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We report evidence of spontaneous formation of a heterogeneous network of superdomains in
two-dimensional square artificial spin ice nanostructures in externally applied magnetic fields. The
magnetic heterogeneity is locally disordered but has a zig-zag texture at longer length scales. Reso-
nant coherent soft-x-ray scattering off such textures give rise to unique internal structure in Bragg
peaks. Our result shows that the macroscopic magnetic texture is derived from the microscopic
structure of the Dirac strings.

Artificial spin ice (ASI) systems are magnetic nanos-
tructures whose magnetization textures mimic the frus-
trated hydrogen bonding networks observed in water
ice.1–3 ASI are most commonly periodic arrays of iden-
tical, elongated thin film islands whose shape anisotropy
forces their magnetizations to align along their long axes,
which gives them an Ising spin character. Geometri-
cal constraints dictate the interactions between the Ising
spins. In square ASI, for example, the arrangement of
mutually perpendicular nanomagnets over a square lat-
tice causes an asymmetry in the inter-island interactions
that, in principle, favor an antiferromagnetic ground
state. However, high-energy barriers to magnetization
switching of individual islands oppose their thermaliza-
tion at room temperature, and the ground state is at-
tained only in limited areas of the ASI.4,5.

Magnetic excitations of ASI are analogous to those of
natural (atomic scale) spin ice6–9, and are quasiparticle-
like magnetic point charges that reflect the behavior of
hypothetical magnetic monopoles.10 Pairs of opposite-
polarity charges are connected by a chain of flipped spins,
or “Dirac strings”, which result from a chain of successive
Ising spin-flips against a background spin texture.9,11

The formation and propagation of Dirac strings during
the magnetization reversal is particularly interesting as a
general process among ASI. In Kagome ASI, Mengotti et
al.12 found that reversals occur via nucleation, followed
by avalanches of magnetic charges. In contrast, square
ASI with large lattice constants form pairs of opposite
charges that remain near randomly distributed vertices,
(i.e. junctions between the nanoislands) instead of be-
coming itinerant.13 When such charges do move, the re-
sulting Dirac strings prefer to form closed loops rather
than open-ended chains.8 These studies show that square
ASI spin textures are heterogeneous and form structures
that span many vertex sites. In order to distinguish be-
tween domains that occasionally form within each nanois-
land from the areas of uniform ASI spin texture, we de-
note these mesoscale magnetic structures superdomains.

While concepts of heterogeneity are central to the global
understanding of spin ice physics, they have not been
addressed in any detail. It is important to understand
the evolution of magnetic heterogeneity on a macroscopic
length scale, and how energetic considerations in both
micro- and macroscopic length scales influence formation
of superdomains, which will affect nucleation and propa-
gation of magnetic charges.

Herein, we demonstrate that the constructive and de-
structive interference of a coherent x-ray beam scattered
from a square ASI results in Bragg peaks whose inter-
nal structure is highly sensitive to heterogeneity in the
magnetic texture. By analyzing Bragg peak profiles, we
extract detailed information of the various spin textures
within a macroscopic area. We found that after taking a
square ASI through multiple hysteresis loops, a partially
magnetized two dimensional (2D) square ASI develops
a heterogeneous patchwork of areas, each of which can
extend over tens of lattice sites, with the same vertex
states (e.g., “two-in/two-out” T2 textures) throughout.
Although locally heterogeneous, over large length scales
the disordered superdomains have a zig-zag texture that
is akin to the zig-zag shape of Dirac strings propagating
along a diagonal (e.g., [11]) direction of square ASI. The
heterogeneity is stable under application of moderate ap-
plied fields, and the ASI “remembers” the arrangement
of superdomains from previous hysteresis loops, which is
evidence for magnetic pinning sites.14

