized by Epitaxial Strain

5.1 Motivation and Overview

Vanadate compounds are observed to form in a variety of crystalline structures, where
the coordination of the vanadium by oxygen can be octahedral, square pyramidal, trigonal
bipyramidal, or tetrahedral [83]. Correlating with this structural variety, these compounds
can be metals, insulators, ferroelectrics, ferromagnets, and potentially multiferroics [84]. The
wide range of bonding behavior and associated physical properties can be attributed, in part,
to vanadium having three different oxidation states (3+, 4+ and 5+) as well as to vanadium’s
ability to form strong directional bonds with oxygen. The oxovanadium (IV) ion, VO2+,
where V is in the 4+ oxidation state, is one of the most stable biatomic ions known [85],
having a vanadyl short double bond characterized by a bond-length of approximately 1.60 Å
and significant π-bonding [86]. Further, when V is in the 5+ oxidation state, the 3d shells of
vanadium are empty, but still near enough to 4s and 4p orbitals to allow for the hybridized
bonding behavior with oxygen characteristic of many transition metals [87].

The PbVO3 (PVO) compound has been the subject of recent experimental and com-
putational studies due to its potential for exhibiting magneto-electric coupling. Under
pressure [88] and in epitaxially strained thin films [8], PVO has been reported to form
in perovskite-derivative structures that are not observed under ambient conditions. These
pressure- and strain-stabilized structures are observed to display a weak vanadyl short
bond, square-pyramidal vanadium coordination, and super tetragonality. The vanadium
ion has been measured to be in the 4+ oxidation state with a single occupied d orbital,
thus having potential for multiferroicity [8]. These experimental studies of PVO have been
augmented by computational investigations employing density-functional-theory (DFT) ap-
proaches [84, 88–90], which have elucidated key features of the electronic structure and re-
ported a giant electric polarization of 1.52 C/m2.

The work in this chapter has been submitted for publication in Chemistry of Materials, by T. Angsten,
L. W. Martin and M. Asta, and is reproduced here with permission of the co-authors.
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In contrast to PVO, relatively little attention has been devoted to exploring strain stabi-
lization of perovskite-derivative structures in alternate vanadate compounds. This is perhaps
because many of these systems are non-ferroic in their bulk equilibrium phases under am-
bient conditions. For example, if the Pb cation in PVO is replaced with a divalent alkaline
earth metal, observed equilibrium phases include a metallic cubic perovskite structure (e.g.,
SrVO3) and a non-polar GdFeO3-type structure (e.g., CaVO3) [91]. If Pb in PVO is replaced
with a monovalent alkali metal, a non-polar centrosymmetric clinopyroxine or orthopyroxine
structure results (e.g., KVO3) [92]. However, in the same manner that the perovskite-
derivative structure of PVO must be externally stabilized through the application of strain,
similar structures could form and exhibit ferroic properties for other vanadate systems under
yet-unexplored epitaxial strain conditions.

In the present study, we employ DFT-based approaches in a computational investiga-
tion of the atomic and electronic structure, and energetic and polar properties of KVO3

and NaVO3 perovskite-derivative compounds under biaxial epitaxial strain. We further
compare the atomic and electronic properties of these compounds with those computed for
the experimentally-observed structure of PVO. For KVO3, it is shown that a perovskite-
derivative structure with spacegroup Cm is energetically stabilized under levels of compres-
sive biaxial strains that could be achievable in thin-film growth experiments. For NaVO3, a
perovskite-derivative structure with spacegroup Cm is shown to be energetically stabilized
under levels of tensile biaxial strains also achievable in growth experiments. Similar to PVO,
both of the biaxial-strain-stabilized perovskite-derivative compounds of KVO3 and NaVO3

exhibit large electric polarizations, considerable off-centering of the B -site sublattice, and
formation of vanadyl bonds. In contrast with PVO, these compounds do not form a magnetic
moment at the B -site and produce signficiantly less displacement of the A-site sub-lattice.
The results of this study suggest that strain-stabilized polar perovskite-derivative vanadate
compounds may occur for other compositions in addition to PVO, and that changes in the
A-site species can be used to tune the strength of vanadyl bonding and electronic properties
in these systems. Control over these properties could be crucial to enabling ferroelectric
switching and tuning the magnitudes of polar response properties.

In the remainder of this chapter, the computational methods are described in Section 5.2,
and detailed descriptions of the experimentally observed crystal structures of PVO, KVO3,
and NaVO3 are given in Section 5.3. The calculated epitaxial phase diagrams for KVO3 and
NaVO3 are presented in Section 5.4, with associated electronic structure results discussed in
Section 5.5. The main conclusions are summarized in Section 5.6.

5.2 Computational Methods

This work examines the effect of biaxial strain on the properties of perovskite-derivative
structures of KVO3 and NaVO3. Here, the term perovskite-derivative structure denotes
those that can be derived from the ideal 5-atom cubic perovskite unit cell by imposing
biaxial strain in the (001), and allowing for tetragonal and monoclinic strains normal to this
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plane, with arbitrary zone-centered displacements of the A- and B -site cations and oxygen
anions. Such symmetries are meant to mimic those that would be obtained in an epitaxial
thin film grown on a substrate with four-fold symmetry. Examples of such structures are
described in Section 5.4 below.

5.2.1 Computational Procedure

Construction of the epitaxial phase diagrams was performed using the workflow described
in Ref. [77], which involves a random structure search being conducted at each misfit strain.
Specifically, for a given misfit strain, multiple candidates are initialized starting from a
cubic perovskite structure and imposing random atomic displacements, leading to unit cells
with P1 space-group symmetry. These candidate structures are subsequently structurally
relaxed in DFT calculations, holding the in-plane lattice parameters constant. The lowest-
energy structure resulting from these optimizations is selected at each misfit strain and
used to generate a ground-state epitaxial phase diagram. A similar approach is used for
the experimentally-observed 80-atom KVO3 Pbcm structure. For this compound, candidate
structures at each misfit strain are generated from the experimental Pbcm structure biaxially
strained to be coherent with a four-fold substrate at a given lattice constant, and imposing
random atomic displacements to again reduce the spacegroup symmetry to P1.

