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Abstract

A continual learning (CL) model is designed to solve the catas-
trophic forgetting problem, which damages the performance
of neural networks by overwriting previous knowledge with
new knowledge. The fundamental cause of this problem is
that previous data is not available when training new data in
the CL setting. The memory-based CL methods leverage a
memory buffer to address this problem by storing a limited
subset of previous data for replay, and most methods of this
type adopt random storage and replay strategies. In the human
brain, the hippocampus replays consolidated knowledge from
the neocortex in a random manner, e.g., random dreaming.
Inspired by this memory mechanism, we propose a memory-
based method, which replays more consolidated memory data
while maintaining the randomness. Our work highlights that
random replaying is important for the CL model, which con-
firms the effectiveness of random dreaming in the human brain.
Keywords: consolidated knowledge; memory-based methods;
continual learning; catastrophic forgetting; random replaying

Introduction
Human beings have the ability to continuously learn new

knowledge without forgetting old knowledge, which benefits

from the complex memory system in the brain and the replay

mechanism of experienced knowledge. Neural networks are

expected to have the same ability as human beings neverthe-

less suffer from the notorious catastrophic forgetting problem

(Mccloskey & Cohen, 1989; McClelland, McNaughton, &

O’Reilly, 1995). The main reason for this problem is that the

neural networks train new samples without the participation

of the old samples, which leads to the neural networks being

more biased towards the new samples and the performance of

the old samples becoming worse. Continual learning (CL) is

designed to solve this problem in neural networks. In the CL

setting, previous data is not available when training new data,

which simulates the human learning process.

Various types of CL methods have been proposed to over-

come the catastrophic forgetting problem in neural networks

(Parisi, Kemker, Part, Kanan, & Wermter, 2019; Mai et al.,

2021; Wang, Zhang, Su, & Zhu, 2023). Among these meth-

ods, the memory-based CL methods have gained more atten-

tion and obtained superior performance compared to other

methods (Aljundi, Caccia, et al., 2019; Lin, Zhang, Feng, Li,

& Ye, 2023). Inspired by the memory system in the brain,

the memory-based CL methods establish an extra memory

mechanism to simulate the learning process of the human

*Corresponding author.

brain. In the brain, there is a complementary learning sys-

tem (CLS) theory between the hippocampus and the neocor-

tex, and the CLS highlights that catastrophic forgetting arises

when learning takes place too quickly in overlapping repre-

sentations (McClelland et al., 1995; O’Reilly, Bhattacharyya,

Howard, & Ketz, 2014; Russin, Zolfaghar, Park, Boorman,

& O’Reilly, 2022). To overcome catastrophic forgetting, the

hippocampus exhibits short-term adaptation and allows for

the rapid learning of novel knowledge which will be trans-

mitted to the neocortex for its long-term retention (Lange et

al., 2019). Dreaming is the result of memory replay when the

new learning memory is transferred from the temporary mem-

ory to the long-term memory (Zhang, 2005), which can en-

hance memory consolidation (Wamsley & Stickgold, 2019).

Furthermore, the activation-synthesis theory considers that

dreams arise from random signals in the brain (A. Hobson,

1992; J. A. Hobson & McCarley, 1977).

Similar to the memory process in the brain, the memory-

based CL methods establish a memory buffer to store a lim-

ited subset of previous data for replay, which is like the pro-

cess of dreaming (Chaudhry et al., 2019; Aljundi, Lin, Gou-

jaud, & Bengio, 2019; Aljundi, Caccia, et al., 2019; Caccia et

al., 2022). Most methods adopt a random sampling strategy

to replay previous data from the memory buffer (Chaudhry

et al., 2019; Caccia et al., 2022; Lin et al., 2023), which is

consistent with the randomness of dreaming. However, these

methods leverage a random strategy to store samples in the

memory buffer, which will cause the neural network to miss

some important data for consolidating the memory.

