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ABSTRACT

Studies to elucidate the molecular targets of two potent antimalarial
benzoxaborole compounds in Plasmodium falciparum

By
Ebere Irene Sonoiki
Doctor of Philosophy in Infectious diseases and immunity
University of California, Berkeley

Dr. Eva Harris, Co-chair
Dr. Philip Rosenthal, Co-chair

With increasing resistance of malaria parasites to available drugs, there is a
great need for new antimalarials, ideally with novel mechanisms of action. We
are investigating the antimalarial activity and mechanisms of action of
benzoxaboroles, a novel class of boron-containing compounds. Compounds
3661, 1467 and related compounds demonstrated good activity in vitro
against chloroquine-resistant Plasmodium falciparum and in vivo against
murine Plasmodium berghei infection (compound 3661: ICso 37 nM against
W2-strain P. falciparum, EDgo 0.3 mg/kg against murine P.berghei; compound
1467: 1Cs50 196 nM, ED9o 7.4 mg/kg). In an attempt to characterize
mechanisms of action, we selected for parasites with decreased sensitivity to
3661 and 1467 by culturing with step-wise increases in concentration of the
compounds followed by whole genome sequencing. Sequencing of parasites
selected for resistance to 1467 showed several SNPs in the editing domain of a
predicted leucyl tRNA synthetase (LeuRS) gene (PF3D7_0622800) and in
another gene of unknown function (PF3D7_1218100). Additionally, both
compounds were tested for stage-specificity by incubation with test
compounds for 8 hour intervals across the parasite erythrocytic life cycle.
Both compounds were most active against trophozoite stage parasites. To
further understand the mechanism of action of 1467 and the related
compound 1474, the incorporation of 14[C] leucine in parasite cultures or
parasite extracts including exogenous tRNA was assessed in the presence or
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absence of the compounds. Dose-dependent inhibition of both protein
synthesis and LeuRS activity was observed for 1467 and 1474, but not 3661
or the control artemisinin, supporting different mechanisms for the different
benzoxaboroles. For 3661, in vitro resistance selection was also achieved by
culturing parasites in step-wise increasing concentration and in a single high
concentration of the compound. Cross-resistance was not seen between
parasites selected with 3661 and those selected with 1467. Whole genome
sequencing of multiple clones selected for resistance to 3661 revealed several
SNPs in a gene that codes for a homolog of mammalian cleavage and
polyadenylation specificity factor (CPSF; PF14_0364). In summary, we offer
strong evidence for unique antimalarial mechanisms of action for two
benzoxaboroles, identifying two potential novel antimalarial drug targets.
Further investigation of these novel benzoxaborole mechanisms is underway.
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CHAPTER 1

INTRODUCTION

1.1 Epidemiology of malaria

Malaria is one of the biggest global health challenges in our world today.
According to the 2013 World Health Organization (WHO) world malaria
report, about 3.4 billion people are at risk of malaria and 1.2 billion are at high
risk. In 2012, malaria accounted for about 200 million cases and 627,000
deaths. Most of the malaria deaths occurred in sub-Saharan Africa (90%) and
in children under the age of five years (77%). Other regions plagued by
malaria include Asia and South America.

Malaria is a protozoan disease caused by apicomplexan parasites of the
Plasmodium genus and transmitted by the female anopheles mosquito.
Plasmodial parasites that infect humans are P. ovale, P. malariae, P. knowlesi,
P. vivax and P. falciparum. Of these, P. falciparum, the focus of this
dissertation, is the most widely prevalent, with highest endemicity in sub-
Saharan Africa (Dondorp et al. 2008, von Seidlein et al. 2012). It also occurs in
Asia, South and Central America, and Oceania, albeit with lower incidence
(Gething et al. 2011). Due to characteristics such as high blood parasitemia,
sophisticated immune evasion techniques, and ability to cause sequestration
of infected and uninfected red blood cells (RBCs) in blood vessels within vital
organs such as the brain, P. falciparum accounts for nearly all severe and fatal
cases of malaria (White et al. 2013).

Due to the global public health burden associated with malaria, robust
steps are being taken towards control and elimination. Beginning with the
launch of the Roll Back Malaria Initiative by WHO in 1998, malaria control
activities have increased, as funding from international agencies,
governments, philanthropies, and private corporations has increased. Such
activities include distribution of long-lasting insecticide-impregnated bed



nets, indoor residual spraying of insecticides, intermittent preventive therapy
with antimalarials, and expansion of access to artemisinin-based combination
therapies (ACTs) and rapid diagnostic tests (RDTs). All together, these
interventions have led to decreases in malaria incidence and mortality in
several endemic regions. Notwithstanding, this observed progress is far from
uniform, as some endemic areas have experienced increases in malaria
incidence over the past decade (O’'meara et al. 2008, Trape et al. 2011,
Jagannathan et al. 2012, Rocker-Feltrer et al. 2012). Clearly, more work is
needed, as malaria remains one of the most important infectious diseases in
the world.

1.2 Biology of P. falciparum

The life cycle of plasmodia is complex, requiring survival in a
mosquito vector and in different cell types within the human host (Fig 1.1). In
the anopheline mosquito vector, male and female gametocytes, picked up
during a blood meal from the human host, join to form a diploid zygote, which
progresses to an ookinete in the midgut. The ookinete penetrates the gut
membrane where it forms oocysts, leading to release of sporozoites, which
then migrate to the salivary gland. When a parasitized mosquito bites a
human host, mostly between dusk and dawn, it deposits sporozoites into the
bloodstream, which travel to the liver and infect hepatocytes. The parasites
then undergo asexual reproduction, releasing merozoites into the blood
stream after about 8-10 days. When released into the blood stream, the
merozoites invade red blood cells (RBCs) and undergo a 48 hour erythrocytic
cycle (Miller et al. 2013). For this dissertation, most of the work is focused on
this stage, as is the case for most drug development studies, because it is the
stage associated with disease manifestations in humans. In the RBC P.
falciparum develops from rings (~ 0 - 20 hour after invasion), to trophozoites
(~ 20 - 36 hour), to schizonts (~ 36 - 48 hour), followed by release of a new
population of merozoites into the blood stream to continue the cycle (Fig 1.2).
Alternatively, a fraction of the parasite population develops into male and
female gametocytes which, when picked up by the mosquito during a blood
meal, starts the sexual reproductive stage in the mosquito. As the parasite
develops inside the RBC, it changes the membrane architecture and



composition of the cell by inserting parasite-derived hypervariable antigens,
notably erythrocyte membrane protein 1 (pfemp1), into the RBC membrane
in order to import nutrients and to enable adherence to endothelial cells.
Additionally, the parasites hijack and utilize host proteins, most notably
hemoglobin, which the parasites break down to acquire amino acids and iron
while crystalizing the resulting toxic haem into non-toxic hemozoin
(Rosenthal 1988, Rosenthal and Meschnick 1996, Rosenthal 2003).

In order to efficiently handle the complexities associated with living in
such biologically diverse and complex environments, P. falciparum expresses
different sets of genes during each stage [Bozdech et al. 2003, Le Roch et al.
2003, Llinas et al. 2006]. For the RBC cycle, the ring stage is characterized by
expression of transcription and translation enzymes in preparation for the
high metabolic activity of the trophozoite stage, during which numerous
metabolic proteins are up regulated, including proteases and glycolytic
proteins. In the early schizont stage, the parasite prepares for the subsequent
invasion of new sets of RBCs by up regulating DNA replication enzymes,
cytoskeletal proteins and erythrocytic binding proteins [Bozdech et al. 2003,
Le Roch et al. 2003, Llinas et al. 2006].
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1.3 Current malaria drugs and corresponding mechanisms of action and
resistance

Much of malaria control has been highly dependent on the development
of successful chemotherapy. However drug resistance continues to pose a big
challenge, especially for P. falciparum, thereby warranting the need for the
discovery and development of novel antimalarial drugs. The main classes of
antimalarials currently in use include aminoquinolines, antifolates, antibiotics
and artemisinin derivatives (Table 1.1).

1.3.1 Aminoquinolines

Aminoquinolines can be sub-divided into 4-aminoquinolines
(chloroquine, amodiaquine and piperaquine), 8-aminoquinolines
(primaquine), and methanol aminoquinolines (quinine, mefloquine).
Chloroquine (CQ) was successfully used as a monotherapy until the
emergence of drug resistance in P. falciparum in the late 1950s in South
America and late 1970s in Africa. Although it remains the drug of choice for
other human plasmodia species, it is no longer recommended for treatment
for P. falciparum in nearly all areas due to widespread resistance. Chloroquine
acts by inhibiting formation of hemozoin, a non-toxic polymer made from
toxic heme monomers derived from hemoglobin breakdown in the food
vacuole [Rosenthal et al. 1988, Chou et al. 1993, Sullivan et al. 1996].
Consequently, as a mechanism of chloroquine resistance, P. falciparum
mutates the food chloroquine resistance transporter (pfcrt), to decrease
chloroquine concentration in the food vacuole (Fidock et al. 2000). The most
reliable chloroquine resistance marker is the K76T single nucleotide
polymorphism (SNP) [Fidock et al. 2000, Sidhu et al. 2002]. Field isolates
typically contain multiple additional SNPs in pfcrt in addition to mutations in
P. falciparum multi drug resistance gene 1 (pfmdr1), a P-glycoprotein
homologue also located on the membrane of the parasite food vacuole, but
these are not essential for chloroquine resistance [Foote et al. 1990, Djimde et
al. 2001, Dorsey et al. 2001].

Amodiaquine is another 4-aminoquinolone with similar structure to
chloroquine. It was introduced as an alternative to chloroquine in regions



with high prevalence of chloroquine resistance because it remains quite active
against chloroquine-resistant P. falciparum. (Ashley et al. 2006). Although the
mechanism of action of amodiaquine remains uncharacterized,
polymorphisms in pfcrt and pfmdr1 are highly associated with treatment
failure (Happi et al. 2006, Beshir et al. 2010).

Piperaquine, a bisquinoline, was initially used as a monotherapy in
parts of Asia in the 1960s until resistance started emerging 10 - 20 years later
(Ashley et al. 2006). The drug was resurrected recently in combination with
dihydroartemisinin, and this combination has shown excellent efficacy for the
treatment (Kamya et al 2007) and prevention (Nankabirwa et al. 2014) of
malaria. Piperaquine resistance is associated with pfmdr1 amplification
(Eastman et al. 2011, Veiga et al. 2012) and its mechanism of action remains
unknown.

Primaquine, an 8-aminoquinoline, is an FDA approved antimalarial drug
that has demonstrated activity against gametocytes, thereby preventing
transmission from humans to mosquitoes (Shekalaghe et al. 2007, Smithuis et
al. 2010, White 2013). Itis also the only approved antimalarial drug that acts
against hypnozoites, the dormant liver stages of P. vivax and P. ovale. Hence, it
is used in combination with a blood stage-killing drug such as chloroquine as a
first line regimen for P. vivax and P. ovale (Fernando et al., 2011). Widespread
primaquine use has been hampered by its ability to cause hemolysis in
patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency
(Fernando et al., 2011). The mechanism of action of primaquine is unknown.

Quinine is derived from the bark of the cinchona tree and was the first
antimalarial drug. However, due to adverse side effects it is mostly
recommended only for the treatment of severe malaria. Mefloquine, another
methanol quinoline, has been widely used for the treatment and prevention of
malaria. However, its use has been on the decline for chemoprevention due to
increasing reports of toxicity (Cook 1995). Resistance to both quinine and
mefloquine is associated with pfmdr1 amplification and their mechanism of
action is not understood (Pickard et al. 2003, Woodrow and Krishna 2006).

