
UC Davis
IDAV Publications

Title
A GPU Task-Parallel Model with Dependency Resolution

Permalink
https://escholarship.org/uc/item/4956q122

Authors
Tzeng, Stanley
Lloyd, Brandon
Owens, John D.

Publication Date
2012

DOI
10.1109/MC.2012.255

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4956q122
https://escholarship.org
http://www.cdlib.org/

A GPU Task-Parallel Model with Dependency Resolution

Stanley Tzeng Brandon Lloyd John D. Owens

Abstract

We present a task-parallel programming
model for the GPU. Our task model is ro-
bust enough to handle irregular workloads
that contain dependencies. We present two
dependency-aware scheduling schemes—static
and dynamic—and analyze their behavior using
a synthetic workload. We apply our methods to
intra prediction in the H.264 video codec and
an N-queens backtracking problem.

Keywords: I.3.1.a Graphics processors;
I.3.1.d Parallel processing; I.4.2.e Video cod-
ing.

1 Introduction

Current languages for GPUs provide a data-
parallel programming model that runs programs

on the graphics hardware. A user writes a kernel and
specifies the amount of work that the kernel will pro-
cess on the GPU; the GPU’s internal hardware sched-
uler determines how to distribute individual blocks of
the work to the cores (streaming multiprocessors, or
SMs). In recent years this model has been success-
ful for a broad class of computationally-demanding,
general-purpose applications.

A key component of this programming model is
that the blocks that are distributed to GPU cores are
independent. No block can have a dependency on

another block. This gives the hardware scheduler
freedom to efficiently schedule work onto cores. But
it also eliminates a broad class of workloads from
consideration: irregular workloads with dependen-
cies. Irregular workloads produce a variable amount
of output per work unit. Dependent workloads have
work that must be completed before other portions
can begin. Modern GPUs have a limited ability
to synchronize and communicate between different
work units. Obtaining good performance from a data-
parallel model in the presence of dependencies is a
challenge. Because many of these irregular work-
loads with dependencies still exhibit significant par-
allelism, we hope that massively parallel processors
like GPUs could be a good fit for them. Algorithms
with complex irregularities, dependencies, or both are
often deemed “unsuitable for GPU computing” and
are instead often substituted with more regular algo-
rithms that are less efficient.

We believe this is a misconception, and in this ar-
ticle we show a programming model for GPUs that
can handle irregular parallelism with dependencies.
We break away from the data-parallel perspective of
a GPU and build a task-parallel model on GPU hard-
ware. Our goal is to design a programming model
that can handle irregular workloads without a major
loss in efficiency. We demonstrate a custom queu-
ing system and a custom scheduler to ensure evenly
distributed irregular work to all cores. Further, when

1

there are dependencies between work, our scheduler
can respect those dependencies in scheduling work.

2 Alternative Designs

Recently, GPU task-parallel models have been a pop-
ular topic in GPU research. Alia and Laine [1] pre-
sented the idea of persistent threads for handling ir-
regular ray generation in raytracing and this was fur-
ther developed in a GPU raytracer OptiX [9]. Ced-
erman and Tsigas [3] analyzed dynamic load balanc-
ing on GPUs with work-stealing schemes. Tzeng et
al. [11] used distributed queues with a work-donation
scheme to implement a Reyes renderer on the GPU.
A comprehensive survey of CPU task-parallel tech-
niques can be found in the work by Arora et al. [2].

Our review of the literature in this area is by no
means a comprehensive one. We reviewed the most
relevant ones to this article. While the references that
we just listed presents different strategies for load
balancing and alternative tasking designs, what we
present in this article is one that is simple enough for
readers to grasp and understand. Interested readers
are encouraged to follow up on the references pre-
sented in this section and pursue further work.

3 Task-Parallel Programming
Challenges

Task parallelism is a natural model for expressing
dependencies. Task parallelism, as opposed to

data parallelism, can have a different execution path
per unit of parallel work. While data-parallel formu-
lations often imply uniform, regular workloads, task
parallelism makes no such guarantees: the amount of
work that can be executed in parallel at any given time
is irregular. Tasks allow us to express dependencies
on a higher level.