Our samples were 2D square ASI fabricated from
Permalloy (Ni0.81Fe0.19) deposited on a Si wafer using
electron beam deposition. The nanoislands were fabri-
cated using electron beam lithography, yielding thick-
nesses t = 25 nm, widths w = 50 nm, and lengths ` = 150
nm, and square ASI lattice constant d = 300 nm. Sample
fabrication details are given in the Appendix. Resonant
coherent soft x-ray scattering was performed at a low in-
cidence angle of 9◦ at Beamline 12.0.2.2 at the Advanced
Light Source, Lawrence Berkeley National Laboratory.
The coherent x-ray beam was obtained by placing a 10
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FIG. 1. (a) Hysteresis loop of the square ASI sample.
The magnetic field was applied along the [10] direction of
the square ASI and the magnetization (“Long Moment”) was
normalized to the saturation value MS . Blue dots show field
points of 79, 249 and 500 Oe, at which x-ray measurements
were done. (b) Bragg peaks in resonant coherent x-ray diffrac-
tion patterns from the square ASI. Bragg peaks split into a
rough ring shape when applied magnetic field is on during a
hysteresis loop (left column) and become approximately cir-
cular (due to pinhole) when the field is off (right column).
This ring shape persists till µ0H ≈ 80 mT, though it subtly
changes at higher fields.

µm pinhole at the monochromator focus, located 5 mm
upstream from the ASI. Our coherent σ polarized inci-
dent x-ray beam was resonantly tuned to the Fe L3 edge
(707 eV) to enhance the magnetic contrast. On reso-
nance, σ polarized soft x-rays are sensitive to the com-
ponent of magnetization along the beam direction (i.e.,
~k0‖ ~M)15. Taking all of this into account, we probed
≈5,580 nanoislands whose long axes were parallel both
with the applied magnetic field and incident beam. We
applied magnetic fields along the beam direction to ma-
nipulate the ASI magnetization and used charge-coupled
device camera, 0.5 m downstream of the ASI, to record
diffraction patterns at several applied magnetic fields.

Fig. 1(a) shows the DC magnetic hysteresis loop of
the sample with magnetic field applied along the [10] di-
rection of the square spin ice unit cell. The blue dots
mark the field positions where the resonant coherent x-
ray diffraction data was taken. In order to study the
field evolution of magnetic scattering, we field cycled the
sample several times (about 5 times between ±0.25 T)
through the hysteresis loop before recording any diffrac-
tion data. We then applied a saturating field opposite
to the beam propagation direction, and then applied the
fields of 10 mT ≤ µ0Hz ≤ 80 mT. Every field condition
measurement was followed by a zero field measurement.

In zero field conditions, we obtained symmetric Bragg
peaks surrounded by diffuse Airy fringes caused by
diffraction from the circular pinhole. The intensity
pattern is remarkably different from those acquired
in non-zero magnetic field (Figure 1(b), left panel).
“Doughnut”-shaped Bragg peaks form with intensity
minima at their centers surrounded by non-uniform cir-
cular rings of intensity that features two strong intensity
regions along the scattering plane, connected by weaker

FIG. 2. Ideal resonant magnetic x-ray scattering from T1
and T2 vertex lattices vs. data. (a) Characteristic scatter-
ing from a lattice of T1 vertices. The antiferromagnetic ar-
rangement of spins cause peaks at half-integer Miller index
positions (e.g., peaks along dashed K = 1/2 line). (b) “Half-
order” peaks are absent in scattering from a T2 vertex lattice.
(c) Zero-field diffraction data. Lack of half-order peaks indi-
cates that no long range T1-order exists in the sample.

arcs of intensity. Interestingly, on switching off the mag-
netic field, we observe symmetric Bragg peaks without
any discernible ring-like structure ((Figure 1(b), (Right
panel). Since the Bragg peaks develop internal struc-
ture with the application of magnetic fields, changes as
the field is increased, and returns to a symmetric shape
when the field in taken away, we conclude that the res-
onant scattering effect shown in Fig. 1(b)(left panel) is
magnetic in origin.

In a 2D square ASI the four islands surrounding a ver-
tex site can adopt 24 = 16 distinct local spin configura-
tions which can be assigned one of four energy states: T1,
T2, T3 and T4. (See Appendix.) In order to understand
the mix of vertex states that could give rise to the ob-
served scattering patterns, we performed model scatter-
ing calculations for cases where the spin ice is populated
by either the lowest-energy T1 or next-lowest-energy T2
vertices (see Figure 2). Lattices entirely composed of T2
vertices result in Bragg peaks that precisely overlap with
lattice Bragg peaks (Fig. 2(b)), which are denoted by in-
teger Miller (H,K) indices. A pure T1 lattice forms ad-
ditional peaks at half integer Miller index positions,e.g.,
peaks lying on the green dashed lines and between yellow
lines in Fig. 2(a), consistent with the doubled unit cell
of the T1 state, which is also the ideal ASI ground state.
Since our data (Fig. 2(c)) does not exhibit any scatter-
ing at half-integer positions, we conclude that no long
range T1 order exists in the sample. This is expected as
the sample was subjected to several magnetic field cycles
between maximum fields of ±0.25 T, which would have
introduced a heterogeneous mixture of mainly T2 vertex
states.16