1.3.2 Antifolates

Standard antifolates include sulfadoxine and pyrimethamine (SP). Both
act against the folate biosynthetic pathway. Sulfadoxine inhibits
dihydropteroate synthase (DHPS) while pyrimethamine inhibits dihydrofolate
reductase (DHFR). The drugs have synergistic activity and were previously



used in a fixed formulation to treat uncomplicated malaria. Although
widespread use of SP has been discontinued due to high prevalence of
resistance, it is still recommended for intermittent preventive therapy during
pregnancy in sub-Saharan Africa (Peters et al. 2007). Resistance to
pyrimethamine and sulfadoxine is mediated by accumulation of SNPs in the
dhfr and dhps genes respectively (Gregson and Plowe 2005).

Proguanil is another antifolate and is currently paired with atovaquone,
a hydroxynapthaquinone, for treating uncomplicated malaria (Osei-Akoto et
al. 2005, Cordel et al. 2013), although this regimen is little used in malaria-
endemic areas due to high cost. Atovaquone/proguanil (Malarone) is widely
used for short-term prophylaxisfor travelers visiting malaria endemic regions
(Leshem et al. 2014).

1.3.3 Antibiotics

Some antibiotics, including the tetracyclines and clindamycin, have
antimalarial activity, although they are slow acting (Dahl and Rosenthal
2007). Antibiotics act against the apicoplast, an organelle acquired through
endosymbiosis from an ancestral prokaryote (Dahl and Rosenthal 2008). Like
the mitochondrion, the apicoplast has an independent prokaryote-like protein
synthesis apparatus. This apparatus is a target for bacterial protein synthesis
inhibitors such as tetracyclines that act against the 30S ribosome in
prokaryotes (Chopra and Roberts, 2001, Dahl et al. 2006, McFadden 2011).
The antimalarial activity of antibiotics leads to a “delayed-death” phenotype in
which parasite death is not observed until after the first RBC cycle (Dahl and
Rosenthal, 2007).

Currently, doxycycline monotherapy is effective for prophylaxis, but the
drug must be paired with a fast acting drug (quinine) for effective malaria
treatment (Tan et al. 2011). Likewise, clindamycin is recommended in
combination with quinine for malaria treatment, especially in children
(Obonyo and Juma 2012).

1.3.4 Artemisinins.

The artemisinins are the latest class of antimalarial drugs to be widely
used. These compounds originate from the Artemisia annua plant, extracts of
which were used in China for different treatment purposes. The
extraordinarily fast antimalarial activity of artemisinins was reported in the



1970s (Miller and Su 2011). Initially, the supply of artemisinin was very
limited due to constraints of its natural source. However, with increasing
funding and breakthrough engineering of artemisinin-precursor producing
genetically modified microbes, arteminisnin availability is expected to
significantly increase (Ro et al. 2006, Tsuruta et al. 2009, Paddon et al. 2013).

Arteminisin was initially used as a monotherapy until formulations of
artemisinin-based combination therapies (ACTs) were introduced in order to
improve antimalarial efficacy and help avert drug resistance. ACTs are
composed of an artemisinin derivative - dihydroartemisinin, artesunate or
artemether paired with a longer-acting partner drug such as amodiaquine,
lumefantrine, piperaquine, mefloquine, or SP. Current regimens include
artemether-lumefantrine (AL), dihydroartemisinin-piperaquine (DP),
artesunate-SP (AS/SP), artesunate-mefloquine, and artesunate-amodiaquine
(AS/AQ).

Given the prevalence of resistance of P. falciparum to the
aforementioned antimalarial drugs, ACTs have played a pivotal role in the
successes that have been achieved towards the elimination of malaria to date.
However, reports of resistance of P. falciparum, in the form of delayed parasite
clearance, to artemisinin monotherapy and some ACTs have emerged in
Southeast Asia (Noedl et al. 2008, Dondorp et al. 2009, Amaratunga et al.
2012, Phyo et al. 2012, Ariey et al. 2013). Since then, several research groups
have worked actively to discover the mechanism of artemisinin resistance in
P. falciparum, which remained elusive until recently (Mungthin et al. 2010,
Cheeseman et al. 2012, Cui et al. 2012). In Jan 2014, a research group
identified mutations in the K-13 propeller domain of the protein encoded by
PF3D7_ 1343700 gene in P. falciparum as an important and reliable resistance
marker by comparing the genome of artemisinin resistant parasites selected
in vitro with field isolates from Cambodia [Ariey et al. 2014]. Although itis
generally hypothesized that artemisinins act via free radical damage
(Meshnick et al. 1993), the specific mechanism of action of the compounds
remains unconfirmed.
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1.4 Mechanisms of antimicrobial drug resistance

Antimalarial drug resistance is often accompanied by genetic changes in
the form of SNPs, copy number variations (CNV) and insertion/deletion
events. In some cases, resistance can be due to mutations in gene(s) that code
for transmembrane transport proteins. Alternatively, resistance can be caused
by mutations in genes that code for proteins involved in the molecular
pathway targeted by the inhibitor in question, also indicative of the
mechanism of action. SNPs have been implicated in drug resistance to several
antimicrobials including antimalarials, [Ramaswamy et al. 2003, Prichard
2007, Gniadkowski 2008, Strasfield and Chou 2010, Georghiou et al. 2012,
Espedido et al. 2012, Bondaryk et al. 2013, Rosenthal 2013]. CNVs are also
common mediators of drug resistance [Henry et al. 2000, Singh N. et al. 2003,
Singh & Rosenthal 2004, Brochet et al. 2008, Price et al. 2004, Guler et al.
2013]. While insertion/deletion events are the least common in antimalarial
resistance, they have been implicated in resistance to some antiviral
[Menendez-Arias et al. 2006] and antibacterial [Brody et al. 2008] agents.

1.5 Invitro drug resistance selection as a tool for studying antimicrobial
mechanisms of action and resistance

In vitro resistance selection is a valuable technique that has been used
to identify mechanism(s) of action of antimicrobials. Examples include
antibacterials, [Ramaswamy et al. 2003, Brody et al. 2008, Gniadkowski 2008,
Georghiou et al. 2012, Espedido et al. 2012], antifungals [Henry et al. 2000,
Bondaryk et al. 2013], antivirals [Menendez-Arias et al. 2006, Strasfield and
Chou 2010], and antiprotozoans [Price et al. 2004, Singh & Rosenthal 2004,
Prichard 2007, Rosenthal 2013, Guler et al. 2013]. For studies of P. falciparum,
there are two approaches to in vitro drug resistance selection; one entails
stepwise selection in dose increments over time while the other involves
treatment of a large number of parasites with one high concentration of drug
(Rathod et al. 1997). The stepwise method requires more time, but offers the
advantage of offering insights into genetic changes associated with different
levels of resistance (Guler et al. 2013).

Since the publication of the plasmodial genome sequence in 2002
(Gardner et al. 2002), in vitro resistance selection has been central to studies
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of antimalarial drug resistance and action. As with clinical isolates, the two
major genetic changes associated with in vitro drug pressure are SNPs and
CNVs in transporters or target genes. A notable breakthrough aided by in vitro
drug selection in P. falciparum is the recent discovery of the highly sought-
after artemisinin resistance molecular marker detailed above [Ariey et al.
2014]. Other notable findings aided by this technique include the following:

- Confirmation of falcipain-2 and falcipain-3 as the targets of
antimalarial cysteine protease inhibitors (Singh and Rosenthal
2004)

- Identification of ATPase4 as the target of spiroindolones, a
promising class of antimalarial drug candidates (Rottmann et al.
2010)

- Identification of phosphatidylinositol-4-OH kinase as the target of
imidazopyrazines, another promising class of antimalarial drug
candidates (McNamara et al. 2013)

- Identification of dihydroorotate dehydrogenase (DHODH) as the
target of yet another promising class of antimalarial inhibitors
(Guler et al. 2013)

1.6 Aminoacyl tRNA synthetases.

Aminoacyl tRNA synthetases (aaRS) are essential in the protein
synthesis process in all kingdoms of life. Hence aaRS enzymes have structural
homology between species of both prokaryotic and eukaryotic origins,
although significant differences exist (Eriani et al. 1990). The main function of
aaRS enzymes is to catalyze the attachment of amino acids to their cognate
tRNAs. This process occurs in two steps involving activation of the amino acid
by adenylation followed by transfer of the adenylated amino acid to its
cognate tRNA [Fig 1.3; Carter 1993, Ling et al. 2009]. AaRS enzymes are
divided into two classes based on structural differences that determine which
hydroxyl group on the 3’ terminal adenosine of the tRNA is attached to the
amino acid (2’ hydroxyl for Class I or 3’ hydroxyl for Class II) [Eriani et al.
1990, Schmidt and Schimmel 1995, Lee et al. 2004, Ling et al. 2009]. Class I
and II aaRS enzymes are further differentiated by the structure of their active
sites. Class I aaRS enzymes are mostly monomeric and have active sites made
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up of six parallel beta strands linked to four alpha helices (Rossmann fold)
and two conserved motifs (Eriani et al., 1990). These include CysRS, MetRS,
ValRS, LeuRS, IleuRS, ArgRS, GIuRS, GInRS, TyrRS and TrpRS (Sugiura et al.
2000, Ribas et al. 2001). On the contrary, class Il aaRS enzymes are often
multimeric and have three conserved motifs in their active site including
AlaRS, GlyRS, SerRS, ThrRS, ProRS, HisRS, AsnRS, AspRS, LysRS and PheRS
(Cusack et al. 1991, Leberman et al. 1991, Ruff et al. 1991). Each class is
further subdivided into sub-groups based on the chemical properties of the
associated amino acid (Table 1.2) [Cusack 1997]. In order to increase the
fidelity of the protein synthesis process, some aaRS enzymes have an editing
domain that hydrolyzes mis-aminoacylated tRNAs (Silvian et al. 1999, Beebe
et al. 2003, Wolfe et al. 2005). Protein synthesis has an average error rate of 1
in 3000 amino acids (Jakubowski and Goldman 1992). Studies have shown
that amino acyl tRNA synthesis with less than average ability to distinguish
between cognate and non-cognate amino acids have an editing function
[Eldred and Schimmel 1972, Leatherbarrow et al. 1985). Unlike class I], class |
editing domains (known as connective peptide 1) are highly conserved in
different species [Beebe et al. 2003]. Current understanding of class I editing
is based on studies of [LeuRS, ValRS and LeuRS, through which we’ve learned
that class I editing can occur pre or post transfer of amino acid to its cognate
tRNA [Silvian et al. 1999, Lincecum et al. 2003, Seiradake et al. 2009, Cvetestic
etal. 2012, Li et al. 2013]. Pre-transfer editing takes place at the
aminoacylation active site, where a charged amino acid (amino acid attached
to adeonosine monophosphate) is hydrolyzed prior to attachment to a non-
cognate tRNA (Ling et al. 2012). Post-transfer editing is the better understood
process, and takes place in the editing domain, where an amino acid is
hydrolyzed after it has been attached to a non-cognate tRNA [Silvian et al.
1999, Lincecum et al. 2003, Seiradake et al. 2009, Cvetestic et al. 2012, Li et al.
2013].