Energies of all relaxed structures are referenced to that of the compounds observed under
ambient conditions, as discussed in Section 5.3. Electric polarizations are calculated for
epitaxial structures at each misfit strain considered, and electronic structures are computed
for the minimum energy epitaxial structures of KVO3 and NaVO3, as well as the perovskite-
derivative PVO structure discussed in Section 5.3 for purposes of comparison.

5.2.2 Calculation Details

All DFT calculations made use of the Vienna ab initio simulation package (vasp) [60–63]
version 5.4.1. A conjugate-gradient algorithm was used for all structural relaxations. As the
standard vasp software package does not allow for arbitrary mechanical boundary conditions,
relaxations performed under fixed in-plane strain used a custom-modified version of the vasp
software in which components of the stress tensor can be fixed at zero. All relaxations of
structures were continued until the forces and out-of-plane stresses converged to magnitudes
within 0.001 eV/Å and 0.005 eV/f.u., respectively, where eV/f.u. is per five-atom formula
unit. The resulting level of convergence in energy differences is to within 0.1 meV/f.u.

Calculations used the Ceperley-Alder form of the local density approximation (LDA)
exchange-correlation functional, as parameterized by Perdew and Zunger [64], with the
electron-ion interaction described by the projector augmented wave method [65, 66]. A
600 eV plane-wave cutoff energy and the tetrahedron smearing method with Blöchl correc-
tions [68] were used. For calculations of perovskite-derivative structures based on five-atom
unit cells, the Brillouin zone was sampled with a 6 × 6 × 6 Monkhorst-Pack [67] grid. In
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Table 5.1: Properties of the vanadate crystal structures illustrated in Fig. 5.1. The second, third
and fourth columns list lattice constants, Goldschmidt tolerance factors [56], and spacegroups. The
references for the data presented in this table are given in the fourth column.

Formula a0 (Å) Tolerance Factor t Spacegroup

KVO3 3.75 1.153 Pbcm [96]

NaVO3 3.68 1.028 C2/c [97]

PbVO3 3.80 1.015 P4mm [88]

calculations for the 80-atom Pbcm epitaxial KVO3 structure, a 2 × 2 × 6 Monkhorst-Pack
sampling was employed.

Hessian matrices were calcualed using Density Functional Perturbation Theory (DFPT)
[93] at the gamma point of 2 × 2 × 2 supercells. The Berry-phase approach, as described
in the modern theory of polarization [24], was used to calculate the electric polarization
vector of the ground-state phases at each misfit strain. All calculations assume a fixed
(vanishing) external electric field corresponding to thin-films surrounded by perfectly charge-
compensating electrodes, as discussed in Refs. [69, 70]. Use of the LDA in the present work
leads to well-known systematic errors in the calculated lattice constants, resulting in an
underestimation of their values of approximately one percent [4, 10].

Density of states calculations made use of a more refined k-point grid of 12× 12× 12, a
600 eV plane-wave cutoff energy, and the HSE06 hybrid functional [94]. These calculations
were performed on the original structures without re-optimizing the crystal structure with
the hybrid functional. The HSE06 functional leads to more accurate electronic structures
relative to LDA, with bandgaps agreeing to within 20% of experimentally measured values
for transition-metal oxides, as discussed in Ref. [95].

5.3 Experimentally Observed Crystal Structures

Figures 5.1a and b illustrate the experimentally observed crystal structures for the KVO3

and NaVO3 compounds that form under ambient conditions [96, 97]. For comparison, Fig.
5.1c shows the structure of the PVO phase observed under high-pressure conditions [88].
Table 3.1 gives reference lattice constants, Goldschmidt tolerance factors, and spacegroups
for these three structures. For KVO3 and NaVO3, all reported energies are referenced to the
corresponding calculated DFT energies of the observed compounds illustrated in Figs. 5.1a
and b.

The crystal structure of KVO3 shown in Fig. 5.1a has an orthopyroxene structure with
orthorhombic space group Pbcm, while the structure of NaVO3 shown in Fig. 5.1b has
the clinopyroxene structure with monoclinic space group C2/c [92, 98]. Both structures are
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Figure 5.1: Experimentally observed crystal structures of a) KVO3, b) NaVO3, and c) PVO.
Lengths of unique bonds are indicated in units of Ångstroms. References for structural data are
given in the fourth column of Table 3.1. The PVO phase is observed under pressure or epitaxial
strain, while the KVO and NVO phases are observed under ambient conditions. These figures were
created using vesta [55].

centrosymmetric and are characterized by long chains of tetrahedrally coordinated V5+ sites
extending along a single direction ([2+2]V 5+–eqOeq–

[2+2]V 5+ in the notation of Ref. [83]). The
vanadium atoms have two terminating cis vanadyl bonds, both of length 1.64 Å for KVO3,
and of lengths 1.67 and 1.69 Å for NaVO3, as well as two bridging equatorial bonds, both of
length 1.81 Å for KVO3 and 1.83 Å for NaVO3. Previous experiments have demonstrated
that these pyroxine structures can have strongly anisotropic mechanical responses due to
their strong directional bonding along the chain directions [98].