Inspired by the memory mechanism in the human brain,

we propose a memory-based CL method, which stores con-

solidated data in the memory buffer and employs a random re-

play strategy. To this end, we design an indicator to measure

the sample consolidation degree by the gap between the max-

imum prediction probability and the second-largest predic-

tion probability. We conduct extensive experiments to show

that the combination of storing consolidated data with the

random replay strategy can aid the CL model in inhibiting

forgetting, which fits with replaying consolidated knowledge

from the neocortex. Furthermore, we try to replay the con-

solidated memory data directly nevertheless the catastrophic

forgetting issue becomes more serious, which shows the ne-

cessity of the random sampling strategy in the CL process and

verifies the effectiveness of random dreaming in the human

brain (A. Hobson, 1992; J. A. Hobson & McCarley, 1977).
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Figure 1: The learning processes of the human brain and the

CL model. (A) The human brain learns novel data quickly

through the hippocampus and forms consolidated knowledge

stored in the neocortex. Meanwhile, the neocortex will re-

play the stored knowledge by random dreaming to aid the

hippocampus learning. (B) The CL model simulates the pro-

cess of the human brain learning new knowledge. There are

two procedures in the buffer, which is the same as the brain

memory system between the hippocampus and the neocortex.

We train the neural network model in the online contin-

ual learning setting where the model trains each novel data

for one epoch. Following the way that the brain learns, the

new incoming data will be first learned by the hippocam-

pus to acquire new knowledge, as shown in Figure 1(A).

Then the new knowledge will be integrated into consolidated

knowledge and stored in the neocortex. In turn, the neocor-

tex replays the consolidated knowledge to help the hippocam-

pus quickly learn new knowledge by the replay manner like

random dreaming. In this way, the brain preserves both the

plasticity and the stability during learning (i.e., the stability-

plasticity dilemma (Zenke, Gerstner, & Ganguli, 2017; Power

& Schlaggar, 2017; Lewkowicz, 2014)). The key to solving

the stability-plasticity dilemma is the degree to which new

knowledge is integrated and adapted and how this adaptation

process stabilizes neural activity to prevent the occurrence

of catastrophic forgetting (Ditzler, Roveri, Alippi, & Polikar,

2015; Mermillod, Bugaiska, & BONIN, 2013).

To mimic the brain learning style introduced above, the CL

model is set to face a never-ending data stream, as shown in

Figure 1(B). In particular, the memory-based CL model adds

an extra memory buffer to store data observed in the past for

replay, like the neocortex. To comply with the principle of

limited resources, the memory buffer is restricted to a fixed

size, which means that there will be a memory update pro-

cess (removing some samples from the buffer to absorb new

coming samples) when the buffer is full (Rebuffi, Kolesnikov,

Sperl, & Lampert, 2017; Zhao, Xiao, Gan, Zhang, & Xia,

2020). During the training phase, the CL model will en-

counter the incoming data from the data stream and the mem-

ory data from the memory buffer. Existing methods propose

to employ random strategies in the memory update process

and the memory replay process (Chaudhry et al., 2019; Cac-

cia et al., 2022), nevertheless, the random strategies cannot

guarantee the replayed samples with consolidated knowledge.

Therefore, we investigate the potential for random replaying

consolidated samples to alleviate catastrophic forgetting as

the coordination between the neocortex and the hippocampus

(O’Reilly & Norman, 2002; Kitamura et al., 2017).

Methodology
In the human brain, the neocortex plays an important role in

the memory system due to the formation and use of consoli-

dated knowledge (Brodt & Gais, 2020; Moscovitch & Gilboa,

2022). In the CL setting, we argue that the memory buffer

should play the same role in helping neural networks over-

come catastrophic forgetting. To this end, we propose to de-

sign an indicator to score the degree of sample consolidation

and explore the role of the consolidated samples in the mem-

ory update process and the memory replay process.

Preliminary
This work considers the standard online continual learning

setting to solve the classification tasks. In this setting, the

data stream is split into multiple tasks, and each task con-

tains novel and unique classes. Concretely, these classes

{c1,c2, · · · ,ct , · · ·} are arranged in a chronological order,

and the memory buffer M can contain up to M samples.

These samples are presented as {Mx1
,Mx2

, · · · ,MxM
}, and

{My1
,My2

, · · · ,MyM
} are the corresponding labels, respec-

tively. When training, the data stream provides new streaming

data to the agent for learning novel class information. Mean-

while, the memory buffer replays one-batch buffered data to

the agent to alleviate catastrophic forgetting.