We defined a set of magnetic unit cells, shown in Fig. 3,
to construct model ASI spin textures and simulate reso-
nant x-ray scattering patterns from magnetically hetero-
geneous ASI. Figure 3(a) schematically shows the unit
cells and the nanoislands (containing arrows) that res-
onant magnetic x-ray scattering can distinguish in our
scattering geometry. The unit cells are divided into T1
and T2 types that describe square ASI when only one
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FIG. 3. (a) Schematics of the unit cells used to calculate the
magnetic structure factor of model ASI. The scattering struc-
ture factors of the unit cells are F+(~q) and F−(~q) respectively
for T1 unit cells with two-in or two-out arrow patterns; and
FL(~q) and FR(~q) for T2 unit cells with left and right pointing
arrows. An example of how the unit cells build up an ASI is
shown on the right. (b) Calculated ASI diffraction patterns
used to establish both an upper limit on the number of T1
vertices and their distribution in the ASI. If the T1 vertices
do not form long-range order, they cause weak diffuse scat-
tering at half-integer (H,K), as in the calculated scattering
pattern.

type of unit cell is present. T1/T2 vertex mixtures can
also be made, as shown on the right of Fig. 3(a).

The number of each unit cell type and their rela-
tive positions in the ASI determine the resonant mag-
netic x-ray scattering pattern. Each unit cell type has a
characteristic x-ray scattering structure that gives rise
to a specific Bragg peak at a specific location in the
reciprocal space.? ASI with only T1 unit cell struc-
ture factors F+ or F− exhibit half-order scattering (Fig.
2(a)), whereas T2 structure factors FL or FR show
no half-order peaks (Fig. 2(b)). The distribution of
T1 and T2 unit cells over the lattice significantly af-
fects the x-ray scattering intensity which is determined
by a sum of structure factors, weighted by position-
dependent phases, over every lattice point (i, j) of the

ASI: I(~q) ∝ |
∑Nx−1

i=0

∑Ny−1
j=0 Fij(~q) exp[i~q · ~rij ]|2, where

there are Nx × Ny lattice points. The constructive and
destructive interference of terms with different structure
factors can cause Bragg peaks to exhibit internal struc-
ture determined by the particular distribution of the unit
cells. Coherent x-ray scattering detects these interference
effects and reveals detailed information about the mag-
netic morphology and texture in a material.

FIG. 4. (a) Comparison between “doughnut-hole” Bragg
peak data to Bragg peaks in calculated x-ray scattering pat-
tern. The real space model on which the calculation is based
is shown on the right. (b) Schematic of Dirac strings forming
out of the saturated state of an ASI. These strings prefer to
move diagonally due to the symmetry of the square lattice. (c)
Depiction of superdomains (bounded by white dashed lines)
formed out of bundled Dirac strings. The dashed ellipse illus-
trates the area sampled by a x-ray beam.

We varied the spatial distribution and relative fraction
of T1 and T2 unit cells in the ASI in our calculations to
identify spin textures that replicated essential features of
the data. For example, of the scenarios investigated, we
found that T1 unit cells play no role in splitting the Bragg
peak intensities. Figure 3(b) illustrates the types of T1
(gray) and T2 (blue/red) unit cell mixtures we considered
in our model ASI; a calculated diffraction pattern from
one such mixture is shown on the right. To keep the half-
order scattering intensity in our calculations below what
would be the background level in our experimental data
required that the T1 unit cells be sparsely distributed or
only form a few small clusters containing no more than
∼ 50 unit cells. No more than ∼ 10% of the ASI lattice
sites are occupied by T1 unit cells.

Given our signal is dominated by T2 unit cells, we
then focused on the distributions of T2 unit cells that
would yield the observed scattering pattern. We found
that random mixtures of small T2 states produce weak or
no Bragg peaks. As in the case of diffraction off crystals,
ASI will give the strongest scattering when it has large ar-
eas of identical vertices/unit cells to provide constructive
interference at the Bragg peaks. In contrast, scattering
amplitudes from ASI with many small “crystallites” of
vertex order essentially add together incoherently (i.e.,
insignificant constructive interference). Therefore, the
spin texture we observe must have large areas, or super-
domains, of predominantly one T2 unit cell type (the unit
cells are shown in Fig. 3(a)).