The current GPU programming model, when run-
ning task-parallel code, has several major issues that
together result in a significant loss of efficiency:

Tasks spawning tasks GPU kernels assume their
launch bounds are fixed for the entire span of
work available. When tasks generate other
tasks, the amount of work that results is unpre-
dictable and irregular. The only solution is to
launch another kernel to execute on the newly
spawned tasks. This causes additional kernel
launching overhead and there is no bound on
the number of additional kernel launches.

Separate execution paths for tasks The data-
parallel model on GPUs prefers small variance
and minimal branches in its execution paths.
Running two adjacent threads that have different
execution paths on the same core results in the
sequential processing of both.

Load balancing Tasks need to be evenly distributed
across all cores to maximize parallel efficiency.
This includes the tasks that are spawned from
tasks as well. The hardware scheduler is un-
aware of tasks and how they should be sched-
uled. An efficient task scheduler, specialized
for task workloads, is necessary for good load
balancing.

There are many different abstractions for GPU
computing, each with their own terminology. As our
implementation is done on NVIDIA hardware, we
will be focusing on the CUDA [8] model of hardware
abstraction.

4 Conquering the Challenges

Separate execution paths for tasks: On NVIDIA
hardware, threads are grouped into 32-thread units

2

called warps. All threads in a warp run in lockstep and
in the original data-parallel model, each data element
is mapped onto a thread. Rather than mapping a task
to an individual thread, we view one warp process as
a task. That is, in our launch bounds, the block size
is set to 32 threads per block. Since each warp works
on a task, we call it a worker.

It is important to understand that this action ex-
poses SIMD parallelism. Rather than viewing a warp
as 32 individual threads, we now view it as a single
thread with a 32-wide vector. Because each warp ex-
ecutes in lockstep with its own instruction counter,
our parallelism is now MIMD across warps rather
than SIMD across threads.

Load balancing: Current GPU languages do not
make the hardware scheduler available as a resource
to the programmer. We must implement a software
scheduler to ensure that tasks are distributed to the
SMs evenly. Our software scheduler consists of a
global queue of tasks where workers may enqueue or
dequeue tasks from different ends of the queue. A
single global queue of tasks allows fair distribution
of tasks and ensures that workers are never starved.
Queues must maintain coherence and prevent race
conditions; we achieve this with locks.

Each queue is guarded by a lock that each worker
can grab atomically. We implement our locks as
spin-locks, using the atomic compare-and-swap in-
trinsics (for example: while(atomicCAS(lock,0,1) ==
1)). Recent GPUs resolve atomics within internal
caches, so spin-locks are now relatively fast.

Tasks spawning tasks: Workers must continue to
fetch tasks from the queue until all tasks, including
new ones spawned from existing tasks, are processed.
We use a programming style known as persistent
threads [1] to handle this. In a traditional GPU style,
each thread is spawned, executes, and dies. In the per-

sistent threads style, GPU threads stay alive through
the entire kernel, continuing to run inside a loop and
fetch work until the queue is empty. Because persis-
tent threads decouple the number of threads launched
from the amount of work to process, we are better able
to handle irregular workloads.

Putting it all together: Workers consisting of 1
warp dequeue a task from the global queue. Based on
the task, the worker runs one of the execution paths
in the kernel. This turns a task into an output and
potentially an extra task (the task may spawn a new
task). The output of the task goes onto an output
queue, and the extra generated task is enqueued back
onto the global queue. This model, while sufficient
for many tasking purposes, lacks any way to deter-
mine if a task has dependencies; tasks are assumed
to be independent from one another. In the following
section we will augment the current model so that it
can be dependency-aware.

5 Dependency Resolution

A key observation is that tasks placed in the queue
are processed by the next idle worker. De-

pendencies, therefore, only affect which tasks may
be placed in the queue. Our dependency resolution
scheme augments each task with more information to
ensure that it can be enqueued when its dependencies
are satisfied.