When the buffer is full, it is necessary to remove some

buffered samples to make room for new ones because the

buffer is limited and needs to absorb new class data to pre-

vent forgetting in future training. Most memory-based CL

methods will select some of these samples by the traditional

reservoir sampling method (Vitter, 1985) which can ensure

the random sampling operation with the uniform distribution.

Here, we advocate retaining the consolidated samples for re-

play. Furthermore, we adopt the same supervised loss func-

tion as the method of ER-ACE (Caccia et al., 2022).
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Figure 2: The presentation of consolidated scores. We use

the length of the red bracket to represent the degree of the

sample consolidation, which measures the gap between the

largest prediction probability and the second-largest predic-

tion probability.

Sample Consolidation Degree Measurement
It is a challenge to measure the degree of consolidation for a

sample. In a neural network, viewing that the prediction vec-

tor of probabilities can reflect the prediction confidence for

each possible class, we attempt to excavate the information

contained in the prediction vector. The class corresponding to

the maximum prediction probability in the vector is regarded

as the predicted class, and the second-largest prediction prob-

ability is the greatest threat to the maximum one. To this end,

we leverage the gap between the maximum prediction proba-

bility and the second-largest prediction probability to express

the value of consolidation for this sample, as shown in Figure

2. A large gap will prevent the sample from being affected by

other class samples, thus protecting the decision boundary of

the sample class and alleviating catastrophic forgetting. Thus,

we get the consolidated scores of a sample x as follows:

Score(x) = fθ(x)[0]− fθ(x)[1], (1)

where f is the prediction model parameterized by θ, f (·)[0]
represents the maximum number and f (·)[1] is the second-

largest number in the prediction vector f (·).
Memory Update Process
The operation of memory update occurs when the memory

buffer is full. Most memory-based methods apply reservoir

sampling (Vitter, 1985) directly to update the memory buffer.

Reservoir sampling is a classical random sampling algorithm

for drawing a fixed-size subset from streaming data in a single

pass, which applies to the setting of online continual learn-

ing. Concretely, we receive a stream of data S with N sam-

ples being observed, and the data volume is still increasing.

There is a reservoir that can contain up to M samples. Reser-

voir sampling aims to select a subset from S in a single pass

with M � N, and it has been proven that each streaming

sample has the same probability of being stored in the reser-

voir. Due to the sampling randomness in the streaming data,

most memory-based methods utilize this sampling method to

update the memory buffer, nevertheless, these methods have

not noticed that such uniform sampling will mistakenly miss

valuable samples which are beneficial for overcoming catas-

trophic forgetting such as consolidated samples.

Reservoir sampling can keep the randomness during the

whole memory update process. How to combine this sam-

pling theory with the consolidated samples becomes a chal-

lenge. We propose a sampling strategy to select the consol-

idated samples based on reservoir sampling. First, reservoir

sampling randomly selects new coming data xt , yt and de-

termines to replace the buffered sample Mx j , My j . Unlike a

direct random replacement by reservoir sampling, we aim to

select the low-value consolidated sample for the replacement.

Second, we sample a candidate subset Xcx j
from the buffer

where the candidates have the same label as My j . Then, we

calculate the consolidated scores for the candidates as per

Eq.(1) and select the sample with the least value to be re-

placed as follows:

Mxreplace = argmin
Mxk∈Xcx j

Score(Mxk). (2)

Thus, we replace buffered data Mxreplay , Myreplay (Myreplay =

My j ) with xt , yt . The above operations can ensure the ran-

domness of the memory update process and the retention of

consolidated samples.

Memory Replay Process
When the CL model encounters the incoming data, the mem-

ory buffer provides the historical data to the model with the

incoming data together, which is the main strategy to mitigate

catastrophic forgetting. Most memory-based methods use a

random strategy to replay data from the memory buffer, like

the manner of random dreaming. Each sample has the same

probability of being selected to participate in the replay pro-

cess as follows,

Mxreplay

1
M∼{Mx1

,Mx2
, · · · ,MxM

}. (3)

where 1
M is the probability of the uniform sampling from the

memory buffer and Mxreplay represents the sample to be re-

played. In the experiments, we test the effectiveness of re-

playing the consolidated samples and the maximally inter-

fered samples (MIR) (Aljundi, Caccia, et al., 2019).