The orthopyroxine structure of KVO3 is potentially well-suited to epitaxial growth on a
substrate with a surface displaying four-fold symmetry due to the nearly square arrangement
of A-sites in the (100). This arrangement is illustrated in the 80-atom supercell representation
shown in Fig. 5.2. From this perspective, the vanadium tetrahedra can be seen occupying
the centers of slightly distorted cubes formed by A-sites.
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Figure 5.2: Supercell representation of Pbcm KVO3 (rendered in perspective) illustrating the
nearly square symmetry of the A-site cations in the (100) plane of the crystal structure shown in
Fig. 5.1b. This figure was created using vesta [55].

For comparison, we also consider the pressure-stabilized crystal structure of PVO as
shown in Fig. 5.1c. This is similar to the strain-stabilized PVO structure obtained in thin-
film growth experiments [8]. It has the non-centrosymmetric spacegroup P4mm, exhibits
a very large tetragonality (c/a = 1.23), and is accompanied by significant off-centering of
both the Pb and V sites [89]. These shifts result in an O5 pyramid structure coordinating
the V atom, with one apical oxygen, O(1), forming a short V-O vanadyl bond with a length
of 1.67 Å. The square plane of equatorial O(2) atoms results in four equatorial V-O bonds,
all of length 1.98 Å. The large downward displacement of the apical oxygen below the V site
leads to a long V-O bond of 3.00 Å, resulting in a two dimensional layering of corner-shared
squared pyramids rather than a three-dimensional framework of VO6 octahedra [88]. The
weak interaction between these neighboring layers is likely the reason PVO is not observed
to form under ambient conditions. Due to the presence of the lone pair in Pb, the A-site
is shifted from the center of an eightfold coordination toward a square O(2)2 plane, and
four of the eight Pb-O(2) distances become much shorter, with lengths of 2.39 Å. Thus, the
coordination of the lead atom is a tetragonal antiprism [88]. The large displacements of the
sites in PVO lead to a giant electric polarization of 1.52 C/m2 [90].

5.4 Epitaxial Phase Diagrams

Figures 5.3a and b plot the calculated epitaxial phase diagrams for KVO3 and NaVO3,
respectively. Energy is plotted versus misfit strain in the upper panel, while the values for
the magnitude (dashed line) and out-of-plane (blue diamonds) and in-plane (red squares
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Figure 5.3: Energies and polarizations plotted against misfit strain for a) the Cm and Pcmb phases
of KVO3 and b) the Cm phase of NaVO3. The dashed green line in part a) indicates the common
tangent construction for strain-induced phase separation. For the polarizations, out-of-plane (Pz)
and in-plane (Px and Py) components, as well as the magnitudes of the total polarization vector
are plotted.

and green triangles) components of the electric polarization are plotted in the bottom panel.
The horizontal scale on top gives the lattice constant a of a cubic substrate corresponding to
the given value of misfit: a = a0(η̄ + 1), where a0 is the compound’s reference cubic lattice
constant, as listed in Table 5.1. Energies for each compound are referenced to the experi-
mentally observed crystal structures described in Section 5.3, and can be interpreted as the
strain energy of the epitaxially constrained phase, with more positive energies corresponding
to larger driving forces for strain relaxation.

Figure 5.3a plots the energy and polarization versus misfit strain for two epitaxial phases
of KVO3, the perovskite-derivative Cm phase (black circles) and the strained derivative of
the experimentally-observed ambient Pbcm phase (red diamonds). As the Pbcm phase is
paraelectric at all misfit strains, only the Cm phase polarization is plotted in the bottom
panel.

The energy curve of the KVO3 Cm phase shows stabilization under large compressive
misfit strains, with a minimum located at η̄ = −3.75%. The corresponding ground-state
perovskite-derivative structure at this misfit strain is shown in Fig. 5.4a. This structure
is monoclinic (β = 88.9o), has a very large tetragonal distortion (c/a = 1.32), and is 52
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Figure 5.4: Calculated minimum-energy epitaxial structures of a) KVO3 at η̄ = −3.75% and b)
NaVO3 at η̄ = 1%. Bond lengths are indicated in units of Ångstroms. This figure was created
using vesta [55].

meV/f.u. higher in energy than the experimentally observed structure at ambient conditions.
Vanadium forms a short vanadyl bond of length 1.64 Å with an apical oxygen, two equatorial
bonds of length 1.96 Å with two surrounding oxygens in the square plane, and two equatorial
bonds of length 1.75 Å with the other two oxygens in the plane. The length of the bond
between vanadium and the oxygen trans to the vanadyl bond is 3.12 Å, leading to a layered
square pyramidal arrangement similar to that seen in PVO, but with the four-fold symmetry
along the c axis broken by a vanadium displacement along the 〈111〉. Analysis of the force-
constant matrix for a 2 × 2 × 2 supercell shows that this structure is stable with respect
to displacement modes at the zone-center and Brillouin-zone boundaries. The softest eigen-
displacement mode has an eigenvalue of 0.45 eV/Å2, supporting the possibility that the
minimum energy epitaxial KVO3 Cm phase is stable to non-zone-centered displacement
modes that can suppress polarization [16].

The polarization plot for the Cm phase of KVO3 is shown in the bottom panel of Fig.
5.3a. This plot exhibits smoothly increasing out-of-plane polarization with increasing misfit
compression, and smoothly increasing in-plane polarization with increasing misfit tension.
At the energy minimum (η̄ = −3.75%), the Cm phase has a polarization magnitude of
almost 1.1 C/m2, with the Pz component dominant.