The reproducible nature of the Bragg peak profiles
over six consecutive hysteresis loops supports this con-
clusion. This memory effect indicates quenched disorder
in the ASI which promotes the formation of superdo-
mains. Based on changes in Bragg peak splitting shape
and intensities, we estimate that at least 2.5% of illu-
minated area of ASI changes from one hysteresis cycle
to the next. These differences in Bragg peak profile
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are slight, indicating that there is sufficient disorder in
the magnetic texture to create superdomains containing
hundreds of unit cells circumscribed by long, partially
charged, boundaries.17 Furthermore, this memory effect
also implies the existence of a complex network of inter-
acting magnetic defects, such as Dirac strings and mag-
netic charges.14

Superdomain morphology strongly influences the over-
all shape and intensity of the scattered signal. For ex-
ample, antiphase domains in real crystals composed of
unit cells of different structure factors can broaden Bragg
peaks in particular directions in reciprocal space.18 In
the context of x-ray scattering from ASI, one superdo-
main (say, +M) can advance the phase of the scattered
x-rays and the another adjacent one (−M) can retard it.
The mismatched phases of the scattered light from the
two domains will create a dark band going through the
Bragg peak. This Bragg peak splitting is particular to
this magnetic texture, so seeing such a pattern is a strong
indication that two large, oppositely polarized superdo-
mains are being illuminated. Since a point defect in a
crystal or a fork shaped structure gives rise to doughnut-
shaped Bragg peaks, we examined various superdomain
arrangements (see Appendix) that would resemble such
a structure.

Superdomains with walls that form an intersection or a
convergence point is one such arrangement. The superdo-
main morphology and distribution that gave diffraction
closest to the data is shown in Fig. 4(a). To account
for experimental conditions in our real space model, we
bounded the ASI by an ellipse to represent the beam
footprint at 9◦ incidence. The real space structure con-
tains two different T2 superdomains each interspersed
with a disordered background, and have diagonal walls
that converge to form a cusp. The calculated diffraction
pattern from the real space model, as shown in Fig. 4(a),
has distinct doughnut-like Bragg peaks with two strong
intensity lobes separated by approximately the same re-
ciprocal space distance as in the data. The minima of
the doughnut peaks arises from the presence of contrast-
ing superdomains. The doughnut shape, in particular,
has its origin in the wedge-like superdomain morphology.
This reveals an important clue regarding the mechanism
directing superdomain morphology.

Starting from saturation, where the sample is Ising sat-
urated, reversal begins by random spin flips giving rise to
oppositely pointed T2 unit cells. Islands in neighboring
vertices flip and form areas dense with Dirac strings that
traverse the diagonal easy directions of the square ice
(see Fig. 4(b)). With increasing field, the Dirac strings
grow in length and number. Their mutual repulsion pro-
motes bundles of parallel Dirac strings to grow. These
bundles ultimately form large T2 superdomains with net
magnetization parallel to the applied field.

A magnetic field applied along [10] is equally likely
to create Dirac strings growing along the easy directions
[11] and [11̄]. Existing Dirac strings can also change their
propagation directions from one easy axis to another at

any given lattice site, causing cusp-like features in the
chains of flipped spins. As bundles accumulate more
Dirac strings with either differing growth directions or
cusps, the growth directions of the bundles change. Con-
sequently, Dirac string bundles, and the T2 superdomains
they engender, display morphologies with cusp-like fea-
tures, as shown in Fig. 4(c). The formation of cusps on
two different length scales indicates that the interactions
between Dirac strings that control the superdomain mor-
phology and heterogeneity are self-similar to inter-island
interactions that control the course of meandering Dirac
strings. This implies that a scaling relationship between
the two exists, a possibility we plan to further investigate.

Future experiments should be directed towards the
topic of superdomain defects, memory effects, and their
relationships to fundamental Dirac string excitation.
Topological defects, in the form of Buergers defects, can
be introduced to ASI to create magnetic heterogeneity.19

Superdomains nucleated around the defects could form,
each with a potentially different capacity to remember
past states based on the quenched disorder, field history,
and Buergers vector. Coherent resonant x-ray scatter-
ing can characterize these superdomains and their per-
sistence across magnetic field cycles.