Implementation Details
To validate the performance of retaining the consolidated

samples and random replay, we evaluate the proposed method

on various data streams with three metrics, Average Accu-

racy (Acc), Average Anytime Accuracy (AAA) (Caccia et

al., 2022) and training time, compared to several excellent

memory-based CL baselines. In Acc, aT,t is the accuracy eval-

uated on the held-out test set of task t after training the net-

work from task 1 to T .

Acc =
1

T

T

∑
t=1

aT,t . (4)
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Table 1: Acc and AAA across baselines under various memory sizes on Split Cifar10, and each number is the mean of 15

experiments. The best results are marked in bold.

Methods
M=20 M=50 M=200

Acc AAA Time Acc AAA Time Acc AAA Time
ER 19.3±0.9 41.0±1.7 67 20.3±1.5 42.8±1.8 68 28.1±2.2 51.3±2.5 69
MIR 19.7±0.9 41.4±1.3 123 21.5±1.6 44.1±1.4 124 30.7±2.5 53.2±2.1 125
GSS 18.4±0.5 39.7±1.0 231 18.7±0.6 39.9±0.9 322 25.2±1.8 44.7±1.3 517
ASER 19.5±0.6 41.7±1.1 102 19.3±1.1 40.6±1.2 115 26.0±2.7 43.7±1.8 149
DER 19.8±1.2 39.6±1.7 84 22.4±1.7 42.2±2.2 85 30.6±3.1 48.1±1.4 85
AML 23.9±2.7 46.0±2.4 97 30.4±1.8 51.5±1.7 98 41.7±1.6 58.4±1.7 99
ACE 25.2±3.6 49.0±2.2 66 33.2±2.2 53.4±1.7 67 41.7±2.8 59.1±1.6 67
Ours 27.2±3.5 50.3±2.0 67 34.4±3.1 54.6±1.7 68 43.0±1.6 59.7±1.7 71

Table 2: Acc and AAA on Split Cifar100.

Methods
M=500 M=2000

Acc AAA Acc AAA
ER 9.3±0.7 17.3±0.9 14.5±1.0 22.0±0.9
MIR 9.1±0.8 17.7±0.8 14.7±1.2 22.4±0.7
GSS 8.8±0.8 17.4±0.7 13.1±0.9 20.6±0.5
ASER 11.2±0.8 19.2±0.7 16.4±1.4 23.6±0.6
DER 5.8±0.3 12.3±0.6 13.7±0.8 20.8±0.9
AML 12.8±0.7 20.6±0.8 17.2±1.0 23.6±0.8
ACE 14.6±0.8 22.9±0.8 19.2±0.8 26.3±0.8
Ours 16.0±0.8 23.7±0.9 20.5±0.8 27.0±0.7

In our work, we report the AAA (Caccia et al., 2022),

which can measure how well the model performed over the

learning experience. We define the Anytime Accuracy AAk
at time k as the average accuracy on the test sets of all distri-

butions seen up to time k. When the learning experience lasts

T steps, then AAT is equivalent to the final accuracy. The

formulation of AAA is as follows:

AAA =
1

T

T

∑
t=1

AAt . (5)

The dataset settings are split into balanced data streams and

imbalanced data streams. The balanced data streams are as

follows: Split Cifar10 splits the Cifar10 dataset (Krizhevsky,

2009) into 5 different tasks with two non-overlapping

classes. Split Cifar100 and Split Mini-ImageNet divide the

Cifar100 dataset (Krizhevsky, 2009) and the Mini-ImageNet

dataset (Vinyals, Blundell, Lillicrap, Kavukcuoglu, & Wier-

stra, 2016) into 10 disjoint tasks with 10 different classes per

task. The imbalanced data streams are as follows: Blurry Ci-
far10 consists of 5 tasks, and each task keeps 90% of the data

for each task and introduces 10% of data from the other tasks

following the works in (Aljundi, Lin, et al., 2019; Caccia et

al., 2022). Furthermore, we introduce Imbalanced Cifar100
with the same setting as (Lange & Tuytelaars, 2021), where

the data stream S comprises significantly more data in task Ti,

denoted by S(Ti). Imbalanced Cifar100 uses a 20-task se-

quence and allocates 2500 samples for Ti and 1000 samples

for other tasks (i ∈ {1,5,10,15,20}).