Because of the ammenability of the Pbcm structure of KVO3 to (001)-oriented growth on
a substrate surface with square symmetry, as described in Section 5.3, epitaxial calculations
of KVO3 were also performed on a constrained form of this structure, in which in-plane (100)
shear was removed in order to simulate lattice matching with the substrate. The energy curve
of the epitaxial KVO3 Pbcm phase in Fig. 5.3a has a parabolic shape centered around a
minimum epitaxial lattice constant of approximately 3.82 Å. Relative to the Cm phase,
the Pbcm phase is stable under tensile and modest compressive epitaxial strain. However,
at nearly -2% misfit strain, there is a crossing of the energy curves, and the Cm phase
is predicted to be stable. A common tangent line can be constructed (dashed green line)
between the energy curves of the Cm and Pbcm phases, which predicts a strain-induced phase
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coexistence [73] between structures with misfit strains of approximately -4% and 1.5%. This
result implies that epitaxial films grown in this range of substrate lattice constants would
form two phases, a non-polar tetrahedrally coordinated Pbcm phase with an in-plane lattice
constant of around 3.80 Å, and a polar square-planar-coordinated Cm phase with an in-plane
lattice constant of around 3.60 Å. The polar properties of such two-phase films could be of
technological interest, as an out-of-plane electric field could drive growth of one or the other
phase and potentially elicit a large dielectric response by altering the balance of the phase
competition.

The explicit presence of a substrate, not accounted for in the present model, could shift
the two energy curves shown in Fig. 5.3a. However, it is likely that the effect of a square
substrate would be to further stabilize the Cm phase relative to Pbcm. This is because, in
the above calculations, the Cm phase has an exactly square arrangement of A sites, while
the Pbcm phase contains only a nearly square arrangement of A sites. The lack of perfect
registry for the other atoms in the plane would be expected to increase the interfacial energy.

Figure 5.3b plots the energy and polarization versus misfit strain for NaVO3. Due to the
absence of known competing polymorphs suitable for (001) epitaxy, only predictions for a
five-atom perovskite-derivative structure are shown. Under large tensile strains, an Amm2
phase is stable, while at all other misfit strains considered, a Cm phase is predicted. NaVO3

under epitaxy is destabilized by compressive epitaxial strains, and stabilized at modest tensile
strains, with a minimum energy structure located at η̄ = 1%. The structure corresponding
to this energy minimum is shown in Fig. 5.4b. It is characterized by a monoclinic angle of
β = 89.4o, c/a = 1.01, and it is only 9 meV/f.u. higher in energy than the experimentally
observed polymorph at ambient conditions. All oxygen sites are nearly equivalent, each
having a short bond with V of around 1.71 Å and a longer bond with V of 2.04 Å. The
structure is approximately cubic, with the V atom shifted along the 〈111〉 direction to sit
preferentially closer to three of the six coordinating oxygen sites. An analysis of the force-
constant matrix for a 2×2×2 supercell shows that this structure is unstable with respect to
both in-phase and out-of-phase octahedral rotational modes at the brillouin-zone boundaries,
with the most unstable eigen-displacement mode having an eigenvalue of -0.93 eV/Å2. In
a thicker film, where these modes are not frozen out due to the constraint of epitaxy, the
effect on polarization could be sizeable [99].

Similar to behavior seen for the KVO3 Cm phase, the out-of-plane polarization for epitax-
ial NaVO3 smoothly decreases while in-plane polarization smoothly increases with increasing
misfit strain. The out-of-plane polarization eventually disappears at the phase boundary lo-
cated at η̄ = 3.75%. The polarization of the minimum energy structure in NaVO3 has a
magnitude of 0.92 C/m2, with nearly equal contributions from in-plane and out-of-plane
components.
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5.5 Electronic Structures

Figures 5.5a-c show the total and projected electronic density of states (DOS) for the
PVO, KVO3, and NaVO3 structures illustrated in Figs. 5.1c, 5.4a, and 5.4b, respectively
calculated by the HSE06 hybrid functional. The top panel (black line) of each figure plots
the total DOS, while the other three panels plot the DOS projected onto the s, p, and d
orbitals of the various sites. Projected DOS are included for the A-cation (red line, A =
Pb, K, or Na), vanadium (blue), apical oxygen (light green), and two symmetry-equivalent
equatorial oxygen sites (dark green). A comparison of the electronic structures of these three
systems leads to key insights into the role of the A-site species in the bonding, as well as the
effect of changing the vanadium oxidation state from V4+, as in PVO, to V5+, as in KVO3

and NaVO3.
Figure 5.5a plots the DOS for the PVO structure shown in Fig. 5.1c. The electronic

structure of PVO has been calculated previously [84, 88, 89] using semi-local DFT, while
the present work employs hybrid functionals. In prior work a C-type antiferromagnetic
ordering of the magnetic moments has been shown to be slightly lower in energy than a
ferromagnetic (FM) ordering [88]. In the present work, which is focused on exploring trends
across the different vanadate compounds, we have considered only the FM state, which yields
a magnetic moment of 1 µB/f.u., localized on the Pb ion.

In order of increasing energy, the DOS for PVO in Fig. 5.5a exhibits a separate Pb-6s peak
starting 9 eV below the Fermi energy, followed by states of dominant O-2p character. At the
valence band maximum, the DOS shows a small peak originating from spin-up V-3d states.
The states at the conduction band minimum are of dominant V-3d character, followed by a
manifold of low-lying Pb-6p states. The DOS indicates Mott-insulator character, with the
2.35 eV band gap determined by the splitting between occupied and unoccupied V-3d states.
A single electron occupies the majority-spin vanadium dxy state (blue, -1 to 0 eV), resulting
in vanadium having a V4+ (d1) configuration in an ionic picture. In a centrosymmetric
tetragonal crystal field, the dyz and dxz orbitals are normally lower in energy than the dxy
orbital, e.g., as is seen in PbTiO3 [89]. However, the crystal field in PVO can be thought
of as being composed of an octahedral crystal field that splits the five d orbitals into three
lower-lying t2g states and two higher-lying eg states. The non-centrosymmetric displacements
in the structure further split the eg states into two and the t2g states into a lower-lying dxy
non-bonding state and higher-lying two-fold degenerate dxz and dyz states [84]. This picture
accounts for the multipeak electronic structure seen in the d-orbital partial DOS in the
bottom panel of Fig. 5.5a.