There is increasing interest in the exploration of aaRS enzymes as
potential antimicrobial targets, especially for prokaryotic targets [Kim et al.
2003, Vondenhoff et al. 2011, Pham et al., 2013]. Several natural products
from prokaryotic organisms inhibit aaRS activity in other prokaryotes. An
example is mupirocin (pseudomonic acid), which is produced by Pseudomonas
fluorescens, a gram-negative bacterium. Mupirocin inhibits the activity of
ILeuRS in gram-positive and gram-negative bacteria (Class and Deshong 1995,
Kim et al. 2003, Gurney and Thomas 2011). It is used topically for the
treatment and elimination of drug-resistant Staphylococcus aureus
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colonization (Thomas et al. 2010, Seah et al. 2012, Bathoorn et al. 2012).
Other natural aaRS inhibitors include borrelidin (ThrRS), indolmycin (TrpRS),
furanomycin (IleRS), granaticin (LeuRS), ochratoxin A (pheRS) and
cispentacin (ProRS) (Nass et al. 1969, Tanaka et al. 1969, Ogilvie et al. 1975,
Werner et al. 1976, Konrad and Roschenthaler, 1977, Konishi et al. 1989).
Although these natural products are successful at inhibiting microbial aaRS
activity in vitro, their in vivo activity have been limited by poor bioavailability
and lack of selectivity, disqualifying them as viable drugs (Vondenhoff and
Van 2011). As a result, great efforts have been made to design and synthesize
novel and selective aaRS inhibitors. Despite the high structural conservation
between aaRS enzymes between kingdoms, some successes have been
attained in bacteria and yeast (Barker 2006, Beyer et al. 2004, Rock et al.
2007, Gaston et al. 2011, Baker etal. 2011, Hu et al. 2013).

For apicomplexans such as malaria parasites, the idea of targeting aaRS
enzymes has been entertained due to the presence of the apicoplast — an
organelle of prokaryotic origin recently validated as the sole cellular
compartment responsible for isoprenoid precursor biosynthesis in P.
falciparum (Dahl and Rosenthal, 2008, Yeh and DeRisi 2011). In P. falciparum,
the apicoplast has its own prokaryotic-like protein synthesis apparatus,
including aaRS enzymes. Hence, there are two copies of most of the 20 aaRS
enzymes in P. falciparum, with some exceptions (McFadden 2011, Pham et al.
2014). Mupirocin is an example of a drug that has been shown to successfully
target the apicoplast [1eRS in P. falciparum (Istvan et al. 2011).

Inhibitors of the cytoplasmic eukaryotic aaRS enzymes in protozoans
have also been successfully synthesized including P. falciparum, B. malayi and
T. brucei (Ding et al. 2011, Hoepfner et al. 2012, Zhang et al. 2013, Azcarate et
al. 2013, Pham et al. 2014, Kalidas 2014, Pham et al. 2014). Specifically for P.
falciparum, several synthetic aaRS inhibitors have been reported including A5
(AlaRS), mupirocin (IleRS), 4-thiaisoleucine (IleRS), cladosporin (LysRS),
Lysyl-adenylate analogues (LysRS), halofuginone (ProRS) and borrelidin
(ThrRS) [Otoguro et al. 2003, Istvan et al. 2011, Keller et al. 2012, Hoen et al.
2013, Hoepfner et al. 2013, Sugawara et al. 2013].
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Fig 1.3: Two-step aminoacylation reaction catalyzed by aaRS enzymes. Image adapted from
Baker etal. 2010. AMP = adenosine monophosphate, PPi = pyrophospate

Table 1.2: Classification of aminoacyl tRNA synthetases

ClassI |Subclass |ClassIl |Subclass
MetRS la HisRS IIa
[1eRS ProRS

LeuRS SerRS

ValRS ThrRS

CysRS AspRS IIb
ArgRS AsnRS

GInRS 1b LysRS

GIuRS GlyRS Ilc
TyrRS 1c AlaRS

TrpRS PheRS
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1.7 The role of cleavage and polyadenylation specificity factor (CPSF) in 3’
end pre-mRNA processing

The co-transcriptional processing of messenger RNA precursor (pre-
mRNA) is an essential activity in eukaryotic organisms. This entails capping of
the 5’ end of the mRNA, splicing, cleavage and polyadenylation at the 3’ end
(Coulgan and Manley 1997, Proudfoot 2004, Mandel et al. 2008), all of which
are required for the production of mature mRNA. The 3’ end processing of
pre-mRNA is important because it promotes the transport of mRNA from the
nucleus to the cytoplasm (Huang and Carmichael 1996, Vinciguerra and Stutz
2004). Pre-mRNA 3’ end processing also enhances translation and the stability
of the mRNA while in the cytoplasm, protecting it from degradation by
nucleases (Sachs et al. 1997, Wickens et al. 1997, Ford et al. 1997, Preiss and
Hentze 1998). Our current understanding of pre-mRNA 3’ end processing is
based upon extensive research in mammalian cells and yeast. There are
conserved sequence elements in the 3’ untranslated region (UTR) of pre-
mRNAs that are required for successful 3’ end processing (Dominski et al.
2005). In mammals, the primary sequence elements include the hexamer
polyadenylation signal (PAS: AAUAAA), the cleavage site (CA) and the
downstream element (DSE) (Mandel et al. 2008). Studies have also reported
the involvement of 14 and 20 proteins divided into sub-complexes in
mammals and yeast respectively (Mandel et al. 2008). In mammalian cells, the
sub-complexes include poly(A) polymerase (PAP), poly(A) binding protein
(PABP), symplekin, the C-terminus of the RNA polymerase II largest subunit,
cleavage stimulation factor (CSF), cleavage factor 1 (CF In), cleavage factor Il
(CF IIm) and cleavage and polyadenylation specificity factor (CPSF) (Fig 1.4;
Moore and Sharp 1984, Gilmartin et al. 1988, Murthy and Manley 1995,
Dantonel et al. 1997, McCracken et al. 1997, Mandel et al. 2006). Of relevance
to this dissertation is CPSF.

In humans CPSF has five subunits (CPSF-30, 73, 100, 160 and hFip1), all
of which are required for successful cleavage and polyadenylation. For CPSF-
30, the function is not well characterized. Reported data on hFip1 (human
polyadenylation factor 1) shows that it interacts with PAP and other
components in the machinery, suggestive of a role in bringing PAP close to the
polyadenylation site (Preker et al. 1995, Helming et al. 2001, Kaufmann et al.
2004). CPSF-160 is the largest of the subunits, and it has been shown to
initiate 3’ end processing by binding to the PAS sequence element, resulting in
recruitment of other proteins (Moore et al. 1988, Murthy and Manley 1995).
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Although, CPSF-73 and CPSF-100 both have a 3-CASP (named for metallo-
beta-lactamase, CPSF, Artemis, Snm1, Pso2) domain, recent evidence suggests
that both proteins have different functions. A study of CPSF-73 in mammalian
cells showed that it is responsible for the endonuclease activity at the cleavage
site (Mandel et al. 2006, Dominski et al. 2007). On the contrary, study of the
CPSF-100 homolog in yeast showed no endonuclease activity, allegedly due to
its lack of a zinc-binding motif required for cleavage activity (Mandel et al.
2006).

So far, the 3’ end processing of pre-mRNA has not been characterized in
apicomplexans. A search of the P. falciparum genome on plasmodb.org, a
genomic database for plasmodial parasites, identified three genes designated
as putative CPSF according to sequence and structural homology to
mammalian proteins (two on chromosome 3, one on chromosome 14). A
thorough evaluation of the role of CPSF in P. falciparum and other
apicomplexan parasites is needed to further explore their potential as drug
targets.

Fig 1.4: A diagram depicting mammalian pre-mRNA 3’ end processing complex. Adapted
from Ryan et al. 2004.
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1.8 Requirements for a good antimalarial drug

The discovery of new drugs to treat malaria is especially challenging. In
addition to general drug requirements for efficacy and safety, antimalarial
drug candidates are expected to meet several challenging criteria, as
elaborated by the Medicines for Malaria Ventures (MMV). Based on the MMV
product profile, new antimalarials should a) be safe in children and in
pregnant women, b) have low cost of manufacturing, c) lead to rapid
resolution of symptoms within 3 days, d) require no longer than 3 days of
dosing, and ideally only a single dose, e) have low tendency to select for
resistance, f) be orally bioavailable, and g) have stable formulation and
packaging.

In addition to these criteria, which involve action against erythrocytic
stages, activity against non-erythrocytic stages are desired, in particular
action against liver and mosquito stages.

1.9 Benzoxaboroles as novel and promising antimalarial drug candidates

Benzoxaboroles are a novel class of boron-containing compounds. They
are characterized by the presence of a five-member boron-containing ring
(oxaborole ring) attached to a benzene ring with at least one side chain (Fig
1.5). Until recently, boron-containing compounds were not seriously
considered as drug candidates due to misconceptions regarding toxicity of
boron, over-reactivity and instability associated with boronic acid and earlier
synthetic chemistry and manufacturing difficulties (Del Rosso and Plattner
2014). Over time, some of these reservations have been dispelled with
advances in boron synthetic chemistry and emerging evidence in favor of
boron as a drug component (Baker et al. 2009, Ciaravino et al. 2013). There
are several qualities that make boron a good drug component. Most
importantly, its empty p-orbital makes it more electrophilic than carbon or
nitrogen, thereby increasing its propensity to interact with a wide variety of
targets via reversible covalent bonds (Baker et al. 2011, Jacobs et al. 2011, Del
Rosso and Plattner 2014). Furthermore, several studies have shown the
essentiality of boron in the oxaborole ring for activity, as replacement of
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boron with carbon leads to loss of activity (Rock et al. 2007, Zhang et al.
2011]. Currently, the only FDA approved boron-containing drug is bortezomib
(trade name: Valcade), a proteasome inhibitor that induces apoptosis, for
treating multiple myeloma (Ling et al. 2002, Das et al. 2013). However, several
boron-containing compounds are in drug development, including
benzoxaboroles that have demonstrated potent activity against infectious
pathogens, including bacteria (Hernandez et al. 2013, Hu et al. 2013), fungi
(Rock et al. 2007), trypanosomes and malaria parasites (Zhang et al. 2011,
Jacobs et al. 2011). Tavaborole, an anti-fungal LeuRS benzoxaborole, is
currently being reviewed by the FDA for treatment of onychomycosis, a fungal
nail infection (Alley et al. 2007).

Several benzoxaboroles are currently in drug development pipelines for
treatment of various diseases. These include gram-negative bacterial
infection, pneumococcal infection, tuberculosis, onychomycosis, hepatitis C
virus infection, African trypanosomiasis and inflammatory disease.
Characterization of the mechanisms of action of some of these antimicrobial
benzoxaboroles have identified novel targets, including bacterial LeuRS (M.
tuberculosis, S. pneumonia, S. aeruginosa, E. coli, Enterobacteriaceae)
(Hernandez et al. 2013, Hu et al. 2013), bacterial B-lactamase (Xia et al. 2011),
fungal LeuRS (S. cerevisiae) (Rock et al. 2007), Trypanosoma brucei LeuRS
(Ding et al. 2011, Jacobs et al. 2011), mammalian rho-activated kinase (Akama
et al. 2009), phosphodiesterase-4 (Akama et al. 2013), and NS3 protease in
hepatitis C virus (Li et al. 2010). Considering the successful design of
benzoxaboroles to treat other infectious diseases, we set out to identify
compounds of this class with antimalarial activity.
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1.10 Non-falciparum malaria

P. vivax is another widely distributed species, with high prevalence in
South America, Asia and the horn of Africa. Unlike other human plasmodial
species, it along with P. ovale can persist in the liver in a dormant form known
as hypnozoites, resulting in relapsing disease after successful eradication of
erythrocyte stages (Gething et al. 2012). Although vivax malaria has been
largely associated with benign disease, recent reports have challenged this
notion by showing it to be associated with severe malaria in some countries
(Price et al. 2009).