We focus our evaluation on the memory-based CL meth-

ods, due to their outstanding performance than other ap-

Table 3: Acc and AAA on Split Mini-ImageNet.

Methods
M=500 M=2000

Acc AAA Acc AAA
ER 7.8±0.6 16.3±0.7 13.4±1.6 20.4±0.8
MIR 8.0±0.5 16.7±0.6 13.8±2.3 20.8±0.9
GSS 7.3±0.9 16.4±0.8 13.8±1.3 20.4±1.0
ASER 8.6±0.8 16.4±0.5 12.3±1.0 19.6±0.9
DER 4.3 ±0.5 10.9 ±0.4 13.1±0.7 19.5 ±1.0
AML 9.6±1.0 18.6±0.8 14.4±2.0 22.5±0.9
ACE 12.8±1.0 21.9±1.1 18.8±1.6 25.9±0.7
Ours 14.0±0.8 22.4±1.0 19.7±1.3 26.0±1.0

proaches in the online continual learning setting. We con-

sider the following baselines: ER (Chaudhry et al., 2019),

GSS (Aljundi, Lin, et al., 2019), MIR (Aljundi, Caccia, et

al., 2019), ASER (Shim et al., 2020), ER-AML (AML for

short) (Caccia et al., 2022), ER-ACE (ACE for short) (Caccia

et al., 2022) and DER (Buzzega, Boschini, Porrello, Abati, &

Calderara, 2020). All of these methods train the model with a

single pass through the data stream. Similar to (Chaudhry et

al., 2019; Shim et al., 2020; Lopez-Paz & Ranzato, 2017),

we employ the neural networks of reduced ResNet18 and

ResNet34 to validate these baselines. All methods use the

SGD optimizer to update the parameters with a learning rate

of 0.1 following (Shim et al., 2020; Caccia et al., 2022). The

sizes of the incoming batch and the memory batch are set to

10, and all results are the average values of 15 runs.

Results
We conduct extensive experiments on balanced data streams,

imbalanced data streams, the longer task and the deeper neu-

ral network. We also explore various combination methods in

the memory update process and the memory replay process.

Results on Balanced Data Streams
Split Cifar10. To evaluate the performance of our proposed

methods on Split Cifar10, we measure Acc and AAA in our

experiments. We set the memory size as 20, 50 and 200, and

each class can averagely store 2, 5 and 20 samples. Table

1 shows the results of these three metrics, and we find that

our proposed method outperforms the state-of-the-art (SOTA)

baselines in the Acc and AAA metrics with various memory
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Figure 3: Acc of Blurry Cifar10.
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Figure 4: Acc of Imbalanced Cifar100.

sizes, which demonstrates the effectiveness of our proposed

method. Furthermore, ER, ACE and our proposed method

consume less training time than other baselines, which proves

that our proposed method is efficient.

Split Cifar100. To validate the performance on the dataset

with more classes, we show the results on Split Cifar100, as

shown in Table 2. The memory sizes are set as 500 and 2000

respectively. Our method achieves the SOTA performance on

the metrics of Acc and AAA.

Split Mini-ImageNet. We present the results on Split Mini-

ImageNet in Table 3. With the same memory sizes as Split

Cifar100, our method outperforms the SOTA performance.

Results on Imbalanced Data Streams

Blurry Cifar10. Similar to the settings in (Aljundi, Lin, et

al., 2019; Caccia et al., 2022), we explore the scenario where

there are no clear task boundaries in the data stream, which is

a more practical setting. As introduced earlier, we keep the

majority of the examples for one task while we randomly

swap a small percentage of the examples with other tasks.

Note that the data distribution in one task is non-i.i.d. due to

the imbalanced amount of classes. As shown in Figure 3, our

method outperforms other methods by large margins with var-

ious memory sizes, which illustrates that our method is more

applicable to this realistic scenario.
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Figure 5: Acc of 50 tasks on Split Cifar100.
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Figure 6: Acc and AAA on ResNet34 with Split Cifar100.

Imbalanced Cifar100. In the imbalanced data streams, the

agent faces lopsided amounts of samples in different tasks.