The stereochemically-active Pb site plays an important role in the bonding and electronic
structure of PVO. Both the Pb-O and V-O bonds display covalent character, and are strongly
coupled. As shown in Fig. 5.5a, the Pb-6s states in the valence band and low-lying Pb-6p
states in the conduction band mix with O-2p states. These same O-2p states also display hy-
bridization with V-3d states, thus suggesting the possibility for competition between vanadyl
and Pb-O bonds. As pointed out in Ref. [84], the stereochemical activity of Pb is not just
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Figure 5.5: Total and projected density of states for a) PVO (Fig. 5.1c), b) KVO3 (Fig. 5.4a),
and c) NaVO3 (Fig. 5.4b). Black lines indicate values of the total DOS, while colored lines give
values of the Projected DOS, with values of the A-cation in red, vanadium in blue, the apical oxygen
in light green, and the two symmetry-equivalent equatorial oxygens in dark green. For d-states,
spin-up and spin-down states are denoted by positive and negative values.
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a result of the lone 6s pair, but also results from the atomic structure of Pb2+, which has
low-lying 6p states that are very spatially extended and are able to hybridize with occupied
ligand orbitals. As a result of this competition, the vanadyl bond in PVO is relatively weak,
as evidenced by a relatively long bond length compared to most other vanadyl bonds in
minerals.

Figures 5.5b and c show DOS plots for the minimum energy epitaxial phases (see Fig. 5.4)
of KVO3 and NaVO3, respectively. Both are charge-transfer insulators with the states at the
valence-band maximum being largely of O-2p character. The HSE06 bandgaps of KVO3 and
NaVO3 are 2.07 eV and 2.98 eV, respectively. The ground state is non-spin-polarized in both
structures. Both in the valence and conduction bands, the V-3d states of KVO3 and NaVO3

strongly mix with O-2p states, indicating strong covalent character. In general, the strong
tetragonal distortion of KVO3 results in distinct electronic behaviors for the apical versus
the equitorial O sites, whereas the almost cubic lattice in NaVO3 leads to nearly identical
behaviors between all of the O sites. Unlike with PVO, no A-site states appear near the
Fermi energy. At approximately 6.5 eV below the Fermi energy, both systems exhibit a
sharp peak of states with mixed V-4s, O-2p, and V-3d character. In the case of KVO3, the
equitorial O-2p states are mixing with largely V-s and V-3dx2−y2 states, while in NaVO3,
both the apical and equitorial O states mix with V-4s and equal parts V-3dz2 and V-3dx2−y2
states. The states above approximately -5 eV are largely of V-3dxz and V-3dyz character for
KVO3 and equal parts V-3dxz, V-3dyz, and V-3dxy for NaVO3. The apical O in KVO3 mixes
more strongly with these states in a second peak. The states at the valence band maximum
are of dominant O-2p character in both compounds, and those at the valence-band minimum
are of primarily V-3d character.

A key result of the calculations shown in Fig. 5 is that the strength of the vanadyl bond
is affected by replacing the Pb A-site cation with Na or K. Singh shows in Ref. [84] that,
although replacement of Pb2+ with Ca2+ should strengthen the vanadyl bond by removing
the Pb-O ineraction that competes with the V-O interaction, the replacement of Pb instead
broadens the t2g bands and alters the crystal field so that the vanadyl bond is no longer
stabilized. In this work, however, it is seen that substitution of Pb2+ with K1+ or Na1+

does not alter the crystal field such as to destabilize the vanadyl bond. Further, because
the monovalent alkali metal A-sites do not have the spatially extended 6p states needed to
bond covalently with oxygen, they do not compete with the V-O interactions. The result is
stronger mixing between V and O states in KVO3 and NaVO3, which is consistent with the
shorter average V-O bond lengths of these two systems as compared to those of PVO.

5.6 Summary

The ground-state epitaxial phases and energetic, polar, and electronic properties of two
alkali-metal vanadates, KVO3 and NaVO3, are studied computationally by DFT calcula-
tions. Both KVO3 and NaVO3 exhibit epitaxially stabilized perovskite-derivative phases
with vanadyl bonding, large polarizations, and low epitaxial strain energies. The predicted
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ground-state epitaxial phase diagram for KVO3 shows potential for strain-induced phase
separation between a structure with Cm symmetry having a large polarization and square
pyramidal coordination of the B -site, and a non-polar epitaxial Pbcm structure displaying
tetrahedral coordination of the B -site. The electronic structure of the epitaxial phases of
KVO3 and NaVO3 are calculated and compared with those of the experimentally observed
perovskite-derivative PVO compound. These calculations show that substitution of Pb2+

with K1+ or Na1+ increases the strength of the vanadyl bond, due to the removal of the
spatially extended Pb 6p states that compete with V-O bonding.
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CHAPTER 6

Summary and Future Work

The design and discovery of new ferroelectric thin-film systems is greatly facilitated
by improved first-principles modeling capabilities, as the properties of these systems are
sensitive to a relatively large number of degrees of freedom as compared to traditional bulk
ferrelectrics. The research presented here has outlined and applied various automated first-
principles computational approaches for efficiently and systematically exploring the complex
parameter space of thin film ferroelectrics. The remainder of this chapter provides a summary
of the key results given in chapters 3, 4, and 5. In the final section, potential directions for
future work are given, with a discussion of how this work could further develop understanding
of thin-film ferroelectrics.