A task can be placed in the queue when all of its de-
pendencies have been resolved. We maintain a count
of each task’s outstanding dependencies DCounter.
When a worker is done with its task t, the worker
decrements the dependency counter of t’s dependent
tasks. A lookup table D links a task to other tasks that
depend on it. If any of those tasks become ready (their
dependency count is now zero), then they are pushed

3

onto the queue. The task dependencies between each
other can be mapped into a DAG that we term the
task map. We initially enqueue all tasks with a depth
of zero. Tasks with the same depth cannot depend
on each other and thus can be scheduled simultane-
ously. Algorithm 1 shows a pseudocode example of
the scheduler now with the dependency constraints.

Require: Ready Queue Qin

Require: Output Queue Qout

Require: Dependency Map D
Require: Dependency Counter DCounter

while tasksRemaining > 0 do
if |Qin|= 0 then

{If there are no available tasks, then wait for
dependencies to get resolved…}
continue

else
Acquire Qin.head lock
task← pop(Qin.head)
Release lock

end if
Process task into out
Go through dependencies.
for all d in D[task] do

atomicDec(DCounter[d])
if DCounter[d] == 0 then

Acquire Qin.head lock
d→ push(Qin.head)
Release lock

end if
end for
out→ push(Qout .tail)
update tasksRemaining

end while
Algorithm 1: Pseudocode of a single worker with
dependency resolution added. We call this scheme
dynamic scheduling as a task is dynamically assigned
at runtime to any idle worker.

This scheduling algorithm assigns a task to any idle
worker. We refer to this scheme as dynamic schedul-
ing. The advantage of dynamic scheduling is its gen-
erality: it can properly evaluate data-dependent prob-
lems with irregular input and output. Deadlocks can-
not occur because tasks are not placed in the queue
until they are ready to run. The queuing mechanism
needed to implement dynamic scheduling adds some
overhead, but this is required to handle workloads
that have irregular input. However, for some prob-
lems, we may already know the number of tasks (i.e.
regular input and output), but cannot execute the tasks
due to dependencies. In these scenarios, we can map
out which workers will run which task, and schedule
the work in a predetermined way. We refer to this
scheme as static scheduling.

Static Scheduling

If dynamic scheduling is a general dependency-
resolution scheme, then static scheduling is one with
a more narrow scope. It can only be used for prob-
lems in which all the tasks and their dependencies are
known beforehand. We assign workers to tasks based
on the thread block index. Because not all workers
will be scheduled on the GPU at the same time, it
is possible for the static scheduler to deadlock if the
scheduled tasks depend on a task that has not yet
started. To avoid deadlock, the task map must be
constructed in such a way that no task will be started
before any task on which it depends. If we assume
that the workers are scheduled onto the GPU in order,
we avoid deadlock. On the GPU we use in our exper-
iments, this assumption holds, which we can easily
verify by outputting the time at which a worker is first
scheduled on the GPU.

Static scheduling’s main strength is that it can use
the internal GPU scheduler to execute workers in the
correct order. It does not need a dynamic queuing
system with its associated overheads. The result is

4

simpler, more manageable code. The downside is
that it requires careful programming to be deadlock-
free. Further, workers may be forced to idly occupy
the GPU’s resources while they wait for their depen-
dencies to be resolved. This will create small periods
of idle waiting, or “bubbles”, in between task pro-
cessing.

6 Case Study Applications

We now present two applications that uses our de-
scribed tasking system. The first is a GPU video en-
coding application and the second is an N-Queens
backtracking problem on the GPU. Through the two
applications we demonstrate how our tasking system
and dependency resolution scheme can be applied to
implement their respective algorithms on the GPU.