Generalizing to other frustrated systems, the impor-
tant question is if the properties of large areas of long-
range order (e.g., superdomains) is determined by the
fundamental properties of the excitations. X-ray photon
correlation spectroscopy or inelastic x-ray scattering can
reveal the characteristic time and type of superdomain
dynamics associated with memory effects.
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Appendix A: Magnetic vertices in square artificial
spin ices

In a 2D square ASI the four islands that form a vertex
can adopt 16 distinct local spin configurations which can
be assigned to one of four energy states, called T1, T2,
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T3, and T4. (See Fig. A.) Analogous to the “two-in/two-
out” ice rules for the atomic moments in a tetrahedral
spin ice structure, T1 states, with one pair of opposing
magnetic moments pointing inward and one pointing out-
ward from a vertex, have the lowest magnetostatic energy
at zero applied field. T2 states also have two-in/two-out
local spin textures but with pairs of opposing inward and
outward moments. T2 states have higher energies than
T1 states because of the inequivalent distance between
the four nanobars which introduces asymmetry in the in-
teraction energy between the four elements of a vertex.
States having three (T3) or four (T4) spins pointing in or
out, respectively, exhibit higher magnetostatic energies
and net magnetic flux (i.e., local magnetic monopoles).
Generally, after multiple field cycling, 2D square ASIs
attain states that are primarily mixtures of T1 and T2
configurations with sporadic T3 vertices.16

Appendix B: Sample growth procedure

We have used electron beam lithography to pattern
square lattices of Permalloy dots of thickness t = 25 nm,
width w = 50 nm, length l = 150 nm, and lattice constant
a = 300 nm. ZEP positive resist was spin-coated on
a Si wafer prior to electron beam exposure. After the
e-beam exposure and development, a Permalloy film of
thickness 25 nm was then deposited using electron beam
evaporation, with a base pressure of 10−7 Torr. Final
lift-off of resist was done using N-Methyl-2-pyrrolidone

(b)

(c) (d)

(a)

FIG. A. The Ising spin textures associated with (a) T1, (b)
T2, (c) T3, and (d) T4 energy states of square ASIs. The
two lowest energy configurations, T1 and T2, have two of
four magnetic moments oriented toward the vertex and two
oriented away from the vertex, analogous to the “two in/two
out” ice rules for tetrahedral water ice. The two highest en-
ergy configurations, T3 and T4, display magnetic charges at
their vertices, shown by green and red dots.

(NMP). Our sample had a 2 x 2 mm overall dimension. A
scanning electron micrograph of a portion of the sample
is shown in Fig. B.

FIG. B. Scanning electron micrograph of a square array of
Permalloy dots of thickness t = 25 nm, width w = 50 nm,
length ` = 150 nm, lattice constant a = 300 nm, and total
dimension of the array is 2 mm x 2 mm.

Appendix C: Calculation of magnetic structure
factor

The magnetic structure factor, being proportional to
the scattered field, can be used to calculate the far field
interference pattern. We will explain how we arrived at
expressions for the magnetic structure factors used in cal-
culations that rendered Figures 3 and 4 of the main text.

Calculating the structure factors involves defining the
repeating motif, or basis, decorating the square ASI lat-
tice, then performing a Fourier transform of the nanois-
lands in the basis.18

Schematics of the bases used in our study are shown in
Fig. C. The vector k0 denotes the direction of the inci-
dent beam. The charge basis of a square ASI (Fig. C(c))
consists of a pair of two perpendicular nanoislands that
are equidistant to a common point, O. In addition, the
long axes of the nanoislands intersect at O. The mag-
netic basis can differ from this once the Ising macrospins
of the nanoislands are taken into account. The T1 mag-
netic basis, shown in Fig. C(b), is a set of four Ising
macrospins that are arranged in a four-fold symmetric
pattern around O. The T1 unit cell is accordingly dou-
bled in area and rotated by 45◦ with respect to the charge
unit cell. On the other hand, the T2 basis (Fig. C(d)) is
a pair of Ising macrospins and its unit cell is identical to
the charge unit cell. Each of these bases have different
structure factors.
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k0