6.1 Orientation-Dependent Properties of Perovskite

Oxide Thin Films

In chapter 3, an automated DFT computational approach is used to investigate the
effects of epitaxial misfit strain on the structure, polarization, and energetic behavior of
many common perovskite compounds. Boundary conditions are included not only for the
(100)-growth orientation, but also for the (110)- and (111)-orientations, allowing for study
of the dependence of thin-film properties on growth orientation. The approach in this work
considered only perovskite-based structures, i.e., structures consistent with a periodicities of
a 5-atom perovskite primitive cell. Although this precludes examining the effects of common
distortions, such as rotations of the BO6 octahedra, it also gives unique insight in the case
of sufficiently thin-films in which such distortions are effectively frozen out.

Key results of chapter 3 include robust trends of in-plane polarization enhancement un-
der tension for all three growth orientations, and out-of-plane polarization enhancement
under biaxial compression for the (100)- and (110)-oriented film systems. For (111)-oriented
growth, a wider variety of out-of-plane polarization behaviors is predicted, the most ex-
treme example being (111)-BaTiO3, which exhibits an anomalously diminishing out-of-plane
polarization with compression. This dependence of polarization enhancement on growth
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orientations is a clear example of the subtle dependencies of thin-film properties on epitax-
ial boundary conditions. Other trends discovered include clear tendencies for compounds
with different compositions to form behavior groups, characterized by their phase sequences
and polarizations versus misfit strain. Two (100)-oriented systems, SrHfO3 and NaTaO3,
exhibit unique polarization dependencies on misfit strain, having phase transitions near 0%
misfit strain whereby a phase with all out-of-plane polarization gives way to a phase with
all in-plane polarization. The three (100)-oriented systems showing strain-induced phase
coexistence, PbTiO3, NaNbO3, and NaVO3, have relatively soft biaxial elastic responses
compared to the other compounds where this phenomenon is absent, suggesting that soft-
ness of the in-plane biaxial elastic response is an important factor in predicting whether or
not strain-induced phase coexistence will occur in a film.

With respect to technological applications, the key takeaway from the work in chapter 3 is
that the (110)- and (111)-oriented films more commonly feature first-order phase transitions
as a function of misfit strain, relative to the (100)-oriented case. An example is given for
(111)-oriented NaVO3, which has a first-order phase transition at small misfit tension with a
very large shift in polarization direction. Sudden changes in polarization state are often useful
for device applications, making the much-less-explored realm of (110)- and (111)-oriented
films a potentially fruitful domain for materials discovery.

6.2 Epitaxial Phase Diagrams Including the Role of

Antiferrodistortive and A-Site Displacement

Modes

Chapter 4 presents a more comprehensive computational framework for the calculation
of ground-state epitaxial phase diagrams of ferroelectric perovskite oxides. This approach
includes the effects of AFD and A-site displacement modes that are commonly observed in
perovskite compounds. Ground-state epitaxial phases are identified using a series of total-
energy expansions at various misfit strains with respect to soft-mode displacements and
homogeneous deformations. These expansions are minimized in order to locate candidate
ground-state structures, which are further optimized through DFT calculations. The key
feature of this method is the lack of need for input information from experimental measure-
ments. This computational approach is demonstrated in chapter 4 in an application to three
perovskite oxides, SrTiO3, CaTiO3, and SrHfO3, over a range of epitaxial strains applied
parallel to the (001) plane.

The results of this work show that a set of nine displacement modes, three zone-centered
FE distortions often transforming like Γ−4 , and six AFD octahedral rotations, three trans-
forming like R+

4 and three like M+
3 , comprise the largest contributors to the atomic dis-

placements found in the calculated ground-state structures across all of the compositions
and misfit strains considered. Further, even when competing eigenmodes have more ustable
eigenvalues, combinations of these nine modes dominate atomic displacements in stable epi-
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taxial phases. This work also shows the important role of A-site bonding preferences in these
perovskite compounds. While the atomic displacements of SrTiO3 can almost entirely be de-
composed into contributions from these nine dominant displacement modes, those obtained
for CaTiO3 and SrHfO3 also contain significant contributions from additional predominantly
A-site displacement modes. These modes largely constitute antipolar A-site shifts that signif-
icantly lower strain energies of the epitaxial phases by optimizing the coordination geometry
of the A-site cation. The amplitude of displacements in the A-site lattice is very sensitive to
the degree of misfit strain.

Because the model presented in chapter 4 includes non-zone-centered displacement modes,
while the model in chapter 3 is restricted to only treating zone-centered modes, a unique
opportunity arises to isolate the effects of an important subset of distortions in perovskite
thin films. The results show that the inclusion of non-zone-centered displacement modes
significantly affects the dependence of energy and polarization on misfit strain. Specifically,
the AFD octahedral rotations and A-site displacement modes tend to strongly suppress po-
larization and reduce the epitaxial strain energy. This comparison gives important insights
for practical thin-film applications with regard to the stability of competing phases as a
function of film thickness. Non-zone-centered distortions can be frozen out in very thin films
if they increase interfacial energy with the underlying substrate lattice, while these distor-
tions are likely to appear in thicker films because they reduce strain energy. Thus, one of
multiple competing phases with very different polar properties can be preferentially selected
by tuning film thickness.

6.3 Electronic and Polar Properties of Vanadate

Thin-Films

Chapter 5 focuses on the discovery of new vanadate perovskite thin-film ferroelectrics
alternative to the commonly studied PVO system. The workflow that was outlined in chapter
3 is applied to two alkali-metal vanadates, KVO3 and NaVO3, in order to determine the effect
of epitaxial boundary conditions on their energetic and polar properties. This work finds
that both KVO3 and NaVO3 exhibit epitaxially stabilized perovskite-based phases with
vanadyl bonding, large polarizations, and low film strain energy. Further, the predicted
phase diagram for KVO3 shows potential for strain-induced phase separation between a 5-
atom Cm phase having a large polarization and square pyramidal coordination of the B -site,
and a non-polar epitaxial Pbcm phase having tetrahedral coordination of the B -site. This
region of phase separation could be interesting from an applied perspective, as application
of an electric field can foster growth of one or the other phase, potentially eliciting a large
dielectric response. The electronic structure of PVO is calculated and compared with those of
KVO3 and NaVO3, showing that substituting Pb2+ with K1+ or Na1+ increases the strength
of the vanadyl bond, due to the removal of the spatially extended Pb 6p states that compete
with V-O bonding. This increased strength in bonding between V and O could result in a
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system that is even more difficult to ferroelectrically switch than PVO, although the barriers
to switching depend on factors influencing domain nucleation and growth, which are not
considered in this work.