H.264 Intra Prediction

H.264 prediction comes in two formats: inter and
intra prediction. They aim to encode using re-

dundancy in the temporal and spatial domains of the
video respectively. It is straightforward to take ad-
vantage of GPU data parallelism in inter prediction,
but intra prediction has proven difficult to parallelize
efficiently due to its dependencies. We give only a
brief overview of the algorithm and direct the inter-
ested reader to the official specification [6] and an
excellent book [10] for more details.

Intra prediction seeks to encode a frame as effi-
ciently as possible by exploiting spatial locality. Each
macroblock uses pixels from its neighbors that have
already been encoded to predict its own pixels. The
job of the encoder is to pick the mode that results in the
smallest encoding, including decomposing 16× 16
macroblocks into 4×4 sub-blocks.

A collection of macroblocks is called a slice. Mac-
roblocks within a slice only depend on each other.

They cannot have dependencies from macroblocks
from a different slice. A frame may consist of mul-
tiple slices. Slices can be used for several reasons,
but of particular interest to us, slices can be used to
increase parallelism because each slice is encoded in-
dependently, i.e. each slice can be seen as a mutually
exclusive DAG (see Figure 1).

Implementation Each 16×16 macroblock is a task
in our system. This results in a diagonal-major order-
ing of the tasks. The workers compute scores for all
the prediction modes and choose the best one. They
also compute scores for all 4× 4 sub-blocks. After
choosing the best mode for a sub-block, we must en-
code the sub-block and reconstruct it before moving
on to the next sub-block. All of these steps present
opportunities to exploit data parallelism. We take ad-
vantage of the parallelism within a warp by evaluating
multiple sub-blocks simultaneously. Since the size of
our workers is 32 threads, we choose to process two
4×4 subblocks at once by assigning a thread to each
element. Figure 1 shows the encoding order of sub-
blocks within a macroblock. The task then chooses
whether to use the 16× 16 or 4× 4 block size, per-
forms the encoding, and reconstructs the macroblock.
As the number of macroblocks is known beforehand,
both static and dynamic schedulers can be used for
intra prediction.

N-Queens Backtracking

Overview The classical N-Queens is a constraint
satisfaction problem of placing N queens on a N×N
chessboard so that none of the queens is in a line of
sight with another queen [5]. The problem is solved
via backtracking, a technique that incrementally finds
a solution by building candidate solution “states” that
do not violate the rules of the solution. As soon as a
state is found that violates the rule, that state and all
its successors are abandoned.

5

0
0

2
1

5
2

9
3

1
1

4
2

8
3

12
4

3
2

7
3

11
4

15
5

6
3

10
4

14
5

17
6

13
4

16
5

18
6

19
7

0 1 2 3

2 3 4 5

4 5 6 7

6 7 8 9

Figure 1: Top row: Dependencies for a 16×16 mac-
roblock (right) and a 4× 4 sub-block (left). Bottom
row: The task graphs for the 16× 16 macroblocks
of an 80× 48 image (right) and the sub-blocks of a
single macro block (left). The red numbers show the
maximum depth of a task’s dependency chain. Tasks
with the same depth have no mutual dependencies and
can be processed in parallel. Black numbers indicate
thread block to task assignments. Macroblocks are
processed in diagonal major order.

The N-Queens solver builds a tree of the search
space where each node represents a partially con-
structed solution. At each node, the solver attempts
to add a new queen to the next unfilled row of the
chessboard. If it succeeds, N new nodes are spawned
as children of the current node. A solution is found
when the entire board is filled. The depth of the tree
represents how many rows are filled with queens.

Implementation The N-Queens problem is one
where the search space is massive. In order to solve
the N-Queens problem in a reasonable amount of
time, we only evaluate a board state if we know that its
predecessor was valid. In order words, we are pruning
the search tree and searching only the valid candidates
until we find a solution. Thus, a board state cannot
be executed until its predecessor is determined to be
valid. This poses a dependency constraint.

We model each tree node as a task. A worker
fetches a task, evaluates the state, and determines if
the state is valid. If so, it then generates N nodes
as potential state candidates and pushes them onto
the queue. Otherwise, it simply discards the current
task and fetches another. The design of our dynamic
scheduler matches nicely to this problem, as we were
able to implement this program with relative ease.