FIG. C. Real space diagrams of the effective magnetic unit
cells used in the calculation. Only the Ising macrospins the

beam is sensitive to ( ~k0 ‖ ~M) are represented with arrows. (a)
The dimensions of the effective T1 unit cell and its nanois-
lands are shown on the left. The magnetic motif of each effec-
tive unit cell and their magnetic scattering structure factors
(F+(q) and F+(q)) are to the right. (b) The dimensions of the
effective T2 unit cells and their magnetic scattering structure
factors (FL(q) and FR(q)). The unit cells contain orthogo-
nally oriented Ising nanoislands with sharp-edged rectangular
prisms in the structure factor calculation. Their lengths and
widths are l and w (height is ignored). The lengths of the
square T1 and T2 unit cell sides are, respectively,

√
2a or a,

where a is the lattice constant.

The magnetic form factors of the nanoislands in the
resonant magnetic x-ray scattering process is dependent
on their different magnetization directions. Note that
the resonant x-ray scattering process is sensitive to only
to the magnetization component collinear to the incident
beam, k0, because we used σ-polarized incident x-rays
with low grazing angles (∼ 9◦).15 This means that the
T1 bases effectively have two Ising macrospins (arrows
in Fig. C(b)) and the T2 bases effectively have just one
Ising macrospin (arrows in Fig. C(d)). Only two basis
sets for T2 unit cells and two basis sets for T1 unit cells
are used in our calculations.

Calculating a magnetic structure factor of a magnetic
basis, Fbasis(q), amounts to calculating the q Fourier
component of an unit cell charge density, ρi(x). The sign
of this charge density can be positive or negative based
on whether the magnetization is parallel or antiparallel
to k0:

Fbasis(q) ∝
(

2π

a

)2 ∫
cell

eiq·xk̂0 ·

(∑
i

m̂iρi(x)

)
dx.

(C1)
The sum in the bracket runs over the nanoislands in the
unit cell, the x-axis is parallel to the incident beam, and
the y-axis is parallel to the vertical nanoislands shown
in Fig. C. The term m̂i is the macrospin direction of
nanoisland i.

We treat the nanoislands as identical rectangular

prisms of uniform density ρ0 with the same nominal di-
mensions of the nanoislands, as specified in Appendix B.
The nanoislands can be defined by a product of unit step
functions, Θ(x):

ρT2(x, y) = ρ0Θ(x− l

2
)Θ(

3l

2
− x)×

Θ(y +
w

2
)Θ(

w

2
− y),

ρT1,left(x, y) = ρ0Θ(x− l

2
)Θ(

3l

2
− x)×

Θ(y +
w

2
)Θ(

w

2
− y),

ρT1,right(x, y) = ρ0Θ(x+
3l

2
)Θ(− l

2
− x)×

Θ(y +
w

2
)Θ(

w

2
− y). (C2)

The subscript indicates whether the function represents
one of the T1 nanoislands or the T2 nanoisland shown in
Fig. C.

Using Eq. C1 and the density functions of Eq. C2, the
T1 and T2 magnetic structure factors are:

F+/−(q) ∝ ρ0
(

2π

a

)2

k̂0 · m̂left×(∫ 3l
2

l
2

eiqxxdx−
∫ − l

2

− 3l
2

eiqxxdx

)∫ w
2

−w
2

eiqyydy,

FL/R(q) ∝ ρ0
(

2π

a

)2

k̂0 · m̂
∫ 3l

2

l
2

eiqxxdx

∫ w
2

−w
2

eiqyydy,

with the index determined by the direction of m̂. (For
F+/−(q), the relationship m̂left = −m̂right was used.)
Dividing out common factors from the two expressions:

F+/−(q) ∝ ik̂0 · m̂left sin(lqx)sinc(
l

2
qx)sinc(

w

2
qy),

FL/R(q) ∝ k̂0 · m̂eiqxlsinc(
l

2
qx)sinc(

w

2
qy).

We choose to use the charge/T2 lattice to base our Miller
indices on since we found that T2 unit cells play the
greatest role in our study. Thus, qx = 2πH

a and qy =

2πK
a .

These expressions allowed us to calculate the ideal
scattered intensity at and around ASI Bragg peak lo-
cations in reciprocal space, as described in the text.