6.4 Future Work

The results outlined in chapters 3-5 point to many opportunities for additional work
that could further improve understanding of thin-film ferroelectrics and facilitate their de-
sign and discovery. The workflow discussed in chapter 3 was applied to 42 non-magnetic
oxide perovskite systems having B -cations with d0 formal valence. There exist many other
perovskite systems of technological interest, and the consideration of this broader set of sys-
tems with non-d0 B -cations having spin-polarized ground states is a natural extension of this
work. This extension would require the more complex task of considering degrees of freedom
associated with the ordering of the magnetic moments of the B-cation when searching for
the ground-state. The simplest approach would be to allow only magnetic states consistent
with the five-atom periodicity of the perovskite primitive cell (ferromagnetism), while more
complicated approaches considering antiferromagnetism could be enabled by using larger
supercells.

The approach discussed in chapter 4 was applied to only three specific systems for the
purpose of demonstrating its effectiveness. This approach could easily be applied to a broader
range of compositions. This would allow for trends to be ascertained with respect to more
complex distortion modes than those considered in chapter 3. Further, the three systems con-
sidered, SrTiO3, CaTiO3, and SrHfO3, all have tolerance factors at or below one. Extending
this workflow to perovskite compounds with tolerance factors greater than one would lead
to a greater diversity of ground-state phases and a deeper understanding of the dominant
displacement modes for perovskite in which the B -cation is relatively too small.

As discussed in chapter 5, although PVO has a giant electrical polarization, it is a difficult
system to switch with application of an electric field. Thus, one of the motivations for
searching for alternative vanadate perovskites was to discover systems with similarly large
spontaneous polarizations that have lower barriers to switching. Insight into the barriers of
the ground-state epitaxial phases of KVO3 and NaVO3 would provide knowledge of whether
these systems could be useful for applications requiring ferroelectric switching. However,
because switching in ferroelectrics is dependent on processes with relatively large length
scales, such as domain nucleation, predicting the true energy barriers will require multi-
scale approaches, such as the use of force-field models in large-scale molecular dynamics
simulations, or phase-field models that can be parametrized from DFT results.

The calculations described in this dissertation have been limited to determining the
energies and properties of the homogeneous phases of ferroelectric thin films, as DFT is
constrained in the size of system it can consider. Although the direct modeling of domain
structures in thin-film ferroelectrics goes well beyond the present capabilities of DFT cal-
culations, the DFT calculations and workflows presented in this work can be used to guide
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the development of other methods that can handle these larger length scales. For example,
first-principles DFT calculations could be used to develop potentials for use in molecular dy-
namics simulations, which have been applied to studying domain-wall motion in ferroelectrics
(e.g., [100]), or to study pyroelectricity in LiNbO3 using shell-model potentials [101]. This
approach would enable incorporation of temperature effects, determination of the preferred
types of domain walls in a given ferroelectric, and would give access to a variety of other
equilibrium properties and a deeper understanding of the kinetic mechanisms underlying
switching.
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APPENDIX A

Additional Calculation Details and Supporting Figures

A.1 Additional Calculation Procedure Details

A.1.1 Accuracy of Phase Transitions

For each of the 42 thin-film systems modeled in this work, the energy and polarization
are calculated at each point in a grid of 47 misfit strains spanning -4% to 4%. These
misfit strains are spaced by increments of 0.1% between -1% and 1% strain; increments of
0.2% between -2% and -1% and 1% and 2% strain; and increments of 0.25% for all other
misfit strain regions. Space group symmetries of calculated phases are determined using
the Spglib software package.1 The symmetry precision tolerance value used to assign space
group symmetries (and consequently determine points of phase transition) is 0.01Å. As a
result of the use of a discrete grid and limited precision in symmetry determination, there is
a small error in the phase transition misfit strains reported in this work that is on the order
of ±0.1% misfit strain.

A.1.2 Justification for Random Search Method

In finding the minimum energy phases at each misfit strain, a random structure search is
performed in order to find the minimum energy epitaxial structure. With this approach, there
is no guarantee that the global minimum in energy will be located. However, the systems
treated in this work have a very small number of degrees of freedom over which to search
(12 displacement and 3 strain). This allows for a high degree of certainty in locating the
true energetic minimum given enough random trials. The number of trials used in this work
is at least three, with additional trials used as necessary to form smooth polarization and
energy curves where first-order transitions do not apply (see Section A.1.3 for details). An
alternative approach to random structure searching is to use as initial structures the known
phases for each growth orientation. However, a random structure search is preferable to this

1atztogo.github.io/spglib/
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approach for multiple reasons. In the first place, the set of possible phases is only tabulated
in the literature for the (100) and (111) growth orientations.2,3 Second, for certain phases,
there can be two or more energy minima with the same space group symmetries. Thus, to be
sure that all possible minima are accessed, a random seeding and multiple simulation cells
are still required even if the set of all possible space group symmetries of phases are known.
Given these concerns and the relatively inexpensive nature of the random structure search,
it was decided that a random approach with many trials was both more general and more
ammenable to automation.