P. ovale is predominantly found in sub-Saharan Africa and the Islands of
the western Pacific, with more recent reports in parts of Southeast Asia, the
Middle East and India (Collins and Jeffery 2005). It is usually associated with
benign disease. (Mueller et al. 2007).

P. malariae causes mild disease with quartan (every 4t day) fever
manifestatios , unlike the other species that exhibits tertian (every 3rd day)
fever symptoms, excluding P. knowlesi (Collins and Jeffery 2007). Its
distribution coincides with P. falciparum, appearing in malaria endemic areas
in sub-Saharan Africa, Southeast Asia, the western Pacific and parts of South
America (Collins and Jeffery 2007).

P. knowlesi was characterized as a strictly zoonotic malaria parasite
until recent reports associated it with human malaria in Malaysia (Singh B. et
al. 2004). Since then, it has been reported in other regions including Thailand,
Vietnam, Indonesia, Singapore and the Philippines (Lee et al. 2011).
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CHAPTER 2

MATERIALS AND METHODS

Culture of malaria parasites

Erythrocytic stages of P. falciparum (strains W2, Dd2 or 3D7) were cultured
using standard methods at 2% hematocrit in RPMI-1640 (Invitrogen) medium
supplemented with 0.5% Albumax, 2 mM I-glutamine, 100 mM hypoxanthine,
5 pg/ml gentamicin, 28 mM NaHCO3 and 25 mM HEPES at 37°C in an

atmosphere of 5% 02, 5% C02, and 90% N2.

Activity of test compounds against cultured P. falciparum

P. falciparum strains were synchronized by treatment with 5% D-sorbitol and
cultured in duplicate 96 well culture plates (200 pL per well) in the presence
of 3-fold serially diluted test compounds ranging from 0.056-1000 nM or, for
controls, in solvent (£0.2% DMSO) alone. After 48 hours, the cultures were
fixed with 2% formaldehyde for 24 hours at 37°C or 48 hours at room
temperature, the fixed cells were stained with 4 nM YOYO-1 dye (Molecular
Probes), and counts of treated and control cultures were determined using a
fluorescence-activated cell sorter. ICso values were calculated by nonlinear
regression using Prism Graphpad software.

In vivo activity of test compounds against murine malaria

Groups of five Swiss Webster mice were infected intraperitoneally with 6x106
P.berghei infected erythrocytes collected from a previously infected mouse
and then treated, beginning 1 hour after inoculation, with varying
concentrations of test compounds or chloroquine as a positive control, by
daily oral gavage for four days. Test compounds were solubilized in 55%
polyethylene glycol 300, 25% propylene glycol and 20% water
(55/25/20/PEG300/PG/H20). Negative controls were treated with vehicle
only. Infections were monitored by daily microscopic evaluation of Giemsa-
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stained blood smears. EDgg values, based on comparisons of parasitemias
between treated and control animals on the fourth day after the initiation of
treatment, were calculated using Prism Graphpad software. Mice were
followed until blood parasitemia reached 50%, with frequent blood smears.
Mice with >50% parasitemia were euthanized.

Stage Specificity Assay

Stage specific activity of test compounds was analyzed according to Shenai et
al. 2002. Synchronous W2 strain P. falciparum were cultured in triplicate wells
in 96-well culture plates with test compound (2 uM 1467, 0.37 uM 3661 or 1.3
uM chloroquine) for 8 hour intervals, beginning at the ring stage. At the end of
each interval, the cultures were washed three times, resuspended in culture
media without drug, and cultures were continued. After 48 hours, when
control parasites were at the ring stage, the cultures were fixed with 2%
formaldehyde and processed using FACs as detailed above. Parasitemias were
compared to those of controls as described above.

Morphology of treated parasites

W2-strain P.falciparum were cultured in the presence of test compound (4 pM
1467,4 uM 1474 or 0.37 uM 3661) and monitored by light microscopy at the
indicated times (12, 24, 36, 48 and 60 hours post treatment).

Selection of parasites with decreased sensitivity to compound 1467
Dd2-strain P. falciparum were cultured in stepwise increasing concentrations
of compound1467 (Fig 2.1). Media was changed and fresh 1467 was added to
cultures daily. Initially, triplicate 10 ml cultures, each containing a clonal
population of 6 x 107 asynchronous parasites, were subjected to 0.4 uM
compound1467. Once the treated parasites grew at rates comparable to those
of untreated controls, the concentration of compound1467 was increased,
following the scheme described in Fig 2.1 until three generations of resistance
were achieved. Subsequently resistant clones from each generation were
generated by limiting-dilution. This entails diluting parasite cultures to
achieve < 1parasite per well in a 96-well plate and cultured until growth can
be detected by light microscopy (~ 2 to 3 weeks). Cloning is presumed
successful if parasite growth is detected in only a small fraction of the 96 wells
(example 20%). Detection of growth in most of the 96 wells is an indication of
a failed cloning process, in which case, the process was repeated. The most
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resistant clones were also cultured without drug pressure to evaluate the
stability of the resistant phenotype.

Selection of parasites with decreased sensitivity to compound 3661
W2 and Dd2-strain P. falciparum were cultured separately in stepwise
increasing concentrations of compound 3661. Initially, triplicate 10 ml
cultures, each containing 6 x 107 asynchronous parasites, were subjected to
0.037uM compound 3661. Once the treated parasites grew at rates
comparable to those of untreated controls, the concentration of
compound3661 was increased, following the scheme described in Fig 2.2A &
B. Following completion of selection, resistant clones were generated by
limiting-dilution, as detailed above, before analysis.

Additionally, a one-time drug pressure approach was used to select for
3661 resistance in Dd2-strain P. falciparum by the laboratory of our
collaborator Dr. David Fidock at Columbia University. Here, a larger
population (2 x 10?) of clonal Dd2-strain asynchronous parasites was
subjected to a single high concentration (170 nM; 5 fold ICs0) of 3661 in three
independent culture flasks. Media was changed and fresh 3661 was added to
each culture daily. After the number of days 29 to 45 days, parasite growth,
comparable to untreated parasite population, was observed, marking the end
of selection (Fig 2.2C). The resulting parasites with decreased 3661 sensitivity
were cloned by limiting dilution and sent to our laboratory, where whole
genome libraries were prepared and sequenced.
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Figure 2.1: 1467 in vitro resistance selection schematic
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Figure 2.2. Step-wise 3661 in vitro resistance selection schematic using A)
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W2-strain and B) Dd2-strain P. falciparum. C) Schematic of one-concentration
3661 selection in Dd2-strain P. falciparum.
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Genomic DNA Isolation

For whole genome sequencing, genomic DNA (gDNA) from parental parasites
and those selected for resistance to 1467 or 3661 was extracted as follows.
Synchronized P. falciparum-infected erythrocytes (100mL, 2% hematocrit,
10% parasitemia) were treated with 0.15% saponin for 5 minutes on ice to
lyse erythrocytes followed by three washes in PBS. Parasite pellets were then
lysed in 150 mM NacCl, 10 mM EDTA, 50 mM Tris-HCI pH 7.5, 0.1% L-loril
sarkosil (Sigma Aldrich) and 200 mg/ml proteinase K (Qiagen) overnight at
37°C. The samples were then subjected to one extraction with
phenol/chloroform/isoamyl alcohol (25:24:1) pH 7.9 (Ambion), treatment
with 0.05mg/mL RNAse A (1 hour at 37°C), two additional phenol/chloroform
extractions, one chloroform extraction, and then ethanol precipitation. All
phenol/chloroform extractions were done using light phase lock tubes (5
Prime). For dideoxy sequencing, gDNA was extracted using the QlIAamp DNA
mini kit (Qiagen) according to the manufacturer’s instructions.

Whole Genome Sequencing

gDNA libraries were prepared from 100 ng DNA using the Nextera DNA
Sample Prep Kit (Illumina) according to the manufacturer’s instructions, with
the exception that the number of cycles and extension temperature in the
bridge amplification step was reduced to 6 and 65°C for 6 minutes
respectively (Guler et al 2013). Each library was barcoded with unique sets of
two indices from the Nextera Index Kit (Illumina) to allow multiple samples to
be run on one flow cell (Table 2.1A & B). Next, fragments of 360-560 bp were
extracted and collected using Lab Chip XT (Caliper Life Sciences) according to
the manufacturer’s instructions. The selected fragments were amplified by
limited-cycle PCR using Kapa HiFi DNA polymerase (Kapa Biosystems) with
dNTPs with an 80% AT coding bias (6 cycles of 95°C for 10 sec, 58°C for 30
sec, 65°C for 6 min using Bio-Rad S1000 thermal cycler). The primers used for
both PCR steps were AATGATACGGCGACCACCGA and
CAAGCAGAAGACGGCATACG. The concentrations of the libraries were
determined with a DNA Bioanalyzer (Agilent), and libraries were pooled at
concentrations of 2 nM per library. Library samples were then sequenced at
the Center for Advanced Technology at UCSF, where the remainder of library
preparation steps, as detailed in Guler et al 2013, were completed, followed by
sequencing on a HiSeq 2000 system (Illumina). Analysis of the whole genome
sequencing data was carried out as detailed in Guler et al 2013. The generated
sequence data for each library was aligned to the 3D7 reference genome using
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Bowtie (Langmead 2009), discarding reads with >1 nucleotide mismatch and

multiple alignments across the genome. For SNP identification, reads from
compound1467 resistant clones were matched to reads from the parental

strain and the top 200 SNPs per chromosome were chosen and subsequently
filtered based on standard parameters. SNPs were characterized as real if the
number of reads covering the nucleotide position was >10 and if the

frequency of the SNP was at least 80% across the reads. Searches for novel

SNPs included only non-synonymous SNPs in exonic regions excluding
hypervariable genes (pfemp1, rifin, and stevor) as these unique P. falciparum

genes are inherently polymorphic. Copy number variation was analyzed using
the UCSC Genome Browser (Kent et al. 2002).

Table 2.1A: List of illumina indices used for gDNA library preparation of 1467

resistant clones

index 1 (i7)

Index 2 (i5)

Dd2_1467_1st generation clone 1
Dd2_1467_2rd generation clone 1

Dd2_1467_3rd generation clone 1

TAAGGCGA
CGTACTAG
TCCTGAGC

TATCCTCT
AGAGTAGA

TATCCTCT

Table 2.1B: List of illumina indices used for gDNA library preparation of 3661

resistant clones

index 1 (i7)

Index 2 (i5)

Dd2_3661_1st generation clone 1
Dd2_3661_2nd generation clone 1
W2_3661_1st generation clone 1
W2_3661_2nd generation clone 1
W2_3661_3rd generation clone 1
W2_3661_4t% generation clone 1
W2_3661_5t% generation clone 1
W?2_parent

Dd2_parent

GGACTCCT
TAGGCATG
AGGCAGAA
TCCTGAGC
GGACTCCT
TAGGCATG
TCCTGAGC
TAAGGCGA
GGACTCCT

AGAGTAGA
AGAGTAGA
TAGATCGC
TAGATCGC
CTCTCTAT
CTCTCTAT
TATCCTCT
TAGATCGC
TATCCTCT
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Dideoxy Sequencing

The P. falciparum LeuRS gene PF3D7_0622800 was amplified in four
fragments using the Phusion Hot Start Il High-Fidelity DNA Polymerase kit
(Thermo Scientific) with 80% AT dNTPs (95°C for 3 min, 30 cycles of 95°C for
10 sec, 52°C for 30 sec, 65°C for 1 min and a final extension at 68°C for 10
min). The amplified fragments were cleaned using ExoSAP-IT (Affymetrix),
mixed with sequencing primers and sequenced at the UCSF Genome Core
Facility. For the P. falciparum PF3D7_1218100 gene, the same approach was
followed, but only one 800 bp fragment, including the M416T position, was
amplified and sequenced. For the P. falciparum CPSF gene PF3D7_1438500
and pfmdrl gene (PF3D7_052300), the same approach was used as for the
LeuRS gene detailed above. For a list of PCR and sequencing primers used, see
Tables 2.2A, 2.2B and 2.2C.
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Quantification of pfmdr1 copy number by real-time PCR (QPCR)
Amplification reactions were done as multiplex PCR in MicroAmp 96 well
plates (Applied Biosystems) in 25 pL, containing TagMan mastermix buffer
(8% glycerol, 0-625 U DNA polymerase, 5-5 mM MgCl;, 300 uM dNTP, 600
nM), reaction reference dye ROX (5-carboxy-X-rhodamine), pH 8-3), 300 nM
of each forward and reverse primer, 100 nM of each probe, and 2.5 uL. DNA
template. The amplification protocol used was 95°C for 10 min, 50 cycles of
95°C for 15 s, and 58°C for 1 min using Applied Biosystems 7500 Real Time
PCR machine. B-tubulin was used as the internal reference. See table 2.3 for
primer and probe sequences.