This workload would be unsuitable for the static
scheduler. The reasons are twofold: first, there are
simply too many states; launching a thread block
per task is wasteful of resources. Second, since the
search tree is pruned, not every task is guaranteed to
be executed. Under the static scheduler, this implies
that many tasks that are taking up GPU resources
may never get executed due to pruning. These two
reasons combined make the backtracking problem a
more suitable fit for the dynamic scheduler.

The N-Queens problem is a challenging problem
for GPU-like architectures due to the combined effect
of the large number of dependencies and the dispro-
portionately high memory bandwidth demand. It is
for this reason that this style of problem has not been
closely studied in the GPU computing literature be-
fore. The closest work is the work done by Jenkins et
al. [7], whose results on backtracking (with an imple-
mentation split between the CPU and GPU) indicate
that problems like these are poorly-suited for GPU
architectures.

7 Results

Synthetic H.264 Workload

To analyze the performance characteristics of our
scheduling schemes, we use a synthetic workload that
has the same dependency structure as H.264. We re-
place the H.264 intra prediction routines with a simple
function (x = cos(x)) that is computed for a specified
number of iterations. This allows us to concentrate

6

on only the scheduling component of our system. To
visualize the behavior of the scheduling algorithms,
we ran one task per streaming multiprocessor (SM)
(by allocating all the available shared memory in an
SM to a block) and logged timestamps (taken with the
clock() function) at the beginning and end of task exe-
cution. We also log the SM ID (obtained using inline
assembly). We used the task graph corresponding to
that used for intra prediction of a large task size and
a small task size: 720p video frame (1280×720 pix-
els, 80× 45 macroblocks) and a 360p video frame
(640× 360 pixels, 40× 23 macroblocks). We vary
task lengths by scaling a base iteration count (500)
by a random multiplier in a specified range. Reported
timings are the average value over multiple runs.

Figure 2 shows a visualization of the execution
of variable length tasks for 3 scheduling techniques
and 2 different levels of slice parallelism. With only
one initial slice, we see significant underutilization at
the start and end of execution where task dependen-
cies restrict the available parallelism. Adding addi-
tional slices improves the utilization. With a static
schedule, numerous bubbles are visible where work-
ers must wait until the dependencies of their assigned
tasks have been resolved. With the dynamic sched-
uler, bubbles are significantly reduced because work-
ers can be assigned to any ready task. Bubbles only
occur when there is high contention for the lock on
the queue or when no tasks are ready. The perfor-
mance advantage of dynamic scheduling over static
scheduling vanishes when when the problem size in-
creases (see Figure 3), especially if the variance in
task length is low. This happens because with a large
problem size, it takes longer for workers to cycle back
to the same region on the front of ready tasks. Thus
the probability of being assigned to a task that de-
pends on another task that is still running decreases.
If the task length is uniform, then that probability is
even slimmer.

Figure 4 demonstrates the runtime for a varying

P
ro

c.
P

ro
c.

P
ro

c.
P

ro
c.

P
ro

c.
Time

P
ro

c.

Figure 2: Parallel timelines of variable-length task
execution with 15 SMs on a 40×23 graph for a sin-
gle slice (Rows 1–3). (Row 1) Using global synchro-
nization, the kernel is invoked once for each wave-
front. (Row 2) Static scheduling uses finer-grained
inter-task synchronization resulting in better utiliza-
tion. (Row 3) Dynamic scheduling reduces bubbles
that can occur when tasks must wait for other tasks
to finish. Increasing the number of slices to 4 (Rows
4–6) increases parallelism and improves utilization
during the ramp up and wind down stages.

number of slices. We obtain a maximum of 98% im-
provement for random task lengths and 55% improve-
ment for constant task lengths. Most of the speedup
is obtained with just a few initial tasks. The graphs
show the relative performance advantage of the dy-
namic scheduler depends on the size of the problem,
as discussed previously. The length of the task is also
important because with short tasks, a larger portion of