Appendix D: Gallery of ASI magnetic textures

This Appendix illustrates several superdomain ar-
rangements, and their corresponding coherent x-ray mag-
netic Bragg peak profiles. We first show several idealized
cases that can be used to illustrate how the real-space
structure influences the Bragg peak structure. Then, we
show several cusp superdomain scenarios explored before
we arrived at the texture shown in the main text. Lastly,
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an alternative scenario involving patches of contrasting
superdomains distributed in a polarized background is
shown. We explain why the cusp scenario proved to be
the better solution than the patch scenario.

In nearly every figure that follows, a pair of concen-
tric black circles are superimposed over the calculated
pattern. The circles indicate the size of the Bragg peak
splitting seen in the data. (See Fig. D.) The best real-
space arrangement will cause two lobes of scattering in-
tensity, and a weaker ring of scattering, to form between
the circles or on the edge of the inner circle.

FIG. D. The profile of a split Bragg peak like that shown in
the main text, superimposed by concentric black circles that
mark the size of the splitting.

1. Idealized cases

a. High symmetry textures

The highly symmetric T2 superdomain arrangements
shown in Fig. D1, while not realistic, do illustrate how
large, contrasting T2 superdomains can cause magnetic
Bragg peaks to form complex internal structure. The
Bragg peaks split to form intensity minima at what used
to be the center of the Bragg peaks. Complete destruc-
tive interference can occur at the center if the contrasting
areas are of equal area.

The splitting occurs along directions in which there is
strong magnetic contrast. For example, in the scenario
shown on the left of Fig. D1, the two-fold symmetric
checkerboard superdomain structure results in a Bragg
peak structure with a similar symmetry.

FIG. D1. Highly symmetric arrangements of large T2 super-
domains and their corresponding coherent Bragg peak pro-
files. The symmetry of the peak splitting reflects the sym-
metry of the real space arrangements, which are shown above
the Bragg peak profiles. The concentric black circles indicate
the size of the splitting seen in the data.

The fact that the Bragg peak splits to form lobes of
intensity to the left and the right of the central Bragg
peak position indicates a strong magnetic contrast along
the long axis of the beam spot.

b. Linear grating of superdomains

This idealized situation gives an idea of what the Bragg
peak structure would be if long, linear T2 superdomains
formed in the beam spot. The situations shown in the
top row of Fig. D2 are, generally, the type of structure
one might expect ifthe superdomains elongated along the
direction of the applied magnetic field. Such T2 superdo-
mains, however, would cause lobes of scattering to form
above and below the Bragg peak position, rather than to
the left and right of it, as shown in Fig. D. Based on
this, we ruled out such a grating-like structure.

The grating scenarios in the bottom row of Fig. D2 do
offer clues as to what superdomain length scales would
cause the Bragg peak to split as it does in Fig. D. Specif-
ically, the case with three vertical T2 superdomains, sep-
arated by ∼25.5µm or 40% of the beam spot’s length,
causes satellite peaks to appear between the two black
circles, which indicate the size of the peak splitting.
Therefore, the correct superdomain structure needs to
contain this length scale.

2. Cusps

We found that a superdomain structure whose bound-
aries converge to a cusp produced magnetic Bragg peak
splitting closest to that observed in the data. As illus-
trated in Fig. D3, the structures that most closely match
the data have nearly equal areas containing parallel and
anti-parallel nanomagnets. Furthermore, the superdo-
main structures contain the important length scale illus-
trated by the grating domains in the previous subsection.

In search of the most plausible superdomain structure,
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FIG. D2. Grating-like arrangements of linear T2 superdo-
mains and their corresponding coherent Bragg peak profiles.
Satellite peaks form around the Bragg peak position accord-
ing to the momenta of the grating arrays. The real space
arrangements are shown above the Bragg peak profiles. The
concentric black circles indicate the size of the splitting seen
in the data.

we considered many cusped domain structures, some of
which are shown in Figures D3-D5. In Fig. D3, cusped
superdomains of various shapes are shown, along with
their Bragg peak structures. The top row demonstrates
that the angle of the cusp must be such that nearly
equal areas of parallel and anti-parallel nanomagnets are
present. Superdomains that are nearly symmetric about
the vertical axis also concentrate the scattering intensity
in the lobes to the left and right of the Bragg peak center.