The resulting fluorescence data were analyzed by a comparative C;
method as detailed in Price et al. 2004, comparing changes in fluorescence
signal of the target (pfmdr1) relative to the internal reference (-tubulin). All
signals were normalized to the passive reference signal (ROX). The detection
threshold was set above the mean baseline value for fluorescence of the first
fifteen cycles.

Table 2.3: Primer sequences used for pfmdrl qPCR

Primer Sequence

pfmdr1-1F 5'-TGCATCTATAAAACGATCAGACAAA

pfmdr1-1R 5'-TCGTGTGTTCCATGTGACTGT

p-tubulin -1F 5'-TGATGTGCGCAAGTGATCC

p-tubulin -1R 5'-TCCTTTGTGGACATTCTTCCTC

pfmdr1-probe 5'- 6FAM-TTTAATAACCCTGATCGAAATGGAACCTTTG-TAMRA
p-tubulin -probe 5'- VIC-TAGCACATGCCGTTAAATATCTTCCATGTCT-TAMRA

Protein Synthesis Assay

Synchronous trophozoites of Dd2-strain P. falciparum at 10 - 15%
parasitemia were washed three times with leucine-free RPMI media
(Invitrogen) and resuspended to 5% hematocrit in the same medium. Next,
100 pL of each culture was mixed with 0X, 1X, 10X or 100X the ICso of test
compound in triplicate, followed by incubation for 15 minutes at 37°C. Then,
0.5 uCi of #[C]leucine (324mCi/mmol, Perkin Elmer) was added to each
aliquot and incubated for two additional hours at 37°C. Subsequently, infected
erythrocytes were treated with 0.15% saponin (as described above) and
resulting parasite pellets were resuspended in 100 pL 0.02% sodium
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deoxycholate (Sigma Aldrich) to lyse the parasites, followed by addition of
100 pL ice cold 10% (w/v) TCA to precipitate proteins. Precipitates were
transferred to 0.45 um nitrocellulose membrane filter plates (Millipore
Multiscreen HTS, MSHAN4B50), washed four times with 400uL ice cold 5%
TCA and air-dried. 1#[C] leucine incorporation was determined after adding
60uL OptiPhase ‘Supermix’ scintillation cocktail (PerkinElmer) to the filter
plates, followed by counting in a Wallac MicroBeta Trilux model 1450 liquid
scintillation counter.

Aminoacyl tRNA synthetase Activity Assay

W2 strain P. falciparum trophozoites (1 L culture at 10 - 15% parasitemia, 2%
hematocrit) were collected and treated with 0.15% saponin as described
above, washed three times with PBS, and resuspended in 5 mL extraction
buffer (20 mM bisTris-Cl, 1 mM EDTA, 0.1mM phenylmethylsulfonyl fluoride
and one complete protease inhibitor tablet [Roche]). The resuspended pellets
were lysed by two freeze-thaw cycles and centrifuged at 2000xg for 10
minutes. The supernatant was then centrifuged at 147,000xg for 2 hours and
the supernatant used as the source of LeuRS. The LeuRS activity assay was
carried out as described previously (Rock et al. 2007). A 500 pL reaction
mixture containing 100 uL of parasite extract, 50 mM HEPES-KOH (pH 8.0), 30
mM MgClz, 30 mM KCI, 2.5uCi [1*C]leucine (324 mCi/mmol, Perkin-Elmer) or
[*#C]isoleucine (220 mCi/mmol, Perkin-Elmer) or [*#C]valine (0.05 mCi/mL,
Perkin-Elmer), 0.2 mg/mL S. cerevisiae or E. coli tRNA, 0.02% (w/v) BSA and 1
mM DTT was pre-incubated with specified concentrations of test compound
for 20 minutes at room temperature. Reactions were initiated by addition of 4
mM ATP and incubated at 30°C. After 10 minutes, three 75 pL aliquots were
transferred to separate wells in a 96-well 0.45 pm multiScreen nitrocellulose
membrane filter plate (Millipore Multiscreen HTS, MSHAN4B50) followed by
precipitation using 150 pL ice cold 10% TCA, washing four times using 400 pL
ice cold 5% TCA and drying. Incorporated [#C]amino acid (leucine, isoleucine
or valine) was quantified as described above.

Norvaline Sensitivity Assay

Synchronized parasites were cultured at 1% parasitemia in either leucine-free
or complete RPMI-1640 medium (Invitrogen) with varying concentrations of
L-norvaline (Sigma Aldrich). After 48 hours, the parasites were fixed with 200
uL 2% formaldehyde and parasitemias were determined as described above.
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CHAPTER 3

STUDY OF THE MECHANISM OF ACTION OF THE
BENZOXABOROLE COMPOUND 1467

3.1 1467 exhibits potent in vitro and in vivo antimalarial activity.

To evaluate the potential for benzoxaboroles as antimalarial drugs, we
screened 8112 compounds from the Anacor library for activity against
cultured W2 strain P. falciparum. This screen identified 326 compounds with
ICs50 < 1 uM from which 29 compounds with less than mid nanomolar ICso have
been tested in a murine malaria model.

In this section we discuss results for compounds 1467 and 1474 (Figure
3.1), related benzoxaboroles that were identified in the initial screen.
Compounds 1467 and 1474 demonstrated nanomolar activity against three
strains of cultured P. falciparum (Table 3.1). Activities were similar against
laboratory strains known to be sensitive (3D7) and resistant (W2, Dd2) to
chloroquine and other established antimalarials. The compounds did not exert
apparent toxicity against cultured Jurkat cells at concentrations up to 100 uM
(Table 3.1). When administered orally once daily to P. berghei-infected mice
for four days, the compounds were highly efficacious, with day four EDgo of 7.4
mg/kg/day for 1467 and 16.2 mg/kg/day for 1474 (Table 3.1). At dosages of
100-200 mg/kg/day both compounds afforded long-term (34 day) cures in
40-60% of infected mice (Figure 3.2). Thus, compounds 1467 and 1474 were
deemed promising new antimalarial agents worthy of additional study.
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Cl  NH, Br  —NH,
Compound1467 Compound1474

Figure 3.1. Chemical structure of antimalarial benzoxaboroles

Table 3.1: In vitro and in vivo antimalarial activities of compounds 1467 and
1474

In vivo P.
Lab Strains Cell Line berghei
I1Cso (LM) CCso (uM) | EDoo (mg/kg)
Compounds 3D7 w2 Dd2 Jurkat
0.19 + 0.28 + 042 +
1467 0.05 0.14 0.15 >100 7.44
0.28 + 0.36 + 0.49 +
1474 0.01 0.14 0.18 >100 16.19

ICso results (+SD) are means from at least 3 experiments, each with duplicate readings. In
vivo EDgp values are based on comparisons of parasitemias between treated and control
animals on the fourth day after inoculation of parasites and initiation of treatment.
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Figure 3.2: Survival curves of P. bergei- infected mice treated with 1467 (A) or 1474
(B). Animals were inoculated intraperitoneally with 6 x 10° P. berghei infected
erythrocytes, followed one h later by initiation of once daily oral treatment with multiple
dosages of test compounds, choloroquine, or vehicle control. Results are based on two
independent experiments, each including five mice per dosing regimen.
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3.2 Invitro morphological and stage-specific effects of 1467 on RBC
stage P. falciparum.

Synchronized parasites were treated with 1467, beginning at the early ring
stage, and examined over the course of the life cycle (Figure 3.3). The
parasites had no obvious morphological abnormalities during the ring and
trophozoite stages. However, treated parasites were unable to progress
beyond this stage; they did not develop into multinucleated schizonts or new
ring stage parasites (Figure 3.3). To consider the stage specificity of action of
1467, synchronized W2-strain parasites were incubated with the compound
or chloroquine for 8 hour intervals across the life cycle, the compounds were
removed by washing at the end of each interval, cultures were maintained
until untreated control parasites had reached the ring stage, and the
parasitemias of control and treated cultures were compared. For both
compound 1467 and chloroquine, some activity was seen across the life cycle,
but activity was greatest against trophozoites (Fig 3.4).
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Figure 3.3. Light microscopic imaging of Giemsa-stained P.falciparum - infected
erythrocytes after treatment with 4 puM compound1467, beginning at the early ring stage
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Figure 3.4. Stage specificity. Parasites were incubated with 2 uM 1467 or 1.3 uM
chloroquine for 8 hour intervals across the life cycle. Parasites were then continued in
culture until the following ring stage, and parasitemias were counted by FACS analysis and
compared wth those of untreated controls. ER, LR (Early and Late Rings respectively); ET,
MT, LT (Early, Mid and Late Trophozoites respectively), S (Schizonts)
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3.3 Selection and analysis of parasites with decreased 1467 sensitivity

In an attempt to identify the antimalarial mechanism of action of compound
1467, we cultured Dd2 strain P. falciparum in step-wise increasing
concentrations of 1467, assessed parasite sensitivity after each step, and
characterized cloned parasites with decreased sensitivity by whole genome
sequencing. Parasites were incubated with 0.4 uM compound for four weeks,
1uM compound for ten weeks, and then 10uM compound for fourteen weeks
(Fig. 3.5). For each step of selection, parasites were initially not seen on
Giemsa-stained smears, but after about two weeks they reappeared,
suggesting slow regrowth of parasites with alterations allowing growth under
drug pressure. Parasites from each step of selection were cloned by limiting
dilution, and DNA from multiple clones was analyzed by whole genome
sequencing. After three steps of selection, resulting in three generations with
increasing levels of resistance, parasite sensitivity to 1467 decreased about
50-fold (Fig. 3.5). As expected, 1467-resistant parasites were similarly
resistant to 1474, indicative of a shared mechanism of resistance. In contrast,
selected parasites were not more resistant to the antimalarials chloroquine,
mefloquine, lumefantrine, piperaquine, or dihydroartemisinin. Indeed, after
three steps of selection parasites were about 5-fold more sensitive to
mefloquine and lumefantrine (Table 3.4).