7

5 10 15 20
1

2

4

8

16

32

64

Slices

T
im

e
(m

s)

80x45 [1,16] * − Dynamic
80x45 [1,16] * − Static
40x23 [1,16] * − Dynamic
40x23 [1,16] * − Static
40x23 [1,16] − Dynamic
40x23 [1,16] − Static
40x23 [8] − Dynamic
40x23 [8] − Static
40x23 [2] − Dynamic
40x23 [2] − Static

* Single task per SM (15 total)

(a) Slice Comparison

0 500 1000 1500 2000 2500 3000
0

5

10

15

20

25

30

35

40

Iterations

T
im

e
(m

s)

Baseline
Static
Dynamic

(b) Performance Scaling

Figure 4: Left: Comparison of performance for varying graph sizes, task lengths, and scheduling algorithms.
If we limit the number of SMs to 15, then for large task graphs, slicing makes little difference. A 80×45 graph
with random task time multipliers in the range [1,16] have nearly identical performance for both static and
dynamic scheduling. Reducing the size to 40×23, dynamic scheduling performs slightly better than static
scheduling. Removing the limit on SMs or giving the task length multiplier a constant value of 8 eliminates
the performance advantages of dynamic scheduling. When task times are further reduced by a factor of
4, scheduling overhead begins to dominate and static scheduling is relatively faster. Right: Performance
scaling with a 80×45 graph for varying task length and 0 sleep ticks. The baseline performance executes
tasks without waiting for dependencies to be resolved. For short tasks, the performance of the dynamic
scheduling method is dominated by locking overhead.

the runtime is lost to scheduling overhead. Figure 4
shows how the performance scales with task length.

H.264 Intra Prediction

Our intra prediction routine is tested against real en-
coders and videos to see how our dependency res-
olution scheme fares with realistic scenarios. We
examine the encoding time against the open-source,
multi-threaded, SSE-optimized x.264 CPU encoder
for intra prediction. We also examine how the sched-
ulers deal with intra prediction slices. We are look-
ing to compare with an intra prediction routine that
can handle all prediction modes in one pass, as this is
most similar to our implementation. Thus we chose to

compare with x.264 rather than the multi-pass method
of Cheung et al. [4]. We set the x.264 encoder to the
baseline mode so that it most closely resembles the
intra prediction routine that we implemented. We ran
our tests on a Intel Core 2 Duo E8400 CPU and a
NVIDIA GTX 480 GPU running CUDA 3.2.

We chose two video sequences of different resolu-
tions that match the task-graphs chosen for the syn-
thetic scheduler. The first video was one of a bear in
a stream with a video resolution of 720×480 pixels
per frame. The second was one of ducks flying away
from a pool of water. This had a video resolution of
1280×720 pixels per frame.

Table 1 shows the results of our H.264 intra pre-
diction results. We varied the number of slices in a

8

H.264 Encoder

Bear Video
Slices x264 Intra Static Intra Dynamic

1 85.3 ms 26.5 ms 20.4 ms
2 75.4 ms 22.1 ms 15.7 ms
4 60.7 ms 20.5 ms 11.4 ms

Duck Video
Slices x264 Intra Static Intra Dynamic

1 194.0 ms 72.6 ms 74.3 ms
2 159.7 ms 60.3 ms 65.2 ms
4 133.8 ms 54.1 ms 59.4 ms

N-Queens Solver

N GPU CPU

15 1.7 s 0.9 s
16 11 s 7 s
17 77 s 46 s
18 580 s 366 s

Table 1: Top: Intra timing results while doubling the
number of slices for the bear and duck videos. As
we increase the slices, we also increase the amount
of parallelism in the dynamic scheduler. The static
scheduler does not increase as much due to the bub-
bles and sleeps as it waits for dependencies to finish.
Bottom: Timing results for the N-Queens backtrack-
ing problem for relevant sizes of N . For sizes N < 15
all solutions were found within a second. For sizes
N > 19, the problem was impractical to execute as
the time took too long. However, from the table here
we see that our GPU solver comes within 50–80% of
the CPU solver. The problem definition is ill-suited
for GPU computing due to its branching factor and
granularity. Nonetheless, we were able to demon-
strate how such a backtracking problem can be im-
plemented using our scheduler.