Figure D4 illustrates the effects of placing the cusped
superdomain away from the center of the illuminated
area. In the top row, the superdomain from being right
of center to nearly centered. The most off-center case
causes the two lobes to merge near the Bragg peak cen-
ter, which separate as the superdomain becomes more
centered. The bottom row shows what it might look
like if the superdomain were shifted down, highlighting
the role of the cusp in forming a split Bragg peak. In
this case, the superdomain is still laterally centered and,
thus, the two lobes of scattering remain and are nearly
at the right positions in all of the five cases. Comparing
this bottom row of figures to the top row of Fig. D3,
the cusp and the angled superdomain boundaries cause
scattered intensity to form a weak ring shape around the
black circles shown in the figures, closely matching the
Bragg peak splitting seen in the data. Therefore, the
cusp of the superdomain plays an important role in cre-

FIG. D3. Two scenarios, depicted in the top and bottom
rows, in which the opening angle of the T2 superdomain cusp
changes. In the top row, the opening angle of a cusped super-
domain is symmetrically increasing, going from left to right.
In the bottom row, the opening angle of an asymmetric cusped
superdomain is increasing, going from left to right. The cor-
responding coherent Bragg peak profiles are shown below the
real space arrangements. The concentric black circles indicate
the size of the splitting seen in the data.

ating a ring of scattering, rather than a peak that is split
into two parts.

FIG. D4. The dependence of the coherent x-ray Bragg
peak structure on the position of the cusped T2 superdomain
within the beam footprint. In the top row, the cusped super-
domain shifts from right to left. In the bottom row, a cusped
superdomain shifts from top to bottom, such that its cusp
is no longer within the beam footprint. The corresponding
coherent Bragg peak profiles are shown below the real space
arrangements. The concentric black circles indicate the size
of the splitting seen in the data.

The mere presence of a cusp is not sufficient to cre-
ate the right magnetic Brag peak splitting, however. As
shown in Fig. D5, the orientation of the superdomain
is important to capturing the size of the peak splitting.
Furthermore, the superdomain must completely span the
beam spot. The top row, left panel of Fig. D5 shows a
case when there is a connection between the blue areas,
which are oppositely polarized to the red cusp super-
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domain. This connection shifts the scattering intensity
away from the peaks to the left and right of the Bragg
peak center. Another case like this is shown in the bot-
tom row, right panel, in which a wedge-shaped superdo-
main is roughly in the middle of the beam spot. While
there is strong scattering to the right and left of the Bragg
peak position, and the size of the split is right, this case is
discounted because it creates scattering well away from
the black circles. Cases with multiple cusps also cause
scattering outside of the outer black circle, which also
disqualify them as likely structures.

FIG. D5. Other cases in which T2 superdomains display
cusps and their corresponding coherent x-ray Bragg peaks.
The middle row of panels shows a wider area of reciprocal
space around a Bragg peak than is shown in either the top
or bottom rows, as was necessary to show the scattering that
extends far from the Bragg peak position.

Figure D6 illustrates the effect of incompletely polar-
ized superdomains, and other forms of disorder, on the
scattering pattern. Even when the boundary between
the cusped superdomain and the magnetically contrast-
ing background is poorly defined, and many oppositely
polarized areas exist in the cusped superdomain, the scat-
tered intensity is still distributed within the black circles.
The size of the peak splitting and ring-like scattering pat-
tern in the central figure of Fig. D6 most closely resem-

bles the data shown in Fig. D. It is this calculation, after
a convolution with a gaussian function to simulate the ef-
fect of a partially coherent incident beam, that we show
in Fig. 4(a) of the main text.

FIG. D6. The best cusp configuration is subjected to dif-
ferent degrees of disorder. In each case, the size of the Bragg
peak splitting remains the same.

3. Alternative case: patches

Another set of superdomain structures were also seri-
ously considered. In these cases, patches of superdomains
are distributed around the beam spot. The left panel of
Fig. D7 shows a superdomain configuration that gives
rise to a scattering ring of the correct size and intensity
distribution. However, small variations of the patches
(e.g., position, size, disorder) cause the magnetic Bragg
peak structure to dramatically change. This instability
against small changes in superdomain configuration, oc-
cur in the ASI as it is subjected to one magnetic field
cycle to another, is the main reason we abandoned fur-
ther investigation of these structures.

FIG. D7. Four scenarios in which large T2 superdomains are
arranged over the illuminated area. The two lobes of inten-
sity are replicated, though the size of the splitting between
those lobes is too small. The Bragg peak structures in these
scenarios are quite sensitive to disorder.
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