Sequencing identified numerous genetic changes between parental and
1467-resistant parasites, including SNPs and CNVs. Relevant SNPs were
determined according to standard parameters (Guler et al 2013) outlined in
Table 3.2. For each of the 1467 resistant generations analyzed, the top 200
SNPs per chromosome were selected, leading to about 2800 total SNPs (1st
generation - 2834 SNPs, 2nd generation - 2803 SNPs and 3 generation -
2833 SNPs) per clone. Similar to the approach described previously (Guler et
al. 2013), the SNPs were subsequently filtered to exclude SNPs in non-coding
regions and introns, and also SNPs located in genes that code for well-
characterized P. falciparum variant surface antigens [rifin, strevor,
erythrocyte membrane protein 1 (pfemp1)]. SNPs within the genes that code
for P. falciparum variant surface proteins were excluded because they are
naturally highly polymorphic; thus including them will increase the rate of
false-positive SNPs with regard to 1467 resistance. Additionally, synonymous
SNPs, SNPs in low coverage exonic regions (< 20 sequence reads covering the
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genomic position of a SNP) and SNPs where < 80% of reads have the SNP in
question were also disqualified. Although it is possible that SNPs in the non-
coding and intronic genomic regions (for example, at a promoter, 3’ UTR, or
splice junction) could play important roles in resistance, we anticipate that
SNPs in these regions are less likely to mediate drug resistance than those in
coding regions. Furthermore, non-coding and intronic regions in P. falciparum
tend to be highly A-T rich (~ 90% AT) (Gardner et al. 2002), thereby
increasing the propensity to acquire non-specific SNPs in these regions.
Synonymous SNPs are SNPs that lead to no amino acid change at the protein
level; hence their disqualification..

Based on the described SNP filtration parameters, SNPs in two genes in
the first generation, three genes in the second generation and four genes in
the third generation clones were deemed potentially relevant for mediating
resistance (Table 3.5). Upon comparison of the sequences of multiple clones,
SNPs in only two genes (PF3D7_0622800 and PF3D7_1218100) were deemed
relevant to 1467 resistance due to their consistency in multiple clones from all
three generations. These genes are PF3D7_0622800, which encodes a
homolog of LeuRS from other organisms and PF3D7_1218100, which encodes
a protein with unknown function.

There are two predicted LeuRS genes in the chromosomal genome of P.
falciparum; one is predicted to be the cytoplasmic LeuRS gene
(PF3D7_0622800) located on chromosome 6. The other is a putative
apicoplast-targeted LeuRS gene (PF3D7_0828200) on chromosome 8.
Parasites selected for resistance to 1467 had 4 different SNPs in
PF3D7_0622800, but none in PF3D7_0828200, arguing that alterations in the
cytoplasmic LeuRS play a role in resistance to 1467. All 4 SNPs mapped to the
predicted editing domain of the LeuRS, with the SNPs identified in second and
third generation resistant parasites predicted to be in highly conserved active
site residues based on comparisons with the LeuRS genes of humans, S.
cerevisiae and E. coli (Table 3.5 and Fig 3.7).

The other gene that was consistently altered in 1467-resistant parasites
was PF3D7_1218100. A single SNP (M416T) was present in all generations of
1467 resistant parasites (Table 3.5). Little is known about this gene, except
that its product is classified as a membrane protein based on homology and a
database from the gene ontology consortium (Ashburner et al. 2000).

With regard to copy number variation, amplification of two clusters of
genes on chromosome 12 was observed in all generations of 1467 resistant
parasites (Fig 3.6 and Table 3.3). The two clusters contain eight and seven
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predicted open reading frames, respectively. The copy number of most of the
genes (seven out of eight) in Cluster 1 increased additionally with increasing
1467 resistance. Four of the eight genes are plasmodium-conserved genes
with unknown function including PF3D7_1218100 - the gene with the M416T
SNP in resistant parasites discussed above. The other genes in cluster 1 are
annotated as follows: adaptor protein subunit, hexose phosphate translocator,
arginine tRNA ligase, secreted ookinete protein. Cluster 2 genes are annotated
as leucine-rich repeat protein, NIMA related Kinase 1, putative RNA
pseudouridylate synthetase and merozoite surface protein 9. Contrary to the
cluster 1 genes, the copy number of most of the genes (five out of seven) in
cluster 2 decreased with increasing 1467 resistance, with the exception of two
genes that retained a constant copy number (Table 3.3).

Parasites selected for the third generation of resistance were
subsequently cultured without drug pressure for five months. These parasites
showed partial reversion to sensitivity, with a change from ~50 fold to ~11
fold decreased sensitivity compared to wild type, but they retained mutations
in both PF3D7_0622800 (V568L) and PF3D7_1218100 (M416T) (Table 3.6).

First generation Second generation Third generation

0.4uM 1uM 10uM
6 x 107 Dd2 u DA2_1467_Rl | sy | DU2_1467_R2 | pummimmuunp | D92_1467_R3

parasites/flask | 31 Days IC50: 0.9 -1.7uM | 73 Days | IC5o: 3.4—9uM | 103 Days | ICso: 25 —40uM

Figure 3.5: Analysis of 1467-resistant parasites. Resistance was selected against Dd2-strain
P. falciparum with step-wise increases in concentration of 1467, leading to 3 generations of
resistant parasites, as indicated in the schematic.
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Figure 3.7: LeuRS sequence alignments. A. Structure of E. coli LeuRS-tRNALeu complex reproduced
from Palencia et al. 2012. The editing domain is circled. B. Alignment of the predicted editing
domain sequences of P. falciparum cytoplasmic LeuRS (amino acids 375 - 704) and the
characterized LeuRS editing domains in homologs from H. sapiens, S. cerevisiae and E. coli. Positions
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at which a SNP was identified in 1467-resistant parasites are highlighted in yellow. Three highly
conserved active-site regions required for LeuRS editing activity in S. cerevisiae and E. coli are
indicated as follows: Threonine Rich Region (Red), GTG region (blue) and Catalytic region
(Fuchsia). The SNPs associated with second and third generation 1467 resistance (T4001, V568L)
are located in the predicted active sites of the LeuRS editing domain, whereas the first generation
SNPs (E628G, V630L), though located within the editing domain, are not within the predicted
active sites.
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3.4 Compound 1467 appear to inhibit LeuRS editing activity

The identification of P. falciparum LeuRS as a likely target of compounds 1467
and 1474 was intriguing, as other tRNA synthetases have recently received
attention as potential drug targets (J.S Pham et al. 2014), including
antimalarial targets (Hoepfner et al. 2013), and as other oxaboroles were
recently characterized as inhibitors of LeuRS of bacteria and yeast (Rock et al.
2007, Ding etal. 2011, Hernandez et al. 2013 and Hu et al. 2013). To attempt
to validate LeuRS as the target for the recently identified oxaboroles, we
characterized the effect of compounds1467 and 1474 on P. falciparum protein
synthesis. Wild type Dd2 strain parasites were cultured with varying
concentrations of compounds in the presence of radiolabelled leucine.
Treatment of cultured parasites with a 2 hour pulse of the compounds led to a
block in parasite incorporation of [14C]leucine, indicative of a block in protein
synthesis, as also seen with the control cycloheximide, but not seen with
compound 3661 and artemisinin, which is a potent antimalarial that does not
act against protein synthesis (Fig. 3.8A). In contrast, 1467 failed to inhibit
[*#C]leucine incorporation in the second and third generations of 1467
resistant parasites, but inhibition was observed for first generation 1467
resistant parasites at comparable concentrations (Fig 3.8B). These results
indicate that the LeuRS SNPs in the second and third generation resistant
clones are more relevant to 1467 resistance and/or action compared to the
first generation LeuRS SNPs. Interestingly, this corroborates our genetic data,
as the locations of the second and third generation resistant LeuRS SNPs map
to the predicted editing active sites, unlike the first generation resistant LeuRS
SNPs, which although within the editing domain, were not located within any
of the identified active sites (Fig 3.7). Considering the predicted LeuRS target,
we further tested the effect of 1467 and 1474 on the incorporation of
[#C]leucine in soluble P. falciparum crude extracts presumed to contain active
LeuRS. Unlike 3661, both 1467 and 1474 inhibited LeuRS activity in soluble P.
falciparum extracts, with inhibition of incorporation of [14C]leucine into either
prokaryotic (E. coli; Fig 3.9B) or eukaryotic (S. cerevisiae) Leu-tRNA (Fig 3.9A).
On the contrary, 1467did not inhibit presumed ILeRS and ValRS activities in P.
falciparum crude extract, as inhibition of incorporation of ['4C]isoleucine (Fig
3.10A)or [**C]valine (Fig 3.10B) was not seen at inhibitor concentrations up to
300 uM. Taken together, our results suggest that compounds 1467 and 1474
act against P. falciparum by inhibiting the activity of LeuRS.
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Fig 3.8. Effect of 1467 on [1*C]leucine incorporation in P. falciparum parasites. A) Effects
on wild-type W2 strain P. falciparum. B) Effects on Dd2 strain P. falciparum selected for
resistance. X-axis concentrations are based on multiples of ICsos. Cycloheximide ICso =
130nM (n = 3), artemisnin ICso = 8.7nM (n = 3).
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3.5 Impaired editing in 1467 resistant P. falciparum

Parasites selected for resistance to 1467 contained multiple mutations
in LeuRS, and all identified mutations were in the predicted editing domain of
the enzyme. Of note, other benzoxaboroles inhibited the editing activity of
LeuRS in yeast (Rock et al. 2007) and bacteria (Hernandez et al. 2013, Hu et al.
2013). Biochemical confirmation of impaired LeuRS editing comes from
growth in norvaline, which will be toxic to organisms with impaired LeuRS
editing, due to misincorporation of norvaline in proteins. Indeed, growth
impairment was seen in benzoxaborole-resistant S. cerevisiae in the presence
of norvaline (Rock et al. 2007). We predicted that, similarly, 1467-resistant
parasites have faulty LeuRS editing, and therefore would be particularly
sensitive to incubation with the non-native leucine analog - norvaline due to
inability to remove (edit) norvalines that are incorrectly attached to tRNALev,
Wild type and 1467 resistant Dd2-strain parasites were cultured in the
presence of varying concentrations of norvaline with or without exogenous
leucine for 48 hours, after which parasitemias were determined. Norvaline
was not toxic to wild type and first generation 1467 resistant parasites at
concentrations up to 1 uM. In contrast, norvaline markedly inhibited the
growth of second and third generation resistant parasites in the absence of
exogenous leucine (Fig 3.11A). This effect was reversed with exogenous high
concentrations of leucine (Fig 3.11B). We posit that the lack of effect of
norvaline on first generation 1467 resistant parasites, but marked inhibition
of second and third generations can be attributed to differences in the
mechanisms of resistance in the different generations of resistant parasites.
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3.6 Discussion

Development of new antimalarial drugs, ideally acting by novel
mechanisms of action, is needed. We identified two benzoxaboroles, 1467 and
1474, with excellent in vitro activity against P. falciparum and potent action in
arodent malaria model. The determination of the mechanisms of action of
these compounds is an important priority. To determine the mechanism of
action of compound 1467 in P. falciparum, parasites with markedly decreased
sensitivities to 1467 were selected and characterized by whole genome
sequencing. Resistant clones showed several SNPs compared to wild type, but
only SNPs in a LeuRS gene (PF3D7_0622800) and another gene
(PF3D7_1218100) that codes for a protein of unknown function were
consistently seen in multiple clones from multiple passages. Additionally, two
amplified gene clusters on chromosome 12 were observed in resistant clones.
Furthermore, we tested the effects of 1467 and 1474 on protein synthesis and
on leucine incorporation and editing by P. falciparum LeuRS. Compounds
1467 and 1474 elicited a dose dependent inhibition of intracellular protein
synthesis and inhibited the LeuRS activity of a P. falciparum extract. Parasites
selected for 1467 resistance lost the ability to edit the inappropriate
incorporation of amino acids. Taken together, our data strongly suggest that P.
falciparum LeuRS is a target of the antimalarial benzoxaboroles 1467 and
1474.