A.1.3 Post-Processing of Polarization Curves

In many cases, after the initial pass of random structure searches at each misfit strain,
the resulting energy and polarization curves show discontinuities. These could correspond
either to sharp first-order phase transitions or the failure of a random structure search with
three trials to find the true energy minimum. To ensure the latter cases are eliminated, an
automated post-processing framework is applied. This framework locates all points showing
sudden changes in polarization components above a 0.05 C/m2 threshold and re-runs them
using the neighboring relaxed structures as the initial structures (with misfit strain properly
altered). This approach ensures that relaxed structures at neighboring misfit strains are
shared, thereby minimizing the chance of missing true ground-state structures at a given
misifit strain. To ensure sections of the phase diagram are not stuck in shared metastable
states, this approach is iteratively applied until the only points on the polarization curve
having discontinuous jumps above the 0.05 C/m2 threshold correspond to predicted first-
order phase transitions.

2Oja, R., Johnston, K., Frantti, J. and Nieminen, R. M. Phys. Rev. B 78, 16 (2008)
3N. A. Pertsev, A. G. Zembilgotov, and A. K. Tagantsev, Phys. Rev. Lett. 80, 1988 (1998)
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Figure A.4
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Figure A.5
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Figure A.6
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Figure A.7
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Figure A.8
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Figure A.9
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Figure A.10
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Figure A.11: Energy and polarization as a function of misfit strain for NaVO3. Shown here is
data for an expanded set of tensile misfit strains in order to demonstrate the slight tendency for
this system to phase separate. The red dashed line indicates the common tangent construction.
This construction predicts a slight lowering of energy by forming a phase mixture in the 2-4% misfit
strain regime.
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Figure A.12: Example fitted curves used to find expansion coefficients for SrTiO3 at η̄ = 0.0. a)
A polynomial fit of energy versus u1, the softest eigenmode coordinate, gives the second and fourth
order displacement term coefficients in Eq. 4.8 of the main text, b) a fit of energy versus εzz gives
the second-, third-, and fourth-order tensile strain coefficients in Eq. 4.7, and c) a fit of the second
derivative of energy with respect to u1 versus εzz determines the strain-displacement coupling term
in Eq. 4.9. Similar fitted curves are generated for the other eight softest displacement eigenmodes.

A.2 Example Calculation of Expansion Coefficients

Total energy calculations and curve fitting allow for the determination of all expansion
coefficients defined in Eqs. 4.7-4.9 of the main text. Figure A.12 depicts an example for
the case of SrTiO3 with η̄ = 0.0. Figure A.12a shows the total energy versus the amplitude
of the first eigenmode, from which the second- and fourth-order coefficients of the fitted
polynomial give 1

2
λ1 and C1 in Eq. 4.8 of the main text, respectively. Figure A.12b gives the

total energy versus out-of-plane tensile strain, from which the second-, third-, and fourth-
order coefficients of the fitted polynomial give B2, B3, and B4 in Eq. 4.7, respectively. Fig.
A.12c shows the second derivative of the total energy with respect to the first eigenmode
coordinate versus the out-of-plane strain, εzz. The first derivative of this fitted polynomial
evaluated at εzz = 0, and thus the first-order coefficient, gives 2A1 in Eq. 4.9. Each data
point in Fig. A.12c is computed using a finite-difference expression for determining the
second derivative of the energy, and thus is derived from multiple total-energy calculations.
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A.3 Effect of the Exchange Correlation Functional

Use of the LDA in the present work leads to well-known systematic errors resulting in
overbinding of the system, which are often reduced by the generalized-gradient approximation
(GGA). In ferroelectric perovskite oxides, however, GGA-based functionals, including the
HSE hybrid functional, can perform much worse than LDA.4 Recent work5 has demonstrated
that use of the strongly constrained and appropriately normed (SCAN) meta-GGA functional
can significantly improve accuracy over the LDA and GGA functionals when computing the
structural, electronic, and energetic properties of ferroelectrics.

To assess the effect of using SCAN in the present work, the phase diagram for CaTiO3

has been calculated using this meta-GGA functional. Figure A.13 shows the recalculated
phase diagram for CaTiO3 using SCAN. Due to the higher computational cost, only a portion
of the formalism outlined in the main text was followed to generate this diagram. The five
lowest-energy structures found using the full formalism of the main text under the LDA were
used as initial structures when constructing Fig. A.13, with a random structure search being
performed around each of these five structures. Within each search, relaxations at fixed in-
plane biaxial strains were carried out using the same DFT parameters as in the main text,
but with the SCAN functional applied instead of the LDA. It is possible that following the
full formalism with the SCAN functional could result in other phases not reported in Fig.
A.13, but the results indicate how different the descriptions are of the local energy landscapes
between LDA and SCAN.

A comparison of Fig. A.13 with Fig. 4.1b indicates that the primary difference of the
SCAN versus LDA results is that the former give phase boundaries shifted to epitaxial lat-
tice constants that are approximately 1% larger in magnitude. This is consistent with the
overbinding in LDA that produces energy equilibrium lattice constants that are underesti-
mated by a comparable amount. The same phases and phase orderings appear in Fig. A.13
as in Fig. 4.1b, and the eigenmode amplitudes and their dependencies on misfit strain are
also very similar. This demonstrates that the LDA functional describes the local energy
landscape about the three phases in a manner consistent with the SCAN functional, once
the systematic shift in lattice parameter has been applied.

4D. I. Bilc et al., Phys. Rev. B 77, 165107 (2008)
5Y. Zhang et al., Phys. Rev. B 96, 035143 (2017)
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Figure A.13: Recalculated phase diagram for CaTiO3 using the SCAN functional. Energies
and eigenmode amplitudes of the lowest-energy epitaixal structures are given. Note that the same
reference lattice constant used in Fig. 4.1b has been used here for reporting the misfit strain.
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