P
ro

c.

Time

P
ro

c.

Figure 3: Parallel timelines of variable-length task
execution with 15 SMs on a 80× 45 graph. (Top)
Static scheduling with 4 initial tasks has few bubbles.
(Bottom) Dynamic scheduling with 4 initial tasks fin-
ishes at nearly the same time as static scheduling.

frame to see how it would affect the runtime. We
tried up to four slices, as the majority of the speedup
is obtained with the first few slices. Both scheduler
versions outperform the CPU version. The dynamic
scheduler outperforms the static in the bear scene for
two reasons: the number of macroblocks and less idle
time. However, when the number of macroblocks are
increased in the duck scene, the two are nearly equal
to one another, with the static scheduler barely edg-
ing past the dynamic scheduler. This matches what
we see in the synthetic test results: with a medium
task size, the dynamic scheduler is more efficient at
scheduling tasks than the static scheduler, but as task
sizes grow, the static scheduler is slightly better due
to less scheduling overhead.

N Queens Backtracking

We tested our N-Queens implementation against a
multithreaded SSE-optimized CPU implementation.
We measure the time it takes for both versions to find
all solutions for a given board size N . In order to

9

record the timings on the GPU, we have manually
disabled the watchdog timer so that we could record
the timings. We recorded timings up to a reasonable
size of N to show how our method compares to the
CPU version.

Table 1 shows the results of our GPU N-Queens
solver. The branching factor for the N-Queens prob-
lem is exponential, as depicted by the difference in
runtimes in consecutive values of N . Despite being
such a ill-suited problem for GPUs, our naively im-
plemented solver is still able to achieve performance
within a factor of two of a highly optimized CPU
implementation.

8 Conclusion

In this article we presented a task-parallel pro-
gramming model capable of handling task-

dependencies. We introduced two methods of de-
pendency resolution: dynamic and static. We tested
our model by applying it to H.264 intra prediction
and N-Queens backtracking.

We separate out the task system into a queue com-
ponent and a task-dependency components so that
they are modular. In the future when there are im-
proved versions of each component, it is trivial to
change the scheduler with minor effects to the rest of
the system. Further, modularizing the components al-
lows us to quickly analyze results and draw objective
comparisons.

Choosing the right combination to use requires a
thorough look at the target problem. The static sched-
uler may be simpler and cleaner, but it requires care-
ful traversal of the task graph to ensure no deadlocks.
In the end, there is not one single combination that
will outperform all others. Each scheduler requires
careful tuning based on its input problem.

Our scheduler as it stands is an early look into the

realm of dependency resolution on GPUs. We expect
future hardware generations to support more features
that would accelerate our current structure. One im-
portant feature would be either a built-in sleep or yield
instruction that would put threads to sleep or force
threads to give up their resources.

We would like to see more support of robust call
stacks and thread preemption in future GPUs. We be-
lieve that these hardware feature would directly im-
pact performance and may open up new avenues of
exploration in GPU scheduling algorithms.

Acknowledgments

The authors appreciate the support of the National
Science Foundation (grants CCF-0644602 and CCF-
1017399), the Intel Science and Technology Center
for Visual Computing, and a CITRIS seed funding
grant.

9 Biography

Stanley Tzeng is currently a PhD student at the
University of California, Davis with John Owens
as his advisor. His main research interests are
task-parallel scheduling, graphics, and GPU com-
puting. He obtained his bachelor and masters at
Columbia University. He can be reached via email
at stzeng@ucdavis.edu.