Malaria drug discovery is especially challenging. In addition to general
drug requirements, in particular efficacy and safety, antimalarial drug
candidates should meet additional challenging criteria, as described by MMV,
which funds and directs several antimalarial drug discovery projects. Criteria
for new antimalarial agents include rapid clinical response, requirement for
no more than 3 days treatment, oral bioavailability, low tendency to select for
drug resistance, lack of cross resistance with existing antimalarials, safety in
children < 6 months of age and in pregnancy, and low cost of production.
Although data to address each of these criteria are not yet available for1467,
we can make some inferences based on our available results. First, the
compounds are highly potent, with killing of cultured P. falciparum, including
fresh clinical isolates, at mid-nanomolar concentrations. Second, the
compounds were effective in vivo, with EDqos at day 4 after 4 daily oral doses
to P. berghei-infected mice ~ 10 mg/kg per day. These in vivo data suggest that
the compounds are orally bioavailable and relatively non-toxic. Of note, the
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safety of other oxaboroles has been demonstrated, with extensive in vitro and
in vivo toxicology studies and progression of two compounds to trials in
humans (Alley et al. 2007, Akama et al. 2009, Ciaravino et al. 2013, Bowers et
al. 2013). Third, our results suggest that 1467 has a novel mechanism of
action, the inhibition of P. falciparum LeuRS. Cross-resistance with the very
similar compound 1474 suggests a shared mechanism for these two
compounds, and the lack of cross resistance with known antimalarial drugs
supports a novel mechanisms for 1467 and 1474. Actually, for unknown
reasons, about 5-fold increase in sensitivity to mefloquine and lumefantrine
was observed in the third generation 1467 resistant parasites (Table 3.4).

Considering resistance selection, we were able to select for high-level
1467 resistance over 104 days of continuous in vitro drug pressure. However,
resistance can be selected against most antimalarials in vitro, and clinical
studies will be required to gain insight into the ease of selection of resistance
against this class of compounds. Considering cost of production,
benzoxaboroles are easy to synthesize, requiring a four to six step scheme
starting from cheap ingredients (Zhang et al. 2011). In summary, although
much more data are needed for advancement to a clinical candidate, available
data suggest that compounds 1467 and 1474 have many of the attributes
desired in a new antimalarial drug.

Due to the observation that parasites selected for various levels of
resistance to 1467 contained a total of 4 SNPs, all mapped to the editing
domain of LeuRS, plus previous results showing targeting of the LeuRS editing
function of other microbes by different benzoxaboroles (Rock et al. 2007, Ding
etal. 2011, Hu et al. 2013, Hernandez et al., 2013), we sought to test whether
LeuRS is a target of 1467 in P. falciparum. First, we first explored the effects of
1467 on the uptake of radiolabeled leucine, a marker for parasite protein
synthesis, comparing effects on wild type and resistant clones. Dose
dependent protein synthesis inhibition was observed for 1467 and the related
compound 1474, but not for artemisinin or other benzoxaboroles tested.
Protein synthesis inhibition required quite high concentrations (50-100X ICso)
of 1467 and 1474, likely due to the brief (2 hour) incubation used in the
standard assay (as longer incubations would allow non-specific inhibition by
any compound toxic to malaria parasites), but similarly high concentrations of
artemisinin did not inhibit this process. Cycloheximide was active against
leucine uptake at concentrations closer to its antiparasitic ICso, presumably
because cycloheximide binds the ribosome to inhibit elongation (Schneider-
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Poetsch et al. 2010), a process very central to protein synthesis. In contrast,
inhibition of LeuRS editing may not have as profound an effect on cellular
protein synthesis. A direct test of inhibition of P. falciparum LeuRS is not yet
possible, as active purified enzyme is not available. To measure activity
against the enzyme we evaluated effects of benzoxaboroles on the ability of
parasite extracts to incorporate radiolabeled leucine into either prokaryotic
(E. coli) or eukaryotic (S. cerevisiae) tRNA. Both 1467 and 1474 caused dose
dependent, albeit modest (mid-micromolar) inhibition of leucine
incorporation by P. falciparum extracts into both bacterial and fungal tRNA.
The control tRNA synthetase inhibitor mupirocin, an inhibitor of I1eRS, also
required micromolar concentrations to inhibit isoleucine incorporation (Fig
3.10A). Presumably, as with the P. falciparum leucine incorporation assay,
brief incubation with tRNA synthetase inhibitors requires high concentrations
to exert potent enzyme inhibition. We studied incorporation by both
prokaryotic and eukaryotic tRNAs in an attempt to distinguish activities of the
predicted P. falciparum cytoplasmic LeuRS target, which is a typical
eukaryotic enzyme, and a second P. falciparum LeuRS that is active in the
apicoplast, a prokaryote-like organelle with an independent protein synthesis
machinery. However, both activities were inhibited with similar potency. This
result suggests that the P. falciparum cytoplasmic LeuRS is capable of charging
both prokaryotic and eukaryotic tRNA. A less likely explanation is that
compounds 1467 and 1474 inhibit the two quite different enzymes with
similar potency. Some early studies suggested that the aminoacylation
reaction is dependent on the source of both the aaRS enzymes and their
cognate tRNAs (Rendi and Ochoa 1962, Doctor and Mudd 1963). For example,
prokaryotic aaRS enzymes would have a much higher specificity for charging
a tRNA from another prokaryotic organism compared to a similar tRNA from a
eukaryotic source and vice versa. However, other studies showed that this
alleged specificity pattern is not universal but dependent on the particular
amino acid and species in question (Benzer and Weisblum 1961, Clark and
Eyzaguirre 1962). Thus, the observation that 1467 equally inhibited C14
leucine incorporation by either S. cerevisiae or E. coli tRNA could mean that
the cytoplasmic LeuRS is non-discriminatory between prokaryotic and
eukaryotic tRNAs, charging both equally well. In any event, taken together our
evidence strongly suggests that the P. falciparum cytoplasmic LeuRS is the
target of our compounds of interest, as parasites selected for resistance to
1467 contained mutations in the gene encoding this enzyme, but not that
encoding the apicoplast LeuRS (PF3D7_0828200).
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All mutations that developed in parasites selected for resistance to 1467
were predicted, based on comparison with better characterized LeuRSs from
other organismes, to be located within the enzyme editing domain. To test
whether 1467 specifically inhibited the LeuRS editing function, we incubated
wild type and 1467-resistant parasites with the non-native amino acid
norvaline. Parasites selected for high level resistance to 1467 had markedly
impaired growth when cultured with norvaline, and not leucine. Wild type
parasites had normal growth under these conditions, presumably because
they successfully removed inappropriately incorporated norvaline, and
acquired adequate quantities of leucine from hemoglobin hydrolysis. Thus,
these results strongly support the hypothesis that a principal target for the
antimalarial benzoxoboroles 1467 and 1474 in P. falciparum is the
cytoplasmic LeuRS.
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CHAPTER 4

STUDY OF THE MECHANISM OF ACTION OF THE
BENZOXABOROLE COMPOUND 3661

4.1 Compound 3661 has excellent in vitro and in vivo antimalarial
activity

Compound 3661 (Fig 4.1A) is one the most potent antimalarial
benzoxaborole candidates identified in our library to date, with an IC50 of
~30nM againstlaboratory strains of P. falciparum both sensitive and resistant
to standard antimalarial drugs (Table 4.1). When tested against a human cell
line, 3661 did not exert apparent toxicity against cultured Jurkat cells at
concentrations up to 100 uM. Compound 7334 (Fig 4.1B) is related to 3661
and, as expected, shared similar in vitro activity against P. falciparum. When
administered orally once daily to P. berghei-infected mice for four days, 3661
was highly efficacious, with a day four ED9o of 0.34 mg/kg/day. With longer
(28 day) follow up 100% of infected mice treated with 200 mg/kg/day of
3661were cured (Figure 4.2). With these excellent preliminary in vitro and in
vivo antimalarial activities, we sought to investigate the mechanisms of action
of 3661 and related compounds against P. falciparum.

A B
COOH
O OH
PH 8
B\ HO \O
@)

Fig 4.1. Structure of (A) compound 3661. MW = 206 and (B) compound 7334. MW = 206
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Table 4.1: In vitro and in vivo antimalarial activities of compounds 3661 and

7334
Jurkat In vivo
Lab strains ICso (uM) cell line | P. berghei
EDo9o
Compounds 3D7 W2 Dd2 CCs0 (1M) (mg/kg)
3661 0.034 £ 0.008 | 0.032+0.011 | 0.028 +0.006 | >100.000 0.340
7334 0.038+0.010 | 0.054+0.012 | 0.055+0.011 ND ND

Table 4.2: Activity of antimalarials (ICsos: nM) against 274 and 4th generation
3661 resistant W2 P. falciparum

Wild type 2nd generation 4th generation
Compound 3661 323+1.1 390.4 + 8.2 6900.2 £ 190.4
Compound 7334 54.2+3.8 1057.3 £ 69.4 4748.3 +101.6
Compound 1467 280.1 £ 140.3 328.7 +87.3 311.5+£119.3
cQ 425+2.6 153+3.2 16.5+1.9
Piperaquine 7.6 +0.8 78+1.1 4.6+0.6
Mefloquine 03+0.1 1.1+0.1 0.6+0.1
Desethylamodiaquine 9.1+1.8 20.2+2.3 21.5+4.8
Lumefantrine 68+1.1 6.05+ 0.8 1.5+0.1
Dihydroartemisin 87+21 91+1.7 3.5+£09
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Figure 4.2: Survival curves of P. bergei- infected mice treated with 3661. Animals were
inoculated intraperitoneally with 6 x 106 P. berghei infected erythrocytes, followed one
hour later by initiation of once daily oral treatment with multiple dosages of test

compounds, choloroquine, or vehicle control. Results are based on two independent
experiments, each including five mice per dosing regimen.
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4.2 Invitro morphological and stage-specific effects of 3661 on RBC
stage P. falciparum.