Figure 4 shows the results containing 5 variations with var-

ious online continual learning approaches, and our method

outperforms other baselines in most variations and achieves

the best results on different data streams.

Results on the Longer Task

The dataset in the CL setting is usually divided into 5 tasks

or 10 tasks. To test the performance of our method on more

tasks, we set a longer sequence of tasks. As shown in Fig-

ure 5, we show 50-task sequence training modes on Split Ci-

far100, where there are 100 classes, and each task has two

classes. From the results, we can conclude that our method

outperforms the baselines under various memory sizes.

Results on the Deeper Neural Network

To verify the performance of these methods on the other

model, we conduct experiments on the model of ResNet34.

As shown in Figure 6, we conduct experiments on Split Ci-

far100. The memory sizes are set as 500, 2000 for this dataset.

From the results in the table, we can observe that our method

achieves the SOTA performance on the metrics of Acc and

AAA with different memory sizes.
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Table 4: Acc and AAA on Split Cifar10.

Methods
M=50 M=200

Acc AAA Acc AAA
A 33.2±2.2 53.4±1.7 41.7±2.8 59.1±1.6
B 25.3±3.0 48.6±2.3 30.7±3.2 52.3±2.0
C 25.5±3.1 49.0±2.7 31.2±2.2 51.7±2.3

D(Ours) 34.4±3.1 54.6±1.7 43.0±1.6 59.7±1.7

Discussion
The memory-based CL model overcomes catastrophic for-

getting by employing the memory buffer to replay previ-

ous data. There are two strategies for the memory buffer,

memory update and memory replay, just like the brain’s

memory formation between the hippocampus and the neo-

cortex (Winocur, Moscovitch, & Bontempi, 2010; Brodt et

al., 2016). The neocortex stores consolidated knowledge and

replays the knowledge to help the hippocampus learn new

knowledge quickly. Random dreaming is an important re-

play manner that can consolidate knowledge when human be-

ings are sleeping (Hudachek & Wamsley, 2023; Ataei et al.,

2023). We can conclude that random dreaming and consoli-

dated knowledge are two key factors for the brain to alleviate

forgetting. Therefore, we simulate these two factors on the

memory buffer and combine them in four ways to explore the

effectiveness of overcoming catastrophic forgetting in the CL

model, as shown in Figure 7. “A” employs random storage

and random replay strategies and shows the random opera-

tions. “B” leverages the random storage strategy and the con-

solidated sample replay strategy which selects the most con-

solidated samples from the memory buffer for replay. “C”

uses the consolidated sample storage strategy and the consol-

idated sample replay strategy. “D” is our proposed method

which utilizes the consolidated sample storage and random

replay strategy like the neocortex memory mechanism.

We conduct experiments on Split Cifar10 to validate the

performance on the above four combinations in Table 4.

Overall, the performance of “A” and “D” is better than “B”

and “C”, indicating that the random replay operation is more

effective than the consolidated sample replay operation and
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Figure 8: Acc and AAA on Split Cifar10.

further verifying the importance of random dreaming in over-

coming forgetting. By comparing the results between “A” and

“B”, we can see that the consolidated sample replay operation

is the main reason for the performance degradation, which

demonstrates that the consolidation sample selection is not

suitable for the memory replay process. We can also obtain

a similar conclusion that using random replay is better than

consolidated sample replay by comparing the results of “C”

and “D”. Besides, based on the performance of “A” and “D”,

we find that the consolidated sample strategy contributes to

improving the CL model. “D” is our proposed method and

achieves the best performance, which demonstrates the supe-

riority of the combination of the consolidated sample storage

and the random replay, and also confirms the effectiveness of

the neocortex preservation of consolidated samples and ran-

dom dreaming in the human brain.

Furthermore, to evaluate the performance of our proposed

method with the other replay strategy (e.g., MIR (Aljundi,

Caccia, et al., 2019)), we demonstrate the results on Split Ci-

far10 in Figure 8. We find that the performance decreases on

both metrics after the combination. This phenomenon shows

that the combination of the consolidated sample storage and

the MIR replay strategy has no effect. Instead, the MIR replay

strategy is inhibiting the performance of our method, which

highlights the importance of random replay in our method.
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