Brandon Lloyd received his Ph.D. in Computer
Science from the University of North Carolina-
Chapel Hill for his work in shadow rendering. His
undergrad work was done at Brigham Young Uni-
versity. His interests include computer graphics,
parallel programming, and performance optimiza-
tion. He is currently working in the eXtreme Com-
puting Group (XCG) and can be reached at Bran-
don.Lloyd@microsoft.com.

10

John D. Owens is an associate professor of electri-
cal and computer engineering at UC Davis, where
he joined the faculty in 2003. His group pursues
research problems in GPU computing in both GPU
fundamentals and applications. He is a PI and theme
leader in the Intel Science and Technology Center for
Visual Computing. John received the DOE Early Ca-
reer Principal Investigator Award in 2004, earned an
NVIDIA Faculty Teaching Fellowship in 2006, was
the first recipient of his department’s Graduate Teach-
ing and Mentorship Award in 2009, and was named
an NVIDIA CUDA Fellow in 2012. He graduated
from Stanford with a Ph.D. in electrical engineering
in 2002 and from Berkeley with a B.S. in EECS in
1995. John is a member of the IEEE. He can be
reached via email at jowens@ece.ucdavis.edu.

Bibliography

[1] Timo Aila and Samuli Laine. Understanding
the efficiency of ray traversal on GPUs. In Pro-
ceedings of High Performance Graphics 2009,
pages 145–149, August 2009.

[2] Nimar S. Arora, Robert D. Blumofe, and
C. Greg Plaxton. Thread scheduling for mul-
tiprogrammed multiprocessors. In Proceedings
of the Tenth Annual ACM Symposium on Par-
allel Algorithms and Architectures, pages 119–
129, June/July 1998.

[3] Daniel Cederman and Philippas Tsigas. Dy-
namic load balancing using work-stealing. In
Wen-mei W. Hwu, editor, GPU Computing
Gems, volume 2, chapter 35, pages 485–499.
Morgan Kaufmann, October 2011.

[4] Ngai-Man Cheung, Oscar C. Au, Man-Cheung
Kung, and Xiaopeng Fan. Parallel rate-
distortion optimized intra mode decision on

multi-core graphics processors using greedy-
based encoding orders. In Proceedings of the
16th IEEE International Conference on Image
Processing (ICIP), pages 2309–2312, Novem-
ber 2009.

[5] Thomas H. Cormen, Charles E. Leiserson,
Ronald L. Rivest, and Clifford Stein. Introduc-
tion to Algorithms, Second Edition. The MIT
Press, September 2001.

[6] International Telecommunications Union.
ITU-T recommendation H.264 : Ad-
vanced video coding for generic audio-
visual services, November 2007. http:
//www.itu.int/rec/T-REC-H.264-200711-I/en.

[7] John Jenkins, Isha Arkatkar, John D. Owens,
Alok Choudhary, and Nagiza F. Samatova.
Lessons learned from exploring the backtrack-
ing paradigm on the GPU. In Euro-Par 2011:
Proceedings of the 17th International European
Conference on Parallel and Distributed Com-
puting, volume 6853 of Lecture Notes in Com-
puter Science, pages 425–437. Springer, Au-
gust/September 2011.

[8] NVIDIA Corporation. NVIDIA CUDA com-
pute unified device architecture programming
guide. http://developer.nvidia.com/cuda, Jan-
uary 2007.

[9] Steven G. Parker, James Bigler, Andreas Diet-
rich, Heiko Friedrich, Jared Hoberock, David
Luebke, David McAllister, Morgan McGuire,
Keith Morley, Austin Robison, and Martin
Stich. OptiX: A general purpose ray tracing en-
gine. ACM Transactions on Graphics, 29(3),
August 2010.

[10] Iain E. Richardson. The H.264 Advanced Video
Compression Standard. Wiley, 2010.

11

[11] Stanley Tzeng, Anjul Patney, and John D.
Owens. Task management for irregular-parallel
workloads on the GPU. In Proceedings of High
Performance Graphics 2010, pages 29–37, June
2010.

12