To look for the presence of signature morphological effects of 3661 on P.
falciparum, synchronized W2-strain parasites were treated with 3661 over
the course of the RBC life cycle, beginning at the early ring stage. Although no
obvious morphological abnormalities were observed, treated parasites were
unable to progress beyond the trophozoite stage; they did not develop into
multinucleated schizonts or new ring stage parasites (Fig 4.3). For stage
specificity analysis, synchronized W2-strain parasites were incubated with
3661 or chloroquine for 8 hour intervals across the life cycle, the compounds
were removed by washing at the end of each interval, cultures were
maintained until untreated control parasites had reached the ring stage, and
the parasitemias of control and treated cultures were compared. Similar to
chloroquine, 3661 had some activity across the life cycle, but activity was
greatest against trophozoites (Fig 4.4).
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Figure 4.3. Light microscopic imaging of Giemsa-stained P.falciparum - infected
erythrocytes after treatment with 370nM compound 3661, beginning at the early ring stage
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Figure 4.4. Stage specificity. Parasitemias were compared between untreated control
parasites and parasites incubated with 370 nM 3661 or 1.3 uM chloroquine for 8 hour
intervals across the life cycle and then continued in culture until the following ring stage.
Incubation time intervals are represented on the x-axis along with corresponding stages in
red, with photos taken at the beginning of each interval.
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4.3 Selection and analysis of parasites with decreased 3661 sensitivity

To gain insight into the mechanism of action of compound 3661, three
different approaches were used for the selection of 3661-resistant parasites.
For the first and second approaches, we subjected two different laboratory
strains of P. falciparum (W2 and Dd2) to step-wise increasing 3661
concentrations beginning at 37 nM (Figure 4.5A & B). For each step, parasite
sensitivity to 3661 was assessed and parasites were cloned and stored for
future analysis. For the third approach, 3661 resistant Dd2-strain P.
falciparum was selected using a one-step in vitro selection approach (Fig
4.5C). Here, a larger population of Dd2-strain parasites (6 x 10°) was cultured
in the presence of a high concentration of 3661 (0.17 uM). Initially, no parasite
growth was observed, but after 27 to 45 days parasites were identified in
cultures, in vitro sensitivity was determined, and parasites were cloned.
Parasites from all generations of resistance to 3661 were characterized by
whole genome sequencing to determine genetic changes associated with
resistance. For W2-strain parasites, five steps of continuous selection in three
independent culture flasks over 11 months led to a 500 - 1000 fold change in
the ICso. For the most resistant parasites (fifth generation), the resistant
phenotype was unstable, with reversion from an ICso of 30 uM to an ICso of
1.68 uM after two weeks of culture in drug free media (Fig 4.5A). For Dd2-
strain parasites, after two steps of selection we identified a ~ 40 - 50 fold
increase in ICso (Fig 4.5B). As a third approach, three independent Dd2-strain
parasite cultures subjected to a constant high concentration of 0.17 uM 3661
led to ~ 7-14 fold ICso increase over 1 - 1.5 months (Fig 4.5C), however only
two (Dd2_ANR1 and Dd2_ANR2) were successfully cloned. As expected, 3661
resistant parasites were similarly resistant to 7334, suggestive of a shared
mechanism of resistance. In contrast, selected parasites were not more
resistant to 1467, another antimalarial benzoxaborole described in this
dissertation (Chapter 3) or antimalarials including chloroquine, mefloquine,
lumefantrine, piperaquine and dihydroartemisinin (Table 4.2).

Whole genome sequencing identified numerous genetic changes
between parental and 3661-resistant parasites, including SNPs and CNVs.
Similar to the 1467 resistant clones analyzed, about 2800 top SNPs (200 SNPs
per chromosome) were selected per 3661 resistant clone based on quality
score. SNP filtration was done as previously detailed (Section 3.3; Fig 3.6),
disqualifying synonymous SNPs, SNPs in non-coding regions and introns, and
SNPs located in genes that code for variant surface antigens. Additionally,
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SNPs in low coverage exonic regions (< 20 sequence reads covering the
genomic position of a SNP) and SNPs where < 80% of reads had the SNP in
question were disqualified.

Although 3661-resistant clones showed several SNPs compared to wild
type, only SNPs in PF3D7_1438500, which encodes a homolog of human
cleavage and polyadenylation specificity factor (CPSF), were seen consistently
in multiple clones from multiple passages (Table 4.3 and 4.4). A total of eleven
3661 resistant clones were analyzed by whole genome sequencing. A total of 4
SNPs were identified in PF3D7_1438500 in nine out of the eleven resistant
clones sequenced (Table 4.5), including all clones except the first and second
generations of W2 3661 resistant clones (W2_3661_R1 and R2 clones).

The fact that SNPs in the CPSF gene (PF3D7_1438500) were seen in two
different parasite strains selected for resistance to 3661 using three
independent resistance selection approaches suggests that alterations in CPSF
play a primary role in 3661 resistance. With regard to copy number
variations, amplification of a cluster of genes on chromosome 5, including the
pfmdr1 gene, was observed in the 3661 resistant W2-clones (Table 4.5). At the
early stages of selection, there was an increase in pfmdrl copy number in the
W2-strain parasites, from a copy number of one at baseline to four to five
copies in the first and second generations. With additional selection, pfmdr1
copy number decreased to three in the fifth generation. Dd2 strain parasites
differ from W2, in having three to four copies of pfmdr1. No pfmdr1 copy
number changes were observed in Dd2 3661 resistant clones (Table 4.5).
Third and fourth generation W2 3661 resistant clones were subsequently
cultured without drug pressure for five and four months, respectively. While
the sensitivity of the third generation resistant clone reverted fully to wild
type levels along with complete loss of the corresponding PF3D7_1438500
SNP (D470N), the fourth generation resistant clones had a partial reversion,
decreasing to ~100-fold decreased sensitivity compared to wild type and
retained both CPSF mutations (H36Y and D470N) (Table 4.5).
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4.4 Discussion

In our screen of benzoxaboroles for antimalarial activity,
3661 had exceptional in vitro activity against P. falciparum and potent
action against P. berghei in a rodent malaria model. To determine the
mechanism of action of compound 3661 in P. falciparum, parasites with
markedly decreased sensitivities to 3661 were selected using two
different techniques - culture in step-wise increasing concentrations of
3661 and one-step selection using a single high concentration of 3661.
Resistant parasites were cloned and characterized by whole genome
sequencing. Resistant clones showed several SNPs compared to wild
type, but only SNPs in PF3D7_1438500, which encodes a homolog of
human cleavage and polyadenylation specificity factor (CPSF) were
consistently seen in multiple clones from multiple passages. In terms of
CNV results, one amplified cluster of genes on chromosome 5 including
pfmdr1 was observed in W2-strain resistant clones. In summary, our
genetic data strongly suggest that mutations in P. falciparum CPSF
(encoded by PF3D7_1438500), a protein predicted to be responsible for
pre-mRNA 3’ end cleavage and/or polyadenylation based on homology
with proteins in mammalian cells and yeast, are implicated in the
mechanism of 3661 resistance. More work is needed to validate these
findings and to determine if pre-mRNA 3’ end cleavage and/or
polyadenylation are the antimalarial targets of 3661.

Although some compounds such as the adenosine analogue
cordycepin and rifamycin derivatives have been reported to inhibit the
3’ pre-mRNA polyadenylation process in eukaryotic cells (Jacob and
Rose 1974, Rose et al. 1977, Kondrashov et al. 2012), none have been
reported to target CPSF. Unlike in humans and yeast, the proteins of the
3’ pre-mRNA polyadenylation complex have not been characterized in
Plasmodium parasites. A search for “CPSF” on plasmoDB, a plasmodium
genome database, yields three genes, two on chromosome 3 and one on
chromosome 14 where our SNPs of interest were identified. This
chromosome 14 CPSF (PF3D7_1438500) gene predictsa 101 kDa
protein, and sequence alighment with human CPSF-73, the enzyme
confirmed to be responsible for cleavage at the conserved AAUAAA site
in human pre-mRNA (Mandel et al. 2006), shows 29% sequence identity
and 56% similarity. PF3D7_1438500 also has homology (16% sequence
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identity and 47% similarity) to CPSF-100, a CPSF-73 homolog that has
been shown to lack endonuclease activity (Mandel et al. 2006). Hence,
we cannot predict which of the two human CPSF homologs is
functionally related to the predicted CPSF encoded by PF3D7_1438500
in P. falciparum.

All 3661 resistant P. falciparum parasites analyzed by whole
genome sequencing had CPSF SNPs except for the early (1st and 2nd
generation) W2 3661 resistant clones (Table 4.5). Of interest, these two
generations had another polymorphism, increased copy number of the
pfmdr1 gene, which encodes a putative transporter of multiple
antimalarial drugs. With selection of increasing levels of resistance,
there was an initial spike in pfmdr1 copy number (1st and 2nd
generations) followed by a gradual decrease as SNPs accumulated in
later generations, from a copy number of four and five in generations
one and two respectively, to a copy number of three in generation five.
Thus, W2-strain parasites, with only one copy of pfmdr1 at baseline,
elevated pfmdrl copy number to mediate low-level resistance. With
increasing drug pressure, mutations were seen in PF3D7_1438500, and
the copy number of pfmdr1 decreased. These results suggest that
increased copy number of pfmdr1 may have mediated enhanced egress
of 3661 from the site of drug action, and that mutations in the drug
target, which we propose is P. falciparum CPSF, mediated higher level
resistance. Interestingly, this trend in pfmdrl copy number was
observed for the W2-strain, but not for the Dd2 strain, which contains
multiple copies of pfmdr1 at baseline.

Another interesting set of SNPs was identified in four clones in
PF3D7_0319100, a gene that encodes a putative ubiquitin-protein ligase
in P. falciparum. Interestingly, using population genome-wide
methodologies, proteins of the ubiquitin system have been associated
with P. falciparum resistance to antimalarial drugs including
pyrimethamine and artemisinin (Park et al. 2012, Volkman et al. 2012,
Hamilton et al. 2014). Although the particular role of the ubiquitin
system proteins in P. falciparum drug resistances is yet to be validated,
the ubiquitin system, as in other eukaryotic cells, may be important in
parasite survival (Hamilton et al. 2014).

We have strong genetic evidence that PF3D7_1438500 is
important in the mechanism of 3661 resistance. However, more work is
needed to test whether the product of this gene is the direct target of
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3661. Given the involvement of several proteins in the yeast and
mammalian 3’ pre-mRNA cleavage and polyadenylation process
including other CPSF proteins, it is very possible that the protein
encoded by PF3D7_1438500 may not be the direct target of 3661. In
this case, the observed CPSF SNPs could be a secondary response to a
direct targeting of another protein in the complex that interacts with
CPSF.
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CHAPTER 5

CONCLUDING REMARKS AND FUTURE DIRECTIONS

Malaria, most especially P. falciparum malaria, is one of the
most important infectious diseases globally. Although some control
measures exist including use of insecticide treated bednets and indoor
residual spraying, malaria incidence remains high. Nonetheless,
chemotherapy has played a pivotal role in treating uncomplicated
malaria, especially in highly endemic regions. However, there is
increasing threat to the success of chemotherapy due the emergence of
resistance to our current single most potent class of drugs -
artemisinins, along with the longstanding resistance to most ACT
partner drugs. As a result, the exploration of benzoxaboroles is very
relevant as demand increases for novel non-artemisinin antimalarial
drugs.

Our screen identified several benzoxaboroles, including
compounds 1467 and 3661, with varying degrees of activity against P.
falciparum. Using the in vitro resistance selection technique, we
identified the mechanisms of resistance, and possibly mechanisms of
action of our two benzoxaboroles of interest - 1467 and 3661. We
adopted two different selection methods, comparing step-wise
continuous selection and one-step selection. Although the techniques
led similar results, our data highlight the advantage of the step-wise in
vitro drug selection technique in giving insight into “behind-the-scenes”
molecular events leading to drug resistance.

To validate the proteins encoded by the genes with observed
mutations as the targets of 1467 or 3661, biochemical assays are
necessary. For 1467, such assays were done and although we lack tests
on active recombinant LeuRS, our biochemical data suggest that LeuRS
is a likely target of 1467. For 3661, more work is needed.
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Accordingly, more work is underway to confirm if the CPSF
encoded by PF3D7_1438500 is the direct target of compound 3661.
First, we plan to test the effect of knocking in the observed
PF3D7_1438500 SNPs into wild-type P. falciparum on 3661
susceptibility. Second, in order to test the effect of 3661 on mRNA
synthesis in cultured P. falicaprum, we plan to quantify the abundance
of select transcripts using northern blots. Finally, we will test the effect
of 3661 and related compounds on extra-cellular cleavage and
polyadenylation reactions using both P. falciparum extracts and
recombinant expressed CPSF (encoded by PF3D7_1438500).
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